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Abstract

Most population genomic tools rely on accurate single nucleotide polymorphism (SNP) calling and filtering to meet their 
underlying assumptions. However, genomic complexity, resulting from structural variants, paralogous sequences, and repeti-
tive elements, presents significant challenges in assembling contiguous reference genomes. Consequently, short-read rese-
quencing studies can encounter mismapping issues, leading to SNPs that deviate from Mendelian expected patterns of 
heterozygosity and allelic ratio. In this study, we employed the ngsParalog software to identify such deviant SNPs in 
whole-genome sequencing (WGS) data with low (1.5×) to intermediate (4.8×) coverage for four species: Arctic Char 
(Salvelinus alpinus), Lake Whitefish (Coregonus clupeaformis), Atlantic Salmon (Salmo salar), and the American Eel 
(Anguilla rostrata). The analyses revealed that deviant SNPs accounted for 22% to 62% of all SNPs in salmonid datasets 
and approximately 11% in the American Eel dataset. These deviant SNPs were particularly concentrated within repetitive ele-
ments and genomic regions that had recently undergone rediploidization in salmonids. Additionally, narrow peaks of ele-
vated coverage were ubiquitous along all four reference genomes, encompassed most deviant SNPs, and could be 
partially associated with transposons and tandem repeats. Including these deviant SNPs in genomic analyses led to highly 
distorted site frequency spectra, underestimated pairwise FST values, and overestimated nucleotide diversity. Considering 
the widespread occurrence of deviant SNPs arising from a variety of sources, their important impact in estimating population 
parameters, and the availability of effective tools to identify them, we propose that excluding deviant SNPs from WGS data-
sets is required to improve genomic inferences for a wide range of taxa and sequencing depths.

Key words: heterozygosity, salmonid, whole-genome sequencing, paralog, autopolyploid, repetitive DNA.

Significance
Genomes can be very repetitive and hard to assemble into a reference, which can lead to biases when genotyping gen-
etic markers in complex genomic regions. Here, we draw attention to this issue in various whole-genome datasets and 
validate a method to identify problematic single nucleotide polymorphisms (SNPs). We also explore processes creating 
such SNPs and their consequences on common population genomics analyses.
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Introduction
Single nucleotide polymorphisms (SNPs) are now the most 
commonly used genetic markers in the field of genomics 
due to their widespread distribution within genomes, rich 
information content, and their detectability using a diverse 
range of sequencing technologies (e.g. restricted site asso-
ciated DNA sequencing [RAD-seq], Andrews et al. 2016; 
whole-genome sequencing [WGS], Fuentes-Pardo and 
Ruzzante 2017; low-coverage whole-genome sequencing 
[lcWGS], Therkildsen and Palumbi 2017). Their utilization, 
however, relies on several assumptions, such as their bialle-
lic nature, adherence to Mendelian inheritance, and, in 
some cases, independent segregation (absence of linkage 
disequilibrium). Multiple studies highlight the ongoing 
need to validate these assumptions (Hurles 2002; Chen 
et al. 2014; Jaegle et al. 2023), especially in complex gen-
omes such as those that experienced polyploidization.

Polyploidization is the process by which a complete set of 
chromosomes is multiplied within a single nucleus and then 
passed on to progenies (Zhang et al. 2019; Todesco et al. 
2020). It can happen following the hybridization of differ-
ent species (allopolyploidy), in which case pairs of chromo-
somes descended from each species conserve preferential 
bivalent pairing (Cifuentes et al. 2010; Mason and 
Wendel 2020). In other cases, polyploidy can result from 
whole-genome duplication (WGD) events within a single 
genome (autopolyploidy), which creates groups of chromo-
somes in multivalent recombining pairing during meiosis. 
This tetrasomic inheritance can last until mutations create 
enough sequence divergence to reestablish bivalent pairing 
in a now doubled number of chromosomes, a process known 
as rediploidization (Ohno 1970; Weiss and Maluszynska 
2004; Lien et al. 2016).

Due to a recent WGD in their common ancestor around 
88 to 103 Mya, salmonids have been central to the study of 
autopolyploidy in animals (Macqueen and Johnston 2014). 
This WGD is the fourth (hence referred to as Ss4R) to occur 
along the lineages ancestral to salmonids, after two WGDs 
in early vertebrates (Simakov et al. 2020) and another 
one in the ancestor of all teleost fishes, around 320 to 
350 Mya (Jaillon et al. 2004; Glasauer and Neuhauss 
2014). Following Ss4R, rediploidization occurred at dif-
ferent times across duplicated regions, leading to either 
ancestral or lineage-specific (LORe) ohnolog resolution 
(Robertson et al. 2017). This is apparent when compar-
ing levels of sequence divergence between pairs of syn-
tenic ohnologs in salmonid assemblies. These ohnologs 
display from 85% to nearly 100% nucleotide identity 
(Lien et al. 2016; Gundappa et al. 2022; Smith et al. 2022; 
Mérot et al. 2023).

An additional source of complexity in salmonid genomes 
is their relatively high content in transposable elements (TE), 
which can make up 50% to 60% of assembled reference 

sequences (Minkley 2018). The correspondence in the tim-
ing of Ss4R and the proliferation of TE in salmonid genomes 
suggests that the WGD event may have disrupted TE regu-
lation processes (Lien et al. 2016). Similar to what is ob-
served in hybrids (Hénault et al. 2023; Laporte et al. 
2019), TE expansion may, in turn, have contributed to the 
sequence divergence and chromosomal rearrangements 
that enabled rediploidization (Lien et al. 2016). In ray- 
finned fishes, the abundance of TEs is also closely correlated 
to genome size (Chalopin et al. 2015; Gao et al. 2016). 
Given the large genome size of salmonids (2.5 to 3.0 Gb), 
such abundance of TE, in combination with high sequence 
identity between pairs of recently rediploidized chromo-
somal regions, has considerably hindered efforts to assem-
ble quality reference genomes in salmonids (Lien et al. 
2016; Smith et al. 2022).

Due to their socio-economic importance and their scien-
tific relevance for the investigation of many evolutionary 
and ecological processes (e.g. local adaptation and speci-
ation), salmonid species have been extensively studied 
using short-read resequencing technologies like RAD-seq 
(Elmer 2016). By analyzing data from salmonids and other 
taxa derived from an ancestral WGD, it has become appar-
ent that collapsed assemblies and under-splitting can bias 
the genotyping of SNPs on highly similar duplicated loci 
when they are considered as a single region (Harvey et al. 
2015). When overlooked, these biases can have an impact 
on biological and management interpretations derived 
from genomic data (O’Leary et al. 2018), for example by 
creating a false signal of differentiation (Larson et al. 2021).

Identifying SNPs on paralogous or other multicopy se-
quences has been a long-lasting challenge in genomics. A var-
iety of methods have been applied for their detection, such as 
the identification of apparent heterozygotes in haploid sam-
ples (Sánchez et al. 2009; Hecht et al. 2013) or increased 
depth of coverage compared to single-copy loci (Dou et al. 
2012; Davey et al. 2013). The HDplot method (McKinney 
et al. 2017) is now commonly used to detect SNPs that do 
not conform to expected patterns of Mendelian inheritance 
by identifying deviations from Hardy–Weinberg Equilibrium 
(H) or the expected 1:1 allelic ratio in heterozygotes (D). We 
hereafter refer to such variants as “deviant” SNPs, as opposed 
to “canonical” SNPs that conform to expected patterns of 
heterozygosity and allelic ratio for nonduplicated loci (after 
Karunarathne et al. 2022).

In Chinook Salmon (Oncorhynchus tshawytscha; 
McKinney et al. 2017), deviant SNPs identified by the 
HDplot method (17% of all SNPs) predominantly matched 
paralogs identified by haploid mapping (McKinney et al. 
2016) and were especially dense in chromosome arms 
with ongoing residual tetrasomy, suggesting that paralogy 
stemming from the ancestral WGD is the main source of de-
viant SNPs in salmonids. This method has since been ap-
plied to other salmonid species (Oncorhynchus mykiss: 

Dallaire et al.                                                                                                                                                                    GBE

2 Genome Biol. Evol. 15(12) https://doi.org/10.1093/gbe/evad229 Advance Access publication 12 December 2023

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/doi/10.1093/gbe/evad229/7470724 by guest on 28 D

ecem
ber 2023



22% of deviants, Fraik et al. 2021; Oncorhynchus kisutch: 
Xuereb et al. 2022; Salvelinus alpinus: 24%, Dallaire et al. 
2021) as well as other taxonomic groups including poly-
ploid trees (e.g. Pinus cembra: 85% of deviants, Rellstab 
et al. 2019), crustaceans (e.g. Homarus americanus: 22 to 
40% of deviants, Dorant et al. 2020, 2022), and ranids 
(e.g. Rana luteiventris: 16% of deviants, Cayuela et al. 
2022). In the last two examples, the HDplot method was 
adapted to identify and genotype copy number variants 
suspected to be associated with TE (Dorant et al. 2020; 
Cayuela et al. 2021). Altogether, these recent studies high-
light the fact that deviant SNPs can also be found in signifi-
cant proportions in datasets from non-polyploid species, 
but specific causal processes have yet to be examined in 
such cases.

In recent years, lcWGS has emerged as an alternative to 
reduced-representation sequencing for population genom-
ic studies in non-model species (Therkildsen and Palumbi 
2017). This cost-effective method offers the opportunity 
for unprecedented sample sizes of whole-genome se-
quences by reducing the per-sample depth of coverage to 
as low as 0.1×. At low and medium coverages (under 
10×), the lack of confidence around individual genotypes 
can be circumvented by using a genotype likelihood (GL) 
framework, as implemented in ANGSD (Kornelissen et al. 
2014). A growing variety of tools explicitly account for 
genotype uncertainty, allowing such data to be used in 
many common population genomics applications (Lou 
et al. 2021).

ngsParalog (Linderoth 2018) is an openly available bio-
informatic software that uses signals similar to HDplot to 
test the hypothesis that the mismapping of reads creates 
deviant SNPs at specific genomic positions. By using a prob-
abilistic approach that avoids genotype calling and takes 
into account the uncertainty inherent to low-coverage ap-
proaches, ngsParalog is reported to be able to detect devi-
ant SNPs in next-generation sequencing datasets with 
coverage as low as 2× (Linderoth 2018). This tool has 
been used both on RAD-seq (Saglam et al. 2017; 
Benjamin et al. 2018; Hemstrom et al. 2022) and WGS 
(Márquez et al. 2020; Pope et al. 2023) datasets. 
However, none of these studies reported the number of 
SNPs filtered out by this approach.

In this study, we aimed to answer three main questions: 
(i) How can we reliably detect deviant SNPs in low- to 
intermediate-coverage WGS datasets? (ii) What are the 
main causes for deviant SNPs and how are they distributed 
in the studied genomes? (iii) What are the consequences of 
including deviant SNPs in common population genomic 
analyses? We developed and applied a common variant 
calling and filtering pipeline to new WGS datasets (1.5 to 
2× of coverage) from two salmonid species (Salvelinus 
alpinus and Coregonus clupeaformis) and reanalyzed data 

on Atlantic Salmon (Salmo salar; 4.8×) published in 
Bertolotti et al. (2020) and on American Eel (Anguilla rostra-
ta; 4×) published in Ulmo-Diaz et al. (2023). These datasets 
vary in sampling size, depth of coverage, population struc-
ture, and duplication history, in order to allow general con-
clusions that should apply to a wider variety of realistic 
situations. We used both ngsParalog and HDplot to com-
pare their capacities in classifying deviant SNPs in low- to 
intermediate-coverage data. We then mapped canonical 
and deviant SNPs and compared their genomic distributions 
in relation to peaks of elevated coverage, repetitive regions, 
and regions inferred to have experienced delayed rediploi-
dization in salmonids. Finally, we compared the results of 
common population genomics statistics and analyses be-
fore and after filtering for deviant SNPs to assess the im-
pacts of these filters on inferences that are commonly 
drawn from WGS datasets.

Results

Identification and Validation of Paralog SNPs at Low 
Coverage

SNPs flagged as deviant by ngsParalog represent different 
proportions across datasets but they showed consistent 
characteristics such as low FIS and high coverage. After sub-
sampling, we obtained five datasets with an average depth 
of coverage of around 1.5× and a mode between 1.82× 
and 1.97× (Table 1; see supplementary fig. S1, 
Supplementary Material online for distribution of depth). 
We identified SNPs using ANGSD and calculated the likeli-
hood of reads being misaligned at the positions of those 
SNPs using ngsParalog (P < 0.001). While deviant SNPs 
were in majority in both Lake Whitefish datasets (49.9% 
and 61.8%) and in Arctic Char (62.3%), they represented 
22.6% of the SNPs in Atlantic Salmon and 10.6% in the 
American Eel (Table 1). Nearly all deviant SNPs had FIS ran-
ging from −1 to −0.05, while canonical SNPs had an FIS dis-
tribution centered around 0 (Fig. 1A), except for the Arctic 
Char dataset where strong population structure (max pair-
wise FST = 0.45) created a deficit of heterozygotes (positive 
FIS) putatively due to a Wahlund effect (Wahlund 1928). In 
datasets with depths of coverage around 1.5×, the average 
coverage was consistently higher at the positions of deviant 
SNPs than canonical SNPs (Fig. 1D). For example, 37% to 
58% of the deviant SNPs had coverage higher than 3×, 
while less than 0.7% of canonical SNPs reached that depth 
in all species studied.

The characterization of deviant SNPs showed high con-
sistency between the different methods employed. When 
visualizing SNPs using HDplot (McKinney et al. 2017), we 
observed that the vast majority of SNPs categorized as de-
viant by ngsParalog either had a high proportion of 
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heterozygotes or deviated from the 1:1 expected allelic ra-
tio in heterozygotes (Z further from zero than canonical 
SNPs) (Fig. 1B and C). Among SNPs in excess of heterozy-
gotes (FIS < 0 and P < 0.05 for a Hardy–Weinberg equilib-
rium test in ANGSD), most were categorized as deviant by 
ngsParalog: 96.9% to 99.6% in the Lake Whitefish and 
Arctic Char datasets, 89.7% in the American Eel, and 
78.3% in the Atlantic Salmon. For SNPs with lower minor 
allele frequency (MAF), the distribution of the average alle-
lic ratio (in heterozygotes with more than 4× of coverage) 
for deviant SNPs had an obvious mode around 0.25 (1:3) 
and smaller one at 0.75 (3:1). For canonical SNPs, the aver-
age allelic ratio was centered on 0.50 (1:1). 0.8% to 4.3% 
of the SNPs were categorized as deviant only by ngsParalog, 
most of which had low values of MAF (average MAF =  
0.15). In contrast, 0.5% to 3.7% of SNPs were categorized 
as deviant only by HDplot (average MAF = 0.33), and they 
largely overlapped the canonical SNP distribution for ob-
served heterozygosity and allelic ratio (supplementary fig. 
S1, Supplementary Material online).

Prevalence of Deviant SNPs at Different Depths of 
Coverage

Deviant SNPs were not only observed in low-coverage se-
quencing, since we inferred their presence from low (1×) 
to intermediate (4.8×) depth of coverage in the Atlantic 
Salmon dataset. We categorized SNPs from the Atlantic 
Salmon dataset before subsampling (4.8×) using 
ngsParalog, then compared the list of SNPs retained in sub-
sampled datasets at decreasing depths of coverage (Fig. 2). 
First, 49.8% of the SNPs (a total of 4.52 million) were char-
acterized as deviants in the original dataset sequenced at 
intermediate coverage (4.8×). The number of canonical 
SNPs and the depth of coverage had a plateau-like relation: 
it was nearly stable between 4.8× and 3× (93.3% of SNPs 
left) and decreased between 3× and 1.5× (69.2% of SNPs 
left). On the other hand, the number of deviant SNPs (cate-
gorized based on the original dataset) did not reach a plat-
eau between 1.5× and 4.8×, as the number of deviant SNPs 
was almost directly proportional to the average depth of 
coverage (Pearson's R2 = 0.98).

We repeated the ngsParalog analysis on the subsampled 
Atlantic Salmon datasets to compare if the categorization 
of SNPs found in the 4.8× dataset changed at lower depths. 
Assuming the categories derived from the 4.8× dataset 
were closer to reality, subsampling the data led to increas-
ing rates of deviant SNPs categorized as canonical (putative 
false negative) that reached 17.9% of deviant SNPs (5.9% 
of all SNPs) in the 1.5× dataset (hatched portion in Fig. 2). 
However, canonical SNPs categorized as deviant (putative 
false positive) were much rarer and peaked at 0.4% of ca-
nonical SNPs (0.2% of all SNPs) in the 4× dataset before de-
creasing in lower coverage datasets.Ta
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Distribution of Deviant SNPs in the Genome

The distribution of deviant SNPs was at least partly consist-
ent with the hypothesis that they are caused by ancient 
polyploidization in salmonids. In all three salmonid species, 
the density of canonical SNPs decreased as the percentage 
of identity increased between the self-syntenic blocks 
(ohnolog pairs of sequence resulting from ancient WGD), 
while the density of deviant SNPs increased (Fig. 3, 
supplementary table S1, Supplementary Material online). 
In Arctic Char, Lake Whitefish, and Atlantic Salmon respect-
ively, 7.9%, 28.6%, and 30.5% of the deviant SNPs were 
found in self-syntenic blocks with an identity above 95%, 
while 3.9%, 9.3%, and 12.7% of canonical SNPs were 
found in those same blocks.

The distribution of deviant SNPs was also associated with 
the presence of repetitive regions (i.e. interspersed and tan-
dem repeats). For American Eel, Arctic Char, and Atlantic 
Salmon, both canonical and deviant SNPs were found in 

higher density in repetitive regions than in nonrepetitive re-
gions, but the effect was strongest for deviant SNPs in 
American Eel and Arctic Char (Fig. 3, supplementary table 
S1, Supplementary Material online). In Lake Whitefish, ca-
nonical SNPs were less dense in repetitive regions, while de-
viant SNPs were denser.

The association between deviant SNPs and repeated ele-
ments was evident when looking at peaks of elevated 
coverage found in all datasets that varied in size in the order 
of tens to hundreds of bp (Table 2). While these high- 
coverage regions covered a relatively small portion of 
each genome, deviant SNPs were strongly over-represented 
in those peaks of coverage (χ2 > 493,507; ddf = 1) while ca-
nonical SNPs were under-represented (χ2 > 3,230). We ex-
plored the interaction between depth of coverage, deviant 
SNPs, and repetitive elements (Fig. 4A). Depending on the 
dataset, the peaks of elevated coverage were enriched in 
certain types of repetitive elements, namely long-terminal 

FIG. 1.—All investigated datasets harbor SNPs in deviation of Hardy–Weinberg equilibrium and allelic ratio. Summary of canonical (black) and deviant (red) 
SNPs as categorized by ngsParalog (P < 0.001) for 100,000 randomly selected SNPs in the American Eel, Arctic Char, Lake Whitefish (James Bay and Great 
Slave Lake), and Atlantic Salmon (1.5× and 4.8× coverage) datasets. A) Histograms of FIS with an inset pie chart showing the proportion of SNPs by category. B) 
HDplot showing the proportion of heterozygotes in relation to deviation in allelic ratio (Z-score). C) Proportion of heterozygotes in relation to mean allelic ratio 
in heterozygous samples with at least 4× coverage. D) Distribution of depth of coverage by SNP category. The y axis was restricted to depth under 10× for 
clarity, but deviant SNPs had maximum depths that greatly exceeded 10×.
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repeat (LTR) retrotransposons, satellites, simple repeats, 
and low complexity regions, as defined by RepeatMasker 
(Fig. 4B, supplementary table S2, Supplementary Material
online). This enrichment was especially strong and ex-
tended to most repeat types in the American Eel dataset.

Consequences of Deviant SNPs on Population Genomics 
Analysis

Including deviant SNPs or excluding them had a strong im-
pact on population genomic statistics, such as shared poly-
morphism, genetic differentiation, and nucleotide genetic 
diversity. When comparing SNPs found for Whitefish in 
James Bay (JB; 7,318,277 SNPs) and Great Slave Lake 
(GSL; 4,491,496 SNPs), we found 4,037,742 SNPs at com-
mon positions, 3,714,622 of which had the same alternative 
alleles. Those common polymorphisms thus represented 
82.7% of those found in GSL and deviant SNPs were found 
in similar proportions in the common list (65.8%) and in GSL 
(67.0%). However, 3.7% of the common SNPs were cate-
gorized as deviant only in the GSL dataset, and 2.7% were 
deviant only according to the JB dataset (supplementary 
fig. S2A, Supplementary Material online). Common SNPs 

categorized as deviant in both datasets showed highly 
correlated MAF (R2 = 0.90, supplementary fig. S2B, 
Supplementary Material online) and FIS (R2 = 0.90, 
supplementary fig. S2C, Supplementary Material online), 
compared to other SNPs (canonical: R2 = 0.63 and 0.07; 
SNPs with nonconcordant categories: R2 = 0.56 and −0.31).

In the Arctic Char dataset, pairwise FST values estimated 
between 16 populations (120 unique pairs) with all SNPs 
and only canonical SNPs were highly correlated (R2 =  
0.88), but estimates were 2.02 times higher when using 
only canonical SNPs (Fig. 5A). When inspecting two- 
dimensional site frequency spectra (2dSFS) between sam-
pling sites with different levels of divergence, we found 
that deviant SNPs were consistently located along the diag-
onal and concentrated at low (<0.1) and high (0.5) MAF 
(Fig. 5B and C). To summarize, failure to filter out deviant 
SNPs leads to underestimating genetic differentiation indi-
ces between populations by increasing the number of 
shared polymorphisms at similar frequencies.

We masked regions around deviant SNPs to measure 
their impact on nucleotide genetic diversity estimation. 
This masked 5.2% of the Salvelinus sp. genome (encom-
passing 9.1% and 98.1% of canonical and deviant SNPs, re-
spectively) and 3.6% of the American Eel genome (3.4% 
and 97.6% of canonical and deviant SNPs, respectively). In 
Arctic Char, masking deviant regions in various populations 
led to a 39.9% to 51.6% decrease in per-site Watterson's 
estimator (ϴW; Fig. 6A) and a 36.4% to 61.8% decrease 
in per-site nucleotide diversity (ϴπ; Fig. 6B). The effect on 
Tajima's D (ϴW/ϴπ) ranged from −0.46 to +0.32 (Fig. 6C). 
In American Eel, masking deviant regions in subsamples of 
individuals led to a 3.1% to 3.5% decrease in per-site ϴW, 
a 6.6% to 6.8% decrease in per-site ϴπ, and the effect on 
Tajima's D ranged from −0.054 to +0.060 (Fig. 6). Despite 
weaker effects in American Eel, nucleotide genetic diversity 
estimates decreased across more than 99% of the genome 
length (in 100 Mb windows).

Discussion
In this study, we aimed to investigate the prevalence of 
deviant SNPs in WGS data by applying a common vari-
ant calling pipeline to both new and previously pub-
lished datasets covering four different fish species. We 
found a significant proportion of SNPs to be in devi-
ation from expected patterns of heterozygosity and al-
lelic ratio in salmonid datasets, and to a lesser extent 
in the American Eel. We attribute most of these deviant 
SNPs to collapsed assembled genomic regions, which is 
frequent in salmonid assemblies because of a recent re-
diploidization, as well as to repetitive sequences. 
Considering the widespread occurrence of deviant 
SNPs arising from a variety of sources, their important 

Canonical

Deviant

Non-concordant
category

4.81.5

FIG. 2.—Deviant SNPs are found in low- to intermediate-coverage da-
tasets. Number of canonical (black, above) and deviant (red, below) SNPs as 
categorized by ngsParalog in the 4.8× Atlantic Salmon dataset. Deviant 
SNPs categorized as canonical in the subsampled datasets are represented 
by the hatched portion of bars, but canonical SNPs categorized as deviant 
were too rare to be visualized. SNPs absent from the 4.8× dataset (less than 
1.5% of all SNPs) were not shown.
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impact in estimating population parameters, and the 
availability of effective tools to identify them, we sug-
gest that excluding deviant SNPs from WGS datasets 
is required to improve genomic inferences for a wide 
range of taxa and sequencing depths.

Detection of Paralogs in lcWGS Datasets

We applied ngsParalog on a variety of datasets for salmonid 
species where we expected high numbers of deviant SNPs, 
as well as one nonsalmonid fish. By using the HDplot as a 
visual validation, we observed that deviant SNPs detected 
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by ngsParalog displayed observed heterozygosities and 
allelic ratios in perfect accordance with the theoretical 
and simulated distributions presented in McKinney et al. 
(2017). Deviant SNPs were very common in the Arctic 
Char and Whitefish datasets, representing >50% of all 
SNPs. While we cannot accurately evaluate false positive 
and negative rates, we can infer that increased sample 
size (n = 298 and 470 in whitefish datasets) led to better- 
defined groups of SNPs (canonical vs deviant) in HDplot. 
This is likely reflected in the detection power for deviant 
SNPs when using ngsParalog, as this method uses diagnos-
tic factors similar to those used with the HDplot method.

Despite similar results for the two methods used, we 
found ngsParalog to be more suited to deviant SNP detec-
tion when genotype calls are not available, as it explicitly 
tests a two-loci model using sequencing data (Linderoth 
2018). In contrast, our implementation of HDplot relies on 
an imperfect identification of heterozygotes using a single- 
locus model in ANGSD which poorly fit the data in the case 
of deviant SNPs. Here, we opted for a straightforward calcu-
lation of P-values across whole datasets without accounting 
for a Wahlund effect, since ngsParalog simultaneously tests 
for (i) deviations from expected genotype distribution be-
tween individuals and (ii) allelic ratios within individuals, 
which should not be affected by population structure. An al-
ternative would be to repeat the ngsParalog process at 
population level and combine P-values through Fisher's 
method. However, this led to the same conclusions as the 
whole-dataset approach for at least 98.8% of SNPs even 
in our most structured dataset (results not shown).

The subsampled Atlantic Salmon dataset (1.5×) had a 
much lower proportion of deviant SNPs than other salmonid 
datasets, but this was not the case in the original higher- 
coverage data (4.8×). In fact, subsampling the Atlantic 
Salmon dataset led to most deviant SNPs no longer passing 
ANGSD coverage filters, while canonical SNPs were mostly 
conserved. However, it is difficult to predict how an in-
creased sequencing effort would affect the already high 
proportions of deviant SNPs in the Arctic Char and Lake 
Whitefish datasets because those differ in many ways 
from the Atlantic Salmon data. First, we used a recent ver-
sion of the Atlantic Salmon reference genome (Ssal_v3.1), 

assembled with more resources and of better overall quality 
than the Salvelinus sp. and Coregonus clupeaformis refer-
ences (Table 1). Second, while all other datasets were gener-
ated by a common protocol using Nextera libraries and 
Illumina NovaSeq 6000 S4 (paired-end reads of 150 bp), 
the Atlantic Salmon data were pieced together from 
multiple batches on Illumina HiSeq (read length of 100 or 
125 bp). Since deviant SNPs are above all caused by mismap-
ping on the reference genome as shown above, these differ-
ences might influence the main source of deviant SNPs in 
the Atlantic Salmon data. This is exemplified by the fact 
that paralogs were not as predominantly associated with 
peaks of elevated coverage as in the other datasets. 
Nevertheless, our analyses at different depths of coverage 
in Atlantic Salmon strongly suggest that high proportions 
of deviant SNPs are not exclusive to low-coverage datasets 
and are likely pervasive in higher-coverage datasets.

For organisms without recent polyploidization (i.e. not 
expected to produce datasets harboring high levels of para-
logs), as the American Eel included here, common filters in-
clude setting a maximum depth of coverage per SNP (e.g. 
four times the average depth). This should avoid SNP calling 
in collapsed regions where the alignment of reads from 
multiple loci leads to a localized increase in coverage. 
However, in the American Eel data, canonical and deviant 
SNPs had somewhat overlapping depth distributions, and 
only 3.2% of the deviant SNPs had extreme values for 
depth of coverage (>8×). Another common approach is 
to remove SNPs with a strong excess of heterozygotes 
(Hardy–Weinberg deviation) since few biological processes 
can explain such patterns in the distribution of genotypes. 
However, we found that we did not have the power to de-
tect such excesses for most deviants in the American Eel da-
tasets as they appeared to be at much smaller MAFs (and 
thus expected heterozygosities) than in Arctic Char and 
Lake Whitefish. This might be caused by panmixia in the 
American Eel (Côté et al. 2013; Ulmo Diaz et al. in prep) 
or by higher copy numbers for deviant SNPs created by re-
petitive DNA than for those arising from residual tetrasomy 
and delayed rediploidization like in salmonids. Based on 
these observations, we argue that simpler filtering steps 
might miss the majority of deviant SNPs in a wide variety 

Table 2 
Characteristics of four datasets regarding the sufficiently covered part of the genome (depth of coverage above 0.75×) and peaks of elevated coverage 
(above 3× in American Eel, Arctic Char, and Lake Whitefish; above 8× in Atlantic Salmon). The percentage of canonical and deviant SNPs (as categorized by 
ngsParalog) inside peaks of coverage is shown

Species % of the genome 
sufficiently covered

Median peak 
width (bp)

95th quantile of 
peak width (bp)

% of sequenced 
genome in peaks

% of canonical 
SNPs in peaks

% of deviant 
SNPs in peaks

American Eel 92.5 30 329 2.1 1.0 61.7
Arctic Char 83.4 76 398 3.2 1.3 59.7
Lake Whitefish (James Bay) 83.3 39 821 4.6 1.9 64.4
Atlantic Salmon (4.8×) 90.2 65 457 1.8 0.4 27.6
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of datasets and that multiple factors (e.g. excess of hetero-
zygotes, deviation from expected allelic ratio, and depth 
of coverage) should be jointly considered when filtering 
deviants. As such, we found ngsParalog to offer a 
resource-unintensive and multifactor program for reliable 

deviant SNP filtration that could easily be applied to all 
WGS datasets. Since our analyses show that despite filter-
ing on sequencing and mapping quality, ANGSD is suscep-
tible to call deviant SNPs, we suggest that the use of 
ngsParalog or equivalent programs flagging noncanonical 
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SNPs could also be beneficially integrated into pipelines 
using other variant callers (e.g. bcftools, freebayes).

Distribution of Deviant SNPs

Next, we investigated the main processes leading to the pres-
ence of deviant SNPs in the analyzed datasets by comparing 
the distribution of canonical and deviant SNPs along the gen-
ome. Our observations were consistent with the prediction 
that deviant SNPs were more frequent in (i) regions of elevated 
homology due to delayed rediploidization (LORe) and (ii) in re-
petitive elements. First, LORe regions either have very recently 
started to differentiate or are still experiencing tetrasomic re-
combination (Waples et al. 2016; Robertson et al. 2017). This 
creates important challenges for the linearization of those se-
quences in reference genomes, which might result in the col-
lapse of both ohnologs into a single consensus sequence, the 
mismapping of reads, and the creation of deviant SNPs. This is 
in line with the RAD-seq data on Chinook Salmon shown in 
McKinney et al. (2017), where putative paralogs were found 
almost exclusively in chromosome arms expected to have ex-
perienced LORe.

However, we found deviant SNPs to be ubiquitously distrib-
uted along all four studied genomes. This suggests that de-
layed rediploidization following a WGD is not the only 
factor at play, since up to half of deviant SNPs in salmonid da-
tasets were distributed outside of LORe regions. Moreover, 
we also found numerous deviant SNPs in the American Eel, 
for which the last WGD event is much older than in salmonids. 
We observed that deviant SNPs were more frequent inside re-
petitive sequences and that this effect was especially strong in 

the American Eel. This supports the idea that interspersed and 
tandem repeats are another significant source of collapsed as-
semblies and mismapping. This seemed to happen in narrow 
peaks of elevated coverage which were extremely dense in de-
viant SNPs (Fig. 4). Those peaks were of similar size or smaller 
than reads and were most often disproportionally associated 
with micro- and minisatellites, as well as LTR transposons. 
Both TE and tandem repeats, such as satellites, are notoriously 
challenging to assemble (Treangen and Salzberg 2012; 
Sotero-Caio et al. 2017; Tørresen et al. 2019), possibly even 
when using long-read technologies (Liljegren et al. 2016). 
Tandem repeats are sometimes referred to as genomic 
“dark matter” in that they are nearly impossible to assemble 
(Sedlazeck et al. 2018; Weissensteiner et al. 2020) and they 
hamper the contiguity of assemblies by creating gaps (Star 
et al. 2011; Peona et al. 2021).

The genome-wide distribution of deviant SNPs we ob-
served here thus apparently arises from a multitude of 
sources. While some sources of deviant SNPs remain cryp-
tic, we identified processes specific to organisms with re-
cent polyploid ancestors, i.e. the lingering homology 
between ohnolog pairs of chromosomes, as well as some 
processes common to all organisms, i.e. repetitive ele-
ments. These observations suggest that the problems 
caused by deviant SNPs are not restricted to highly complex 
or recently duplicated genomes.

Consequences of Deviant SNPs

Our analyses support the idea that deviant SNPs, no matter 
their origin, should be removed from genomic datasets 
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before proceeding with any population-level analyses. 
Indeed, we showed that deviant SNPs can create noise or 
biased signals when quantifying and interpreting the extent 
of nucleotide polymorphism within and between popula-
tions. Similar to Verdu et al. (2016), we reported an over-
estimation of genetic nucleotide diversity when deviant 
SNPs were not removed, as is to be expected considering 
the inclusion of a high proportion of SNPs with inflated het-
erozygosities. Diverged duplicates, i.e. spurious SNP result-
ing from two collapsed loci fixed for different alleles, would 
also increase the apparent genetic diversity as they falsely 
appear polymorphic. Genetic diversity was much less in-
flated in the presence of deviant SNPs in the American Eel 
dataset than in Arctic Char. This could be due to the low 
content in repetitive elements in the Eel genome, as well 
as the huge effective size and genetic diversity in the pan-
mictic American Eel population. In other less diverse nonpo-
lyploid species, we could anticipate variable degrees of 
overestimation of nucleotide genetic diversity when for-
going deviant masking, which underscores the need for 
caution. As a side note, while treating deviant SNPs as regu-
lar nucleotide substitutions inflates canonical nucleotide di-
versity, they may nevertheless be the reflection of structural 
variation, an aspect of genetic diversity that remains chal-
lenging to quantify.

An abundance of deviant SNPs in the dataset could also 
obscure fine-scale population structure, as reported in 
Atlantic Salmon when comparing FST with unfiltered and fil-
tered data using PMERGE (Nadukkalam Ravindran et al. 
2018). Here, we observed that deviant SNPs displayed 
shared frequencies, even over genetically diverged groups 
of individuals (e.g. the two geographically distinct 
Whitefish datasets or distant Arctic Char populations), lead-
ing to distorted joint sites frequency spectra. This would 

create an apparent genetic homogenization of popula-
tions, as exemplified by the underestimation of FST in the 
Arctic Char dataset before filtering for deviant SNPs.

Apart from FST estimation, SFS and their joint form are 
the basis for many other analyses in population genomics, 
such as neutrality tests (Tajima 1989; Fu and Li 1993), selec-
tion scans (Andolfatto 2007; Begun et al. 2007), and demo-
graphic inferences (Gutenkunst et al. 2009; Excoffier et al. 
2013; Rougeux et al. 2017). Hence, we expect the inclusion 
of large numbers of SNPs with biased allele frequencies to 
have more extensive impacts than the underestimation of 
population differentiation. For example, the enrichment 
in both low- and high-frequency sites might result in posi-
tive or close to zero values for Tajima's D, which could be 
interpreted as spurious signals for balanced selection 
when coupled with elevated heterozygosity and shared 
polymorphism across the studied system (Fijarczyk and 
Babik 2015). It is hard to predict how the disrupting impacts 
of deviant SNPs scale with their abundance. However, given 
the relatively low-effort options available to identify and fil-
ter such SNPs, the cautionary principle should be applied 
and they should be removed from all datasets, even when 
studying species whose genomes contain comparatively 
fewer repetitive regions.

Perspectives on Best Practices

Based on our analysis of multiple WGS datasets, we argue 
that most if not all next-generation sequencing datasets 
would benefit from a rigorous identification of SNPs deviat-
ing from expected patterns of heterozygosity and allelic ra-
tios. Indeed, multiple and sometimes cryptic mechanisms 
can result in the misalignment of short-read sequences. 
Although our analyses were limited to low and 
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viduals) of Arctic Char and a random sample of 30 individuals in the panmictic population of American Eel. Diversity estimation was performed before (red) and 
after (gray) masking a region of 150 bp centered on each deviant SNP.
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intermediate coverage, we can extrapolate that numerous 
deviant SNPs could also be found in higher-coverage 
WGS datasets. However, due to budgetary constraints, 
such datasets are usually characterized by smaller sample 
sizes, and the resulting decrease in the power to detect de-
viant SNPs might have obscured the magnitude of the issue 
until now.

A long-term objective should be to continuously aim for 
improved genome assemblies, but such concerns fall out-
side the scope of most resequencing studies, in which the 
most obvious course of action remains to identify and re-
move deviant SNPs. This might result in the need to plan 
for increased sequencing effort when aiming for a specific 
depth of coverage in complex genomes, as multicopy loci 
could gather more reads and decrease the effective cover-
age for canonical SNPs. Alternatively, some progress is 
being made to mitigate the problem at the source and im-
prove the design of sequencing libraries. For example, 
duplex-specific nucleases have been used in library prepar-
ation to degrade repetitive sequences, increasing the con-
centration of single-copy fragments to be sequenced 
(Shagina et al. 2010; Matvienko et al. 2013; Todesco 
et al. 2020), thus improving the effective depth of coverage 
for a similar cost.

It is important to note, however, that the extensive and 
stringent filtering proposed here still retains millions of 
high-quality canonical SNPs. We show how appropriate fil-
tration applied on rediploidized and other genomes contri-
butes to making lcWGS a major improvement over 
high-coverage reduced-representation sequencing techni-
ques. Indeed, a higher density of variants, coupled with 
substantial sample size, has the potential to lead to import-
ant advancement for a wide array of applications, such as 
the identification of peaks of differentiation (genomic re-
gions putatively under divergent selection), genome-wide 
association studies, and gene–environment interactions.

Materials and Methods

Sequencing and Preprocessing Data

To assess the presence of deviant SNPs in studies using low- 
coverage sequencing, we applied a common detection 
pipeline to five datasets, four from salmonid species 
(Arctic Char; Atlantic Salmon; and two datasets from 
Lake Whitefish, Coregonus clupeaformis) and one from a 
nonsalmonid teleost fish (American Eel, Anguilla rostrata). 
The Arctic Char and Lake Whitefish datasets were pro-
duced by WGS (Illumina NovaSeq 6000 S4 PE150) on 
Illumina Nextera libraries made from tissues preserved in 
Ethanol 95% or RNAlater and extracted by Nucleomag 
kits. The Atlantic Salmon (Bertolotti et al. 2020) and 
American Eel (Ulmo-Diaz et al. 2023) datasets are available 
on NCBI SRA. To limit the potential impacts of transatlantic 

population structure in the Atlantic Salmon dataset, we 
downloaded raw sequences from Norwegian samples 
only, which were sequenced either on Illumina HiSeq 
2500 PE125 or HiSeq3000 PE100 (accession numbers in 
supplementary table S3, Supplementary Material online). 
Samples on either batch were distributed across the study 
range on the coast of Norway (supplementary fig. S3, 
Supplementary Material online).

All data were prepared following the pipeline described at 
https://github.com/enormandeau/wgs_sample_preparation. 
In brief, raw sequences were trimmed using fastp (Chen et al. 
2018) and aligned on their respective reference genome 
(Table 1) with bwa mem (minimum alignment quality of 
10). Note that the reference genome used for the Arctic 
Char data was assembled using sequencing data from a 
Dolly Varden (Salvelinus malma) or a Salvelinus sp. hybrid 
(Christensen et al. 2021). Duplicate reads were then removed 
using picard, indels were realigned, and overlapping ends of 
paired reads were clipped. The average per-base depth of 
coverage was then estimated using samtools depth. To miti-
gate batch effects in the Atlantic Salmon dataset, sequences 
obtained on HiSeq 2500 PE125 were randomly subsampled 
using samtools view -s with a factor of 0.64 to normalize 
both sequencer batches around an average coverage of 
4.8× while maintaining variation in coverage between indivi-
duals. Three of these samples (Alta_12_0228, Arga_12_ 
0089, Naus_12_0059) that had initial coverages over 12× 
were instead subsampled to a target coverage of 4.8×. The 
normalized (4.8×) Atlantic Salmon dataset was further sub-
sampled to create datasets of decreasing average coverages 
(4×, 3×, 2×, and 1.5×). Reads from the American Eel data 
were also randomly subsampled with a factor of 0.5 to reach 
a similar depth as the Arctic Char and Lake Whitefish datasets.

Identification and Characterization of SNPs

For each dataset, SNPs were detected using ANGSD v0.931 
(Korneliussen et al. 2014) with the GATK genotype likelihood 
framework (-GL 2) and the following parameters. Only reads 
in a properly mapped pair, with a sequencing quality over 20, 
and a mapping quality over 30 were considered for SNP call-
ing. Biallelic SNPs were kept when sequenced with a coverage 
of at least 1× in 75% of all samples and with a MAF above 
0.05 (-doMaf 1 -minMaf 0.05). Hardy–Weinberg equilibrium 
was assessed based on the global MAF (-doHWE 1) and indi-
vidual read counts were extracted for each allele (-doCounts 1 
-dumpCounts 4).

To categorize SNPs as either canonical or deviant, we 
used the calcLR function in ngsParalog (https://github. 
com/tplinderoth/ngsParalog) that compares the likelihood 
that reads at the position of SNPs come from either one or 
multiple copies of a loci. These hypotheses are tested assum-
ing Hardy–Weinberg expectations for nonduplicated loci 
and using a genotype likelihood framework to account for 
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low-coverage data (Linderoth 2018). The likelihood ratios of 
both hypotheses were then compared to a χ2 distribution (1 
degree of freedom) and SNPs with a P-value (adjusted by ap-
plying the Benjamini–Hochberg procedure) under the con-
servative threshold of 0.001 were considered as deviant. 
We summed the number of reads for each SNP to compare 
depths of coverage between canonical and deviant SNPs.

To validate deviant SNPs, we used an alternative to 
ngsParalog, consisting of two tests adapted from the 
HDplot method (McKinney et al. 2017). We first assessed 
excesses of heterozygotes based on the ANGSD -doHWE 
1 output (P < 0.05 and FIS < 0), then computed the devi-
ation from the expected allelic ratio in heterozygotes 
(1:1), following Karunarathne et al. (2022)'s implementa-
tion of HDplot. In brief, we used individual read ratios for 
the alternative allele in heterozygotes (genotype probability 
>0.8) to compute a Z-score for each SNP and compared it 
to a probability density function with a standard deviation 
of 

��
n
√

, where n is the number of heterozygotes. SNPs dis-
playing an excess of heterozygotes or outside of the 
0.025 and 0.975 quantiles for the probability density func-
tion were considered deviant.

Distribution of Deviant SNPs in the Genome

We ran RepeatMasker v.4.0.8 (Smit et al. 2013) on all four 
reference genomes to soft-mask TE and other repeats 
based on the combined DFam (Hubley et al. 2016) and 
Repbase (Bao et al. 2015) databases for teleost fishes. We 
masked 45.5% of the Salvelinus sp. genome, 52.0% of 
the Lake Whitefish genome, 49.5% of the Atlantic 
Salmon genome, and 12.7% of the American Eel genome 
(supplementary table S4, Supplementary Material online). 
We then defined “sufficiently covered” regions of the gen-
ome by measuring the average depth of coverage of every 
base pair in each dataset using samtools depth and delimit-
ing all segments with an average coverage above 0.75× (i.e. 
the minimum coverage allowing SNP calling according to 
our ANGSD parameters). In nonoverlapping 1 Mb win-
dows, we separately counted the number of canonical 
and deviant SNPs in soft-masked and unmasked sequences, 
then converted this number in a density of SNPs by dividing 
it by the total length of the sufficiently covered soft-masked 
or unmasked sequences in the window, respectively.

To estimate the remaining level of homology following 
the rediploidization of duplicated chromosomes in salmo-
nids, we identified blocks of synteny, i.e. ohnolog pairs of 
genomic regions descending from the WGD. To do so, 
we hard-masked the repeats identified above and then 
aligned each salmonid reference genome used in this study 
on itself using MUMmer v3.23 (Kurtz et al. 2004), imple-
mented in SyMap v4.2 (Soderlund et al. 2011). We found 
syntenic blocks (supplementary table S5, Supplementary 
Material online) concordant with those reported in the 

original reference for those assemblies (Lien et al. 2016; 
Christensen et al. 2018; Mérot et al. 2023). We then used 
lastz v1.04.15 (Harris 2007) to realign each ohnolog pair 
(with arguments –gfextend –chain –nogapped), and aver-
aged the percentage of identity in nonoverlapping win-
dows of 1 Mb on all chromosomes. Only windows where 
the lastz anchors covered at least 1% of the sequence 
were kept.

To assess the impact of delayed rediploidization (in-
creased homology) and repeated elements on the risk of 
mismapping reads and creating deviant SNPs, we created 
two negative binomial models per dataset, for canonical 
and deviant SNPs, respectively. The number of SNPs in ei-
ther the soft-masked or unmasked fraction of the window 
was used as the response variable, and the length of the 
sufficiently covered soft-masked or unmasked fraction of 
the window was set as an offset to model the density of 
SNPs rather than the absolute count. The repetitive status 
(soft-masked or unmasked) and the average percentage 
of identity in the window were treated as fixed effects for 
the salmonid datasets. For the American Eel dataset, similar 
models were built with the repetitive status as the only fixed 
effect. The negative binomial model was selected after 
checking for overdispersion of the data in Poisson regres-
sions (c-hat > 1). We checked the goodness-of-fit of the 
eight negative binomial models using hanging rootograms 
(supplementary fig. S4, Supplementary Material online).

Peaks of Coverage and TE

To better understand the interaction between deviant 
SNPs, sequencing depth, and repetitive elements in the ref-
erence genome of each species, we cataloged “peaks of 
coverage” where the average depth was elevated com-
pared to the rest of the genome. We set the threshold at 
1.5 times over the mode of depth in each dataset, corre-
sponding to 3× for the Arctic Char, Lake Whitefish 
(James Bay), and American Eel datasets, and 8× for the 
Atlantic Salmon (4.8×) dataset. We measured the width 
of the peaks of coverage and then counted canonical and 
deviant SNPs occurring inside and outside peaks.

To test the hypothesis that peaks of coverage are en-
riched in repetitive DNA (which we hypothesized to be 
one possible cause of peaks of coverage), we used a χ2 

test to compare the proportion of base pairs covered by dif-
ferent clades of TEs and other repeats in the sufficiently cov-
ered portion of the genome and in peaks of coverage.

Impact of Deviant SNPs on Population Genomics 
Analyses

We compared the list of SNPs in the two Lake Whitefish da-
tasets and their categorization as either canonical or devi-
ant in each dataset. For SNPs common to both datasets, 
we calculated the Pearson correlation between the MAF 
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and FIS in one dataset and the other. For the Arctic Char da-
taset, we constructed an ancestral reference genome to po-
larize alleles. This was done by aligning WGS data from four 
closely related species (Atlantic Salmon; Lake Trout, 
Salvelinus namaycush; Rainbow Trout, Oncorhynchus my-
kiss; and Chinook Salmon, Oncorhynchus tshawytscha; 
SRA accession number in supplementary table S6, 
Supplementary Material online) on the Salvelinus sp. refer-
ence genome (ASM291031v2) and using the most com-
mon allele as ancestral. We constructed 2dSFS and 
calculated pairwise FST between each population using 
the argument -dosaf 1 in ANGSD and the realsfs fst index, 
print, and stats functions. We repeated this using first the 
complete list of SNPs, then only the canonical SNPs.

To estimate nucleotide genetic diversity in the Arctic 
Char and American Eel populations, we first masked devi-
ant regions by defining 150 bp windows centered on 
each deviant SNP (see Fig. 4A for examples). Regions 
around isolated deviant SNPs, i.e. not within 150 bp of an-
other deviant SNP, were not masked. We randomly se-
lected four populations of Arctic Char with n = 30 and 
four subsamples of 30 individuals in the panmictic popula-
tion of American Eel and generated SFS for each as de-
scribed above while including invariant sites and rare 
SNPs. Using the -doTheta and thetaStat functions in 
ANGSD, we calculated Waterson's estimator (ϴW), nucleo-
tide diversity (ϴπ), and Tajima's D in windows of 100 Mb 
(window step of 20 kb) along all chromosomes. We re-
peated this process before and after masking for deviant re-
gions. Since the four subsamples for the American Eel were 
very similar, we only show one in the results.

Supplementary Material
Supplementary material is available at Genome Biology and 
Evolution online.
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