Modeling and Optimization with Gaussian Processes in Reduced Eigenbases

David Gaudrie¹, Rodolphe Le Riche², Victor Picheny³

¹ Stellantis ² CNRS LIMOS ³ Secondmind

21 December 2023 MLOMA 2023 workshop, Clermond-Ferrand, France

This work is licensed under a

Creative Commons Attribution 4.0 International License

Gaudrie, Le Riche, Picheny (CNRS LIMOS)

Context: costly shape optimization I

This study is presented with details in [Gaudrie et al., 2020].

Minimize the drag of an airfoil by changing its shape

 $\min_{\phi \in S} f(\phi) \quad , \quad \mathcal{S} \text{ "infinite" dimensional space of shapes}$ NACA 23012 NACA 631-412 NACA 661-212 from https://history.nasa.gov/SP-468/ch5-2.htm (4) (日本) Gaudrie, Le Riche, Picheny (CNRS LIMOS) BO in eigenbases 2/22 Dec 2023 2/22

Context: costly shape optimization II

Computational practice

design: decide shape parameters $x \in \mathbb{R}^d$

CAD: translate them into a shape $\phi(x) \in \mathbb{R}^D$, $D \gg d$

simulate: calculate $f(\phi(x))$, e.g., by Navier-Stokes resolution

- 4 ∃ ▶

Context: costly shape optimization III

A straightforward resolution of $\min_{x \in S \subset \mathbb{R}^d} f(\phi(x))$ is difficult: the problem dimension d (10-100) is too large considering the computing time of f (minutes to hours).

In this work, tackle this problem through,

- A) dimension reduction from $\phi(x)$ by eigenshape decomposition
- B) metamodeling with Gaussian process (GP) including supervised dimension reduction (from f),

C) optimization in the reduced-dimension space of A) and B).

< □ > < □ > < □ > < □ > < □ > < □ >

Intrinsic dimension reduction by eigendecomposition

Creating shapes without evaluating their performance is fast \Rightarrow calculate a hierarchical basis of eigenvectors in shape space by PCA (a.k.a. POD)

- sample CAD parameters $x^i \sim \mathcal{U}(\mathcal{S}) \;,\; i=1,\ldots,N \quad, \quad N \gg d$
- calculate the shapes $\phi(x^i)$, i = 1, ..., N and create $\Phi = [\phi(x^1) \dots \phi(x^N)]$
- PCA: (λ_i, V^i) (eigenvalues, eigenvectors) of $\frac{1}{N} \Phi \Phi^{\top}$ with $\lambda_1 \ge \ldots \ge \lambda_D \ge 0$
- Keep dimensions $(V^1, \ldots, V^{\delta})$ where δ smallest integer such that $\frac{\sum_{i=1}^{\delta} \lambda_i}{\sum_{i=1}^{N} \lambda_i} > 0.99$

 V^i : $D \times 1$ "eigenshape" (but it may not be a feasible shape)

Airfoils eigenshapes

From a database of possible airfoils $[\phi(x^1), \ldots, \phi(x^{5000})]$,

Working with the eigencomponents α

Shapes are now described with their eigencomponents α 's: $\phi \approx \overline{\phi} + \sum_{i=1}^{\delta} \alpha_i V^i$ and $\alpha_i = (\phi - \overline{\phi})^\top V^i$

 $(\alpha_1, \ldots, \alpha_{\delta})$ make a specific manifold Cf. also [Raghavan et al., 2013, Li et al., 2018, Cinquegrana and Iuliano, 2018]

Gaudrie, Le Riche, Picheny (CNRS LIMOS)

δ and the intrinsic dimension

[Gaudrie et al., 2020]: with $\phi(x)$ a vector of discretized contour points (as opposed to characteristic functions and signed distances),

- A) dimension reduction from $\phi(x)$ by eigenshape decomposition
- B) metamodeling with Gaussian process including supervised dimension reduction (from f)
- C) optimization in the reduced-dimension space of A) and B)

GP approximation with dimension reduction I

Approximate $f(\phi)$ (the drag) with a GP $Y(\alpha)$ where $\alpha = V^{\top}(\phi - \overline{\phi})$

 $Y(\alpha)$ learns the database $\underbrace{\left[\alpha^{i} = V^{\top}(\phi(x^{i}) - \overline{\phi}), f(\phi(x^{i}))\right]}_{\left[\alpha, \mathbb{F}\right]}, i = 1, N$

Gaudrie, Le Riche, Picheny (CNRS LIMOS)

< 🗇 🕨 < 🖃 🕨

GP approximation with dimension reduction II

- The GP is mainly controlled through its kernel,
 k(α, α') = Cov(Y(α), Y(α'))
- Kernels are parameterized by $\theta ' {\rm s}$ and σ^2
- Anisotropic kernels have $1 \theta_i$ per dimension

Expl:
$$k_{ani}(\alpha, \alpha') = \sigma^2 \exp\left(-\sum_{i=1}^{\delta} \frac{(\alpha_i - \alpha'_i)^2}{\theta_i^2}\right)$$

- isotropic kernels have 1 θ for all dimensions Expl: $k_{iso}(\alpha, \alpha') = \sigma^2 \exp\left(-\frac{(\alpha_i - \alpha'_i)^2}{\theta^2}\right)$
- Kernel parameters are learned by maximizing the likelihood of $[\alpha \ , \ \mathbb{F}]$

GP approximation with dimension reduction III

• A likelihood that favors sparsity [Yi et al., 2011]:

$$heta^{\star} = rg\max_{ heta} \ \mathsf{Log-Likelihood}(heta; lpha, \mathbb{F}) - \lambda \| heta^{-1}\|_1$$

 \Rightarrow active and non-active dimensions, α_a and $\alpha_{\bar{a}}$.

$$a = \{i \in [1, \dots, \delta] \mid \theta_i^* < M \gg 1\}$$

$$\bar{a} = \{1, \dots, \delta\} \setminus a$$

Gaudrie, Le Riche, Picheny (CNRS LIMOS)

GP approximation with dimension reduction IV

• GP as the sum of an anisotropic and isotropic GPs [Allard et al., 2016], accurate on the active dimensions, plain but sparse otherwise:

$$k(\alpha, \alpha') = k_{ani}(\alpha_a, \alpha'_a) + k_{iso}(\alpha_{\bar{a}}, \alpha'_{\bar{a}})$$

Expl NACA22 : $\alpha_a = \{\alpha_1, \alpha_2, \alpha_3\}$, $\delta_a = 3$, $\delta = 20$ $\Rightarrow 20$ to 6 kernel parameters

20:
$$\theta_1$$
 to $\theta_{\delta=20},\,\sigma^2$ by likelihood concentration formula.

6: 3
$$\theta_a$$
's, 1 $\theta_{\overline{a}}$, σ_{iso}^2 , σ_{ani}^2

- A) dimension reduction from $\phi(x)$ by eigenshape decomposition
- B) metamodeling with Gaussian process including supervised dimension reduction (from *f*)
- C) optimization in the reduced-dimension space of A) and B)

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Optimizing with GPs

Measure of progress: the improvement, $I(x) = \max \left[0, \min(\mathbb{F}) - Y(\alpha)\right]$

Optimization scheme : maximize the expectation of the improvement at each iteration and update the $\ensuremath{\mathsf{GP}}$

Reduced dimension search

Search the full active space and search along a 1D random linear embedding in the inactive space

 $\overline{\alpha}$ coordinate along a random line in non-active space, $\delta_{\textit{a}}+1$ dimensions.

Dec 2023 16 / 22

GP update: pre-image problem

To calculate the new objective function, $\alpha^{(t+1)*}$ needs to be transformed into a CADable shape = pre-image problem = projection of $V\alpha^{(t+1)*} + \overline{\phi}$ onto the closest CAD shape

$$x^{(t+1)} = \underset{x \in \mathcal{S}}{\arg\min} \| \mathsf{V}\alpha^{(t+1)*} + \overline{\phi} - \phi(x) \|^2$$

and evaluate $f(\phi(x^{(t+1)}))$

The next feasible eigencomponents are

$$\alpha^{(t+1)} = \mathsf{V}^{\top}(\phi(\mathsf{x}^{(t+1)}) - \overline{\phi})$$

Gaudrie, Le Riche, Picheny (CNRS LIMOS)

GP update: replication

Incentive for the optimization to search into the α -manifold: put the datapoint outside the manifold as $\mathbb{E}I$ will be null there afterwards

Replication

Update the GP with both $\alpha^{(t+1)*}$ and $\alpha^{(t+1)}$: $[\alpha, \mathbb{F}] \longleftarrow [\alpha, \mathbb{F}] \cup [\alpha^{(t+1)}, f(\phi(x^{(t+1)}))] \cup [\alpha^{(t+1)*}, f(\phi(x^{(t+1)}))]$

Dec 2023

18 / 22

Example: NACA 22 airfoil drag minimization

- Faster decrease of the objective function in the reduced eigenshape basis (left) compared with the standard approach (right, CAD parameter space).
- Smoother airfoils are obtained because a shape basis is considered instead of a combination of local parameters.

Gaudrie, Le Riche, Picheny (CNRS LIMOS)

BO in eigenbases

Dec 2023 19 / 22

Summary

• We have mixed two dimension-reduction techniques: PCA and subsequent searching into an α -manifold (replication); the identification of an inactive subspace where sparse learning and searching is done (additive kernel and linear embedding).

Perspectives

- Why is the PCA dimension reduction working so well in our cases of CAD-like shape parameters?
- The approach is not specific to shapes and would apply any objective function composed as f(\u03c6(x))
- \Rightarrow try other cases, e.g. functional inputs.
 - Investigate the 2 ideas (PCA ..., inactive space identification ...) separately.

References I

Allard, D., Senoussi, R., and Porcu, E. (2016). Anisotropy models for spatial data. *Mathematical Geosciences*, 48(3):305–328.

Cinquegrana, D. and Iuliano, E. (2018).

Investigation of adaptive design variables bounds in dimensionality reduction for aerodynamic shape optimization.

Computers & Fluids, 174:89-109.

Gaudrie, D., Le Riche, R., Picheny, V., Enaux, B., and Herbert, V. (2020). Modeling and optimization with gaussian processes in reduced eigenbases. *Structural and Multidisciplinary Optimization*, 61:2343–2361.

Li, J., Bouhlel, M. A., and Martins, J. (2018). A data-based approach for fast airfoil analysis and optimization. In 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, page 1383.

Raghavan, B., Breitkopf, P., Tourbier, Y., and Villon, P. (2013). Towards a space reduction approach for efficient structural shape optimization. *Structural and Multidisciplinary Optimization*, 48(5):987–1000.

(日) (同) (日) (日)

References II

Yi, G., Shi, J., and Choi, T. (2011).

Penalized Gaussian process regression and classification for high-dimensional nonlinear data.

Biometrics, 67(4):1285-1294.

Gaudrie, Le Riche, Picheny (CNRS LIMOS)

▲ I → I → A C Dec 2023 22/22

A D N A B N A B N A B N