Detection methods of micro and nanoplastics
Résumé
Plastics and related contaminants (including microplastics; MPs and nanoplastics; NPs) have become a serious global safety issue due to their overuse in many products and applications and their inadequate management, leading to possible leakage into the environment and eventually to the food chain and humans. There is a growing literature reporting on the occurrence of plastics, (MPs and NPs) in both marine and terrestrial organisms, with many indications about the harmful impact of these contaminants on plants and animals, as well as potential human health risks. The presence of MPs and NPs in many foods and beverages including seafood (especially finfish, crustaceans, bivalves, and cephalopods), fruits, vegetables, milk, wine and beer, meat, and table salts, has become popular research areas in recent years. Detection, identification, and quantification of MPs and NPs have been widely investigated using a wide range of traditional methods, such as visual and optical methods, scanning electron microscopy, and gas chromatography-mass spectrometry, but these methods are burdened with a number of limitations. In contrast, spectroscopic techniques, especially Fourier-transform infrared spectroscopy and Raman spectroscopy, and other emerging techniques, such as hyperspectral imaging are increasingly being applied due to their potential to enable rapid, non-destructive, and high-throughput analysis. Despite huge research efforts, there is still an overarching need to develop reliable analytical techniques with low cost and high efficiency. Mitigation of plastic pollution requires establishing standard and harmonized methods, adopting holistic approaches, and raising awareness and engaging the public and policymakers. Therefore, this chapter focuses mainly on identification and quantification techniques of MPs and NPs in different food matrices (mostly seafood).