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ABSTRACT. The room temperature growth of zinc-doped iron oxide films (Zn:FeOx) was studied 

on c-cut, a-cut and r-cut sapphire substrates using the pulsed-laser deposition method. Rutherford 

backscattering spectrometry, X-ray diffraction analysis, pole figure measurements and 

transmission electron microscopy were used to determine the nature of the oxide phases (wüstite 

and/or spinel) present in the films, their precise texture and in-plane epitaxial relationships between 

films and substrates. On c-cut sapphire, both wüstite and spinel phases were present with a (111) 

texture. The wüstite phase was mainly found at the film-substrate interface, while the spinel was 

observed in the upper part of the film. On the a-cut and r-cut substrates, the main phase observed 

was the wüstite, with a very small spinel contribution. The (111) and (100) wüstite textures were 

obtained on the a-cut and r-cut substrates, respectively. The in-plane epitaxial relationships 

between the Zn doped iron oxide phases and the substrates were deduced from transmission 

electron spectroscopy observations and pole figure measurements. The possible mechanisms of 

the room temperature epitaxial growth of the oxide films on r-cut and a-cut sapphire substrates are 

presented and discussed. 

Introduction

As it has been largely demonstrated in literature, the epitaxy of oxide thin films on single 

crystalline substrates usually requires high temperature during the growth 1–5. However, for a lot 

of industrial applications based on such epitaxial films, it would be necessary to reduce the growth 

temperature to avoid atomic interdiffusion between film and substrate, and consequently to 

significantly reduce the fabrication cost 6. In this framework, research activities have been carried 

out to study room temperature (RT) epitaxial growth of oxide films like NiO 7,8, Fe3O4 9, V2O3 10, 

CoO and Co3O4 11, and other oxides 12–14. In most of these works, the RT epitaxial oxide films 
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3

were grown on atomically stepped single crystal sapphire (00l) substrates by using the pulsed-laser 

deposition (PLD) method 7–14. Such stepped c-cut sapphire substrates are obtained by a thermal 

annealing process at high T (1000°C) for a few hours in air 15,16. The surface steps play the role of 

nucleation centers for the epitaxial growth of the film. On the other hand, PLD is used for the film 

growth at RT owing to one of the specificities of this method, i.e. the high kinetic energy of the 

species emitted by the target during laser irradiation. Indeed, such a high kinetic energy (about a 

few 10th eV) 17 allows a high surface mobility for the species that leads to the formation of 

crystalline material at relatively low temperature 18,19.

In addition to the RT epitaxial growth of oxide films on c-cut (00l oriented) sapphire 

substrates, some other papers report the RT epitaxy of oxide films on single crystal substrates like 

MgO 20, SrTiO3 21, bare Si 22–24 or Si covered by a buffer layer 25. However, some other single 

crystal substrates like a-cut ((110) oriented) and r-cut ((102) oriented) sapphire substrates are 

currently used for the epitaxial growth of various oxide films 26–31 with a view of specific 

applications 32–34. To our knowledge, the RT epitaxy of oxide films on such a-cut and r-cut sapphire 

substrates has never been reported. 

In this frame, we have studied the growth by PLD at RT of Zn-doped iron oxide on a-cut 

and r-cut sapphire substrates. For comparison purpose, ZFO films were also grown on a c-cut 

substrate, but more complex results obtained with this substrate will be published later in a 

forthcoming paper. Owing to the experimental PLD conditions used, two iron oxide-based phases 

are obtained: the Zn-doped wüstite phase Zn:FeO that will be noted "ZFOw" in the following and 

the Zn-doped Zn:Fe3O4 spinel magnetite phase (noted "ZFOs"). More precisely, Zn1-xFexO films 

with (0 < x < 1) can be grown by PLD: following previous work35, the Zn:Fe3O4 phase is obtained 

for 0.65<x<1. We have chosen a Zn concentration fixed at around 25% at. (x = 0.75) to avoid the 

Page 3 of 40

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4

formation of the wurtzite phase. In addition, the presence of Zn in the iron oxide phases should 

promote the growth the wustite phase even at low temperature (T < 500°C) as evidenced by Sano 

et al. 36. We present here a detailed structural study of these phases deposited at RT on the various 

sapphire substrates: growth, textures and epitaxial relationships between these compounds and the 

different substrates are discussed. Such films could be of interest due to their magnetic properties 

since wüstite-based films are expected to be antiferromagnetic while magnetite-based films should 

be ferrimagnetic. These properties would permit the development of magnetite-based storage or 

spintronics devices 37,38, while wüstite could be used as a transparent p-type conductors 39 or for 

magnetoresistance enhancement 40. However, these interesting physical properties are not the 

subject of this paper which is devoted to the detailed study of the structural properties of these 

films.

In our work, in contrary to the common high T annealing of the substrates before the film 

growth, all the c-, a- and r-cut sapphire substrates were not submitted to a thermal treatment at 

high T before the growth. Despite this point, we obtained the epitaxial growth at RT of the Zn-

doped wüstite (ZFOw, space group Fm-3m) and/or spinel (ZFOs, Fd-3m) phases in the films. 

Different textures were obtained for these phases on the following type of substrates, i.e. (111) for 

the c-cut and a-cut sapphire, and (00l) for the r-cut one. Well-defined epitaxial relationships were 

found between films and substrates, and they have been described in the frame of the “domain 

matching epitaxy” (DME) 41–44. The different textures observed depending on the substrates, could 

be explained either by (i) the graphoepitaxy related to the presence of steps and terraces on the c-

cut  and a-cut substrates44-46, (ii) a “quasi van der Waals epitaxy” related to the polar nature of the 

c-cut and a-cut substrate plane and/or film plane 47–50, and (iii) an epitaxy related to a low lattice 

mismatch between the film and substrate in the case of the r-cut sapphire substrate.
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5

Experimental section

The Zn-doped iron oxide films were grown by PLD onto c-cut, a-cut and r-cut sapphire 

substrates at RT in vacuum. The substrates furnished by CrysTec GmbH were not annealed at high 

T before the growth. A frequency quadrupled Nd-doped yttrium aluminum garnet (Nd:YAG) laser 

(266 nm, τ = 7 ns) was used to ablate a Zn:Fe3O4 (Zn0.85Fe2.15O4) target in the experimental set up 

already described elsewhere 51. The PLD growth from a Zn:Fe3O4 target can lead to the formation 

of nanocomposite films 52,53, i.e. with the presence of the wüstite (Zn:FeO) and spinel (Zn:Fe3O4). 

In contrary to the spinel phase, which has been epitaxially grown at RT 9, the wüstite phase has 

never been obtained in these conditions. In our work, we have tried to favor the growth conditions 

for the epitaxy of the wustite phase at RT. Indeed, the difference in oxygen composition between 

the wüstite, [O]/[Fe] = 1.1, and the spinel, [O]/[Fe] =1.33, means that the film must be grown under 

a low oxygen pressure. PLD allows oxygen incorporation in the oxide films to be controlled 54–58. 

On one hand, the films on a-cut and r-cut substrates were thus grown under reducing conditions 

(residual vacuum: 2 10-7 mbar), i.e. a priori the ideal conditions for the formation of the wustite 

phase. On the other hand, the ZFO film on c-cut substrate was grown at 7 10-6 mbar leading to the 

presence of both wüstite and spinel phase.

Atomic force microscopy (AFM) was used to study the surface topography of the bare 

substrates before the growth, using an AFM NT-MDT Ntegra instrument. 

Rutherford backscattering spectrometry (RBS) using the 2.5 MeV ion accelerator (SAFIR) 

of the Sorbonne Université, allowed the film thickness and in-depth distribution of the elements to 

be determined. The spectra, not presented here, show that the Zn-doped iron oxide films are only 

constituted by Fe, Zn and O atoms, without the presence of any impurities. The precise 
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6

concentration profile of the Zn, Fe and O elements has been obtained from the simulation of the 

RBS spectra by use of the RUMP simulation program and has allowed to deduce the [O]/[Fe] ratio 

in the films.

X-ray diffraction (XRD) has been performed on a Bruker D8 Advance -2 diffractometer 

in modified Bragg-Brentano geometry, working with monochromatized Cu K1 radiation ( = 

1.5406 Å) and equipped with a LynxEye detector. The sample was rotated at a speed of 30 rpm 

during measurement. Le Bail profile refinement using the Fullprof software 59 of the XRD patterns 

of ZFO films grown on a-cut and r-cut sapphires enabled to precise unambiguously whether ZFOw 

and ZFOs phases are both present and to estimate the cell parameters of these phases. For these 

refinements, the “zero”-shifts due to the sample positioning were first determined from the 2-

shifts of the substrate Bragg peaks, and then fixed to enable the refinement of the cell parameters 

of the iron oxide phases. The texture of the films and the in-plane relationships with the substrate 

were investigated by pole figure measurements with the help of a Bruker D8 Discover 

diffractometer (Cu Kα1,2 radiation). 

For transmission electron microscopy (TEM) observations, thin foils were thinned down 

to electron transparency by a focused ion beam (FIB) setup (Dual-beam FEI Helios nanolab 660) 

with an electron imaging resolution of 0.6 nm at 15 kV (Field emission gun (FEG)) and a FIB 

resolution of 2.54 nm at 30 kV. TEM experiments were performed using a double corrected cold 

FEG JEOL ARM 200F microscope, operated at 200 kV and equipped with a post column GATAN 

QUANTUM ER electron energy loss spectrometer (EELS). This microscope had also a scanning 

setup (STEM mode with dark and bright field detectors) allowing the electron beam to be 

monitored with a spatial resolution of about 0.078 nm. Altogether, STEM EELS experiments were 
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7

then possible in order to obtain EELS spectra for a nanometer region, EELS profiles or even EELS 

mapping. All digitized images and spectral data were processed using the commercial 

Digitalmicrograph (GMS2) software from GATAN.

Results

Before the RT growth of ZFO films on the single crystal substrates, AFM images of the 

surface of these substrates were registered. Figure 1 shows the surface morphology of the c-cut 

(Fig. 1(a)), a-cut (Fig. 1(b)) and r-cut (Fig. 1(c)) sapphire substrates as furnished by CrysTec 

GmbH. 

Both c-cut and a-cut sapphire substrates show not very well defined and very narrow steps 

without terraces, while the surface of the r-cut sapphire does not show any steps or terraces but 

only a few spikes. This work mainly aimed at checking the possible RT epitaxy of ZFO films on 

a- and r-cut sapphire substrates. First, we have looked at the possible RT epitaxy of ZFO on a c-

cut substrate. Indeed, the RT epitaxy of Zn (25%at.) doped Fe3O4 has not been previously reported 

on c-cut substrate. Therefore, the PLD growth of such a film on a c-cut substrate at RT under a 

7x10-6 mbar oxygen pressure has been studied. Figure 2 reports the corresponding XRD pattern of 

such film and shows first, a broad peak at about 18° related to the (111) spinel phase with refined 

cell parameter as = 0.8529 ± 0.0005 nm, i.e. higher than the expected theoretical value for undoped 

Fe3O4 (a = 0.83905 nm, Fd-3m). Secondly, a broad asymmetric peak around 36° corresponding to 

the superimposition of 222 spinel and the 111 wüstite Bragg reflections is observed. Despite the 

low intensity of the 111 ZFOw peak, the cell parameter is around aw = 0.43217 ± 0.0005 nm, a 

value slightly higher than for the undoped FeO phase (a = 0.4307 nm, Fm-3m) (Table 1). 
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Table 1. Composition determined by RBS and crystallographic features determined by XRD of 

ZFO films grown at RT on c-cut, a-cut and r-cut sapphires (W: wüstite, S: spinel). The values of 

[O]/[Fe] does not consider oxygen bound to zinc and are only related to oxygen associated to iron. 

Substrate Composition [O]/[Fe] aW aS
Preferential 
orientation

FWHM 
RC

c-cut Zn0.24Fe0.76O1.15
(Zn0.24O0.24)(Fe0.76O0.91)

1.19 0.43217 ± 
0.005 nm

0.85289± 
0.005 nm

(111) W
(111) S  1.8°

a-cut
Zn0.23Fe0.77O1.12

(Zn0.23O0.23)(Fe0.77O0.89)
1.15 0.43435 ± 

0.005 nm - (111) W  1.9°

r-cut Zn0.23Fe0.77O1.1
(Zn0.23O0.23)(Fe0.77O0.87)

1.13 0.4317 ± 
0.005 nm

0.8415 ± 
0.005 nm

(100) W
(100) S 4.7°

TEM analysis was led to precisely investigate the epitaxial growth of the ZFO film on c-

cut sapphire substrate. Figure 3(a) shows a typical high resolution electron microscopy (HREM) 

image of a cross section of the film. The orientation of the sample is such that the electron beam 

is parallel to the [210] direction of Al2O3 sapphire (visible at the bottom of the image) and thus 

parallel to the film/substrate interface. In the upper region of the film, one can notice distinctly that 

we are dealing with a columnar growth with column widths of a few tens of nanometers whereas 

the bottom of the film appears more “uniform” without visible boundaries over a thickness of about 

15 nm by contrast with the upper region. 

By extracting and enlarging smaller regions from these parts of the film (shown in Fig. 3(b) 

for the rough images and 3(c) for the corresponding filtered images), an analysis of the lattice 
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9

fringes through Fast Fourier Transforms (FFTs) allows establishing the structural characteristics 

and then the corresponding phases. The FFTs presented in Fig. 3(d) reveal that the bottom part of 

the film is consistent with a face centered cubic structure along a [-101] direction with a lattice 

parameter of 0.43 nm. This agrees with the wüstite phase (FeO) doped with Zn (confirmed by 

chemical analyses, not shown). The corresponding orientation relationships between sapphire and 

ZFOw are the following: 

(111) ZFOw // (003) Al2O3

[-101] ZFOw // [210] Al2O3

As far as the upper region is concerned, the FFT of the enlarged image shows also a face 

centered cubic structure but with a lattice parameter close to that of the spinel phase Fe3O4. Zn is 

also present in the chemical composition of the compound and the orientation relationships 

between wüstite and magnetite are: 

(111) ZFOw // (111) ZFOs

[-101] ZFOw // [10-1] ZFOs

To confirm the presence of both phases, a spectroscopic analysis using EELS method has 

been used. In Fig. 3(a), two spots are indicating the two pointed regions from which one obtained 

the EELS spectra presented in Fig. 4. 

These spectra correspond to the L2 and L3 thresholds of Fe whose positions are indicative 

of the valence sate of Fe. A 1 eV displacement of the L3 peak towards lower energies for the bottom 

of the film is clearly meaning a decrease in the valence state of Fe and then consistent with the 
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10

presence of the wüstite phase at the bottom of the film. Similar shift for these compounds has been 

reported in previous works 60. The presence of the wüstite phase is also in agreement with the 

[O]/[Fe] ratio deduced from RBS measurements, the obtained values being between 1.13 and 1.19 

(Table 1). 

The XRD θ-2θ patterns recorded on the ZFO films grown on the a- and r-cut substrates are 

presented in Fig. 5. The data regarding the lattice parameters and the full width at half maximum 

(FWHM) of the rocking curves are summarized in Table 1. The XRD pattern (Fig. 5(a)) recorded 

for the film grown on the a-cut sapphire shows the presence of the 111 wüstite reflection at about 

2 = 35.75°. The 111 and 222 spinel peaks which would appear at 18° and 36.6° respectively, are 

not observed in this pattern. Profile refinement using a single FeO phase leads to satisfying 

modelisation of the observed peak and suggests that the film is constituted of a pure wüstite phase.

In Fig. 5(b), the XRD pattern corresponding to the film grown on the r-cut substrate shows 

a wide peak at about 41.75°. Best profile refinement is obtained by considering simultaneous 

presence of 200 and 400 Bragg reflections of ZFOw and ZFOs phases, respectively, showing a 

significant texture of these films. Due to the limited number of observed diffraction peaks, it is not 

possible to retrieve the proportional distribution of each phase from the refinement.

For the ZFO films grown on the a-cut substrate, the rocking curve (not shown here) of the 

respective 111 reflection peaks is rather narrow, i.e. 1.9°, taking into account the RT growth. On 

the contrary, for the ZFO film grown on the r-cut substrate, the value of the rocking curve of the 

002 ZFOw reflection was much more important, i.e. 4.7°. In this latter case, the crystalline quality 

of the film is poorer. It must be noticed that in the case of the epitaxial growth of various oxide 

films on r-cut sapphire substrate, the surface plane of the oxide film was tilted with respect to the 
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11

(102) plane of sapphire. This phenomenon was observed for instance in the epitaxial growth of 

ZnO 61, CeO2 62, MgO 63,64 or Fe3O4 65. The tilt can be important, for example the (100) MgO may 

epitaxially grow on (102) Al2O3 with a tilt up to 5 or 6°, depending upon the growth temperature. 

From such results, it was concluded that the surface state of r-plane sapphire is an important factor 

leading to the tilted growth of the epilayer 63-65. In our present case, it is not surprising that the 

epitaxial growth of ZFO on r-plane Al2O3 occurs at RT with a tilt of about 4.7°. 

Figure 6(a) shows the results of the epitaxial relationships study between the wüstite phase 

and the a-cut substrate. The phi-scan performed on the {200} planes of the ZFOw phase (2 = 

42.391°; ψ = 56.22°) shows 6 peaks separated by 60°. In addition, phi-scan of the {104} planes of 

sapphire (2 = 35.14°; ψ = 57.55°) was also performed to deduce the crystalline orientations of the 

film with respect to the substrate. It shows 2 peaks separated by 180° and located at about 6.2° of 

the closest peak of the film. Figure 6(b) shows the pole figure recorded with the 200 ZFOw 

reflection (2θ = 42.39°) for the same film grown on the a-cut substrate. This figure presents 6 well 

defined poles at ψ equal to 56.22°, in agreement with the phi-scan in Fig. 6(a). Some other poles 

from the substrate are also observed at: i) ψ = 29° corresponding to the 113 Al2O3 reflection (owing 

to the angle between (110) and (113) planes (28.78°) and the Bragg reflection of (113) plane: 2 

= 43.36°) and ii) ψ = 64° corresponding to the -123 Al2O3 reflection (angle between (110) and 

(113) planes = 64.01° and 2 (-123) = 43.36°).

From the azimuthal positions of the respective peak/poles of ZFOw and Al2O3, it is 

demonstrated that the epitaxial relationships on the a-cut sapphire substrate correspond to the 

superposition of the hexagons of the (111) ZFOw plane on the rectangular lattice of the a-cut 
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12

sapphire, with a slight disorientation between the two lattices, as shown in Fig. 7(a). Given this 

pattern, no match can be observed between the two lattices. 

Actually, the explanation of the epitaxial growth of ZFOw on Al2O3 is in the frame of the 

domain matching epitaxy (DME), with m lattice units of the film matching with p lattice units of 

the substrate 64, as shown in figure 7(b). This figure presents the in-plane lattices of ZFOw and 

sapphire which are superimposed considering the 6.2° of rotation between the (2-20) plane of 

ZFOW and the (1-1-4) plane of the sapphire. The interception of these planes with the in-plane 

lattices (traces) corresponds to the traces of the (200) plane of ZFOW and the (10-4) plane of the 

sapphire chosen to carry out the phi-scans measurement. It can be seen in figure 7(b) that there is 

a coincidence of sites between the two lattices leading to a matching domain forming a 

parallelogram. Since the Bravais lattice of the sapphire is hexagonal, it is not possible to easily 

determine the directions which correspond to the sides of this parallelogram. We have therefore 

described the epitaxial relationships between the two lattices by instead considering rather the 

planes which form the parallelogram, as follows:

Out-of-plane: (111) ZFOw   //  (110) Al2O3

In-plane (I) (11-2) ZFOW // (1-12) Al2O3

In-plane (II) (-871) ZFOW // (1-1-4) Al2O3

In-plane (III) (3-1-2) ZFOW // (1-1-1) Al2O3

Only the shortest side of the parallelogram corresponds to a perfect fit of m lattice units (m 

= 5 for ZFOW and p =1 for Al2O3). Therefore, lattice mismatches are determined by considering 
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13

the interatomic distances shown in figure 7(c). It appears that these distances are very close 

between the two lattices, corresponding to low mismatch values (cf. Table 2).

Table 2. Epitaxial relationships of Zn:FeO wüstite films grown at RT on a-cut and r-cut sapphires.

Domain 
matching 

relationshipsSubstrate Epitaxial relationships

m p

Lattice 
mismatch

δ (%)

Domai
n size

D (nm)

(11-2) ZFOW // (1-12) Al2O3 5 1 1.2 1.52

(-871) ZFOW // (1-1-4) Al2O3 - - -1.38 2.12a-cut 

(3-1-2) ZFOW // (1-1-1) Al2O3 - - -2.21 2.78

[100] ZFOw // [010] Al2O3 11 10 -0.06 4.7
r-cut 

[010] ZFOw // [2-1-1] Al2O3 6 5 -1.28 2.6

Figure 8(a) displays the phi-scans of the ZFO film grown on r-cut sapphire recorded by 

selecting the {111} planes. It shows 4 peaks separated by 90° and located for the closest one at 

about 45.5° of the (006) substrate plane. The corresponding pole figure is shown in Fig. 8(b). 

Similarly, the pole figure (Fig. 8(b)) for the ZFO film grown on the r-plane Al2O3 was also 

recorded. From the azimuthal positions of the peaks/poles, the following epitaxial relationships 

were deduced: 

(100) ZFOw  //  (102) Al2O3

(I) [100] ZFOw  //  [010] Al2O3

(II) [010] ZFOw  //  [2-1-1] Al2O3

2
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Such orientation relationships correspond to the superposition of the square lattice plane 

(001) of ZFOw on the rectangular lattice of the (102) plane of Al2O3 substrate as shown in Fig. 

9(a). 

These two relationships lead in both case to rather large lattice mismatch, 9% for (I) and 

15.6% for (II), respectively. Regarding the DME, as indicated in Table 2, a coincidence for relation 

(I) is obtained with 10 substrate units and 11 film units giving a -0.06% lattice mismatch. For the 

relation (II) the coincidence is realized with 5 substrate units and 6 film units with a -1.28% 

mismatch (Fig. 9(b)).

Discussion

In the previous works reported on the RT epitaxy of oxide films, results were usually 

obtained on c-cut sapphire substrates, and two main points play a role on this epitaxy. The first is 

the presence of steps and terraces on the c-cut surface. These steps and terraces are due to a miscut 

and / or a high T annealing of the c-cut sapphire substrate 15,16, which will play the role of 

nucleation centers for the epitaxial growth. This kind of growth corresponds to the graphoepitaxy 

46. The second point is the fact that the c-cut sapphire plane is polar, i.e. either a pure oxygen plane 

or a pure Al plane. In the case of the cubic oxides (NiO, Co3O4, Fe3O4, …), epitaxially grown at 

RT or at high T on c-cut substrate, the observed texture is (111), i.e. a plane which is also a polar 

plane 45. The epitaxial growth concerns thus two polar planes, and this situation is very similar to 

the quasi van der Waals epitaxy 48,49 where there is only very little or no chemical bonding between 

the atoms of the film and substrate. Indeed, the stability and the epitaxy of the film-substrate 

interface are related to the weak electrostatic interaction between the two polar planes 50.
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In the case of the ZFO epitaxial growth on c-cut substrate, the epitaxial relationships are 

the same as those observed in the case of the growth of ZFO on this substrate at elevated 

temperature 52, i.e. the growth occurs with a "30° rotation" of the hexagons of the (111) ZFO plane 

on the hexagon of the (002) sapphire plane. It should be reminded that, in this work, the substrate 

was not thermally treated, so the AFM image shows presence of steps, but however much less 

defined than the ones obtained with a high thermal treatment at 1000°C. Moreover, after the film 

growth, the AFM images (not shown) does not show any steps or terraces which is rather different 

from the results commonly reported in which steps and terraces are present at the surface of the 

oxide films grown at RT on c-cut substrates annealed at high temperature before the growth. In 

our case, polar nature of the c-cut sapphire substrate and of the (111) plane of the Zn-doped iron 

oxide may lead to an electrostatic interaction at this interface. Therefore, it seems reasonable to 

conclude that both the graphoepitaxy and the quasi van der Waals epitaxy are at the origin of the 

RT epitaxy of ZFO on c-cut sapphire substrate. Concerning the film grown on the a-cut substrate, 

it must be noticed that this substrate is also either a pure cationic or a pure oxygen one. Our results 

show that the RT epitaxy of the wüstite phase is based on the (111) ZFOw plane, despite the fact 

that the a-cut substrate and the (111) ZFOw present very different atomic configuration, i.e. a 

symmetry mismatch between the substrate (2-fold) and the (111) ZFOw film (3-fold). 

An interesting point which can be noticed is that such epitaxial relationship (111) ZFOw // 

(110) Al2O3 corresponds to an epitaxy of a hexagon on a rectangle with different symmetries for 

these two planes. One can ask thus why an epitaxy with a square (ZFOW) on a rectangle (r-cut 

Al2O3) is not observed while the square and rectangular configurations would be more relevant. 

Concerning the DME, it is possible to obtain the lattice mismatch δ and domain matching epitaxy 
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D in terms of the epitaxial relationships with (001) ZFOw // (110) Al2O3. The calculated values of 

 and D are the following:

[100] ZFOw  //  [001] Al2O3     m = 3      p = 1     δ = 0.02 % D = 1.3 nm

[001] ZFOw  //  [1-10] Al2O3 m = 19    p = 10 δ = 0.13 % D = 8.3 nm

The comparison of these values with those given in Table 2 for the (111) ZFOw // (110) 

Al2O3 indicates that the epitaxy of the square (001) ZFOw on the rectangular (110) Al2O3 is better 

in terms of DME. The reason why this epitaxy is not observed is certainly related to the fact that 

the (100) ZFOw plane is not a polar plane, i.e. O and Fe are present in this plane. It can be concluded 

that the van der Waals epitaxy based on the electrostatic interaction between the (111) ZFOw and 

the (110) Al2O3 is preferred to the simple “square on rectangular” epitaxy.

It follows thus that the (111) ZFOw texture could be explained in the frame of an 

electrostatic interaction due to the “quasi Van der Waals epitaxy”. Indeed, the (111) plane in the 

wüstite (FCC structure) is a polar plane, and the a-cut sapphire plane is also a polar plane. An 

electrostatic interaction between these two polar planes is thus envisaged in a similar way to the 

quasi van der Waals epitaxy.

For the ZFO film grown on the r-cut substrate, the (100) wüstite texture is observed. This 

is rather surprising since this situation is a priori similar to the a-cut substrate case. Indeed, the r-

cut plane is either a pure oxygen plane or a pure cationic plane, and it presents a rectangular atomic 

configuration. As for the a-cut surface plane, the (111) wüstite texture could be expected, but the 

(100) wüstite texture is observed. This means that both the graphoepitaxy and/or van der Waals 

epitaxy cannot be envisaged to explain the epitaxial growth of ZFO on the r-cut sapphire substrate.
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We mentioned above the specific problem of the tilt in the epitaxy on r-cut substrate, but 

another parameter is the growth temperature, which plays an important role in the epitaxial growth 

of oxide films on the r-cut substrate. For example in the case of CeO2 films grown on a r-cut 

substrate thermally treated at high T (1000°C), steps and terraces are formed at the surface and a 

pure (100) CeO2 texture is observed for example 28,67,68. Moreover, the steps are formed along the 

[010] direction of the r-cut substrate, which is one of the in-plane directions of the epitaxy. On the 

contrary, when the r-cut substrate is not thermally treated at high temperature, steps and terraces 

are not formed, and both (111) and (100) CeO2 textures are observed 28,67,68. Further studies on 

CeO2 films on r-cut substrates have shown that the growth temperature plays an important role on 

the film texture 69. Indeed, the texture of CeO2 films changed from (001) at 150°C to a mixed (001) 

and (111) textures at 300°C, and finally to pure (111) for increasing temperatures 4. In our work, 

the presence of steps and terraces on the r-cut substrate (Fig. 1(c)) is not clearly evidenced from 

the AFM images, and furthermore only the (100) ZFOw texture is observed. Moreover, our films 

are grown at RT, and we can thus assume that the (100) ZFOw texture is due to the low growth 

temperature of the film in a similar way to the case of the CeO2 film grown on r-cut sapphire 

substrates 69. 

Conclusion

Using a Zn:FeOx target, the wüstite (Zn:FeO) and/or spinel (Zn:Fe3O4) phases were 

obtained on c-cut, a-cut and r-cut sapphire single crystal substrates by pulsed laser deposition at 

room temperature. Depending upon substrates, the two textures, (111) or (100), may be obtained, 

and poles figures showed the RT epitaxy of the films on all substrates. The possible origin of these 

distinct textures and epitaxial relationships has been discussed according to both the 

« graphoepitaxy » and the « quasi van der Waals epitaxy » for the films grown on the c-cut and a-
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cut substrates. For the film grown on the r-cut, the (100) texture is obtained as it has been observed 

in other cases. An important point in the RT epitaxy of the ZFO films is the high kinetic energy of 

the species emitted by the target during the laser ablation. Such a high kinetic energy of these 

species will give them the possibility to move on the substrate on sufficient long distances to find 

their site in the growth of the crystal structure. Finally, this work shows that the RT epitaxy of the 

oxide films is quite possible on various sapphire substrates (c-cut, a-cut and r-cut), and this opens 

the way to the PLD growth of oxide films on substrates like MgO, MgAl2O4 or others at RT. 
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Figure 1. AFM image of c-cut, a-cut and r-cut sapphire substrates without any annealing before the PLD 
growth. 
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Figure 2. Experimental θ-2θ XRD pattern (black symbols) of the ZFO film grown on c-cut sapphire substrate 
showing a peak at about 18° corresponding to the 111 Bragg reflection of the spinel phase and a broad peak 

around 36° corresponding to the 111 reflection of wüstite and the 222 reflection of spinel phases, 
respectively. This pattern has been refined using the Le Bail method and calculated and difference patterns 

are shown as red and blue lines, respectively. 
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Figure 3. a) HREM image of a cross section of a ZFO film on c-cut sapphire substrate showing a thin region 
of ZFOW at the bottom of the film; b) and c) are enlarged regions of the different parts of the film and the 
Al2O3 sapphire substrate corresponding to rough and filtered images respectively; d) FFTs of the previous 

mentioned images leading to the identification of the structures. 

385x229mm (300 x 300 DPI) 

Page 34 of 40

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Figure 4. EELS spectra of the L3 and L2 energy thresholds of Fe. A 1 eV shift of the L3 peak confirms the 
lowering of the valence state of Fe and thus the presence of wüstite at the bottom of the film. 
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Figure 5. Le Bail refined θ-2θ XRD patterns of ZFO films grown on a-cut (a) and r-cut (b) sapphire 
substrates. Black symbols display the experimental data, red lines represent the theoretical patterns and 

blue curves show the difference between them. 
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Figure 6. a) Phi-scan of the {200} planes of the (111) ZFOw film (red) and of the (10-4) planes of the a-cut 
sapphire substrate (blue). b) Pole figure of the {200} planes of the (111) ZFOw film showing 6 poles. 
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Figure 7: a) Scheme of the epitaxy of (111) ZFOW grown on the a-cut sapphire substrate, determined by 
phi-scans measurement. b) Scheme of the domain matching epitaxy of (111) ZFOW grown on the a-cut 

sapphire substrate, showing the site coincidences between the two lattices. The 6.2° rotation between the 
(2-20) ZFOW plane and the (1-1-4) sapphire plane highlighted in the phi-scans is shown. c) Interatomic 

distances of the two lattices reported on the scheme. 
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Figure 8: a) Phi-scan of the {111} planes of the (100) ZFOw film (red) and of the (006) plane of the r-cut 
sapphire substrate (blue). b) Pole figure of the {111} planes of the (100) ZFOw film showing 4 poles. 
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Figure 9: a) Scheme of the epitaxy of (100) ZFOw grown on r-cut sapphire substrate. b) Scheme of domain 
matching epitaxy of (100) ZFOw grown on r-cut sapphire substrate. 
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