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Abstract

We study the problem of maximizing the violation of due dates when considering either the total violation, or the
number of jobs that are tardy. We consider either classical completion times or those involving time warp. The four
problems are motivated by the solution of scheduling problems with release and due dates/deadlines and processing
time uncertainty, and also routing problems with (soft) time windows and travel time uncertainty. We provide
polynomial dynamic programming algorithms for the four problems.
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1. Introduction

We consider a set of n jobs scheduled in the order
[#] = {1,2,...,n}. For each job, we are given a release
date r;, a due date d;, a nominal processing time p; and a
deviation p;. The actual processing time of job i is given
by p; + 0;p;, where 6; € {0, 1} is a binary optimization
variable that satisfies the constraint

Z(S,- <T, ey

icln]

for a given positive integer I. The goal of the opti-
mization problems studied in this paper is to find a bi-
nary ¢ satisfying (1) that maximizes the violation of
due dates. In what follows, we use the notation Ar =
{6 € {0, 1}" | Diem 0i T } to represent the feasibility
set of 8, which is widely used in the robust routing and
scheduling literature, e.g. [1, 2, 3, 4, 5].

We consider more specifically two models for com-
puting the completion times of each job. In the basic
model, the completion time of job i, denoted tlB((S), is
given by () = r + p1 + 61p1 and

1£(8) = max(t} (6), r;) + pi + 6ii @)

foreachi € {2,...,n}. Observe that the maximum in (2)
models the wait until r; in case job i — 1 is completed
earlier than r;. In the time-warp model, the completion
time is given by 1 " (6) = r + py + 6, p; and

£(6) = max(min(/" Y} (6), di-y), 1) + i + 6:pi - (3)
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for each i € {2,...,n}. The innermost minimum sets
the completion time back to d;_; in case violation oc-
curs, the so-called time-warp, while the inner maximum
models the waiting time as in the basic model.

For each of these two models M € {B, TW}, we seek
to maximize the total violation

D Fa") - dy)

i€ln]
for two choices of functions f:
o fo(x) =0for x <0and fy(x) = 1 for x > 0;
e fi(x) = max(0, x), also denoted by (x)*;

where f; indicates whether a job is tardy (or fails) while
fi1 considers the tardiness of the job. We denote the re-
sulting functions of 6 as ¢M(6) = fo(tM(6) — d;) and
™) = fitM(6) — d;), and ¢ (S) = Yicpy ¢2(6) and
™(8) = Yiein TV (6), respectively. Therefore, this pa-
per studies the optimization problems defined on set Ar,
for the objective functions 75, 77V, ¢®, and ¢"".

1.1. Motivation

Basically, the four optimization problems studied in
this paper are motivated by the exact and heuristic solu-
tion of robust scheduling problems with release and due
dates/deadlines and processing time uncertainty, and
also robust routing problems with (soft) time windows
and travel time uncertainty.
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Let us start with model B and consider a robust
scheduling problem seeking to minimize the tardiness.
One exact approach to such problems is based on a
row-and-column generation algorithm [6], the separa-
tion problem of which corresponds exactly to maximiz-
ing 78, see [4]. Similar models arise in the vehicle
routing literature with release and due dates, where one
wishes to minimize the total tardiness [7, 8]. Hence, the
separation problems studied herein could be leveraged
to develop algorithms also for the robust counterparts
of the above routing problems. The above row-and-
column generation algorithm could be extended to the
problem minimizing the number of tardy jobs, proved
N%P-hard in [9], which leads to maximizing @5,

Second, these scheduling problems, as well as their
routing counterparts, are also often addressed heuristi-
cally through local-search algorithms [10]. In this case,
one needs to compute the objective of the schedules and
routes explored by the algorithm, which amounts again
to maximizing 78 and ¢%.

Model TW is useful in local search algorithms ap-
plied to scheduling and routing problems with release
dates and deadlines, also called time windows in the
routing literature. Because the search algorithm fre-
quently modifies subpaths of the current solution, it is
crucial to design efficient methods to assess violation
levels. A popular approach is to evaluate this violation
without accumulating the delays along the entire path,
known as time-warp relaxation, see [11, 12]. Assessing
the violation of the current solution without accumu-
lation leads to the maximization of functions 77" and
s

1.2. Contributions

Checking whether the optimal solution cost of any
of the four problems is equal to 0 can be answered in
polynomial time by using the dynamic programming al-
gorithm proposed in [1], and subsequently leveraged to
provide compact formulations for routing and schedul-
ing problems with deadlines [2, 3]. However, prior to
this paper, it was unknown whether optimizing func-
tions 78, 77%, ¢2, and ¢”" could be done in polynomial
time, and these were typically solved by using dynamic
programming algorithms running in pseudo-polynomial
time or Mixed-Integer Linear Programming formula-
tions, e.g. [13, 14, 4].

The contribution of this work is thus to prove that
these four problems are polynomially solvable, propos-
ing three different dynamic programming algorithms
detailed in the following three sections. While the algo-
rithms for 78 and 77V rely on different ideas, presented
in Sections 3 and 4, respectively, those for ¢ and ¢”"

are nearly identical for the two models, and presented in
the following section.

2. Number of failures

The total number of failures among the n jobs is
bounded by n. This allows one to design a dynamic
programming algorithm to compute V(i, y, @), the max-
imum completion time of job i given that « € [i] failures
have occurred along the jobs in [i] and using y € [['TU{0}
deviations so far. We consider next the basic case ¢ and
propose a recursion for computing V(i, y, @).

The recursion returning the value of V(i,y, @) is split
into different cases, depending on the value of i, vy, a.
Notice the presence of modulus for some of the values
|V(i, v, @)| when subject to an upper bound. This implies
that if V(i,y,a) = —co, meaning that the state has not
been reached, the condition is always violated. In par-
ticular, these absolute values are not needed when the
condition requires to be greater than some value since
in that case V(i,y, @) = —oo immediately invalidates the
condition. In addition to the following cases, we also
have the initial condition that V(i,y,a) = —co if @ > i
aswell as V(i,y,a) = —oif y > i.

i=landy=0and o =0:

ifr1+ﬁlﬁd11 r1+[31
else : —00

i=landy=0and a = 1:

ifr1+[31§d1: —00
else : T+ pi

i=landy=1and a =0:

ifr1+[71+f71Sd1: r1+131+[71
else : —00

i=landy=1anda = 1:

ifr1+[71+[31$d1: —00

else : r+ p1+ P
i>2andy=0and a =0:

if |[V(i-1,0,0)|+ p; <d; : max{r;, V(i—1,0,0) + p;}

else: —00

i>2andy=0and 1 <a<i:

ifVi-1,0,a-1)+p;>d;:
elsif |[V(i— 1,0,a)| + p; < d; :
else : —00

Vi-1,0,a-1)+ p;
max{r;, V(i—1,0,a) + p;}

i>2and1 <y<iand a =0:



if |V(i—1,y,0)| + p; < d; and
VGi-1,y—-1,0)|+ p; + p: < d; :
max{r;, Vi—1,7,0) + p;, Vi — 1,y — 1,0) + p; + p;}
elsif |V(i—1,y—-1,0)|+p;+ p; < d; :
max{r;, Vi— 1,y —1,0) + p; + p;}
elsif |[V(i—1,y,0)|+ p; < d; :
max{r;, V(i—1,v,0) + p;}
else: — oo
i>2and 1 <y<iandl1 <a<i:
if Vi-1,y—-1,a-1)+ p;+ p; > d; or
Vi-Ly,a-1)+p; >d;:
max{V(i—-1,y,a—1)+ p;,
Vi-1,y-1,a—-1)+ p; + p;}
elsif |V(i—1,y—1,a)|+ p; + p; < d; and
Vi-1,y,e)l+p: <d;:
max{r;, V@i—-1,y,@) + p;,
V@i-1,y-1,@) + p; + pi}
elsif |V(i—1,y—-1,a)|+ p;+ p; < d;
max{r;, Vi— 1,y — 1,a@) + p; + pi}
elsif |V(i—1,y,a)|+ p; < d;:
max{r;, V(i—1,y,@) + p;}

else: —

Observe that in the last brace, it may happen for ex-
ample that V(i — 1,y — l,a - 1) + p; + p; > d; and
Vi - 1,y — 1,a)| + p; + pi < d; simultaneously, in
which case the maximum completion time is given by
Vi- 1,y — l,a — 1) + p; + p; and we fall into the
first case. Similarly, if V(i — 1,7, — 1) + p; > d; and
[V(@i-1,y, )| + p; < d; simultaneously, we fall again in
the first case as the max is given by V(i—1,y,a— 1)+ p;.

Finally, we obtain the maximum total numbers of fail-
ures « as follows:

max{a | V(n,y,a) # —oo for some y € {0,...,['}}.

Therefore, it is possible to implement a dynamic pro-
gramming algorithm to maximize the total number of
failures with the time complexity of O(n°T).

We conclude this section by mentioning how to ex-
tend the above dynamic programming algorithm to the
case with time-warp, ¢”". In this case, it is enough to
replace the value of V(i, y, @) by d; when a failure occurs
at a given job.

3. Tardiness with the basic model

We omit the superscript B of 7%, 7, and ¢ through-
out the section, and compute 7 using a dynamic pro-
gramming algorithm described next. For each i € [n]
and y € [I'] U {0}, we denote by AQ the projection of

A, on the components [i], and for each i € [n], we de-
note by 7/(6) = 3 Jeti) Tj(6) the sum over the tardiness
for the first 7 jobs only. Observe that 7/(9) depends only
on the first i components of d, so we assume next that
the argument of 7' belongs to Al for some .

Our dynamic programming algorithm is based on the
value-function

F(i,y,B) = max t'(6) + B - 1;(0),
66Ai/

where § € [n] U {0}. Note that the optimal solution to
the problem minimizing 7 over Ar is given by F(n, T, 0).
Furthermore, for i = 1, the value-function can be com-
puted as F(1,y,B8) =

(r+pi(y)—d)* +B-(r +pi(y), ify €{0,1}
—00 otherwise

where we use the notation p;(6) = p; + 6p;. We obtain
a general recurrence for the remaining cases by relying
on the recursive definition (2) and the definition 7;(6) =
(t;(6) — d;)*. Denoting the concatenation of § and ¢ as
0||0’, we see that F(i,y,8) =

max max 7 '(8) + (tO|6) — d)" + B - 1:(6]|6)
§€{0,1} ‘SeAl{_]o/

max max
6"€{0,1} geai-1
y-o'

max (77 (8) + (B + D5(31I6") — di, 77 (8) + B - 1:(6116"))

max max max (Tf-l(a) + B+ Dty () + (B + Dpi(6) — d,

& €{0,1} gepi-1
y-o

71 ©6) + B+ Dri+ (B+ Dpi(6) — d;,
7O + B 1i21(8) + B+ pil),

TG + B+ B p,»(a'))

— max max( max {71 (8) + (B + Vi1 (8)} + B+ Dpi(&) — di,
& €{0,1} 6€A:;l§’

max {t"'(6)} + (B + Dr; + B+ Dpi(6) — d;,
deni~!

y-o

max (7710) 4 B+ 110} + B+ pid),

s

max {t- (6)} + B 1o+ - pi((s’))
deni~!

y-o'
= max max (F(i— Ly—&,8+1)+(@+ Dpi(d) —d,
ma

Fi—1,y-6,00+ @B+ Dri+ B+ Dpi(&) - d;,
F(ii—1,y-68,8) +B-p(5),

Fi-1,y=68,00+8-r +B~p,-(6’))

Overall, all values of F(i,y,) can be computed in
omn°T).



Remark 1. The above ideas can be extended to provide
polynomial-time algorithms for robust lot-sizing prob-
lems with budget uncertainty when considering scenario
generation algorithms [13, 14]. Stated shortly, the sep-
aration problem of this case involves two main differ-
ences with the problem considered so far. First, the com-
pletion time of job i is replaced by the total demand at
the end of period i, so t; for i € {2,...,n} satisfies the
recurrence t;(8) = t;_1(0) + p; + 6;p; — x;, where x; is the
production during period i and t(6) = p1 + 01 p1 — Xx1.
Notice the productions are assumed constant for the
separation problem as they are variables of the corre-
sponding master problem. Second, the cost at every pe-
riod is given by the formula max(b;t;(0), —s;t;(9)), where
s; and b; are given non-negative parameters. Adapt-
ing the above ideas to this case leads to considering
negative and positive values for B, yielding a pseudo-
polynomial time algorithm for the problem, where the
pseudo-polynomial factors involve s; and b;. In con-
trast, the pseudo-polymonial time algorithm proposed
by [13] depends on p;.

4. Tardiness with time-warp

Again we omit the superscript TW of 7/%, 77W and

™% throughout the section, and study the optimization
problem
max 7(0). @)
O€Ar

We first handle the case where intermediate release
dates are not restrictive, formally

ri<r=r, Vi=2,...,n (®)]
We have the following proposition for this case.

Proposition 1. Assume (5) holds, let 6 € Ar and i* be
the largest i such that ;(6) > 0. Then, ©(6) = r* — d; +
Diei(Pi + 0iP).

Proof. LetI = {i € [n] | 7:(6) > 0}. Note that, for all
iel)\{i"}, we have

1i(0) = t;-1(0) + p; + 6ipi — T:(6) (6)
Moreover, for all i € [i*] \ I, we have
1:(6) = 1i-1(6) + pi + 6P 7

Combining (6) for all i € I and (7) for all i € [i*] \ I, we
obtain that

O =+ Y (Bi+Sip)— ), TiO).

ie[i*-1] iel\{i*}

Then, 7;-(6) = t-(6) — d;», proving the result. O

Proposition 1 shows that the objective value of any
solution only depends on the last release date that gener-
ates a time warp. Hence, an effective approach to solve
the problem under non-restrictive intermediate release
dates is to probe for the last time warp index i*. From
Proposition 1, for each candidate index i € [n], the best
solution for the case where i* = iis to set 6; = 1 for the
min{i, I'} largest values of p;, for j € [i], and ¢; = O for
the remaining components. This leads to the following
proposition:

Proposition 2. Problem (4) under assumption (5) can
be solved in O(nlogT).

Proof. The algorithm performs one pass for i € [n],
keeping track of P = 3 jetn Pj and P is equal to the sum
of the min{i,I'} largest values of p;. Updating P takes
O(1) time but updating P requires that the terms of the
sum be also maintained, which takes O(logT"). The ob-
jective value in each case is computed in O(1) time as
r* + P + P — d; following Proposition 1. O

In order to solve the complete problem, we use a re-
formulation more suited to the above results. Let o;
be an additional binary decision variable for i € [n]
that models whether or not we apply the release date
for job i. We adapt definition (3) and define 7,(6, o) =
r1 + p1 + 611 (observe 7(8, o) does not depend on o),
and foreachi € {2,...,n}
min(d;_1,%-1(6,0)) + pi + 6;p;  if oy =0

ifO'iZ]

7:(8, o) ={ o
ri+ pi+0ipi

We adapt 7; similarly and define
(6, 0) = (#(6,0) — di)*

for each i € [n], as well as 7(6, o) = ¢ Ti(6, 0). Con-
sider consequently the following optimization problem

max 7(5, o). (8)
6€Ar,0€{0,1}"
Proposition 3. Let (6%,0%) be an optimal solution
of (8). Then, 6" is an optimal solution to (4) and
7(6%) = 7(6*%, o).

Proof. Let (6*,0") be an optimal solution of (8). We
define & € {0, 1}" by fixing 6; = 1 if #;(6*) < r; and
0 otherwise. Note that (6*,7) is feasible for (8) and
7(6%,0) = 1(6*). Hence,

(6", 0") = 7(6",0) = 7(67). 9)



Moreover, since &; = 1 if and only if 7;(6*, ) = £;(6*) <
ri, 5(6%,0) = §;(6%, o) for any o € {0, 1}". As a result,
(0", 0) = T(0%,07), and therefore, 7(6*) > T(0*, o).
Together with (9), we obtain that 7(6*) = 7(6*, o).
Finally, assume ¢* is not optimal for (4). Then, there
exists ¢ such that 7(8) > 7(6*), and repeating the above
procedure, we construct & such that #(5,5) = 7(6) >
7(6%) = #(6*, o). 0

The algorithm we propose next for (8) relies on the
following observation. On the one hand, setting o; to
0 relaxes the release date of job i, in line with (5). On
the other hand, setting o-; to 1 splits the problem into the
one involving jobs in [i—1], and the subsequent one with
jobs [n]\ [i — 1]. For the sake of deriving a dynamic pro-
gramming algorithm, let us denote by 7'(i,y) the maxi-
mum total tardiness obtained for jobs in [i — 1] setting at
most y values of § to 1 among the indices of [{]; in par-
ticular, T(n + 1,T") is equal to the optimal solution cost
of problem (8). Let also T“(i, j, y) be the maximum total
tardiness obtained for the jobsin {i,. .., j— 1}, using r;_;
for the release date of job i — 1, ignoring release dates
for jobsin {i+1,...,j— 1}, and setting at most y values
of ¢ to 1 among the indices of {i,..., j — 1}. Following
the above discussion on the value of o, T (i, y) satisfies
the following recursion:

0, ifi=1

max T(i,0)+T"(ii,y—6) ifi>0"
J€lil,0€ly]U{0}

I(G,y) =

where we assume that 7%(i,i,) = 0 for i € [n], and,
y =0,...,I'. The maximization over j in the recursion
seeks the optimal index j € [i] such that o-; = 1 and
or=0forke{j+1,...,i}.

Proposition 4. T(n+ 1,T) can be computed in O(n’T’?).

Proof. From the procedure proposed in the proof of
Proposition 2, T“(i, j,y) can be computed in O(nlogI')
for a fixed i, and y, and j = i,...,n. Thus, comput-
ing the whole table of T* takes O(n’T"'logT’). Then, it
remains to fill the O(nI') values of T, each one taking
O(nI') time. This gives the stated complexity. O
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