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ABOUT THE DETERMINANT OF COMPLETE

NON-AMBIGUOUS TREES

JEAN-CHRISTOPHE AVAL

Abstract. Complete non-ambiguous trees (CNATs) are combinatorial ob-
jects which appear in various contexts. Recently, Chen and Ohlig studied the
notion of leaf permutation on these objects, and proposed a series of nice con-
jectures. Most of them were proved by Selig and Zhu, through a connexion
with the abelian sandpile model. But one conjecture remained open, about
the distribution of a natural statistic named determinant. We prove this con-
jecture, in a bijective way.

1. Introduction

Non-ambiguous trees (NATs) were first defined in [1] and may be seen as a
proper way to draw a binary tree on a square grid (see Definition 2.1). They were
put to light as a special case of tree-like tableaux, which have been found to have
applications in the PASEP model of statistical mechanics [5, 3]. The initial study
of NATs revealed nice properties, mostly in an enumerative context [1, 2]. This
includes enumeration formulas with respect to fixed constraints (hook formula), and
new bijective proofs of combinatorial identities. When the undelying binary tree
is complete, we are led to complete non-ambiguous trees (CNATs). These objects
were first considered in [1], where it was proved that their enumerating sequence is
related to the formal power series of the logarithm of the Bessel function of order
0. To end this early study of NATs, an extension to higher dimension was proposed
in [8].

Recent works have revealed new facets of these objects. In [6], striking mathe-
matical cross-connections were obtained, such as a bijection between CNATs and
fully-tiered trees of weight 0. In [7], CNATs were linked to the abelian sandpile
model. In the same article, it was noticed that if we restrict a CNAT to its leaf
dots, we obtain a permutation. This link was investigated in [4], were nice proper-
ties were derived, and several conjectures proposed. By using the connection with
the abelian sandpile model, a large number of conjectures were proved very recently
[9]. But a conjecture remained open. It asserts that when considering the set of
CNATs of a fixed odd size, the number of them with an underlying permutation
with even and odd determinant (signature) are equal. We give a bijective proof
of this (Theorem 2.7), and include the case of the even size, which was suggested
in [4].

2. Definitions and statement of the result

We first recall the definition of (complete) non-ambiguous trees, as in [1].

Definition 2.1. A non-ambiguous tree (NAT) T is a filling of an m×n rectangular
grid, where each cell is either dotted or not, satisfying the following conditions:
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(Existence of a root): The top-left cell is dotted; we call it the root of T .
(Non ambiguity): Aside from the root, every dotted cell of T has either a

dotted cell above it in the same column, or a dotted cell to its left in the
same row, but not both.

(Minimality): Every row and every column of T contains at least one dotted
cell.

Remark 2.2. The use of the word tree to describe these objects comes from the
following observation. Given a NAT T , we connect every dot d different from the
root to its parent dot p(d), which is the dot immediately above it in the same
column, or to its left in the same row (because of the condition of non ambiguity,
exactly one of these must exist).

A NAT is said to be complete if the underlying tree is complete, i.e. every
internal dot has exactly two children.

Definition 2.3. A complete non-ambiguous tree (CNAT) is a NAT in which every
dot has either both a dot below it in the same column and a dot to its right in the
same row (in which case the dot is said to be an internal dot), or neither of these
(in which case the dot is said to be a leaf).

The size of a CNAT is its number of leaf dots, or equivalently one more than its
number of internal dots.

We denote by Tn the set of CNATs of size n and Tn = |Tn|.

Figure 1 gives an example of this notion.
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Figure 1. A CNAT of size 5. Leaf dots are represented in blue, and internal dots
in black.

As in this figure, it will be convenient to label by integers the rows and columns
respectively from top to bottom and from left to right (in such a way that the root
appears in the cell (1, 1)). Moreover, given a dot d in a CNAT, we denote by c(d)
and r(d) the (label of) its column and row. For a given internal dot, its child in
the same row is called its right child and its child in the same column is called its
left child.

Remark 2.4. We may observe that any right leaf l in a CNAT T is the only dot
in its column: there is no dot above l because this would contradict the minimality
condition of Definition 2.3, and there is no dot below l because l is a leaf. In the
same way, any left leaf l in T is the only dot in its row.
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We may see a CNAT T as a matrix M(T ) where dotted cells are 1’s and undotted
cells are 0’s For example, the CNAT of Figure 1 is encoded matricially as













1 0 1 1 0
1 1 0 0 1
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0













.

The numbers Tn of CNATs of size n appear as the series A002190 in [10]. As
proved in [1], these numbers give a combinatorial interpretation for the developp-
ment of the Bessel function J0.

Let us now introduce the notion of permutation associated to a CNAT.

Definition 2.5. Let T be a CNAT of size n. It is clear that in any column of T
the bottom-most dot of is a leaf, as well as the right-most dot of any row. Thus
every row and every column must have exactly one leaf dot. As such, the set of leaf
dots of a CNAT T of size n forms the graphical representation of an n-permutation
π(T ). We say that π(T ) is the permutation associated with the CNAT T .

For example, the CNAT of Figure 1 has associated permutation π(T ) = 45312.
A careful study of permutations associated to CNATs was initiated in [4], where

the following proposition is proved.

Proposition 2.6. Let T be a CNAT. We have:

detM(T ) = sgnπ(T ).

Let us denote by T (n; ǫ) the number of CNATs of size n with determinant equal
to ǫ. We are now in a position to state the main result of this article.

Theorem 2.7. If n > 1 is odd:

(1) T (n; +1) = T (n;−1) =
Tn

2
.

If n is even (let us set n = 2p):

(2) T (2p; +1) =
T2p + (−1)

p
Tp

2
and T (2p;−1) =

T2p − (−1)
p
Tp

2
.

The odd case corresponds to Conjecture 2.6 in [4], the even case to Remark 2.7
in the same paper.

3. A bijective proof of Theorem 2.7

This section is devoted to proving our main result. This proof is bijective. More
precisely, we shall:

(1) introduce a subset A2p ⊂ T2p of CNATs of even size, with A2p = Tp, and
such that for any T ∈ A2p we know that sgnπ(T ) = (−1)

p
;

(2) construct an involution Φ on the set of CNATs such that if T is not in any
of the sets A2p we have:

sgnπ(Φ(T )) = − sgnπ(T ).

We first introduce a useful notion on the leaves of CNATs.
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Definition 3.1. A leaf in a CNAT is said to be short if its parent is in a cell
adjacent to it. Otherwise the leaf is said to be long. Moreover, we denote by An

the set of CNATs of size n with only short leaves.

Figures 2 illustrates this notion.

Figure 2. (Left) A CNAT with short leaves in blue and long leaves in red.
(Right) An element of A6.

The elements of Ap are designed to be the fixed points of our involution Φ.
We treat their case with two propositions, for which the technical key point is the
following lemma.

Lemma 3.2. Let T be a CNAT. Suppose that T has an internal dot with a leaf
and an internal dot as children. Then T contains at least one long leaf.

Proof. Let us consider the set C of internal dots with a leaf and an internal dot as
children. Among C, we consider an element c which has no descendant in C, i.e.
there is no element in C lower than c in the tree. By symmetry, we suppose that
c has an internal dot as right child, and a leaf as left child. We refer to Figure 3
which shows only the part of T of interest for the proof.

c c′

Figure 3. Proof of Lemma 3.2.

Consider the right-most internal dot c′ in the same row as c, which implies that
its right child is a leaf. By hypothesis, c′ is not in C, thus its left child is a leaf.
Then it is impossible for c and c′ to have both a short left leaf, because these two
leaves would lie in the same row. �

Proposition 3.3. When the size n = 2p+1 is odd, the set A2p+1 is empty. When
the size n = 2p is even, the set A2p is in bijection with Tp.

Proof. Let us first consider the case of odd size, and let T be a CNAT of size
n = 2p + 1. Since T has an odd number of leaves, there must be an internal dot
in T which has as children an internal dot and a leaf. Because of Lemma 3.2, T
contains at least one long leaf. Thus A2p+1 is empty.
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Now, let us suppose that the size is even. We consider an element T of A2p.
Lemma 3.2 implies that any internal dot of T has as children: either two internal
dots, or two (short) leaves. Thus T has exactly p internal dots with two short
leaves. Now we shall erase all the leaves to get an element T ′ ∈ Tp. Thanks to
Remark 2.4, we may erase every right leaf in T together with its column, and every
left leaf in T together with its row. Let us call this operation R. By doing this, we
get an element T ′ = R(T ) ∈ Tp, see Figure 4.

Figure 4. The operation R applied to the element of A6 in Figure 2 (Right).

We claim that R is a bijection from A2p to Tp. Let us describe the reverse
bijection. Consider an element T ′ ∈ Tp. For every leaf l′ in T ′, we first add an
empty column just to the right of l′ and an empty row just below l′, and then two
leaves as the children of l′. It is clear that by doing this, we get an element T ∈ A2p

such that R(T ) = T ′. �

Proposition 3.4. Let T be an element of A2p, its determinant is given by:

sgnπ(T ) = (−1)
p
.

Proof. We shall use the notations used in the proof of Proposition 3.3, and consider
T ∈ A2p and T ′ ∈ Tp with T ′ = R(T ). We shall also set: σ = π(T ) and σ′ = π(T ′).
For the example of Figures 2 and 4, we have: σ = 436521 and σ′ = 231. We observe
that σ and σ′ are closely related. If σ′ = σ′

1σ
′

2 . . . σ
′

p
, then

σ = (2σ′

1)(2σ
′

1 − 1)(2σ′

2)(2σ
′

2 − 1) . . . (2σ′

p
)(2σ′

p
− 1).

Thus any inversion j > i in σ′ gives rise to four inversions in σ: (2j− 1) > (2i− 1),
(2j) > (2i− 1), (2j − 1) > (2i), (2j) > (2i). To which we have to add p inversions:
(2σ′

1) > (2σ′

1 − 1), (2σ′

2) > (2σ′

2 − 1), . . . (2σ′

p
) > (2σ′

p
− 1). Thus we are led to the

following relation:

inv σ = 4 inv σ′ + p

which implies that sgnσ = (−1)
p
. �

We now come to the definition of a function Φ on Tn, which is the key construc-
tion of this work. We first introduce the following notion.

Definition 3.5. Let T be a CNAT, and l1 and l2 two leaves in T with respective
parent p1 and p2. If l1 and l2 are both left leaves, they are said to be interacting if

r(p1) < r(l2) < r(l1) or r(p2) < r(l1) < r(l2).

The definition is similar for right leaves.

This notion is illustrated by Figure5.
The interest of this notion of interacting leaves is put to light by the following

operation.
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p1

l1

l2

Figure 5. Interacting leaves.

Definition 3.6. For two interacting left leaves l1 and l2 in a CNAT T , we define
the switch of these two leaves as the exchange of the row labels of l1 and l2. More
precisely:

• we erase l1 and we put a new leaf l′1 in the same column, in row r(l2);
• we erase l2 and we put a new leaf l′2 in the same column, in row r(l1).

By doing this, we obtain an object T ′ = S(T, l1, l2).
We have the same operation for right (interacting) leaves.

This notion is illustrated by Figure 6

l1

l2 l′1

l′2

Figure 6. Switching interacting leaves.

Proposition 3.7. Let T be in Tn. For two interacting leaves l1 and l2 in T ,
S(T, l1, l2) is in Tn.

Proof. The only condition in Definition 2.1 that is not trivially satisfied in non
ambiguity. This is a direct consequence of Remark 2.4. �

The technical part of the construction of Φ now relies on the two following
lemmas.

Lemma 3.8. Consider a CNAT T . Suppose that there is an internal dot which
holds as children a leaf and an internal dot. Then T has at least two interacting
leaves.

Proof. We refer to Figure 7. By symmetry, we may assume that we have an internal
dot p1 with a left leaf l1 and an internal dot as left child. Let us suppose that we
do not have interacting leaves. Let us denote by p2 the right-most internal dot in
the same row as p1. Then the right child of p2 has to be a leaf l2. And its left child
has to be an internal dot: if it was a leaf, this leaf would be interacting with l1. We
may now iterate, and consider p3 the bottom-most internal dot in the same column
as p2. For the same reason, p3 holds as children: a left leaf l3 and an internal dot
as right child. We are thus led to an infinite series of internal dots in T , which is
absurd. �
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p1 p2

p3 p4

l1

l2

l3

l4

Figure 7. Proof of Lemma 3.8.

Lemma 3.9. Any CNAT with a long leaf has at least two interacting leaves.

Proof. Consider a CNAT T with a long leaf l. We suppose that l is a left leaf, and
denote by p its parent. Since l is a long leaf, we have: r(l)− r(p) ≥ 2. We examine
the row with label r(l)− 1. This row has to contain a leaf l′. If l′ is a left leaf, we
are done (this is the case illrustrated by Figure 5). If l′ is a right leaf, we call its
parent p′ (see Figure 8).

p

p′

l

l′

l′′

Figure 8. Proof of Lemma 3.9.

We have r(p′) = r(l′) = r(l)−1. If the left child of p′ is a leaf l′′ then r(l′′) > r(l)
which implies that l and l′′ are interacting. And if the left child of p′ is an internal
dot, we are in the case of Lemma 3.8 which asserts that T contains two interacting
leaves. �

Let us now precise the construction of Φ : Tn −→ Tn. First of all, we set that for
any T ∈ An, Φ(T ) = T . This case done, we are reduced to the case where T has at
least one long leaf. By Lemma 3.9, T contains interacting leaves. To define Φ, we
want to choose a pair of interacting leaves. Since the set of interacting leaves may
change when we switch leaves, we have to choose in a way such that we create an
involution. If T contains left interacting leaves, we consider the (non-empty) set
{(r(l1), r(l2)); l1 and l2 interacting} and choose l1 and l2 which correspond to the
lexicographical maximum of this set. Let us call these interacting leaves active. This
done, we set Φ(T ) = S(T, l1, l2). And if T contains only right interacting leaves,
we consider the lexicographical maximum of {(c(l1), c(l2)); l1 and l2 interacting}
to choose the pair of active leaves.
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Proposition 3.10. The function Φ is an involution on Tn. Moreover, if T 6∈ An

then sgnπ(Φ(T )) = − sgnπ(T ).

Proof. By symmetry, we focus on the case where we have left leaves. We want to
prove that if we consider 3 left leaves l1, l2 and l3 such that r(l1) > r(l3) > r(l2)
then if l1 and l2 are interacting then l1 and l3 are also interacting. First of all, since
r(l2) < r(l1) the fact that l1 and l2 are interacting implies that r(p1) < r(l2) < r(l1)
(p1 denotes the parent of l1). Whence r(p1) < r(l3) < r(l1), which was to be proved.
This implies that if l1 and l2 are the two active leaves in T , then l′1 and l′2 are the
two active leaves in Φ(T ).

Thus Φ is an involution.
Now the assertion about the determinant comes from the easy observation that

π(Φ(T )) and π(T ) differ by exactly a transposition. �

Figure 9 shows an example of the application of Φ.

Figure 9. A CNAT and its image under Φ. Active leaves appear in red.

We can now conclude the proof of our main result.

Proof of Theorem 2.7. It is a consequence of Propositions 3.3, 3.4 and 3.10. �
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