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Simple Summary: Many cancers develop resistance and become unresponsive to traditional treat-
ment strategies. In this review we highlight how mathematical models can aid the implementation of
alternative treatment strategies that take into account the ecology and evolution of tumors in order
to circumvent the emergence of resistance. We review some of the mathematical models that can
be used and that have contributed to showing that Darwinian approaches for cancer treatment, like
adaptive therapy, are promising anti-cancer treatment strategies.

Abstract: One of the major problems of traditional anti-cancer treatments is that they lead to the
emergence of treatment-resistant cells, which results in treatment failure. To avoid or delay this
phenomenon, it is relevant to take into account the eco-evolutionary dynamics of tumors. Designing
evolution-based treatment strategies may help overcoming the problem of drug resistance. In
particular, a promising candidate is adaptive therapy, a containment strategy which adjusts treatment
cycles to the evolution of the tumors in order to keep the population of treatment-resistant cells
under control. Mathematical modeling is a crucial tool to understand the dynamics of cancer in
response to treatments, and to make predictions about the outcomes of these treatments. In this
review, we highlight the benefits of in silico modeling to design adaptive therapy strategies, and to
assess whether they could effectively improve treatment outcomes. Specifically, we review how two
main types of models (i.e., mathematical models based on Lotka–Volterra equations and agent-based
models) have been used to model tumor dynamics in response to adaptive therapy. We give examples
of the advances they permitted in the field of adaptive therapy and discuss about how these models
can be integrated in experimental approaches and clinical trial design.

Keywords: adaptive therapy; cancer evolution; Lotka–Volterra models; agent-based models

1. Introduction

Cancer is among the principal causes of death worldwide, and cancer incidence and
mortality are increasing [1]. Conventional anti-cancer treatment strategies often consist
in aggressively treating tumors in order to kill the maximum number of cells possible,
without killing the patient. To do so, oncologists usually treat patients with the maximum
tolerated dose (MTD), until the cancer is cured or stabilized [2].

A problem is that individual tumors are heterogeneous, because of variations at the
genetic/epigenetic/cytogenetic levels and in the tumor environment, which supports the
emergence of resistant clones [3]. The mechanisms of resistance in cancer cells are diverse.
Resistance can arise due to mutations that preexist any treatment, or occur after the start
of treatment [4]. Besides, non-mutational mechanisms are being increasingly recognized
as drivers of treatment-resistance in cancers [5,6]. These mechanisms rely on cancer cells’
plasticity and the ability of cancer cells to change their transcriptional program and/or their
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epigenome to acquire a (sometimes reversible) drug-tolerant phenotype. For example, it
was recently demonstrated that some tumor cells are able to enter a state similar to diapause
as a means to escape chemotherapy and targeted therapies [7]. Similarly to pesticides used
in agriculture or antibiotics used against bacteria, conventional anti-cancer treatments exert
a selective pressure on cancer cells and select resistant clones [8]. As a result, the evolution
of resistance to therapy remains a major obstacle to curing cancer [2]. It is thus becoming a
necessity to develop resistance management plans to identify, anticipate, and/or manage
the potential mechanisms of resistance [9].

Many studies have emphasized the importance of considering evolutionary dynamics
to find strategies to overcome resistance (see [2,10–13]), as taking into account the Dar-
winian processes driving the eco-evolutionary dynamics of tumors gives new perspectives
for treatment strategies [2]. For example, cancer can be studied through the lens of game
theory, a theoretical framework used to analyze the interactions between two individuals or
populations, considered as players, where both players use strategies that result in different
payoffs, and dictate the outcomes of the game. The players can display different fixed
strategies (classical game theory) or adapt their strategies over time (evolutionary game
theory). From this perspective, cancer treatment can be seen as a leader-follower game,
where the oncologist plays first and makes rational decisions, while tumor cells solely
respond and adapt to the treatment. In this case, if the oncologist uses a fixed treatment
strategy to which tumor cells adapt, he or she concedes leadership to tumor cells, which
leads to treatment failure [9]. Hence the proposition from Gatenby et al. [14] to use a
strategy termed “adaptive therapy”. This strategy consists in applying treatment in cycles
that can be adjusted according to the evolution of the tumor. With this strategy, the goal
is to prolong response to treatment and patient survival by keeping the population of
resistant cells under control.

When designing, testing, and implementing evolution-based strategies, we cannot
fully rely on experimental approaches: In vitro experiments are not sufficient to predict
exactly what will happen when a treatment is applied in vivo, and the complexity of inter-
actions and phenomena that occur in vivo is hard to understand. Besides, it is impossible to
conduct too many pre-clinical or clinical studies, for obvious practical and ethical reasons.
With mathematical models, the modeler controls all the conditions relative to the tumor
modeled, and can extract features that are not easily revealed experimentally. For example,
in the case of adaptive therapy, it is difficult to assess the actual role of competition between
tumor cells in vivo, because of the potential effects of adaptive therapy on the immune
system or on vasculature, which could be confounding factors [15]. Using in silico models
is a relevant solution to understand the dynamics of cancer, and rethink the conventional
approach for therapy.

One of the main questions that models can help answer is assessing whether treatment
strategies based on Darwinian approaches, in particular adaptive therapy, are good alter-
natives to conventional strategies that fail due to resistance. Besides, as adaptive therapy is
a relatively new anti-cancer treatment strategy, many other questions need to be addressed,
such as: for which cancers and patients is adaptive therapy really beneficial? How can we
optimize adaptive therapy strategies? From a modeling perspective, which parameters
need to be taken into account when modeling cancer dynamics in response to adaptive
therapy, and which models are relevant to use? How can we measure them experimentally
to build realistic models? In addition, importantly, how can models of adaptive therapy be
integrated in clinical research and application?

Different mathematical models have been used to answer such questions. Some are based
on analytical resolution [16], while some depend on computational simulations ([17–20] for
example), some are at the scale of the population of cancer cells (see [14,17,20]), others at the
scale of individual cells [15,18,21], and there are many distinct assumptions or parameters
that can be used. As it becomes increasingly clear that fighting cancer requires collaboration
between researchers from different disciplines, such as evolutionary biologists, oncologists, and
mathematicians, it appears necessary to review these modeling approaches and make them
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comprehensible to all interested actors. In this review, we present the most important models
that have been used to test, design and optimize adaptive therapy schedules. Four categories of
models can be considered, depending on whether the system of equations is homogeneous or
non-homogeneous, and on whether they are deterministic or stochastic. In the homogeneous
and deterministic case, the models are based on ordinary differential equations that in the case
of adaptive therapy resemble the competitive Lotka–Volterra equations. We thereafter name
them “Lotka–Volterra” models. A second type of models is stochastic differential equation
models. Then for non-homogeneous cases, there are deterministic models, such as partial
differential equation models, and stochastic models, including a kind of models named agent-
based models (ABMs). In the current review, we only focus on the types of models that are
the most widely used to model tumor dynamics in response to evolution-based treatment
strategies, that is to say Lotka–Volterra models and agent-based models. First, we introduce
the principle of adaptive therapy and the first mathematical models that were used to model
the effect of therapy on cancer cells. Then, we present how Lotka–Volterra and agent-based
models have been used to answer questions and test hypotheses about adaptive therapy.
Finally, we explain how such models can be integrated in experimental approaches and clinical
trial design.

2. Adaptive Therapy: Principle and First Models

Mathematical modeling approaches have been used in the field of cancer research
for a long time, and have proven useful to study phenomena such as tumorigenesis and
tumor growth, clonal evolution, microenvironmental interactions, or invasion and metas-
tasis [22]. There are also several studies modeling the effects of treatment strategies (for
example [23,24]), and the development of resistance to these strategies (for example [25,26]),
in order to understand the dynamics of tumors in response to therapy and to improve
treatment outcomes.

2.1. Identifying the Reasons for Failure of Conventional Treatment Strategies

To explain why in many cases strategies based on MTD have initial success, but
ultimately fail and lead to recurrence, Gatenby et Frieden mathematically modeled the
effect of therapy on tumor growth [16]. To do so, they considered a tumor growth law that
describes the evolution of tumor mass. This growth law contained two main terms, a free-
growth factor and a limitation to growth caused by therapy. They assumed that applying a
therapeutic activity modifies the growth of the tumor in a way that depends on the “level
of activity” of the therapy. Their analytical resolution suggested that continuously applying
a constant dose of chemotherapy destroys the cells that were the fittest before treatment,
that are assumed to be the chemo-sensitive ones, but inevitably leaves behind a small
number of chemo-resistant cells. These chemo-resistant cells then grow freely, because
treatment is not efficient on them, and because they no longer have competitors to control
their proliferation. This phenomenon is called competitive release (Figure 1A).

To face this issue, the use of time-varying therapy schedules was suggested. Metro-
nomic chemotherapy, that follows a set schedule of on/off periods, was proposed as an
alternative to continuous chemotherapy with MTD [27]. However, the results are variable.
Some in silico studies suggest the use of metronomic therapy over MTD [28,29], but others
showed that although metronomic therapy can prolong survival compared to treatments
based on MTD, it still leads to the selection of resistant variants [14]. Besides, some pre-
clinical and clinical studies, for example in advanced metastatic melanoma, showed no
significant benefit of metronomic schedules over MTD [30,31]. The issue with both MTD
and metronomic strategies is that they rely on a fixed schedule and dose, whereas tumors
are highly labile and adaptive [32].
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Figure 1. Principle of adaptive therapy. (A) Tumor load evolution under maximum tolerated dose
(MTD) strategy. Treatment is applied continuously and at a constant dose (yellow band). Competitive
release causes recurrence and treatment failure. (B) Tumor load evolution under adaptive therapy
(AT) strategy. The on/off cycles and drug dose are adjusted to the progression of the tumor in the
patient (yellow bands), and the aim is to contain the tumor at a manageable load for as many cycles
as possible.

2.2. Principle of Adaptive Therapy

Since this finding, researchers have theorized and modeled new anti-cancer therapies
based on Darwinian principles, meaning that they take into account the evolutionary
dynamics of tumors. To date, the most proposed evolution-based strategy for the treatment
of cancer is adaptive therapy, which relies on competition between sensitive and resistant
cells. Indeed, within a tumor, cancer cells are in competition for resources, space, growth
and survival signals from the stroma, etc. [10,11]. Treatment-resistant cells are able to escape
death caused by the drugs, but their resistance mechanisms are often energetically costly.
Consequently, in the absence of selection pressures created by therapy, treatment-sensitive
cells are assumed to have a fitness advantage over resistant ones, and can therefore regulate
the proliferation of the resistant population through cellular competition [2] (Figure 1B).
Even though it may seem counter-intuitive, it means that a substantial portion of treatment-
sensitive cells needs to be maintained in order to contain the tumor under a manageable
volume. The optimal drug dose should thus be the minimum necessary to observe a tumor
response, and once the tumor reaches an acceptable size, the drug should be withdrawn.
The tumor might then grow again, but because the dominant population is composed of
sensitive cells, another cycle of treatment can be started, and the drug will still have an
effect [2].

Before clinically implementing adaptive therapy, the first question is to determine
whether it is beneficial compared to conventional anti-cancer treatment strategies. To assess
the efficacy of a therapy, different metrics can be considered, such as time to progression,
time to treatment failure, or survival time [33]. Time to progression is defined as the
time elapsed between treatment initiation and progression, progression being the moment
at which an increase of the tumor size compared to its initial value is noticed. Time to
treatment failure is the time until the tumor size reaches a threshold determined by the
physician and the patient. Survival time is the time before a patients’ death, which within
the scope of theoretical modeling of tumor dynamics can be defined and predicted as the
time before the tumor reaches a hypothetical lethal size [33]. Predicting and comparing
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these metrics under different therapy regimes gives an indication on which one would be
the best option. To do so, a simple way is mathematically modeling the dynamics of cancer
cells in response to therapy.

The first mathematical model of adaptive therapy was developed by Gatenby et al. [14].
It is based on equations that illustrate the competition between subpopulations of cancer
cells (similar to Lotka–Volterra competition equations, see Appendix A). The responses
to MTD, metronomic, and adaptive therapy strategies were modeled in in silico tumors
containing subpopulations of cells with different categories of resistance, associated to
different fitness values. Both analytical resolution and simulations revealed that adaptive
therapy could effectively permit longer survival than MTD or metronomic strategies. To
complete this pioneer study, in vivo experiments on xenografted ovarian cancer treated
with carboplatin confirmed the feasibility of the approach, and showed that the tumor could
be controlled using progressively lower drug doses and longer off-treatment intervals [14].
This first modeling approach was a proof-of-concept that time-varying therapy schedules
such as adaptive therapy can effectively be modeled and are predicted to yield better results
than conventional ones. It paved the way for the development of more models aimed at
designing adaptive therapy strategies, understanding the consequent tumor dynamics,
and exploring the possibilities of application to various cancers (see Table 1).

Table 1. Summary of the main studies modeling adaptive therapy strategies. AT = Adaptive therapy. mCRPC = metastatic
castrate-resistant prostate cancer. 1 Parameters of interest that are specific to the considered article, and that are not classical.
What we consider as classical parameters are parameters representing tumor size, subpopulations sizes and growth rates,
competition coefficients, carrying capacities and treatment sensitivity, or their equivalent, which are common to most of
the models.

Reference Model Type Cancer Type Stage Number of Cell
Types

Parameters of
Interest 1 Predicted Outcomes

Cunningham et al.
(2018) [17] Lotka–Volterra mCRPC Advanced 3 (TP, T+, T−) N/A

Optimized AT strategy
outperforms MTD and
metronomic strategies.

Cunningham et al.
(2020) [34] Lotka–Volterra mCRPC Advanced 3 (TP, T+, T−) N/A

AT can delay competitive release
compared to MTD, but it provides

permanent control only for a
small subset of initial tumor

compositions. Other treatment
schedules such as dose titration

could be more successful.

Gatenby et al. (2009)
[14] Lotka–Volterra Ovarian Early

(300mm3)
5 (different fitness

and resistance)

Phenotypic
sensitivity of

population i to
therapy

(σi)/Environmental
sensitivity (β)

AT prolongs survival compared to
MTD or metronomic strategies.

Gluzman et al.
(2020) [20] Lotka–Volterra Lung N/A 3 (GLY, DEF, VOP)

Constants
representing the

benefit per unit of
acidification, the
benefit from the

oxygen per unit of
vascularization, and

the cost of
production of

Vascular
Endothelial Growth
Factor respectively.

Optimized AT strategy
outperforms MTD strategies and

reduces the amount of drugs
used.

Kim et al. (2021)
[35] Lotka–Volterra Melanoma Advanced 2 (sensitive and

resistant)

Phenotype
switching between
drug-sensitive and
resistant cell types

(α and β rates)

AT delays time to progression,
and even more when phenotypic

switching is included in the
model. A smaller burden

reduction criterion may also result
in better outcomes.
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Table 1. Cont.

Reference Model Type Cancer Type Stage Number of Cell
Types

Parameters of
Interest 1 Predicted Outcomes

Ma et Newton
(2018) [36] Lotka–Volterra N/A N/A 3 (healthy, sensitive,

resistant) N/A

Optimized AT strategy controls
the tumor for longer than MTD
and metronomic strategies and
could indefinitely balance the

subpopulations of cells.

Ma et Newton
(2021) [37] Lotka–Volterra N/A N/A 3 (healthy, sensitive,

resistant)

Nature of
multi-drug
interaction
(additive,

synergistic,
antagonistic) (e)

AT strategy delays with two
drugs delays recurrence for longer
when the drugs are antagonistic.

Silva et al. (2012a)
[38] Lotka–Volterra Multiple

myeloma Advanced

2 (sensitive and
resistant with
varying drug

resistance levels)

N/A

Some patients could benefit from
AT, but not all, hence the need to
classify patients and determine
which tumor compositions are

suitable for AT.

Silva et al. (2012b)
[39] Lotka–Volterra Breast Advanced 2 (sensitive PGP-

and resistant PGP+) N/A

Compared to MTD, AT increases
progression-free survival, and AT

combined with drugs that
increase the fitness disadvantage

of resistant cells yields even better
results.

Silva et al. (2016)
[40] Lotka–Volterra Multiple

myeloma Advanced

2 subpopulations
with different levels

of sensitivity to
each of the

chemotherapeutic
agents or

combinations.

N/A

AT could prolong control of the
disease, and combining drugs
under AT regimes can be even

more beneficial.

Smalley et al. (2019)
[41] Lotka–Volterra Melanoma Advanced

Transcriptional
heterogeneity
resulting in

different levels of
resistance

Phenotype
switching between
drug-sensitive and
resistant cell types

(α and β rates)

AT leads to delayed time to
resistance and better therapeutic

responses than MTD and
metronomic strategies (confirmed

in vivo).

Strobl et al. (2021)
[42] Lotka–Volterra mCRPC Advanced 2 (sensitive and

resistant)

Cell turnover
(density-

independent death
rate dt)

Adaptive therapy can prolong
time to progression even without

a resistance cost.

Viossat et Noble
(2020) [33] Lotka–Volterra N/A N/A 2 (sensitive and

resistant) N/A

AT containing the tumor at its
initial size maximizes time to

progression, while containment at
the maximal tolerable size

maximizes time to treatment
failure. In some cases where
resistant cells are sufficiently

sensitive, MTD could be superior
to AT.

Viossat et Noble
(2021) [43] Lotka–Volterra N/A N/A 2 (sensitive and

resistant) N/A

AT is likely to be optimal in a
broad range of cases, including if

there is no explicit cost of
resistance. Clinical gains strongly
depend on competition intensity
and on a few key patient-specific

factors.

West et al. (2018)
[44] Lotka–Volterra mCRPC Advanced 3 (healthy, sensitive,

resistant) N/A

Assuming a cost of resistance for
chemo-resistant cells, AT achieves
better time to relapse than MTD.

AT with longer treatment-on
periods but equal time off

perform better.

West et al. (2019a)
[45] Lotka–Volterra mCRPC Advanced 3 (TP, T+, T−)

Weighting term to
adapt payoff matrix

and carrying
capacity for each

drug (wi)

Multi-drug AT could delay
emergence of resistance for even

longer than single-drug AT.

West et al. (2019b)
[46] Lotka–Volterra mCRPC Advanced

4 (T+, TP, T−, and
doubly resistant

T−/−)
N/A

Single drug AT increases time to
progression compared with
conventional strategies, and

primary-secondary multi-drug AT
is even more beneficial.
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Table 1. Cont.

Reference Model Type Cancer Type Stage Number of Cell
Types

Parameters of
Interest 1 Predicted Outcomes

Zhang et al. (2017)
[19] Lotka–Volterra mCRPC Advanced 3 (TP, T+, T−) N/A

AT prolongs time to progression
compared to MTD and
metronomic strategies.

Bacevic et al. (2017)
[47]

Lotka–Volterra
and ABM Colorectal

Early (first
detection—1.3

cm3)

2 (sensitive and
resistant)

Micro-
environmental

feedback (constants
that represent how
strongly the tumor

stimulates and
inhibits

vascularization for
Lotka–Volterra

models, constants
regarding oxygen

and
cyclin-dependent
kinase inhibitor’s

diffusion,
consumption and

effects on cell
proliferation and/or

death for
ABMs)/death rate

(Mi)

AT outperforms MTD in the
condition that there is a fitness

cost of resistance.

Gallaher et al. (2018)
[18] ABM Breast Early Continuous

resistance %

Phenotypic drift,
migration (angle of

movement and
persistence time)

In heterogeneous tumors with
resistant cells, AT significantly

delays time to progression.

Strobl et al. (2021)
[15] ABM mCRPC Advanced 2 (sensitive and

resistant)

Cell turnover
(density-

independent death
rate dt)

AT is on average superior to MTD
in incurable and resistant tumors.

High initial tumor density and
low initial resistance fractions

maximize its benefits, and a cost
of resistance is not necessary.

3. Main Types of Models

The majority of models approach the question at the scale of the populations of
tumor cells and are based on competition equations, that often revisit the Lotka–Volterra
competition equations (see Appendix A).

3.1. Lotka–Volterra Models

We employ the term Lotka–Volterra for the models that use ordinary differential equa-
tions to describe interactions at the scale of the population of cells (see Appendix A). Such
models have been used to model ovarian cancer [14], metastatic castrate-resistant prostate
cancer (mCRPC) [17,19,44,45], breast cancer [39], multiple myeloma [38,40], colorectal
cancer [47], melanoma [35,41], and lung cancer [20] dynamics in response to treatment,
and showed that adaptive therapy could yield better results than conventional treatments
in terms of control of the resistant populations and of survival (see Table 1).

3.1.1. Identifying the Patients Who Could Benefit from Adaptive Therapy

With adaptive therapy, the goal is to contain cancer and not to cure it. This strategy
is thus only proposed as an alternative in cancers that are considered incurable, in which
surgery is impossible or unsuccessful and aggressive treatments will almost certainly fail,
for example mCRPC [19], or in cases in which resistance appears very quickly and there
are no alternative treatments, like advanced BRAF-mutant melanoma [35,41]. Using com-
petition equations to model tumor dynamics and treatment (see Appendix A), Hansen and
Read [48] tried to determine in which cases it is effectively better to treat to manage resis-
tance instead of to attempt cure. They propose that the decision depends on the probability
of cure and on the effect of a containment strategy on progression. In cases where tumors
could easily be cleared by conventional strategies (surgery or chemotherapy at MTD for
example), containment will not necessarily prolong survival, and therefore conventional
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strategies should be favored. In cases where the probability of cure is virtually null, like for
metastatic and highly resistant cancers, a containment strategy such as adaptive therapy
is likely to be beneficial. In intermediate situations, the best decision is ambiguous. The
advantage of using mathematical models is that they allow an easy identification of the
parameters that influence the position of patients on the cure-progression plane, or in
other words the decision to treat with aggressive treatments or adaptive therapy. Such
parameters include the expected lifespan of the patient with either strategy, the initial
tumor burden, the acceptable tumor burden, the initial proportion of resistant cells, the
rate of cell turnover and probability of mutation [48,49].

A crucial parameter seems to be tumor heterogeneity and the initial proportion of
resistant cells. Many studies using competition equations reported that adaptive therapy is
expected to be more effective when the initial proportion of resistant cells is low [17,19,39,41].
For example, in [39], simulations for different initial proportions of resistant cells suggest that
adaptive therapy prolongs survival longer for tumors with a lower proportion of resistant
cells. Similarly, in [19,33], both the absolute and relative gains of adaptive therapy compared
to treatments based on MTD were higher when the initial proportion of resistant cells was
lower. However, according to [48], adaptive therapy is more likely to be the best option for
heterogeneous tumors with a large number of resistant cells. In fact, in general, any therapy
is likely to have more success on tumors that have few resistant cells, but according to the
real-life application considerations in [48], in these cases, we can hope for a cure, which can
only be achieved with aggressive treatments. On the contrary, for heterogeneous tumors,
the probability of cure is lower and that is when it would be wise to opt for a containment
strategy. An essential point for implementing adaptive therapy is; thus, to be able to identify
which tumors will or will not respond to it. It would be necessary to have information on
the tumor composition, in particular the number, size, and drug resistance of cells from the
different subpopulations, both initially and at several time-points during treatment, which is
not straightforward, although techniques are being developed (see [17,38,41]).

3.1.2. Designing Efficient Adaptive Therapy Schedules

Once the general categories of patients who could benefit from adaptive therapy have
been identified, optimal treatment schedules have to be defined. Parameters such as the
time at which treatment begins, the volume at which the tumor is contained, the threshold
to start increasing/reducing drug dose or switch treatment on/off are likely to have an
impact on the outcome of therapy. Models are a key tool to test and define values of these
key parameters.

First, we need to know when to start treatment, in particular, once a cancer has been
detected and it has been decided to treat it with adaptive therapy, is it better to start treating
immediately to control the tumor, or is it better to delay until it is really necessary? A
model of adaptive therapy applied to mCRPC suggested that the most efficient strategy
was to delay treatment, with the aim to preserve the sensitive population and let it regulate
the resistant cells for as long as possible, and apply adaptive therapy with the minimum
dose possible only when really necessary [17].

Adaptive therapy cycles usually include periods off treatment or vary the drug dose.
A study that modeled the response of tumors to two adaptive strategies with different on-
treatment periods but equal time off concluded that the strategy with longer on-treatment
periods performed better [44]. The event triggering a treatment vacation or a drug dose
modulation sometimes is a change in tumor size, and it is possible to use models to estimate
the volume for which switching treatment on or off would have the most impact [41]. If
it is complicated to directly measure the tumor size, a change of quantity of a biomarker
can serve as an indication [19,38,46]. One of the benefits of modeling strategies in silico is
the possibility to implement dosing algorithms without having to know the precise doses
and treatment schedules in advance. Indeed, it is easy to test different percentages of drug
modulation or different thresholds for switching treatment on or off or changing the drug
dose, and to select the values for which simulations predict the best outcomes. In the refer-
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ence study on mCRPC [19], adaptive therapy was implemented with a treatment-stopping
criterion based on the tumor burden, measured indirectly via a biomarker (prostate-specific
antigen): Treatment is stopped when the tumor burden has decreased to 50% of its initial
value and restarted when it has increased back to its initial size. However, it has been
suggested that using other strategies and treatment-stopping criteria, like starting at a
different, possibly larger, baseline burden, could further increase the benefits of adaptive
therapy [50]. In some conditions, choosing a smaller tumor reduction criterion (like 20%
of the initial tumor volume) may be more effective in delaying tumor progression, as
illustrated with Lotka–Volterra models of advanced metastatic melanoma [35].

Another question is to decide at which size to contain the tumor. This size cannot be
too small, because of the need to maintain a substantial population of sensitive cells [40].
The default strategy could be to maintain the tumor at its initial size [48], but other options
can be considered, such as containing the tumor at the maximum tolerable size, or at an
intermediate threshold [33]. Which option is best depends on the objective set for treatment,
as containment at the initial size maximizes time to progression, while containment at
the maximal tolerable size maximizes time to treatment failure [33]. There are instances
where the authors used their models and data from clinical trials to estimate the minimum
stable tumor volume that delays relapse [40]. In practice, when adaptive therapy is
applied to patients, flexibility is allowed and tumor size is not necessarily fixed at a precise
value [49,51]. However, this has to be carefully monitored, as keeping a substantial tumor
volume over long periods of time or having peaks at high volume values could possibly
have negative consequences for patients’ health, and lead to poor prognosis. For example,
it was pointed out that many modeling studies on adaptive therapy do not consider the
cumulative risk for patients of having to survive with a higher tumor burden than with
conventional therapies [52].

In brief, there are many parameters to consider in order to define optimal treatment
schedules, and different strategies can be designed. Identifying the best strategy depends
on the objective that is set for the treatment (minimizing tumor volume, maximizing sur-
vival, maximizing time to progression, decreasing the time or cost of treatment, etc.) [20,33].
A good way to standardize optimization of schedules is to use optimal control theory.
In an optimal control problem, the objective is defined beforehand, then different treat-
ment strategies are simulated, and the best strategy is analyzed to assess what values of
parameters led to the completion of the objective [34]. Many studies successfully used
optimal control theory to identify the best therapy schedules, and adaptive therapy was
often considered to be the best option [20,34]. The exact design of the optimal adaptive
therapy strategy (length of cycles, drug dose, starting time, etc.) depends on the objective
of the therapy.

Some studies have highlighted that the outcomes of the simulations were greatly
dependent on the parameterization of the model. For example, Farrokhian et al. [53]
pointed out that the Lotka–Volterra model they tested had a considerable sensitivity to even
small alterations in the relative carrying capacities of the two subpopulations considered.
In [34], it was the initial tumor composition that had a significant effect on the outcomes of
treatment protocols. This is why assessing the robustness of the strategies used is important
before considering a clinical application of the models. This has, for example, been done
by Cunningham et al. [17]. For the relevant treatment schedules, the authors assessed
whether small shifts in the administration of treatment would significantly modify patients
outcomes. Most of the optimal strategies were quite robust, except for the one with the
objective of minimizing the cumulative T− (resistant to abiraterone) population, which was
robust for the best responder patients but not for the responder and non-responder patients.
Selecting treatment strategies that are robust should thus be an important preoccupation
for researchers wanting to implement models in vivo.
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3.1.3. Improving the Models

As of today, many models of adaptive therapy have showed that this strategy can
indeed prolong survival, and have brought out the important parameters that need to
be known to successfully implement this therapy. Some studies then started to focus on
understanding better the assumptions underlying adaptive therapy, and on improving
previous models.

One of the main assumptions in the first studies on adaptive therapy was that resis-
tance to treatment comes with a fitness cost, meaning that in the absence of treatment,
sensitive cells are fitter than resistant ones [14]. Some studies that used this assumption in
their mathematical model verified the presence of a fitness cost of resistance in vitro [42,47],
but it has been experimentally shown that resistance is not always costly [42], and/or that
compensatory mutations decreasing the initial costs can be subsequently selected [54]. It
is then reasonable to interrogate the role of fitness cost of resistance, and its necessity for
adaptive therapy to be beneficial. The answers to this question are contrasted. For exam-
ple, [48] showed that adaptive therapy is more likely to be a better option than aggressive
treatments if resistance is considered to have a fitness cost. In a Lotka–Volterra model of
adaptive therapy in colorectal cancer, it also appeared that the benefit of adaptive therapy
over treatment based on MTD is negligible if there is no substantial fitness difference
between sensitive and resistant cells [42]. Moreover, Silva et al. [39] highlighted the im-
portance of the fitness cost of resistance in their model of breast cancer. They showed that
adaptive therapy combined with anti-pump drugs that increase the fitness disadvantage of
resistant cells prolonged survival for longer than adaptive therapy without the anti-pump
drugs. Yet, Hansen et al. argued that the presence of a fitness cost does not always increase
competitive suppression of resistant cells by sensitive cells, and that the nature of the fitness
cost (for example whether it has an effect on resistant cells’ proliferation rate or rather
on their competition ability) strongly matters [49]. Besides, Strobl et al. suggested that
if there is a small level of pre-existing resistance, but a strong competition between cells,
and that tumors are close to the maximal load that can be sustained by their environment,
also called their environmental carrying capacity, a cost of resistance is not necessarily
required [42]. They used a Lotka–Volterra model that included cell turnover as a parameter
and indicated that cell turnover modulates the need for a cost of resistance. Indeed, a high
cell turnover amplifies the effect of competition and therefore the benefits of adaptive ther-
apy. In another study, Viossat et Noble simulated tumors’ response to treatment without
assuming any costs of resistance, and in spite of that, adaptive therapy was still predicted
to outperform MTD-based treatment strategies [43]. Once again, the nature of resistance
costs matters, but overall the presence of costs of resistance tends to increase clinical gains.
In particular, they showed that indefinite containment of the tumor via adaptive therapy
would only be possible if sensitive cells substantially impaired the fitness of resistant cells.
Additionally, some ecological phenomena and/or stochasticity events could contribute to
making adaptive therapy effective, even without a resistance cost. In brief, it seems that a
fitness cost of resistance is not absolutely necessary for adaptive therapy to work, but is
certainly helpful [33,43].

Another aspect that can be worth considering, which was not included in the first
adaptive therapy studies, is the possibility of phenotype switching between the different
cell types, in particular the possibility for sensitive cells to become resistant and/or for
resistant cells to become sensitive over the course of treatment. This possibility was
included in some models through the use of parameters representing transition rates (see
Table 1). In particular, Kim et al. [35] compared a simple Lotka–Volterra model to a model
accounting for phenotype switching and showed that the benefits of adaptive therapy were
predicted to be greater when phenotype switching was included in the model.

Most of the work on adaptive therapy simulates the use of a single drug, usually
chemotherapy or targeted therapy. Treating tumors with multiple drugs could further
improve the possibilities for adaptive therapy, and be even more beneficial [36]. Recent
studies modeled the sequential application of several drugs in an adaptive therapy frame-
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work [45,46]. Fitting their model on data previously obtained in single-drug adaptive
therapy clinical trials, they showed that combining multiple drugs could increase time to
progression compared to conventional strategies and single-drug adaptive therapy. Fur-
ther studies are needed to determine which multi-drug treatment schedules are clinically
feasible, to optimize the timing of the secondary drug in the case of a primary-secondary
approach, and to assess which combination of drugs would work. Some work has already
been done in this direction, as a model of a two-drug adaptive therapy strategy revealed
that antagonistic drugs are more efficient than synergistic drugs to control competitive
release [37].

3.1.4. Advantages and Limitations of Lotka–Volterra Models

Overall, Lotka–Volterra models are convenient models as they are relatively easy to
conceive, parametrize, and analyze, and their asymptotic behavior can be studied, meaning
that we can have an overview of the long-time outcomes of therapy [55]. However, one of
their main limitations is that they are homogeneous and mostly deterministic, and usually
do not account for micro-environment effects, possibility of random mutations, migration,
cell turnover, or other parameters that could impact the outcomes of therapy. Some studies
tried to mitigate this by introducing parameters representing micro-environment effect [47]
or environmental sensitivity [14] in their competition equations, or by adding stochastic
parameters such as cell turnover [42], or possibility of transition between sensitive or
resistant states [35]. To truly incorporate stochasticity, an option is to transition to more
complex, non-homogeneous and stochastic models. Furthermore, to be able to take into
account the importance of spatial heterogeneity, it is wise to use spatial models, for example,
spatial agent-based models (see Appendix B).

3.2. Agent-Based Models

Agent-based models (ABMs) are a powerful computational method to study the
interaction between individual autonomous agents (the tumor cells) in order to understand
the behavior of the whole system (the tumor). In addition to time, agent-based model
simulations incorporate two other components: The agents and the environment or space
in which these agents exist. It; thus, is a very relevant method for the modeling of tumors,
which are biological systems where spatial organization has an important role.

3.2.1. Applications of ABMs to Model Adaptive Therapy

Intratumor heterogeneity and spatial variations are important to consider when mod-
eling tumor dynamics and treatment effects on cancer, as revealed by spatial ABMs [18,21].
You et al. [21]; thus, suggested that ABMs with continuous space are more appropriate
than non-spatial models to model adaptive therapy in heterogeneous tumors, as they allow
for flexibility of interaction rules, and take into account the presence of different local den-
sities and of processes such as density and frequency-dependence. Notably, the intensity
of competition for space and resources can be influenced by how the tumor is spatially
organized. Bacevic et al. [47] showed that when resistant cells are spatially constrained by
sensitive cells, their fitness disadvantage is further amplified. Moreover, studies based on
two-dimensional on-lattice [47] or off-lattice [18] ABMs of tumor spheroids showed that
tumors could be controlled longer if resistant cells were in the center of the spheroid versus
on the edge. The number of locations where resistant cells emerge also seems to influence
adaptive therapy outcomes [15].

Agent-based modeling is complementary to Lotka–Volterra models and can also be
used to answer questions and assumptions regarding adaptive therapy. For example, with
their off-lattice spatial ABM which modeled resistance as a continuous trait, Gallaher et al.
demonstrated that, if some homogeneous tumors mostly composed of sensitive cells can
be cured with treatments based on MTD, in heterogeneous tumors, only containment with
adaptive therapy is successful [18]. The same model revealed that a high rate of spatial
mixing through migration, a high rate of acquisition of resistance through mutations, as
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well as a high initial proportion of resistant cells are factors that lessen the efficacy of
adaptive therapy strategies. To contain the tumor at a stable size and avoid competitive
release, adaptive therapy would ideally include well-timed treatment vacations, but also
vary the drug and its dose [14]. In practice, some strategies combine treatment modulation
and dose vacation, while others only implement one of the two. To clarify which option
is better, Gallaher et al. compared two adaptive therapy strategies: One that privileged
treatment vacation, and one that privileged drug dose modulation. It resulted that, for
invasive heterogeneous tumors, or tumors with phenotypic drift, a more vacation-oriented
strategy confers better control of the tumor [18]. This is consistent with observations from
Lotka–Volterra models that highlighted the benefits of well-timed treatment vacations to
allow the sensitive cells to recover and to suppress the resistant population [41,44].

In order to determine the roles of the initial fraction of resistant cells, of tumor prox-
imity to its carrying capacity, of resistance costs and of cell turnover in a spatial model,
and to assess whether the results are similar between ABM and Lotka–Volterra models,
Strobl et al. revisited their Lotka–Volterra model [42] into a two-dimensional on-lattice
ABM [15]. This spatial model confirmed that adaptive therapy prolongs time to progres-
sion compared to MTD, even in the absence of a resistance cost. Once again, cell turnover
appears to modulate the need for a resistance cost, as it increases the impact of competition
between cells. Overall, the results are qualitatively similar to the ones obtained with their
Lotka–Volterra model, but differ quantitatively. In terms of time to progression, the relative
benefits of adaptive therapy compared to MTD are smaller in the ABM, and the presence
of cell turnover and resistance costs also have less impact in the ABM. By taking space into
account, ABMs model competition differently, and take into account the fact that resistant
cells can be segregated in different colonies, and will not experience the same competitive
inhibition depending on their neighborhood (sensitive cells that will inhibit them in an
inter-specific way, or resistant cells that cause intra-specific competition). The stochastic
effects present in ABMs may also alter the dynamics of tumors in response to treatment.
Finally, similarly to Lotka–Volterra models, ABMs can be combined with optimal control
theory to design optimal time-varying treatments [56].

3.2.2. Advantages and Limitations of ABMs

In summary, agent-based modeling is an interesting approach for modeling tumor
dynamics in response to adaptive therapy. Compared to Lotka–Volterra models, Agent-
Based Models (ABMs) are more flexible and provide a more natural description of biological
systems, in particular because they can take space into account and model the interactions
between agents and between agents and their environment [55] (see Appendix B). Among
the interesting features of ABMs are the fact that they can integrate multiple biological
scales and recapitulate emergent behaviors, which are very relevant when studying cancer.
However, ABMs are costly computationally and harder to analyze than differential models
such as population-scale Lotka–Volterra models [55,57]. Indeed, due to the numerous
interactions between different agents, these models can be complex to develop, an in
particular, there is the issue of adequately selecting and representing the features of interest,
as there are countless possibilities. Researchers may; thus, face challenges in choosing
adequate model variables and testing and validating the models against experimental or
clinical data [57]. Besides, ABMs embrace a variety of possible spatial representations, in
particular with the possibility to consider on-lattice or off-lattice models. The choice of
spatial representation in the model is not trivial either, especially considering that for now
most of the clinical data is non-spatial, and yet this matter can also influence the outcomes
of simulations [58].

4. From Models to Clinical Applications and Vice Versa

Models are sometimes criticized for not considering clinical realism, and neglecting
parameters that could have an importance in clinical setups. Admittedly, models are
intrinsically a simplified representation of reality, as a model that is too complex would
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be too hard to parameterize and to understand [11]. However, they remain a powerful
tool to predict and represent tumor dynamics, and elucidate important clinical parameters.
Among the mathematical models presented in this review, some were validated in vivo in
preclinical studies on mice [14,41,51] and a few have been successfully used to design clini-
cal trials [19,45] (Figure 2). For example, it was shown that adaptive therapy significantly
prolongs progression-free survival in different preclinical models of breast cancer [51].
Most notably, in mCRPC pilot clinical trial [19], only one out of 11 patients undergoing
adaptive therapy progressed, and the 10 other maintained stable oscillations of tumor
burden, while in the contemporaneous cohort treated with MTD, 14 out of 16 patients
progressed. With adaptive therapy, the time to progression is estimated to be at least
27 months, and the drug dose used is considerably reduced (cumulative drug use of 47%
of MTD dosing).
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Conversely, the data obtained from experiments or clinical trials can be used to help
models predict more realistically the tumor dynamics in response to therapy in patients
(Figure 2). Indeed, as stated previously, parameterization of the models is not an easy task.
To have a model that recapitulates reality as accurately as possible, it is best to use parameter
values that are empirically derived. The basic parameters such as cell populations’ growth
rates are often determined in vitro using cell lines with the relevant phenotypes [35].
For example, Smalley et al. calibrated their model using tumor growth dynamics from
melanoma xenografts grown under vehicle, continuous, or several types of intermittent
treatments with a BRAF inhibitor [41]. In the Silva et al. study on breast cancer, the growth
rates of drug sensitive and drug resistant cell lines (MCF-7 and MCF-7/Dox respectively)
were determined using crystal violet staining and real time quantification of the number of
adherent live cells [39]. They also determined the effect of the drug on both cell lines under
different metabolic conditions in vitro. In the mCRPC study by Zhang et al. [19], the values
of the growth rates of T+, TP, and T− cells used in model simulations were also based
on in vitro measurements of the doubling times of corresponding cell lines. In this study,
the maximal carrying capacities were set arbitrarily, and the values of the competition
coefficients were approximated through a series of inequalities derived from the literature
and the professional judgment of oncologists. In vitro experiments are also quite useful to
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assess competition and fitness costs of resistance, which can be measured thanks to three
methods: monoculture experiments to measure the growth rates of untreated resistant
cells, co-culture of resistant and sensitive cells, and reversal experiments to explore how
long it takes for resistant cells to lose their resistance mechanisms when left untreated, in a
case where resistant cells can be re-sensitized [42]. The composition of a tumor in terms
of number of sensitive and resistant cells and degree of resistance, which is a very useful
information to have to predict the outcomes of adaptive therapy treatment, can also be
assessed experimentally. For example, Smalley et al. were able to establish a link between
transcriptional state composition and response to treatment and used single cell mRNA
analyses to get an insight on the transcriptional heterogeneity of melanoma before, during,
and after treatment [41]. To study cancer cells in a 3D configuration, it is relevant to use
tumor spheroids. For instance, in [47], the spatial computational model (ABM) was used
to simulate tumor spheroids, and the predictions could be compared to the experimental
system. Models can also be fitted to patient data from clinical trial, to perform what is
called retrospective analysis. In this case, the modelers first need to find models that fit the
actual data points, and can then use these models to make predictions [15,45]. They can, for
example, run simulations with different types of evolution-based strategies or treatment
schedules and see what the outcomes would have been in these cases, as in [46] where they
experiment with multidrug adaptive therapy approaches.

Models also help understand some phenomena observed when adaptive therapy
is applied to patients in clinical trials. For example, in practice, cycle length tends to
stay relatively constant for each patient, but can greatly vary between patients [19,46].
Simulations on data from prostate cancer patients reveal that the patient’s cycle length
correlates with distinct spatial organizations of tumors [15]. It was; thus, proposed that the
inter-patient variability could be due to differences in cell turnover and in resistance costs
for drug-resistant cells, which result in different spatial distributions, and different ratios
of inter-specific to intra-specific competition [15]. It also means that, knowing patient’s
longitudinal response dynamics to treatment, mathematical models could be used to
determine the spatial organization of the tumors.

We believe that clinical trials should systematically incorporate after-action analyses
on patients who progress, to understand the causes of failure, and identify strategies that
would have improved outcomes [9]. A way to do so is to use data from past clinical trials
to fit mathematical models that focus on different strategies than the ones applied in the
trial, so as to predict if these alternative strategies could have benefited the patients (as
in [38,46]).

5. Conclusions and Perspectives

Reluctance to accept that treating to contain can be a better option than treating to
cure, as well as the fact that there are many existing models each using slightly different
approaches or parameters, can make it hard for an oncologist to be willing to implement
adaptive therapy. This is why collaboration between disciplines is fundamental, and why
it would be convenient to be able to clearly define when and how to use adaptive-therapy
according to the situation of each patient (type of cancer, stage of the cancer, composition
of the tumor, etc.), and then have a model that guides treatment decisions (when to start
treatment, which drug dose to use, when to change this dose, when to interrupt and restart
treatment, etc.).

We illustrated that mathematical models such as Lotka–Volterra models or ABMs
are key tools to model cancer response to evolution-based therapies such as adaptive
therapy. Such models allow researchers to compare adaptive therapy to other treatment
strategies, identify for which cancers and which patients adaptive therapy would be
beneficial, elucidate key parameters for its clinical implementation, and determine how to
adjust these parameters in a patient-specific way. To simplify this review, we artificially
separated models in two categories—Lotka–Volterra and ABMs—but we are aware that
the reality is more complex than that and that there is a variety of models that range from
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analytical/deterministic models in general to more stochastic models, including spatial
models such as ABMs. Of note, it is possible to combine ABMs with differential models to
design hybrid models, that can also be used to describe cancer dynamics (see [22,55,59]).
Overall, the models studied converge to show that adaptive therapy can prolong survival,
while reducing the amount of drug used, and thus the toxicity and cost for the patient.

More research is needed to understand the dynamics of tumors in response to therapy,
and the mechanisms of emergence of resistance. In particular, the mechanism of resistance
emergence might influence the initial distribution of resistance cells, which can affect the
response of tumors to treatment [15]. It would also be useful to have a clearer insight on the
origin of tumor heterogeneity, for example through studies of the roles and organization of
cancer stem cells during tumor growth [60]. Besides, the tumor environment is a complex
ecosystem, where cells are in interaction with healthy cells, with other tumor cells, with
the immune system, or even with the microbiota [10,61]. The nature of the competition
and of the interactions between cell types also needs to be better understood. For example,
for a while, adaptive therapy was thought to rely mostly on inter-specific competition
between sensitive and resistance cells, but recent work identified intra-specific competition
between resistant cells as a very important factor for adaptive therapy, which should be
considered more thoroughly [15]. A better understanding of cell competition mechanisms,
in particular between cancer cells and normal cells could also help designing therapeutic
strategies that exploit competition in order to favor normal cells [61]. Apprehending and
quantifying these mechanisms of competition more accurately should help refining the
models, and contribute to the reproducibility of the promising results seen with adaptive
therapy [49].

One of the challenges that comes with mathematical modeling is that, under a com-
mon scenario, changes in assumptions can significantly influence the outcomes predicted
by the models. Given the complexity of interactions and the high number of variables
at play in tumors, some models are not guaranteed to make consistent quantitative pre-
dictions, and this might explain why models are not very often incorporated into clinical
practice. Another aspect that must not be overlooked is the difficulty to find appropriate
experimental measurements to guide model design and parameterization. For example,
actually measuring the tumor burden in a non-invasive manner and frequently enough to
guide treatment decision is not a trivial task for certain types of cancer, so even relatively
basic parameters like tumor volume are not always easy to estimate. Additionally, compe-
tition coefficients between cell subpopulation are important parameters in Lotka–Volterra
models (see Appendix A), but it is complex to actually measure these values experimentally.
In vitro approaches like clonogenic assays or competition tests are highly useful in this
regard, but we have to keep in mind that there can be significant discrepancies between
values obtained in vitro and in vivo. Besides, modeling approaches could still be improved
and completed. Notably, most models only consider the phenotypes of the cells (“sensitive”
versus “resistant”) but ignore the underlying genotypic diversity. When keeping at a given
level the population size of sensitive cells, whose phenotype is targeted by the drugs, the
resulting tumor can have different underlying genetic compositions, which could in turn
have an importance in the emergence of resistance and metastasis initiation. For this reason,
it would be relevant to design models that consider the evolution of the genotype of tumor
cells in addition to their phenotype.

An aspect that also needs to be explored more in depth is the possibility of combining
drugs, and types of therapies. For instance, adaptive therapy could be combined with
strategies that increase the advantage of sensitive cells over resistant ones, for example, the
use of benign cell boosters that select chemo-sensitive cells [62] or of fake drugs (“ersatz-
droges”) that increase the metabolic cost of resistance in the absence of chemotherapy [63].
Adaptive therapy is the evolutionary-inspired strategy that has been developed the most,
but other types of evolution-based therapies have been suggested and modeled (for a
comprehensive review, see [2]). Many of them rely on the idea to exploit trade-offs to
control tumor evolution. For instance, the evolutionary double-bind strategy exploits
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antagonistic pleiotropy of genes conferring resistance to a drug but increased sensitivity
to another [32,64,65]. Another idea is extinction therapy, which takes advantage of the
vulnerabilities of small populations to maximize the probability of cure [2]. Along the
same lines as adaptive therapy taking advantage of the competition between treatment-
sensitive and treatment-resistant cancer cells, competition with healthy tissue could also
be exploited to develop therapeutic strategies. A few recent studies propose to exploit
the competition between cancer cells and healthy cells to optimize treatment [66,67]. It
could also be relevant to consider other types of interactions than competition, in particular
cooperation. As a matter of fact, cooperation between cancer cells is essential for cancer
progression and understanding how to impair cooperation could also help design efficient
evolution-based strategies [68]. The development of more models to research these aspects
will undoubtedly be beneficial to understand and treat cancer.
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Appendix A. Lotka–Volterra Models

Lotka–Volterra models are deterministic models based on ordinary differential equa-
tions. In Lotka–Volterra models, the dynamics of each subpopulation, and; therefore, of
the whole tumor, is described by equations that represent the inter-specific competition
between treatment-resistant and treatment-sensitive cells populations. These equations are
often based on the Lotka–Volterra competition Equation (A1):

dxi
dt

= rixi

(
1 −

∑N
j=1 αijxj

Ki

)
(A1)

with xi the size of subpopulation i at time t, ri its growth rate, Ki its carrying capacity (i.e.,
the maximal population size that can be sustained in the tumor environment), and αij the
competition matrix containing the competition coefficients for each pair of subpopulations.
For instance, in models of metastatic castrate-resistant prostate cancer (mCRPC) treated
with abiraterone, three subpopulations of cells have to be considered: T+ cells, that require
exogenous androgen and are thus sensitive to androgen deprivation and to abiraterone,
TP (testosterone producing) cells, that express the enzyme CYP17A1 which allows them
to produce testosterone, making them resistant to androgen deprivation but sensitive
to abiraterone (a CYP17A1 inhibitor), and T− cells, that are androgen-independent and
resistant to abiraterone [19]. The competition matrix is of this form:

Table A1. Example of competition matrix.

T+ TP T−
T+ α11 α12 α13
TP α21 α22 α23
T− α31 α32 α33

The effect of therapy can be modeled as a decrease of the carrying capacity of sen-
sitive cells [19], a decrease of growth rates [33], or be introduced as a supplementary
parameter [50].

Appendix B. Agent-Based Models

Agent-based models (ABMs) are computational models that focus on individual
autonomous agents to understand the dynamics at the whole system level. In the case of
cancer modeling, these agents are cells that can grow, migrate, mutate, divide, and die.
These agents interact with their environment and the neighboring agents, from which
they receive signals and inputs, and to which they provide outputs [57]. The behavior of
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each cell (its probability of surviving, of producing a daughter cell of the same type or
of a different type, etc.) is dictated by rules, mostly according to probabilistic laws. For
example, cell migration can be modeled by allowing cells to move in a persistent random
walk, and phenotypic drift by allowing daughter cells to inherit a different proliferation
rate upon division [18].

Cells can be allowed to continuously move in space (off-lattice ABMs) or restricted to a
lattice (on-lattice ABMs). In either case, ABMs provide information on the spatial structure
of the tumor, as in [18], where simulations from an off-lattice ABMs give an overview of
the evolution of spatial structure of the tumor (size of the tumor, localization and level of
resistance of tumor cells), as well as of the number of cells, in response to treatment based
on maximal tolerated dose (MTD) or adaptive therapy.
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