
HAL Id: hal-04351032
https://hal.science/hal-04351032

Preprint submitted on 18 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing the worst-case due dates violations with
budget uncertainty

Igor Malheiros, Artur Pessoa, Michael Poss, Anand Subramanian

To cite this version:
Igor Malheiros, Artur Pessoa, Michael Poss, Anand Subramanian. Computing the worst-case due
dates violations with budget uncertainty. 2023. �hal-04351032�

https://hal.science/hal-04351032
https://hal.archives-ouvertes.fr

Computing the worst-case due dates violations with budget uncertainty

Igor Malheirosa,b, Artur Pessoac, Michaël Possa, Anand Subramaniand

aLIRMM, Université de Montpellier, CNRS, Rue Ada 156, 34095, Montpellier, France
bAtoptima, Rue Marc Sangnier 2, Bègles, 33130, France

cTEP, Universidade Federal Fluminense, Rua Passo da Pátria, 156, 24210-240, Niterói, Brazil
dDSC, Universidade Federal da Paraı́ba, Rua dos Escoteiros s/n, 58055-000, João Pessoa, Brazil

Abstract

We study the problem of maximizing the violation of due dates when considering either the total violation, or the
number of jobs that are tardy. We consider either classical completion times or those involving time warp. The four
problems are motivated by the solution of scheduling problems with release and due dates/deadlines and processing
time uncertainty, and also routing problems with (soft) time windows and travel time uncertainty. We provide
polynomial dynamic programming algorithms for the four problems.

Keywords: robust optimization, release date, due date, deadlines, budget uncertainty

1. Introduction

We consider a set of n jobs scheduled in the order
[n] = {1, 2, . . . , n}. For each job, we are given a release
date ri, a due date di, a nominal processing time p̄i and a
deviation p̂i. The actual processing time of job i is given
by p̄i + δi p̂i, where δi ∈ {0, 1} is a binary optimization
variable that satisfies the constraint∑

i∈[n]

δi ≤ Γ, (1)

for a given positive integer Γ. The goal of the opti-
mization problems studied in this paper is to find a bi-
nary δ satisfying (1) that maximizes the violation of
due dates. In what follows, we use the notation ∆Γ ={
δ ∈ {0, 1}n

∣∣∣ ∑i∈[n] δi ≤ Γ
}

to represent the feasibility
set of δ, which is widely used in the robust routing and
scheduling literature, e.g. [1, 2, 3, 4, 5].

We consider more specifically two models for com-
puting the completion times of each job. In the basic
model, the completion time of job i, denoted tB

i (δ), is
given by tB

1 (δ) = r1 + p̄1 + δ1 p̂1 and

tB
i (δ) = max(tB

i−1(δ), ri) + p̄i + δi p̂i (2)

for each i ∈ {2, . . . , n}. Observe that the maximum in (2)
models the wait until ri in case job i − 1 is completed
earlier than ri. In the time-warp model, the completion
time is given by tTW

1 (δ) = r1 + p̄1 + δ1 p̂1 and

tTW
i (δ) = max(min(tTW

i−1 (δ), di−1), ri) + p̄i + δi p̂i (3)

for each i ∈ {2, . . . , n}. The innermost minimum sets
the completion time back to di−1 in case violation oc-
curs, the so-called time-warp, while the inner maximum
models the waiting time as in the basic model.

For each of these two models M ∈ {B,TW}, we seek
to maximize the total violation∑

i∈[n]

f (tM
i (δ) − di)

for two choices of functions f :

• f0(x) = 0 for x ≤ 0 and f0(x) = 1 for x > 0;

• f1(x) = max(0, x), also denoted by (x)+;

where f0 indicates whether a job is tardy (or fails) while
f1 considers the tardiness of the job. We denote the re-
sulting functions of δ as ϕM

i (δ) = f0(tM
i (δ) − di) and

τM
i (δ) = f1(tM

i (δ) − di), and ϕM(δ) =
∑

i∈[n] ϕ
M
i (δ) and

τM(δ) =
∑

i∈[n] τ
M
i (δ), respectively. Therefore, this pa-

per studies the optimization problems defined on set ∆Γ,
for the objective functions τB, τTW , ϕB, and ϕTW .

1.1. Motivation

Basically, the four optimization problems studied in
this paper are motivated by the exact and heuristic solu-
tion of robust scheduling problems with release and due
dates/deadlines and processing time uncertainty, and
also robust routing problems with (soft) time windows
and travel time uncertainty.

Preprint submitted to Operations Research Letters December 18, 2023

Let us start with model B and consider a robust
scheduling problem seeking to minimize the tardiness.
One exact approach to such problems is based on a
row-and-column generation algorithm [6], the separa-
tion problem of which corresponds exactly to maximiz-
ing τB, see [4]. Similar models arise in the vehicle
routing literature with release and due dates, where one
wishes to minimize the total tardiness [7, 8]. Hence, the
separation problems studied herein could be leveraged
to develop algorithms also for the robust counterparts
of the above routing problems. The above row-and-
column generation algorithm could be extended to the
problem minimizing the number of tardy jobs, proved
NP-hard in [9], which leads to maximizing ϕB.

Second, these scheduling problems, as well as their
routing counterparts, are also often addressed heuristi-
cally through local-search algorithms [10]. In this case,
one needs to compute the objective of the schedules and
routes explored by the algorithm, which amounts again
to maximizing τB and ϕB.

Model TW is useful in local search algorithms ap-
plied to scheduling and routing problems with release
dates and deadlines, also called time windows in the
routing literature. Because the search algorithm fre-
quently modifies subpaths of the current solution, it is
crucial to design efficient methods to assess violation
levels. A popular approach is to evaluate this violation
without accumulating the delays along the entire path,
known as time-warp relaxation, see [11, 12]. Assessing
the violation of the current solution without accumu-
lation leads to the maximization of functions τTW and
ϕTW .

1.2. Contributions

Checking whether the optimal solution cost of any
of the four problems is equal to 0 can be answered in
polynomial time by using the dynamic programming al-
gorithm proposed in [1], and subsequently leveraged to
provide compact formulations for routing and schedul-
ing problems with deadlines [2, 3]. However, prior to
this paper, it was unknown whether optimizing func-
tions τB, τTW , ϕB, and ϕTW could be done in polynomial
time, and these were typically solved by using dynamic
programming algorithms running in pseudo-polynomial
time or Mixed-Integer Linear Programming formula-
tions, e.g. [13, 14, 4].

The contribution of this work is thus to prove that
these four problems are polynomially solvable, propos-
ing three different dynamic programming algorithms
detailed in the following three sections. While the algo-
rithms for τB and τTW rely on different ideas, presented
in Sections 3 and 4, respectively, those for ϕB and ϕTW

are nearly identical for the two models, and presented in
the following section.

2. Number of failures

The total number of failures among the n jobs is
bounded by n. This allows one to design a dynamic
programming algorithm to compute V(i, γ, α), the max-
imum completion time of job i given that α ∈ [i] failures
have occurred along the jobs in [i] and using γ ∈ [Γ]∪{0}
deviations so far. We consider next the basic case ϕB and
propose a recursion for computing V(i, γ, α).

The recursion returning the value of V(i, γ, α) is split
into different cases, depending on the value of i, γ, α.
Notice the presence of modulus for some of the values
|V(i, γ, α)|when subject to an upper bound. This implies
that if V(i, γ, α) = −∞, meaning that the state has not
been reached, the condition is always violated. In par-
ticular, these absolute values are not needed when the
condition requires to be greater than some value since
in that case V(i, γ, α) = −∞ immediately invalidates the
condition. In addition to the following cases, we also
have the initial condition that V(i, γ, α) = −∞ if α > i
as well as V(i, γ, α) = −∞ if γ > i.

i = 1 and γ = 0 and α = 0:if r1 + p̄1 ≤ d1 : r1 + p̄1

else : −∞

i = 1 and γ = 0 and α = 1:if r1 + p̄1 ≤ d1 : −∞
else : r1 + p̄1

i = 1 and γ = 1 and α = 0:if r1 + p̄1 + p̂1 ≤ d1 : r1 + p̄1 + p̂1

else : −∞

i = 1 and γ = 1 and α = 1:if r1 + p̄1 + p̂1 ≤ d1 : −∞
else : r1 + p̄1 + p̂1

i ≥ 2 and γ = 0 and α = 0:if |V(i − 1, 0, 0)| + p̄i ≤ di : max{ri,V(i − 1, 0, 0) + p̄i}

else: −∞

i ≥ 2 and γ = 0 and 1 ≤ α ≤ i:
if V(i − 1, 0, α − 1) + p̄i > di : V(i − 1, 0, α − 1) + p̄i

elsif |V(i − 1, 0, α)| + p̄i ≤ di : max{ri,V(i − 1, 0, α) + p̄i}

else : −∞

i ≥ 2 and 1 ≤ γ ≤ i and α = 0:

2

if |V(i − 1, γ, 0)| + p̄i ≤ di and
|V(i − 1, γ − 1, 0)| + p̄i + p̂i ≤ di :
max{ri,V(i − 1, γ, 0) + p̄i,V(i − 1, γ − 1, 0) + p̄i + p̂i}

elsif |V(i − 1, γ − 1, 0)| + p̄i + p̂i ≤ di :
max{ri,V(i − 1, γ − 1, 0) + p̄i + p̂i}

elsif |V(i − 1, γ, 0)| + p̄i ≤ di :
max{ri,V(i − 1, γ, 0) + p̄i}

else: −∞

i ≥ 2 and 1 ≤ γ ≤ i and 1 ≤ α ≤ i:

if V(i − 1, γ − 1, α − 1) + p̄i + p̂i > di or
V(i − 1, γ, α − 1) + p̄i > di :

max{V(i − 1, γ, α − 1) + p̄i,

V(i − 1, γ − 1, α − 1) + p̄i + p̂i}

elsif |V(i − 1, γ − 1, α)| + p̄i + p̂i ≤ di and
|V(i − 1, γ, α)| + p̄i ≤ di :

max{ri,V(i − 1, γ, α) + p̄i,

V(i − 1, γ − 1, α) + p̄i + p̂i}

elsif |V(i − 1, γ − 1, α)| + p̄i + p̂i ≤ di

max{ri,V(i − 1, γ − 1, α) + p̄i + p̂i}

elsif |V(i − 1, γ, α)| + p̄i ≤ di :
max{ri,V(i − 1, γ, α) + p̄i}

else: −∞

Observe that in the last brace, it may happen for ex-
ample that V(i − 1, γ − 1, α − 1) + p̄i + p̂i > di and
|V(i − 1, γ − 1, α)| + p̄i + p̂i ≤ di simultaneously, in
which case the maximum completion time is given by
V(i − 1, γ − 1, α − 1) + p̄i + p̂i and we fall into the
first case. Similarly, if V(i − 1, γ, α − 1) + p̄i > di and
|V(i − 1, γ, α)| + p̄i ≤ di simultaneously, we fall again in
the first case as the max is given by V(i−1, γ, α−1)+ p̄i.

Finally, we obtain the maximum total numbers of fail-
ures α as follows:

max {α | V(n, γ, α) , −∞ for some γ ∈ {0, . . . ,Γ} } .

Therefore, it is possible to implement a dynamic pro-
gramming algorithm to maximize the total number of
failures with the time complexity of O(n2Γ).

We conclude this section by mentioning how to ex-
tend the above dynamic programming algorithm to the
case with time-warp, ϕTW . In this case, it is enough to
replace the value of V(i, γ, α) by di when a failure occurs
at a given job.

3. Tardiness with the basic model

We omit the superscript B of τB, τB
i , and tB through-

out the section, and compute τ using a dynamic pro-
gramming algorithm described next. For each i ∈ [n]
and γ ∈ [Γ] ∪ {0}, we denote by ∆i

γ the projection of

∆γ on the components [i], and for each i ∈ [n], we de-
note by τi(δ) =

∑
j∈[i] τ j(δ) the sum over the tardiness

for the first i jobs only. Observe that τi(δ) depends only
on the first i components of δ, so we assume next that
the argument of τi belongs to ∆i

γ for some γ.
Our dynamic programming algorithm is based on the

value-function

F(i, γ, β) = max
δ∈∆i

γ

τi(δ) + β · ti(δ),

where β ∈ [n] ∪ {0}. Note that the optimal solution to
the problem minimizing τ over ∆Γ is given by F(n,Γ, 0).
Furthermore, for i = 1, the value-function can be com-
puted as F(1, γ, β) =(r1 + p1(γ) − d1)+ + β · (r1 + p1(γ)), if γ ∈ {0, 1}
−∞ otherwise

,

where we use the notation pi(δ) = p̄i + δ p̂i. We obtain
a general recurrence for the remaining cases by relying
on the recursive definition (2) and the definition τi(δ) =
(ti(δ) − di)+. Denoting the concatenation of δ and δ′ as
δ||δ′, we see that F(i, γ, β) =

max
δ′∈{0,1}

max
δ∈∆i−1
γ−δ′

τi−1(δ) + (ti(δ||δ′) − di)+ + β · ti(δ||δ′)

= max
δ′∈{0,1}

max
δ∈∆i−1
γ−δ′

max
(
τi−1(δ) + (β + 1)ti(δ||δ′) − di, τ

i−1(δ) + β · ti(δ||δ′)
)

= max
δ′∈{0,1}

max
δ∈∆i−1
γ−δ′

max
(
τi−1(δ) + (β + 1)ti−1(δ) + (β + 1)pi(δ′) − di,

τi−1(δ) + (β + 1)ri + (β + 1)pi(δ′) − di,

τi−1(δ) + β · ti−1(δ) + β · pi(δ′),

τi−1(δ) + β · ri + β · pi(δ′)
)

= max
δ′∈{0,1}

max
(

max
δ∈∆i−1
γ−δ′

{τi−1(δ) + (β + 1)ti−1(δ)} + (β + 1)pi(δ′) − di,

max
δ∈∆i−1
γ−δ′

{τi−1(δ)} + (β + 1)ri + (β + 1)pi(δ′) − di,

max
δ∈∆i−1
γ−δ′

{τi−1(δ) + β · ti−1(δ)} + β · pi(δ′),

max
δ∈∆i−1
γ−δ′

{τi−1(δ)} + β · ri + β · pi(δ′)
)

= max
δ′∈{0,1}

max
(
F(i − 1, γ − δ′, β + 1) + (β + 1)pi(δ′) − di,

F(i − 1, γ − δ′, 0) + (β + 1)ri + (β + 1)pi(δ′) − di,

F(i − 1, γ − δ′, β) + β · pi(δ′),

F(i − 1, γ − δ′, 0) + β · ri + β · pi(δ′)
)

Overall, all values of F(i, γ, β) can be computed in
O(n2Γ).

3

Remark 1. The above ideas can be extended to provide
polynomial-time algorithms for robust lot-sizing prob-
lems with budget uncertainty when considering scenario
generation algorithms [13, 14]. Stated shortly, the sep-
aration problem of this case involves two main differ-
ences with the problem considered so far. First, the com-
pletion time of job i is replaced by the total demand at
the end of period i, so ti for i ∈ {2, . . . , n} satisfies the
recurrence ti(δ) = ti−1(δ)+ p̄i + δi p̂i − xi, where xi is the
production during period i and t1(δ) = p̄1 + δ1 p̂1 − x1.
Notice the productions are assumed constant for the
separation problem as they are variables of the corre-
sponding master problem. Second, the cost at every pe-
riod is given by the formula max(biti(δ),−siti(δ)), where
si and bi are given non-negative parameters. Adapt-
ing the above ideas to this case leads to considering
negative and positive values for β, yielding a pseudo-
polynomial time algorithm for the problem, where the
pseudo-polynomial factors involve si and bi. In con-
trast, the pseudo-polymonial time algorithm proposed
by [13] depends on p̂i.

4. Tardiness with time-warp

Again we omit the superscript TW of τTW , τTW
i , and

tTW throughout the section, and study the optimization
problem

max
δ∈∆Γ
τ(δ). (4)

We first handle the case where intermediate release
dates are not restrictive, formally

ri ≤ r1 = r∗, ∀i = 2, . . . , n. (5)

We have the following proposition for this case.

Proposition 1. Assume (5) holds, let δ ∈ ∆Γ and i∗ be
the largest i such that τi(δ) > 0. Then, τ(δ) = r∗ − di∗ +∑

i∈[i∗](p̄i + δi p̂i).

Proof. Let I = {i ∈ [n] | τi(δ) > 0 }. Note that, for all
i ∈ I \ {i∗}, we have

ti(δ) = ti−1(δ) + p̄i + δi p̂i − τi(δ) (6)

Moreover, for all i ∈ [i∗] \ I, we have

ti(δ) = ti−1(δ) + p̄i + δi p̂i (7)

Combining (6) for all i ∈ I and (7) for all i ∈ [i∗] \ I, we
obtain that

ti∗ (δ) = r∗ +
∑

i∈[i∗−1]

(p̄i + δi p̂i) −
∑

i∈I\{i∗}

τi(δ).

Then, τi∗ (δ) = ti∗ (δ) − di∗ , proving the result.

Proposition 1 shows that the objective value of any
solution only depends on the last release date that gener-
ates a time warp. Hence, an effective approach to solve
the problem under non-restrictive intermediate release
dates is to probe for the last time warp index i∗. From
Proposition 1, for each candidate index i ∈ [n], the best
solution for the case where i∗ = i is to set δ j = 1 for the
min{i,Γ} largest values of p̂ j, for j ∈ [i], and δ j = 0 for
the remaining components. This leads to the following
proposition:

Proposition 2. Problem (4) under assumption (5) can
be solved in O(n logΓ).

Proof. The algorithm performs one pass for i ∈ [n],
keeping track of P̄ =

∑
j∈[i] p̄ j and P̂ is equal to the sum

of the min{i,Γ} largest values of p̂ j. Updating P̄ takes
O(1) time but updating P̂ requires that the terms of the
sum be also maintained, which takes O(logΓ). The ob-
jective value in each case is computed in O(1) time as
r∗ + P̄ + P̂ − di following Proposition 1.

In order to solve the complete problem, we use a re-
formulation more suited to the above results. Let σi

be an additional binary decision variable for i ∈ [n]
that models whether or not we apply the release date
for job i. We adapt definition (3) and define t̃1(δ, σ) =
r1 + p̄1 + δ1 p̂1 (observe t̃1(δ, σ) does not depend on σ),
and for each i ∈ {2, . . . , n}

t̃i(δ, σ) =

min(di−1, t̃i−1(δ, σ)) + p̄i + δi p̂i if σi = 0
ri + p̄i + δi p̂i if σi = 1

We adapt τi similarly and define

τ̃i(δ, σ) = (t̃i(δ, σ) − di)+

for each i ∈ [n], as well as τ̃(δ, σ) =
∑

i∈[n] τ̃i(δ, σ). Con-
sider consequently the following optimization problem

max
δ∈∆Γ,σ∈{0,1}n

τ̃(δ, σ). (8)

Proposition 3. Let (δ∗, σ∗) be an optimal solution
of (8). Then, δ∗ is an optimal solution to (4) and
τ(δ∗) = τ̃(δ∗, σ∗).

Proof. Let (δ∗, σ∗) be an optimal solution of (8). We
define σ̄ ∈ {0, 1}n by fixing σ̄i = 1 if ti(δ∗) ≤ ri and
0 otherwise. Note that (δ∗, σ̄) is feasible for (8) and
τ̃(δ∗, σ̄) = τ(δ∗). Hence,

τ̃(δ∗, σ∗) ≥ τ̃(δ∗, σ̄) = τ(δ∗). (9)

4

Moreover, since σ̄i = 1 if and only if t̃i(δ∗, σ̄) = t̃i(δ∗) ≤
ri, t̃i(δ∗, σ̄) ≥ t̃i(δ∗, σ) for any σ ∈ {0, 1}n. As a result,
τ̃(δ∗, σ̄) ≥ τ̃(δ∗, σ∗), and therefore, τ(δ∗) ≥ τ̃(δ∗, σ∗).
Together with (9), we obtain that τ(δ∗) = τ̃(δ∗, σ∗).

Finally, assume δ∗ is not optimal for (4). Then, there
exists δ̄ such that τ(δ̄) > τ(δ∗), and repeating the above
procedure, we construct σ̄ such that τ̃(δ̄, σ̄) = τ(δ̄) >
τ(δ∗) = τ̃(δ∗, σ∗).

The algorithm we propose next for (8) relies on the
following observation. On the one hand, setting σi to
0 relaxes the release date of job i, in line with (5). On
the other hand, setting σi to 1 splits the problem into the
one involving jobs in [i−1], and the subsequent one with
jobs [n]\ [i−1]. For the sake of deriving a dynamic pro-
gramming algorithm, let us denote by T (i, γ) the maxi-
mum total tardiness obtained for jobs in [i−1] setting at
most γ values of δ to 1 among the indices of [i]; in par-
ticular, T (n + 1,Γ) is equal to the optimal solution cost
of problem (8). Let also T u(i, j, γ) be the maximum total
tardiness obtained for the jobs in {i, . . . , j−1}, using ri−1
for the release date of job i − 1, ignoring release dates
for jobs in {i+ 1, . . . , j− 1}, and setting at most γ values
of δ to 1 among the indices of {i, . . . , j − 1}. Following
the above discussion on the value of σi, T (i, γ) satisfies
the following recursion:

T (i, γ) =

0, if i = 1
max

j∈[i],θ∈[γ]∪{0}
T (j, θ) + T u(j, i, γ − θ) if i > 0 ,

where we assume that T u(i, i, γ) = 0 for i ∈ [n], and,
γ = 0, . . . ,Γ. The maximization over j in the recursion
seeks the optimal index j ∈ [i] such that σ j = 1 and
σk = 0 for k ∈ { j + 1, . . . , i}.

Proposition 4. T (n+1,Γ) can be computed in O(n2Γ2).

Proof. From the procedure proposed in the proof of
Proposition 2, T u(i, j, γ) can be computed in O(n logΓ)
for a fixed i, and γ, and j = i, . . . , n. Thus, comput-
ing the whole table of T u takes O(n2Γ logΓ). Then, it
remains to fill the O(nΓ) values of T , each one taking
O(nΓ) time. This gives the stated complexity.

References

[1] A. Agra, M. Christiansen, R. M. V. Figueiredo, L. M. Hvattum,
M. Poss, C. Requejo, The robust vehicle routing problem with
time windows, Comput. Oper. Res. 40 (2013) 856–866. URL:
https://doi.org/10.1016/j.cor.2012.10.002. doi:10.
1016/J.COR.2012.10.002.

[2] P. A. Munari, A. Moreno, J. D. L. Vega, D. J. Alem, J. Gondzio,
R. Morabito, The robust vehicle routing problem with time win-
dows: Compact formulation and branch-price-and-cut method,
Transp. Sci. 53 (2019) 1043–1066. URL: https://doi.

org/10.1287/trsc.2018.0886. doi:10.1287/TRSC.2018.
0886.

[3] M. Bold, M. Goerigk, A compact reformulation of the two-stage
robust resource-constrained project scheduling problem, Com-
put. Oper. Res. 130 (2021) 105232. URL: https://doi.org/
10.1016/j.cor.2021.105232. doi:10.1016/J.COR.2021.
105232.

[4] M. Silva, M. Poss, N. Maculan, Solution algorithms for min-
imizing the total tardiness with budgeted processing time un-
certainty, Eur. J. Oper. Res. 283 (2020) 70–82. URL: https:
//doi.org/10.1016/j.ejor.2019.10.037. doi:10.1016/
J.EJOR.2019.10.037.

[5] B. Tadayon, J. C. Smith, Algorithms and complexity analy-
sis for robust single-machine scheduling problems, J. Sched.
18 (2015) 575–592. URL: https://doi.org/10.1007/

s10951-015-0418-0. doi:10.1007/S10951-015-0418-0.
[6] B. Zeng, L. Zhao, Solving two-stage robust optimization prob-

lems using a column-and-constraint generation method, Oper.
Res. Lett. 41 (2013) 457–461. URL: https://doi.org/10.
1016/j.orl.2013.05.003. doi:10.1016/J.ORL.2013.05.
003.

[7] B. C. Shelbourne, M. Battarra, C. N. Potts, The vehicle rout-
ing problem with release and due dates, INFORMS J. Com-
put. 29 (2017) 705–723. URL: https://doi.org/10.1287/
ijoc.2017.0756. doi:10.1287/IJOC.2017.0756.

[8] W. Yang, L. Ke, D. Z. Wang, J. S. L. Lam, A branch-
price-and-cut algorithm for the vehicle routing problem with re-
lease and due dates, Transportation Research Part E: Logistics
and Transportation Review 145 (2021) 102167. URL: http://
dx.doi.org/10.1016/j.tre.2020.102167. doi:10.1016/
j.tre.2020.102167.

[9] M. Bougeret, A. A. Pessoa, M. Poss, Single machine robust
scheduling with budgeted uncertainty, Oper. Res. Lett. 51 (2023)
137–141. URL: https://doi.org/10.1016/j.orl.2023.
01.007. doi:10.1016/J.ORL.2023.01.007.

[10] T. Vidal, T. G. Crainic, M. Gendreau, C. Prins, Time-
window relaxations in vehicle routing heuristics, J. Heuris-
tics 21 (2015) 329–358. URL: https://doi.org/10.1007/
s10732-014-9273-y. doi:10.1007/S10732-014-9273-Y.

[11] Y. Nagata, O. Bräysy, W. Dullaert, A penalty-based edge as-
sembly memetic algorithm for the vehicle routing problem with
time windows, Comput. Oper. Res. 37 (2010) 724–737. URL:
https://doi.org/10.1016/j.cor.2009.06.022. doi:10.
1016/J.COR.2009.06.022.

[12] T. Vidal, T. G. Crainic, M. Gendreau, C. Prins, A hybrid genetic
algorithm with adaptive diversity management for a large class
of vehicle routing problems with time-windows, Comput. Oper.
Res. 40 (2013) 475–489. URL: https://doi.org/10.1016/
j.cor.2012.07.018. doi:10.1016/J.COR.2012.07.018.

[13] A. Agra, M. C. Santos, D. Nace, M. Poss, A dynamic pro-
gramming approach for a class of robust optimization problems,
SIAM J. Optim. 26 (2016) 1799–1823. URL: https://doi.
org/10.1137/15M1007070. doi:10.1137/15M1007070.

[14] D. Bienstock, N. Özbay, Computing robust basestock lev-
els, Discret. Optim. 5 (2008) 389–414. URL: https://

doi.org/10.1016/j.disopt.2006.12.002. doi:10.1016/
J.DISOPT.2006.12.002.

5

https://doi.org/10.1016/j.cor.2012.10.002
http://dx.doi.org/10.1016/J.COR.2012.10.002
http://dx.doi.org/10.1016/J.COR.2012.10.002
https://doi.org/10.1287/trsc.2018.0886
https://doi.org/10.1287/trsc.2018.0886
http://dx.doi.org/10.1287/TRSC.2018.0886
http://dx.doi.org/10.1287/TRSC.2018.0886
https://doi.org/10.1016/j.cor.2021.105232
https://doi.org/10.1016/j.cor.2021.105232
http://dx.doi.org/10.1016/J.COR.2021.105232
http://dx.doi.org/10.1016/J.COR.2021.105232
https://doi.org/10.1016/j.ejor.2019.10.037
https://doi.org/10.1016/j.ejor.2019.10.037
http://dx.doi.org/10.1016/J.EJOR.2019.10.037
http://dx.doi.org/10.1016/J.EJOR.2019.10.037
https://doi.org/10.1007/s10951-015-0418-0
https://doi.org/10.1007/s10951-015-0418-0
http://dx.doi.org/10.1007/S10951-015-0418-0
https://doi.org/10.1016/j.orl.2013.05.003
https://doi.org/10.1016/j.orl.2013.05.003
http://dx.doi.org/10.1016/J.ORL.2013.05.003
http://dx.doi.org/10.1016/J.ORL.2013.05.003
https://doi.org/10.1287/ijoc.2017.0756
https://doi.org/10.1287/ijoc.2017.0756
http://dx.doi.org/10.1287/IJOC.2017.0756
http://dx.doi.org/10.1016/j.tre.2020.102167
http://dx.doi.org/10.1016/j.tre.2020.102167
http://dx.doi.org/10.1016/j.tre.2020.102167
http://dx.doi.org/10.1016/j.tre.2020.102167
https://doi.org/10.1016/j.orl.2023.01.007
https://doi.org/10.1016/j.orl.2023.01.007
http://dx.doi.org/10.1016/J.ORL.2023.01.007
https://doi.org/10.1007/s10732-014-9273-y
https://doi.org/10.1007/s10732-014-9273-y
http://dx.doi.org/10.1007/S10732-014-9273-Y
https://doi.org/10.1016/j.cor.2009.06.022
http://dx.doi.org/10.1016/J.COR.2009.06.022
http://dx.doi.org/10.1016/J.COR.2009.06.022
https://doi.org/10.1016/j.cor.2012.07.018
https://doi.org/10.1016/j.cor.2012.07.018
http://dx.doi.org/10.1016/J.COR.2012.07.018
https://doi.org/10.1137/15M1007070
https://doi.org/10.1137/15M1007070
http://dx.doi.org/10.1137/15M1007070
https://doi.org/10.1016/j.disopt.2006.12.002
https://doi.org/10.1016/j.disopt.2006.12.002
http://dx.doi.org/10.1016/J.DISOPT.2006.12.002
http://dx.doi.org/10.1016/J.DISOPT.2006.12.002

	Introduction
	Motivation
	Contributions

	Number of failures
	Tardiness with the basic model
	Tardiness with time-warp

