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Abstract
In this paper, we investigate the impact of compression on stochastic gradient algorithms for

machine learning, a technique widely used in distributed and federated learning. We underline
differences in terms of convergence rates between several unbiased compression operators, that all
satisfy the same condition on their variance, thus going beyond the classical worst-case analysis.
To do so, we focus on the case of least-squares regression (LSR) and analyze a general stochastic
approximation algorithm for minimizing quadratic functions relying on a random field. We consider
weak assumptions on the random field, tailored to the analysis (specifically, expected Hölder
regularity), and on the noise covariance, enabling the analysis of various randomizing mechanisms,
including compression. We then extend our results to the case of federated learning.

More formally, we highlight the impact on the convergence of the covariance Cania of the
additive noise induced by the algorithm. We demonstrate despite the non-regularity of the stochastic
field, that the limit variance term scales with Tr

(
CaniaH

−1
F

)
/K (where HF is the Hessian of the

optimization problem and K the number of iterations) generalizing the rate for the vanilla LSR
case where it is σ2Tr

(
HFH

−1
F

)
/K = σ2d/K (Bach and Moulines, 2013). Then, we analyze the

dependency of Cania on the compression strategy and ultimately its impact on convergence, first in
the centralized case, then in two heterogeneous FL frameworks.
Keywords: Large-scale optimization, linear stochastic approximation, least-squares regression,
federated learning, compression

1. Introduction

Large-scale optimization (Bottou and Bousquet, 2007) has become ubiquitous in today’s learning
problems due to the incredible growth of data collection. It becomes computationally extremely hard
to process a full dataset or even, to store it on a single device (Abadi et al., 2016; Seide and Agarwal,
2016; Caldas et al., 2019). This led practitioners to either process each observation only once in a
streaming fashion and to design distributed algorithms. This paper is part of this line of work and
considers in particular stochastic federated algorithms (Konečný et al., 2016; McMahan et al., 2017)
that use a central server to orchestrate the training over a network of N in N∗ clients.

A well-identified challenge in this framework is the communication cost of the learning process
(Seide et al., 2014; Chilimbi et al., 2014; Strom, 2015) based on stochastic gradient algorithms. In-
deed, iteratively exchanging gradient or model information between the local workers and the central
server generates a huge computational and bandwidth bottleneck. To reduce this communication
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cost, two strategies have been widely implemented and analyzed: performing local updates (see
e.g. McMahan et al., 2017; Karimireddy et al., 2020), or reducing the size of the exchanged messages
by passing them through a compression operator, on the uplink channel (Seide et al., 2014; Alistarh
et al., 2017, 2018; Mishchenko et al., 2019; Karimireddy et al., 2019; Wu et al., 2018; Horvath
et al., 2022; Mishchenko et al., 2019; Li et al., 2020; Richtarik et al., 2021), or on both uplink and
downlink channels (Harrane et al., 2018; Tang et al., 2019; Liu et al., 2020; Zheng et al., 2019;
Philippenko and Dieuleveut, 2020, 2021; Gorbunov et al., 2020b; Sattler et al., 2019; Fatkhullin et al.,
2021). These two strategies, although typically analyzed independently, are often combined. We
focus on compression; to reduce the cost of exchanging a vector, three techniques are combined: (1)
sending the message to only a few clients, (2) sending only a fraction of the coordinates, (3) sending
low-precision updates.

Most analyses of the impact of compression schema rely on generic assumptions on the com-
pression operator C, typically either contractive, i.e. for any z in Rd, ∥C(z)− z∥ < (1− δ)∥z∥ with
δ ∈]0; 1[ (almost surely or in expectation, see for instance Seide et al., 2014; Stich et al., 2018; Karim-
ireddy et al., 2019; Ivkin et al., 2019; Koloskova et al., 2019; Gorbunov et al., 2020b; Beznosikov
et al., 2020), or unbiased with bounded variance increase, i.e., for any z in Rd, E[C(z)] = z and
E[∥C(z)− z∥2] ≤ ω∥z∥2 for a parameter ω > 1 (see among others Alistarh et al., 2017; Wu et al.,
2018; Mishchenko et al., 2019; Chraibi et al., 2019; Gorbunov et al., 2020a; Reisizadeh et al., 2020;
Horvath et al., 2022; Kovalev et al., 2021; Philippenko and Dieuleveut, 2020, 2021; Haddadpour
et al., 2021; Li and Richtárik, 2021; Khirirat et al., 2018). Unlike biased – and often deterministic –
operators, unbiased operators typically benefit from a variance reduction proportional to the number
of clients (e.g., Gorbunov et al., 2020b vs Horváth et al., 2019).

In parallel, a line of work has thus focused on the design of compression schemes satisfying one of
these two assumptions (Bernstein et al., 2018; Dai et al., 2019; Beznosikov et al., 2020; Horvath et al.,
2022; Xu et al., 2020; Leconte et al., 2021; Gandikota et al., 2021; Ramezani-Kebrya et al., 2021;
Horvath et al., 2022). Two fundamental strategies are typically combined: (1) quantization (Rabbat
and Nowak, 2005; Gersho and Gray, 2012; Alistarh et al., 2018), and (2) random projection (Vempala,
2005; Rahimi and Recht, 2008; Nesterov, 2012; Nutini et al., 2015). These methods are compared
based on (1) the number of bits required for storing or exchanging a d dimensional vector and (2) the
resulting variance increase ω or contractiveness constant δ. Consequently, convergence results are
worst-case results over the class of compression operators: two compression operators satisfying the
same variance assumption are regarded as producing the same convergence rate.

The goal of this paper is to provide an in-depth analysis of compression within a fundamental
learning framework, namely least-squares regression (LSR, Legendre, 1806), in order to highlight
the differences in convergence between several unbiased compression schemes having the same
variance increase.

Especially, this analysis will highlight the impact of (1) the compression scheme’s regularity
(Lipschitz in squared expectation or not) and of (2) the correlation between the compression of the
different coordinates. We highlight three examples of possible take-aways from our analysis, that
will be detailed in Section 3.

Take-away 1. Quantization-based compression schemes do not have Lipschitz in squared expectation
regularity but satisfy a Hölder condition. Because of that, their convergence is degraded, yet they
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asymptotically achieve a rate comparable to projection-based compressors, in which the limit
covariance is similar.

Take-away 2. Rand-h and partial participation with probability (h/d) satisfy the same variance
condition. Yet the convergence of compressed least mean squares algorithms for partial participation
is more robust to ill-conditioned problems.

Take-away 3. The asymptotic convergence rate is expected to be at least as good for quantization
than for sparsification or randomized coordinate selection, if the features are standardized. On the
contrary, if the features are independent and the feature vector is normalized, then quantization is
worse than sparsification or randomized coordinate selection.

We consider a random-design LSR framework and make the following assumption on the
input-output pairs distribution

Model 1 (Federated case). We consider N clients. Each client i in [N ] accesses K in N∗ i.i.d. obser-
vations (xik, y

i
k)k∈[K] ∼ D⊗K

i , such that there exists a well-defined client-dependent model wi
∗:

∀k ∈ [K], yik =
〈
xik, w

i
∗
〉
+ εik, with εik ∼ N (0, σ2) , (1)

for an i.i.d. sequence
(
(εik)k∈[K],i∈[N ]

)
independent from

(
(xik)k∈[K],i∈[N ]

)
. We use the generic

notation (xi, yi, εi) for such an input-output-noise triplet on client i. Moreover, we assume that
the inputs’ second moment1 is bounded to define E[xi ⊗ xi] = Hi and E[∥xi∥2] = R2

i ; such that
E[∥xi∥2xi ⊗ xi] ≼ R2

iHi. For any i ∈ [N ], we consider the expected squared loss on client i of a
model w as Fi(w) :=

1
2E(xi,yi)∼Di

[(
〈
xi, w

〉
− yi)2].

Remark 1 (Almost surely bounded features). In the case of linear compressors, we will also assume
that for each client i in [N ], features are almost surely bounded by R2

i .

This model is classical in the single worker case (e.g. Hsu et al., 2012; Bach and Moulines, 2013):

Model 2 (Centralized case). We consider Model 1 with N = 1 client. For simplicity, we then omit
the i superscript.

We focus on the problem of minimizing the global expected risk F : Rd → R, thus finding the
optimal model w∗ in Rd such that:

w∗ = argmin
w∈Rd

{
F (w) :=

1

N

N∑
i=1

Fi(w)

}
(OPT)

Note that we assume that Span{Supp(xi), i ∈ [N ]} = Rd to ensure the existence and uniqueness
of w∗.

The empirical version of the risk minimization admits an explicit formula, yet is computationally
too expensive to compute for large problems. This is why, in practice, LSR is solved using iterative
stochastic algorithms, for example Stochastic Gradient Descent (SGD, see Robbins and Monro,
1951). SGD for LSR is often referred to as the Least Mean Squares (LMS) algorithm (Bershad, 1986;

1. In the following, we may refer to this matrix H as the covariance (in the case of centered features, covariance is equal
to the second moment)
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Macchi, 1995). Analysis of LMS (Györfi and Walk, 1996; Bach and Moulines, 2013) and its variants
received a lot of interest over the last decades. Indeed despite its simplicity, LSR is a model of choice
for practitioners because of its efficiency to train good and interpretable models (see e.g. Molnar,
2018, chapter 5.1). Moreover, its simplicity enables to isolate and analyze challenges faced in specific
configurations, for instance, non-strong convexity (Bach and Moulines, 2013), interaction between
acceleration and stochasticity (Dieuleveut et al., 2017; Jain et al., 2018a; Varre and Flammarion,
2022), non-uniform iterate averaging (Jain et al., 2018b; Neu and Rosasco, 2018; Muecke et al.,
2019), infinite-dimensional frameworks (Dieuleveut and Bach, 2016), or over-parametrized regimes
and double descent phenomena (Belkin et al., 2019).

Our approach follows this line of work: our goal is to analyze the impact of compression in FL
algorithms, by providing a careful study of compressed LMS, based on a fine-grained analysis of
Stochastic Approximation (SA) under weak assumptions on the random field. More precisely, we
consider linear stochastic approximation recursion, to find a zero of the linear mean-field ∇F .

Definition 1 (Linear Stochastic Approximation, LSA). Let w0 ∈ Rd be the initialization, the linear2

stochastic approximation recursion is defined as:

wk = wk−1 − γ∇F (wk−1) + γξk(wk−1 − w∗), k ∈ N, (LSA)

where γ > 0 is the step-size and (ξk)k∈N∗ is a sequence of i.i.d. zero-centered random fields that
characterizes the stochastic oracle on ∇F (·). For any k ∈ N∗, we denote Fk = σ (ξ1, . . . , ξk), such
that the filtration (Fk)k≥0 is adapted to (wk)k≥0.

We assume that F is quadratic, we denote HF its Hessian, R2
F := Tr (HF ) its trace and µ its

smallest eigenvalue. For any k in N, with ηk = wk − w∗, we get equivalently:

ηk = (I− γHF )ηk−1 + γξk(ηk−1), k ∈ N.

As underlined by Bach and Moulines (2013), (LSA) corresponds to a homogeneous Markov
chain. A study of stochastic approximation using results and techniques from the Markov chain
literature can be found for instance in Freidlin and Wentzell (1998) or more recently in Dieuleveut
et al. (2020).

(LSA) encompasses three examples of interest, the first one is the classical LMS algorithm.
Indeed, with the observations in Models 1 and 2, for any client i ∈ [N ], any iteration k in [K], any
model w ∈ Rd,

gik(w) := (
〈
xik, w

〉
− yik)x

i
k (2)

is an unbiased oracle of ∇Fi(w). This can be used to define the following three algorithms.

Algorithm 1 (LMS). For LMS algorithm, with a single worker, we have for all k ∈ N, wk = wk−1−
γgk(wk−1) = wk−1 − γ(⟨xk, wk−1⟩ − yk)xk, thus equivalently ξk(·) = (xkx

⊤
k − E[x1x⊤1 ])(·) +

(⟨w∗, xk⟩ − yk)xk.

Second, the case of a single client compressed LMS algorithm.

Algorithm 2 (Centralized compressed LMS). A single client (N = 1) observes at any step k ∈ [K]
an oracle gk(·) on the gradient of the objective function F , and applies a random compression
mechanism Ck(·). Thus, for any step-size γ > 0 and any k ∈ N∗, the resulting sequence of iterates
(wk)k∈N satisfies: wk = wk−1 − γCk(gk(wk−1)) .

2. While in LSA literature, both the mean-field ∇F and the noise-field (ξk) are linear, we do not here consider the noise
fields to be linear.
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And finally, the extension to the distributed case.

Algorithm 3 (Distributed compressed LMS). In our motivating example, each client i ∈ [N ]
observes at any step k ∈ [K] an oracle gik(·) on the gradient of the local objective function Fi, and
applies a random compression mechanism Ci

k(·). Thus, for any step-size γ > 0 and any k ∈ N∗, the
resulting sequence of iterates (wk)k∈N satisfies: wk = wk−1− γ

N

∑N
i=1 Ci

k(g
i
k(wk−1)) (we consider

the randomization made on clients (Ci
k(·))i∈{1··· ,N} to be independent)

Remark 2. The analysis naturally covers any randomized postprocessing Ci
k(·), beyond the com-

pression case.

Challenges, contributions and structure of the paper. Although there is abundant literature
on the study of (LSA), the application to Algorithms 2 and 3 poses novel challenges. Especially,
most analyses of LSA (Blum, 1954; Ljung, 1977; Ljung and Söderström, 1983) assume that the
field ξk is linear (i.e. for any z, z′ ∈ Rd, ξk(z) − ξk(z

′) = ξk(z − z′), see Konda and Tsitsiklis,
2003; Benveniste et al., 2012; Leluc and Portier, 2022). More general non-asymptotic results on
SA with a Lipschitz mean-field (i.e. SGD with a smooth objective) also assume that the noise-field
is Lipschitz-in-squared-expectation i.e. for any z, z′ ∈ Rd,E[∥ξk(z) − ξk(z

′)∥2] ≤ C∥z − z′∥2
(Moulines and Bach, 2011; Bach, 2014; Dieuleveut et al., 2020; Gadat and Panloup, 2023). One
major specificity and bottleneck in the case of compression is the fact that the resulting field does
not satisfy such an assumption. The rest of the paper is thus organized as follows:
1. In Section 2, we provide a non-asymptotic analysis of (LSA) under weak regularity assumptions of

the noise field (ξk)k. We show that the asymptotically dominant term depends on the covariance
matrix Cania of the additive noise induced by the algorithm, as expected from the classical
asymptotic literature (Polyak and Juditsky, 1992). The backbone results of our paper are
Theorems 1 and 2 which generalize the results from Bach and Moulines (2013) for Algorithm 1.
The limit convergence rate term scales with Tr

(
CaniaH

−1
F

)
/K, which highlights the interaction

between the Hessian of the optimization problem HF , and the additive noise’s covariance Cania.

2. In Section 3, we prove that assumptions made in Section 2 are valid for Algorithm 2 with classical
compression schemes. Although this single-client case is a simple configuration, it enables to
describe the impact of the compressor choice on the dependency between the features’ covariance
H (which is also the Hessian HF of the optimization problem) and the additive noise’s covariance
Cania. Contrary to Algorithm 1, for which the noise is said to be structured, i.e. the additive
noise’s covariance is proportional to the Hessian HF , applying a random compression mechanism
on the gradient breaks this structure. This phenomenon is noteworthy: for an ill-conditioned
HF , it may lead to a drastic increase in Tr

(
CaniaH

−1
F

)
and thus, to a degradation in convergence.

By calculating the additive noise’s covariance for various compression mechanisms, we identify
differences that classical literature was unable to capture.

3. In Section 4, we study the distributed Algorithm 3 with heterogeneous clients. We examine two
different sources of heterogeneity for which we show that Theorems 1 and 2 remain valid. First,
the case of heterogeneous features’ covariances (Hi)

N
i=1 in Subsection 4.1; second, the case of

heterogeneous local optimal points (wi
∗)

N
i=1 in Subsection 4.2.

These results are validated by numerical experiments which help to get an intuition of the
underlying mechanisms. The code is provided on our GitHub repository. We summarize hereafter
the structure of the paper in Figure 1.
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General result on LSA Section 2

Section 3.2

Algorithm 2

Figure 7

Corollary 2

Section 4

Algorithm 3

Figure 8

Corollary 4 and 5

Theorem 1 and 2
Corollary 1

Impact of C on Cania Section 3.3

Figures 3, 4, 5, 6

Proposition 2

Corollary 3

Proposition 4

Proposition 3

Figure 1: Flow chart summarizing our results.

Notations. We denote by ≼ the order between self-adjoint operators, i.e., A ≼ B if and only if
B−A is positive semi-definite (p.s.d.) and A

∼
≼ B if A ≼ B and A = B+O(1d). We denote by A1/2

the p.s.d. square root of any symmetric p.s.d. matrix A. For two vectors x, y in Rd, the Kronecker
product is defined as x⊗ y := xy⊤, the element-wise product is denoted as x⊙ y, and the Euclidean
norm is ∥x∥2 :=∑d

i=1 x
2
i . For any rectangular matrix A in Rn×m s.t. AA⊤ is inversible, we denote

A† := A⊤(AA⊤)−1 the Moore–Penrose pseudo inverse. For x, y in Rd, we use x∧y for the minimum
between two values, and x

∼≤ y if x ≤ y and x = y+O(1d). For any sequence of vector (xk)k∈{0,...,K}
we denote xK−1 =

∑K−1
k=0 xk/K. We use ei to denote the vector in Rd with zero everywhere except

at coordinate i, and Od(R) the group of orthogonal matrices. Finally, all random variables are
defined on a probability space (Ω,A,P),E is the expectation associated with the probability P and
A is a σ-algebra. We define the set of probability distribution function PM whose second moment
is equal to M in Rd×d: PM = {probability distribution pM over Rd s.t.,Eε∼pM [ε⊗2] = M} . Any
such distribution pM is indexed with its matrix of covariance.

2. Non asymptotic convergence result for (LSA)

2.1 Definition of the additive noise’s covariance and assumptions on the random fields

For any k in N∗, we define the additive noise ξaddk and the multiplicative noise ξmult
k (·).

Definition 2 (Additive and multiplicative noise). Under the setting of Definition 1, for any k in N∗,
we define:

ξaddk := ξk(0) and ξmult
k : z ∈ Rd 7→ ξk(z)− ξaddk .

Remark 3. Observe that (ξaddk )k∈N∗ is an i.i.d. sequence of random variables and (ξmult
k )k∈N∗ is

an i.i.d. sequence of random field. The following assumptions, made for k = 1, are thus equivalently
valid for any k ≥ 1.

Assumption 1 (Second moment). ξadd1 admits a second order moment. We note A in Rd s.t.
E[∥ξadd1 ∥2] ≤ A.

Assumption 1 and Remark 3 enable us to define the covariance of the additive noise induced by
the algorithm.
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Definition 3 (Additive noise’s induced by the algorithm’s covariance.). Under the setting of
Definition 1, we define the additive noise’s covariance as the covariance of the additive noise:
Cania = E[ξadd1 ⊗ ξadd1 ] .

Secondly, we state our assumptions on the multiplicative part of the noise, especially its regularity
around 0 (note that ξmult

1 (0) = 0).

Assumption 2 (Second moment of the multiplicative noise). There exist two constants M1,M2 > 0
such that, for any η in Rd, the following hold:

A2.1: E[∥ξmult
1 (η)∥2] ≤ 2M2∥H1/2

F η∥2 + 4A .

A2.2: E[∥ξmult
1 (η)∥2] ≤ M1∥H1/2

F η∥+ 3M2∥H1/2
F η∥2.

The main originality of this section is the analysis under Assumption 2.2. This Hölder-type
condition will appear naturally for compression in Section 3. Up to our knowledge, (LSA) has not
been analyzed under this particular condition.

Under these assumptions, asymptotic results from Polyak and Juditsky (1992) can be applied.
Especially, we establish the asymptotic normality of (

√
KηK−1)K>0, with an asymptotic variance

equal to H−1
F CaniaH

−1
F .

Proposition 1 (CLT for (LSA)). Under Assumptions 1 and 2, consider a sequence (wk)k∈N∗

produced in the setting of Definition 1 for a step-size (γk)k∈N∗ s.t. γk = k−α, α ∈]0, 1[. Then
(
√
KηK−1)K>0 is asymptotically normal and converge in distribution to N (0, H−1

F CaniaH
−1
F ).

The proof of this result is almost straightforward and is recalled in Appendix A.4. In the
following, we establish non-asymptotic results in Theorems 1 and 2, that highlight the impact of
Assumption 2.2.

2.2 Convergence rates for (LSA), general case

In this section, we present non-asymptotic convergence rates for (LSA) under the assumptions above.
These results build upon the work of Bach and Moulines (2013). Our first result is the main result,
under the Hölder assumption on the noise field, it is demonstrated in Appendix B.

Theorem 1 (Non-linear multiplicative noise). Under Assumptions 1 and 2, consider a sequence
(wk)k∈N∗ produced in the setting of Definition 1 for a constant step-size γ such that γ(R2

F +2M2) ≤
1/2. Then for any horizon K, we have:

E[F (wK−1)− F (w∗)] ≤
1

2K

(
∥H−1/2

F η0∥
γ
√
K

∧ ∥η0∥√
γ

+
√

Tr
(
CaniaH

−1
F

)
+ (10Aγ)1/4

√
M1µ−1

+ (30Aγ)1/2
√
M2µ−1

)2

.

The first two terms of the RHS correspond respectively to the impact of the initial condition η0
and the impact of the additive noise. The dependency on these two terms is similar to the one
established in Bach and Moulines (2013) in the case of LMS. Note that following Defossez and Bach

7
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(2015), we improve the dependency on the initial condition to ∥η0∥2
γK ∧ ∥H−1/2

F η0∥2
γ2K2 . Regarding the

noise term, the dependency on
Tr(CaniaH

−1
F )

2K corresponds to the classical asymptotic noise term in
CLT for Stochastic Approximation (e.g., Delyon, 1996; Duflo, 1997; Györfi and Walk, 1996). In fact,
for a sequence of step sizes γt decreasing to zero, we recover the variance from Proposition 1. Remark
that in (Bach and Moulines, 2013) and several follow up works, the algorithm under consideration
is LMS (Algorithm 1, which enables to ensure that Cania ≼ σ2HF : the variance term thus scales
as σ2d/K. On the contrary, Algorithms 2 and 3 do not always satisfy Cania ≼ σ2HF : in such case,
Tr
(
CaniaH

−1
F

)
may scale as 1/µ.

The third and fourth term, that scale respectively as
√
γ/K and γ/K, are asymptotically negli-

gible for γ = o(1). Those term are proportional to the Hölder-regularity constants M1,M2, and
also increase with µ−1. The dominant term is M1

√
10Aγ

µK . Interestingly, when γ is constant (not
decreasing with K), then the limit variance of the algorithm is affected. Moreover, contrary to (Bach
and Moulines, 2013), we do not recover a convergence rate independent of µ. This dependency is
un-avoidable as the multiplicative noise is only controlled around w∗: without strong-convexity, the
iterates may not converge to w∗. While these additional terms in the variance may be considered as a
drawback, it can be mitigated by taking a step-size γ proportional to 1/Kα with α > 0 small (γ is
horizon dependent, but constant).

Corollary 1. Under the assumptions of Theorem 1, with γ = 1/Kα, and α ∈]0, 1/2[, we have:

E[F (wK−1)− F (w∗)] ≤
60

K

(
Tr
(
CaniaH

−1
F

)
+

∥H−1/2
F η0∥2

K(1−2α)
+

M1

√
A

µKα/2
+

M2A
µKα

)
.

The decrease of the second order terms is then optimized for α = 2/5. To highlight the impact
of the non-linearity in compression schemes, we provide for comparison the result for a linear
multiplicative noise.

2.3 Convergence rates for (LSA), linear case

Alternatively, to cover the particular case of a linear multiplicative noise (e.g., to recover LMS or
projection-based compressed LMS) we make the following stronger hypothesis:

Assumption 3. The multiplicative noise is linear i.e. there exists a random matrix Ξ1 in Rd×d s.t. for
any η in Rd, we have a.s. ξmult

1 (η) = Ξ1η. Moreover E[∥ξmult
1 (η)∥2] ≤ M2∥H1/2

F η∥2.

Remark 4. Note that Ξ1 is not necessarily symmetric (in Algorithms 2 and 3, this results from the
compression).

In addition to Assumption 3, in the case of linear multiplicative noise, we also consider the
following assumption.

Assumption 4. The following hold.

A4.1: There exists a constant3 Xadd > 0 s.t. Cania ≼ XaddHF .

A4.2: There exists a constant Xmult > 0, such that E
[
Ξ1Ξ

⊤
1

]
≼ XmultHF .

3. This letter X is the Russian upper letter “sha”.
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Remark 5 (Link between Assumptions 1, 2 and 4). Assumption 1 (resp. Assumption 2) corresponds
to an assumption on the second order moment of the additive noise (resp. multiplicative), while
Assumption 4.1 (resp. Assumption 4.2) is a (stronger) assumption on its covariance.

Theorem 2 (Linear multiplicative noise). Under Assumptions 1, 3 and 4, i.e., with a linear multi-
plicative noise. Consider a sequence (wk)k∈N∗ produced in the setting of Definition 1, for a constant
step-size γ such that γ(R2

F +M2) ≤ 1 and 4Xmultγ ≤ 1. Then for any horizon K, we have

E[F (wK−1)− F (w∗)] ≤
1

2K

(∥η0∥√
γ

+
√
Tr
(
CaniaH

−1
F

)
+ 2 (γdXaddXmult)

1/2

)2

.

Theorem 2 generalizes Theorem 1 from Bach and Moulines (2013). It also highlights the impact
of additive noise’s covariance, and the comparison between Theorem 1 and Theorem 2 shows the
advantage of linear compression schemes. Indeed the variance scales as K−1(Tr

(
CaniaH

−1
F

)
+

4γdXaddXmult). As before, the first term Tr
(
CaniaH

−1
F

)
corresponds to the asymptotic variance

given in Proposition 1, and the second term is negligible: (i) for all 4Xmultγ ≤ 1 it can be
upper bounded by dXadd, and for LMS (see Bach and Moulines, 2013), the variance term is
Tr
(
CaniaH

−1
F

)
= dσ2, which is thus at least as large, (ii) it scales with γ thus is asymptotically

negligible as γ tends to 0. Overall, depending on Cania, the algorithm may or may not suffer from the
lack of strong-convexity (µ tending to 0). More precisely, in the case of linear multiplicative noise,
we can obtain a O(K−1) rate independent of µ if and only if Cania ≼ aHF , with a in R. The proof
of Theorem 2 is given in Appendix C, and follows the line of proof of Bach and Moulines (2013).

Conclusion: we established rates for (LSA) for both the Hölder-noise case and the linear noise
case. In the former, convergence requires strong convexity while in the latter, we can achieve O(K−1)

for Cania ≼ aHF . In both cases, the dominant term for an optimal choice of γ scales as
Tr(CaniaH

−1
F )

K .
In the following section, we turn to the analysis of Algorithm 2: we show how the choice of the

compression impacts both the linearity of the noise and the structure of Cania.

3. Application to Algorithm 2: compressed LSR on a single worker

In this section, we analyze Algorithm 2, i.e. compressed LSR. In Subsection 3.1, we introduce the
compression operators of interest and verify in Subsection 3.2 that Theorems 1 and 2 can be applied.
Then, in Subsection 3.3, we provide explicit formulas of Tr

(
CaniaH

−1
)

for various compression
schemes. Finally, in Subsection 3.4, we validate our findings with numerical experiments.

3.1 Compression operators

Our analysis applies to most unbiased compression operators.

Definition 4 (Compression operators). Let z ∈ Rd.
1. 1-quantization is defined as Cq(z) := ∥z∥sign(z)⊙ χ with χ ∼ ⊗d

i=1(Bern(|zi|/∥z∥2)).
2. Stabilized 1-quantization is defined as Csq(z) := U⊤Cq(Uz), with U ∈ Unif(Od).

3. Rand-h is defined as Crdh(z) := d
hB(S)⊙ z with S ∼ Unif(Ph([d])) and B(S)i = 1i∈S .

4. Sparsification is defined as Cs(z) := 1
pB ⊙ z ∈ Rd with B ∼ ⊗d

i=1 (Bern(p)) .

5. Partial participation is defined CPP(z) := b0
p z with b0 ∼ Bern(p).
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6. Random Projection, also referred to as sketching, is defined as CΦ(z) := 1
pΦ

†Φz, where
h ≪ d ∈ N, p = h/d and Φ ∈ Rh×d is a random projection matrix onto a lower-dimension
space (Vempala, 2005; Li et al., 2006). In the following, we consider Gaussian projection,
where each element i, j ∈ J1, hK × J1, dK follows an independent zero-centered normal
distribution.

We refer to the introduction for related work on compression. Operators Cq, Csq are quantization-
based schemes while Crd1, Cs, CPP, CΦ are projection-based. Indeed sparsification can be seen as a
random projection (for h ≪ d, p = h/d and h randomly sampled coordinates I from J1, dK such
that for any i ∈ I, the ith lines of Φ are equal to ei ∈ Rd, and equal to zero otherwise). For CPP,
the motivation is distributed settings, in which the intermittent availability of clients prevents them
from systematically participating in the training. This can be modeled through partial participation:
clients only participate in a fraction p of the training steps. In theoretical analyses, this can be handled
as a compression scheme CPP, in which the compression of a vector z is either z/p or 0. Observe
that in the centralized case, this is slightly artificial as it actually means that no update is performed
at most steps and that the step-size is scaled at the other steps. Finally, we denote CId : z ∈ Rd 7→ z
the operator that does not carry out any compression.

Remark 6. The analysis of random projection is related to Random features (Rahimi and Recht,
2008), usually used for Kernel learning in infinite dimensions. Nyström method (introduced by
Kumar et al., 2009) is another similar technique of compression often used in this setting, it consists
of removing a subset S ⊂ {1, · · · , d} of lines and columns in the kernel matrix K. Both techniques
have been extensively studied in the context of linear and non-linear kernel learning (Rudi et al.,
2015, 2017; Rudi and Rosasco, 2017; Lin and Rosasco, 2017). Recently, the combination of SGD
and random features has been analyzed by Carratino et al. (2018). However, their results cannot be
directly applied to our setting for two reasons. Firstly, their analysis is for infinite dimensions, where
they obtain a O(1/

√
K) rate of convergence. Secondly, the compressions used in their approach are

not independent at each iteration.

Remark 7. Diffusion LMS (i.e. distributed learning without a central server) has also been studied
from the perspective of low-cost training by Arablouei et al. (2015); Harrane et al. (2018), but
using only clients’ partial participation or sparsification. Contrary to our work they use biased
compression and an adaptive correction step to compensate for the induced error. They provide
results guarantying asymptotic convergence (Harrane et al., 2018, see Equations (28)-(37)).

3.2 Applicability of the results on (LSA) from Section 2

We first show that our results from Section 2 can be applied for Algorithm 2 with a random
compression operator C, in the case of Model 2.

Lemma 1. For any compressor C ∈ {Cq, Csq, Crdh, Cs, CΦ, CPP}, there exists constants ω,Ω ∈ R∗
+,

such that the random operator C satisfies the following properties for all z, z′ ∈ Rd.

L.1: E[C(z)] = z and E[∥C(z)− z∥2] ≤ ω∥z∥2 (unbiasedness and variance relatively bounded),
L.2: E[∥C(z)− C(z′)∥2] ≤ Ωmin(∥z∥, ∥z′∥)∥z − z′∥+ 3(ω + 1)∥z − z′∥2(Hölder-type bound),

with ω =
√
d and Ω = 12

√
d (resp. ω = (1 − p)/p and Ω = 0) for Cq and Csq (resp. Crdh, Cs,

CΦ, CPP).

10
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We note C the set of unbiased compressors verifying Lemma 1. Item L.1 is frequently established
in the literature and corresponds to the worst-case assumption, see the introduction for references.
On the other hand, Item L.2 is the Hölder-type bound, which is not used in the literature up to our
knowledge. The expected squared distance between the compression of two nearby points scales
with the non-squared norm of the distance. Moreover, the distance is multiplied by an unavoidable
coefficient scaling with z, z′. Remark that in Item L.2, we assume the compression randomness to
be the same for the compression of z and z′: formally, we control W2(C(z), C(z′))2, with W2 the
Wassertein-2 distance. This lemma is demonstrated in Appendix E.1.

Remark 8. For a given ω, note that the communication cost c for quantization-based and projection-
based compressors is not always equivalent. For 1-quantization we have c ≈ 3

2

√
d log2 d + 32

while for projection-based we have c ≈ 32
√
d, for

√
d-quantization we have c ≈ 3d+ 32 while for

projection-based we have c = 16d.

Lemma 1 enables to show that Theorems 1 and 2 Algorithm 2 are valid in the context of Model 2.

Corollary 2. Consider Algorithm 2 in the context of Model 2, with a compressor C ∈ {Cq, Csq, Crdh, Cs,
CΦ, CPP}. With Lemma 1 above, Assumptions 1 and 2 on the resulting random field (ξk)k∈N∗ are
valid, with in particular HF = H , R2

F = R2, A = (ω + 1)R2σ2, M2 = (ω + 1)R2, M1 = ΩR2σ.
Therefore, it follows that Theorem 1 holds.

Moreover for any linear compressor C ∈ {Crdh, Cs, CΦ, CPP}, under Remark 1, we also have
that Assumptions 3 and 4 are valid with Xadd = σ2XH and Xmult = R2XH , with XH given
below. Therefore, it follows that Theorem 2 holds.

Compressor Crdh Cs CPP CΦ
XH

h−1
p(d−1) + (1− h−1

d−1 )
τ
p 1 + (1−p)τ

p
1
p

α−β
p + βτ

p

XH (if H diagonal) 1
p

1
p

1
p

α−β
p + βτ

p

Where p = h/d, τ = Tr (H) /µ, and for sketching α = h+2
d+2 and β = d−h

(d−1)(d+2) .

This corollary is proved in Appendix D. We observe that a first difference in terms of convergence
exists between quantization-based compression and projection-based: for the former, only Theorem 1
can be applied and the lower-order terms always have a poorer dependency on µ while for the latter,
Theorem 2 is applicable and lower-order terms do not necessarily depends on µ. Indeed, the constants
XH do not depend on µ for CPP, and for Crd1, Cs, when the features’ covariance H is diagonal. On
the contrary, there is always a dependency on µ for CΦ, and for Crd1, Cs when H is not diagonal. In
practice, this means that, among projection-based compressors, regarding lower-order terms, the
convergence is expected to be slower for random Gaussian projection.

We now turn to the analysis of the impact of the choice of the compression on the dominant
asymptotic term Tr

(
H−1

F Cania

)
.

3.3 Impact of the compression on the additive noise covariance

In this section, we illustrate how distinct compressors lead to different covariances for the additive
noise. This shows how Tr

(
H−1

F Cania

)
is impacted by the choice of a compressor.
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First recall that for Algorithm 2 in the context of Model 2, with any compressor C, the additive
noise writes for any k ∈ [K], as:

ξaddk
def. 2
= ξk(0)

algo 2
= ∇F (w∗)− Ck(gk(w∗))

eq. 2
= −Ck((⟨xk, w∗⟩ − yk)xk)

model 2
= Ck(εkxk) .

Also recall that Cania is defined as Cania := E[(ξaddk )⊗2] = E[C(εkxk)⊗2]. Moreover, note that
C(εkxk) a.s.

= εkC(xk) for all operators under consideration (this is immediate for linear operators and
results from the scaling for quantization-based ones). Consequently

Cania = E[ε2kC(xk)⊗2] = σ2E[C(xk)⊗2], (3)

as E[ε2k|xk] = σ2. Ultimately, we have to study the covariance of C(xk), for xk a random variable
with second-moment H .

We thus generically study the covariance of C(E), for E a random vector with distribution pM
with second moment4 E[E⊗2] = M .

Definition 5 (Compressor’ covariance on pM ). We define the following operator C which returns the
covariance of a random mechanism C acting on a distribution pM ∈ PM ,

C :
C × PM → Rd×d

(C, pM ) 7−→ E[C(E)⊗2] ,

where E ∼ pM and the expectation is over the joint randomness of C and E, which are considered
independent, that is E[C(E)⊗2] =

∫
Rd E[C(e)⊗2]dpM (e).

−1 0 1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Normal distribution

−1 0 1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Diamond distribution

C(C∅, pI2/2)

C(Cqtzt, pI2/2)

No compression

Compression

C(C∅, pI2/2)

C(Cqtzt, pI2/2)

Figure 2: Illustration of Remark 9

Using a compressor C ∈ C, we therefore have by Equa-
tion (3):

Cania = σ2C(C, pH), (4)

where pH is the marginal distribution of xk (for any k).

Remark 9 (Dependence on pM , not only M ). Note that, for
C = Cq, there exist two distributions pM , p′M with the same
covariance M , such that C(C, pM ) ̸= C(C, p′M ). This is why we cannot simply denote C(C,M).

Indeed, consider d = 2 and (1) a normal distribution E1 ∼ N (0, I2/2), vs (2) a diamond
distribution E2 ∼ P⋄, such that P⋄{(1, 0)} = P⋄{(−1, 0)} = P⋄{(0, 1)} = P⋄{(0,−1)} = 1/4 ,
and thus Cov [E1] = Cov [E2] = I2/2. Then Cov [E1] ≺ Cov [Cq(E1)], but Cq(E2)

a.s.
= E2 thus

Cov [E2] = Cov [Cq(E2)]. We illustrate this on Figure 2: we represent Ei in blue and Cq(Ei) in
orange for i = 1 (left) and i = 2 (right). We also represent the covariance matrices by plotting the
ellipses ECov[Ei] and ECov[Cq(Ei)], where EM = {x ∈ Rd, x⊤M−1x = 4} (see Definition S1)5.

We now compute for the compression operators, the value or an upper bound on C(C , pH).

4. Remark that we do not assume E[E] = 0. Indeed, all computations only depend on the second-order moment M
of E, not on its variance (and the convergence depends of the second-order moment H of x, not its variance). It is
clear, that E[C(E)⊗2] does not depend on the fact that E is centered: indeed, for R a Rademacher 1/2 independent

of E, we have E[C(E)⊗2] = E[R2]E[C(E)⊗2]
⊥
= E[(RC(E))⊗2] = E[C(RE)⊗2] and RE is (1) centered (2)

has the same second-moment as E. Remark that centering the covariates before learning does impact H: indeed
H = E[(x)⊗2] = E[(x− E[X])⊗2] + (E[X])⊗2). Centering subtracts (E[X])⊗2 to the second moment, which is a
rank-1 matrix, typically does not affect the smallest eigenvalue, but it can affect the top-eigenvalue.

5. The constant 4 is chosen so that for Gaussian distributions, the expected fraction of points within the ellipse is
86, 4% ≃ 1− Fχ2(2)(4)
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Proposition 2 (Compression and covariance). The following formulas hold:

C(CId , pM) = M

C(Cq, pM) ≼ C̃(Cq,M) := M +
√
Tr (M)

√
Diag (M)−Diag (M)

(with equality if ∥E∥ is a.s. constant under pM )

C(Cs, pM) = M + (1− p)p−1Diag (M)

C(CΦ, pM) = p−1
(
(h+1
d+2 + δhd)M +

(
1− h−1

d−1

)
Tr(M)
d+2 Id

)
, with δhd = h−1

(d−1)(d+2) = O(1d)

C(Crdh, pM) = p−1
(
h−1
d−1M +

(
1− h−1

d−1

)
Diag (M)

)
C(CPP, pM) = p−1M .

Conclusion and interpretation. Most compression operators induce both a structured noise
(Flammarion and Bach, 2015) which covariance scales with H and an unstructured noise, which
covariance scales with Diag (H) or Id – thus corresponding to an isotropic noise.

From the convergence standpoint, the asymptotic convergence rate scales with Tr
(
CaniaH

−1
)
=

σ2Tr
(
C(C , pH)H−1

)
. Therefore, the un-structured part in the noise is problematic as Tr

(
CaniaH

−1)
)

will strongly depends on the smallest eigenvalue µ. This comes from the fact that the compression
induces a significant noise in directions in which the Hessian curvature is very limited (thus directions
onto which the contraction towards the optimum in the algorithm is weak).

A particular case is when H is diagonal (e.g. the features are centered and independent), we get
the following corollary.

Corollary 3 (Compression and covariance, diagonal case). If M is diagonal, then Proposition 2 is
simplified to the following (with the same δhd):

C(CId , pM) = M C(CΦ, pM) = p−1
(
(h+1
d+2 + δhd)M + (1− h−1

d−1 )
Tr(M)
d+2 Id

)
C(Cq, pM) ≼

√
Tr (M)

√
M C(Crdh, pH) = p−1M

C(Cs, pM) = p−1M C(CPP, pM) = p−1M.

Remark 10 (Composition of compressors). For all compression schemes but Cq, we observe that
C(C , pM) is a function of M , which complements Remark 9. In that particular case, we can then
denote C(C,M). This means that the lemma can be extended to any composition of compression
schemes, for example to compute C(C1 ◦ C2,M) = C(C1,C(C2,M)).

From Proposition 2 and Corollary 3 we can deduce certain generic comparisons between the
asymptotic convergence rates, depending on the compression operator (for compression operators
having the same variance bound). They are proven in Appendix E.3. In the following, for any a, b ∈ R,
we use the notation a

∼≤ b, to denote a systematic inequality (i.e., a ≤ b) with a negligible difference
as d → ∞ (i.e., a = b + O(1/d)), and similarly for any two symmetric matrices A,B ∈ Sd(R),
A

∼
≼ B, for A ≼ B and A = B +O(1/d) as d → ∞.

Proposition 3 (Comparison between CPP, Cs, Crdh, CΦ, ω = d/h− 1). We consider C ∈ {CPP, Cs,
Crdh, CΦ} with p = h/d, such that C always satisfies Lemma 1 with ω = d/h − 1. For any
matrix M ∈ Rd×d:
1. If M is diagonal, then:

13
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• C(CPP, pM) = C(Cs, pM) = C(Crdh, pM) = d
hM ,

• Tr
(
C(CPP/s/rdh, pM)M−1

)
≤ Tr

(
C(CΦ, pM)M−1

)
.

This means that the asymptotic convergence rate does not depend on the choice of the compressor
between CPP, Cs, Crd1 in the diagonal case.

2. Moreover, for any matrix M with a constant diagonal (e.g., we standardize6 the data in the
pre-processing step, such that Diag (M) = Id), we have:

Tr(C(CPP, pM)M−1) ≤ Tr(C(CΦ, pM)M−1) ≤ Tr(C(Cs, pM)M−1) ≤ Tr(C(Crdh, pM)M−1) .

With strict inequalities if M is not proportional to Id. This means that we expect the asymptotic
convergence rate to be faster for PP than Sparsification, Sketching, or Rand-h (illustrated in
experiments).

In the next proposition, we compare compressors Cs, CPP to Cq for equal ω =
√
d (we exclude

Crdh and CΦ for which h must be an integer and that are shown to be worse than Cs in Proposition 3).

Proposition 4 (Comparison between CPP, Cq, Cs, ω =
√
d ). We consider C ∈ {CPP, Cq, Cs} with

p = (
√
d+ 1)−1, such that C always satisfies Lemma 1 with ω =

√
d.

1. For any symmetric matrix M diagonal, we have:

Tr
(
C(CPP, pM)M−1

)
= Tr

(
C(Cs, pM)M−1

) possib. ≪
≤

(
1 +

1√
d

)
Tr
(
C̃(Cq,M)M−1

)
.

2. If M is not necessarily diagonal but with a constant diagonal (e.g., after standardization), then

• C̃(Cq,M) ≼ C(Cs, pM)

• Tr
(
C(CPP, pM)M−1

)
≤
(
1 + 1√

d

)
Tr
(
C̃(Cq,M)M−1

)
This means that sparsification is expected to always result in a poorer asymptotic convergence rate
than quantization. Moreover, the upper bound on the covariance C̃(Cq,M) for quantization itself
leads to a worst bound than for PP.7

We now propose a detailed illustration of the results of Proposition 2 and Corollary 3, first in a
low-dimensional setting (d = 2) and then in higher dimension on synthetic and real datasets.

3.3.1 ILLUSTRATION OF PROPOSITION 2 AND COROLLARY 3 IN DIMENSION 2.

In order to build intuition, we illustrate Proposition 2 and Corollary 3 in Figures 3 and 4, showing
how compression affects the additive noise covariance, in a simple 2-dimensional case, for both a
non-diagonal matrix M (Figure 3) and a diagonal one (Figure 4).

More specifically, we consider features (xk)k∈[K] sampled from N (0,M) where M = QDQ,
D = Diag (1, 10) and Q is rotation matrix with angle π/8 (resp. 0) in Figure 3 (resp. 4). We
represent the values of xk and C(xk), unit-ellipses of the corresponding covariance matrices ECov[xk]

6. That means we center and rescale to get a variance of one for each feature.
7. Note that the behavior for quantization, apart from the upper bound C̃(Cq,M) is not quantified, it is thus possible that

quantization performs even better than PP.
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Figure 3: H not diagonal. Scatter plot of (xk)Ki=1/ (C(xk))Ki=1 with its ellipse ECov[xk]/ECov[C(xk)].
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Figure 4: H diagonal. Scatter plot of (xk)Ki=1/(C(xk))Ki=1 with its ellipse ECov[xk]/ECov[C(xk)].

and ECov[C(xk)] (see Definition S1 – recall that ECov[xk] ⊂ ECov[C(xk)] ⇔ Cov [xk] ≼ Cov [C(xk)]),
as well as their two eigenvectors; we take p = (1 +

√
d)−1 = 0.41, hence for C ∈ {Cq, Csq, Cs, CPP}

we have ω = 1.41 but for sketching and rand-1, we have p = 1/2 and ω = (1− p)/p = 1.
We make the following observations:

[Qtz] For quantization and stabilized quantization, in the non-diagonal case, the eigenvectors of
ECov[xk] and ECov[C(xk)] are slightly8 different (as

√
Diag (M) and M are not jointly diago-

nalizable, as well as if Diag (M) is constant, although this case is not presented here, but in
Figure S5 in Appendix E.3). They are equal for the diagonal case (as

√
Diag (M) and M

are both diagonal so the eigenvectors are aligned with the axis). In both cases, the eigenvalue
decay is reduced (from λ2/λ1 = 1/10 without compression to 1/

√
10 with compression,

which visually corresponds to a “wider” ellipse).
This slower eigenvalue decay results from the unstructured-noise, i.e., large noise on the
weak-curvature direction, which is particularly visible on Figure 4. This is critical as it results
in a potentially much larger limit rate, as Tr

(
C(Cq, pM)M−1

)
≃ Tr

(
M−1/2

)
.

[Skt] For sketching, the eigenvectors remain the same for ECov[xk] and ECov[C(xk)] (as I2 and M are
jointly diagonalizable, see Corollary 3), both in the diagonal and non-diagonal case. However,
the isotropic noise with covariance I2 is visible (wide ellipse), also drastically impacting
Tr
(
C(CPP, pM)M−1

)
∝ Tr

(
M−1

)
.

[Sp] For p-sparsification, eigenvectors are not aligned with the ones of M in the non-diagonal case,
but are in the diagonal case. In this latter case, the covariance C(Cs, pM) is proportional to M .

[Rd] Same remarks hold for Rand-1 than for sparsification. We see that C(Crd1, pM) is diagonal, as
expected. Again, both operators induce an unstructured-noise in the non-diagonal case.

[PP] For PP, the covariances are always proportional (with factor p−1), i.e., the ellipses have the
same axis and ECov[C(xk)] is a scaled version of ECov[xk].

We highlight the following points regarding pairwise comparisons:
• In the diagonal case, as stated by Item 1 in Proposition 3, Cov [Cs(xk)] and Cov [CPP(xk)]

are identical. Cov [Crd1(xk)] would have been identical too if p = 1/d (but here we observe

8. On the figure, there are nearly aligned, but actually differ.
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Figure 5: Figures 5a & 5b: Eigenvalues of C(C , pM). Figure 5c:
Tr
(
C(C , pM)M−1

)
. K = 104, ω = 10, M = QDiag

(
(1/i4)di=1

)
QT and Q = Id (on

5a & 5c-l) or Q ∼ Unif(Od) (on 5b & 5c-r). Plain lines: empirical values; dashed lines: theoretical
formula or upper bound given by Proposition 2.

C(Crd1, pM) ≼ C(Cs/PP, pM) because the variance of rand-1 is smaller that for sparsifica-
tion/PP).

• In the non-diagonal case, from Item 2 in Proposition 3, we have Tr
(
C(CPP, pM)M−1

)
≤

Tr
(
C(Cs, pM)M−1

)
, however we do not have C(CPP, pM) ≼ C(Cs, pM), hence we can not

conclude anything on Cov [CPP(xk)] and Cov [Cs(xk)].
• In the non-diagonal scenario, we observe on Figure 3, that C(Cq, pM) ≼ C(Cs, pM) (as in

Item 2 in Proposition 4).

3.3.2 ILLUSTRATION OF PROPOSITION 2 AND COROLLARY 3 IN DIMENSION d > 2

Another way of visualizing the structured and isotropic parts of the noise is by plotting the eigenvalues
of C(C , pM) in dimension d = 100. This is done in Figure 5, in which we plot the eigenvalues
in decreasing order for both M and C(C , pM), with Gaussian pM = N (0,M) and Sp(M) =
{(1/i4)di=1}. We see that in the diagonal case, in Figure 5a, all operators but Cq, CΦ have a covariance
proportional to M (thus a slope −4 on a log/log scale), while Cq is proportional to

√
M (thus a slope

−2) and CΦ has an isotropic component (thus eigenvalues not decreasing to 0). In Figure 5b we see
that only CPP has a covariance proportional to M while all other ones have an isotropic component
(thus eigenvalues not decreasing to 0). We plot both empirical values and the ones obtained in
Proposition 2, which shows that the upper bound on quantization is reasonable in practice and acts as
a safety check for other compression schemes.

We plot on Figure 5c the theoretical and empirical Tr
(
C(C , pM)M−1

)
again in two cases,

diagonal and non-diagonal. In the diagonal case, PP, sparsification, and rand-h have the same
behavior; their traces have the smallest value among all compressors. However, in the general case of
non-diagonal features’ covariance, all compression operators have similar slow performance except
for PP. For d = 100, all the compressors have ω = 10, but Tr

(
C(C , pM)M−1

)
varies by several

orders depending on the compressor, illustrating again that compressors satisfying Lemma 1 with
the same ω may have vastly different behaviors.

Lastly, we perform the same experiments on Tr
(
C(C , pM)M−1

)
, but on non-simulated datasets,

namely quantum (Caruana et al., 2004) and cifar-10 (Krizhevsky et al., 2009): in Figure 6 we
plot Tr

(
C(C , pM)M−1

)
w.r.t. the worst-case-variance-level ω of the compression in three scenarios:

(top-row) – with data standardization, thus Diag (M) is constant equal to 1; (middle-row) – with a
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Figure 6: Tr
(
C(C , pM)M−1

)
w.r.t the level of ω for quantum and cifar10. X/Y-axis are in log scale.

Note that the plots may have different magnitudes.

PCA, thus with a diagonal covariance M (note that this is for illustration purpose: performing a PCA
would be more expensive computationally than running Algorithm 2); and (bottom-row) – without
any data transformation. As a pre-processing, we have resized images of the cifar-10 dataset to a
16× 16 dimension. We adjust the level s ∈ Cq, h ∈ Crdh, CΦ, and p ∈ CPP, Cs to make ω vary.

Interpretation. (Top-row): with standardization, the order predicted from Proposition 3.2
(large ω), and Proposition 4.2 (low ω) is obtained for both quantum and cifar-10: CPP ≤ Cq ≤
Cs ≃ Crdh ≃ CΦ. For quantization, we observe two regimes: 1) when ω tends to zero, quantization
and PP outperform sketching, sparsification, and rand-h, that are equivalent. 2) when ω increases,
quantization changes from scaling as PP to scaling as the second group. (Middle-row): in the
diagonal regime, comments made for Figure 5c-l are still valid. (Bottom-row): We observe that
for a generic matrix M (obtained from raw-data) there is no systematic order between compression
schemes. This is un-avoidable as the order for a “M diagonal” and “M with constant-diagonal” is
not the same. We observe that:

• for quantum, CPP ≤ Cs
∼≤ Crdh ≪ Cq ≪ CΦ

• for cifar-10, CPP ≪ Cq ≪ Cs ≃ Crdh ≃ CΦ.

We also observe that CΦ, which is the only operator to always induce an isotropic component, may
be much worse than all other compressors (e.g., on quantum). Ultimately, the order depends on
the covariance matrix M . Here we observe that the raw-data behavior is close for cifar-10
to the standardized version, while for quantum the order between compressors is the same for
raw-data and diagonal (although the ratios are different). In Appendix E.4 (Table S3), we provide an
illustration of the covariance matrices, that supports such interpretation.
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3.4 Numerical experiments on Algorithm 2

In this section, we run Algorithm 2 on both synthetic and real datasets to illustrate the combined
theoretical results of Sections 2 and 3. In Figure 7, we compare the compression operators to the
baseline of no-compression. We plot the excess loss of the Polyak-Ruppert iterate F (wk)− F (w),
versus the index in log/log scale. Each experiment is conducted 5 times, with a new dataset generated
from a new seed. The standard deviation of log10(F (wk)− F (w)) is indicated by the shadow-area.

Setting: (a) Synthetic dataset generation: The dataset is generated using Model 2 with K = 107,
σ2 = 1, an optimal point w∗ set as a constant vector of ones and a geometric eigenvalues decay
of D1 = Diag

(
(1/i4)di=1

)
(resp. D2 = Diag

(
(1/i)di=1

)
). For i ∈ {1, 2}, the covariance matrix is

H{i} = QD{i}QT , where Q is either orthogonal matrix, or Q = Id in the case of a diagonal features’
matrix. (b) Real datasets processing: We resize images of the cifar-10 dataset to a 16 × 16
dimension, and then for both datasets, we apply standardization. To compute the optimal point (and
so to compute the excess loss), we run SGD over 200 passes on the whole dataset and consider the
last Polyak-Ruppert average as the optimal point w∗. (c) Algorithm 2: We take a constant step-size
γ = 1/(2(ω + 1)R2) with R2 the trace of the features’ covariance, and w0 = 0 as initial point.
We set the batch-size b = 1 (resp. b = 16) and the compressor variance ω = 10 (resp. ω = 1,
thus a factor 4 compression for quantum and factor 2 for cifar-10) for synthetic datasets (resp.
for real datasets). For cifar-10 and quantum, we run Algorithm 2 for 5 × 106 iterations (it
corresponds to 100 passes on the whole dataset). These settings are summarized in Tables S1 and S2
in Appendix A.1. Additionally, to illustrate Corollary 1, we plot on Figure 7d the final excess loss
after running Algorithm 2 with an horizon-dependent step-size γ = K−2/5, computed for seven
values of K ∈ {10i, i ∈ J1, 7K}.

Interpretation – H diagonal (Figure 7a). For sparsification, rand-h, and PP (linear compressors),
the rate of convergence is given by Theorem 2. As stated by Corollary 3, the covariance Cania is
proportional to H leading to a O(1/K) rate. We indeed observe in Figure 7a that excess loss is linear
in a log/log scale.

For non-linear compression operators, the rate is given by Theorem 1. On the one hand, 1-
quantization results in a slower eigenvalues’ decay, leading to a larger Tr

(
CaniaH

−1
)
, thus a

slower convergence than linear compressors. On the other hand, for sketching, covariance has a
purely isotropic part scaling with Id, which causes Tr

(
CaniaH

−1
)

to strongly depend on the strong-
convexity coefficient µ resulting in an extremely large constant. Both behaviors are observed in
Figure 7a.

Interpretation – H not diagonal (Figures 7b and 7e). In the case of the high eigenvalues’
decay of H1 (µ = 10−8), the only compressor that shows in Figure 7b a linear rate of convergence
in the log/log scale is PP. All others exhibit a saturation phenomenon after a certain number of
iterations. This is again due to the unstructured part of the noise for all other compressors, as given
by Proposition 2. Besides, we also note an increase of the excess loss after some iterations that is
likely caused by the accumulation of noise on axis onto which the curvature of H is weak (but the
isotropic noise is not). However, taking the optimal horizon-dependent step-size given by Corollary 1,
we recover on Figure 7d for all compressor C the sub-linear convergence rate of PP shown at
Figure 7b, reducing by a factor 100 the excess loss w.r.t. to the scenario where γ = 1/2(ω + 1)R2).
While using a small step-size is slightly worse for SGD, it reduces the second and third term of
the variance in Theorem 1 that depends on µ for other compressors. And in the scenario of a slow
eigenvalues’ decay (µ = 10−2), we observe on Figure 7e that all compressors reach the sub-linear
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Figure 7: Logarithm excess loss of the Polyak-Ruppert iterate for a single client (N = 1).

rate (same slope -1 on the log/log plot), but with different constants. This illustrates Theorems 1
and 2 in the case of moderate coefficient µ where we expect the second and third parts of the variance
term to be negligible.

Interpretation - real datasets (Figures 7c and 7f). We observe that quantization performs
competitively with PP and outperforms all other compressors. The asymptotic behavior is consistent
with Figure 6 (top-row) for ω = 1, where the order CPP ≃ Cq ≪ Cs ≃ Crdh ≃ CΦ is observed. This
experience is going beyond Proposition 2 which only applies to 1-quantization.

3.5 Conclusion

In this section, we investigated how the compression scheme choice impacts the convergence rate,
first by showing that quantization-based and projection-based methods respectively satisfy Theorem 1
and Theorem 2, resulting in different non-asymptotic behaviors. In the asymptotic regime, in
both cases, the averaged excess loss scales as Tr

(
H−1Cania

)
/K. We then analyzed the impact

of the most-used schemes on this limit rate. Overall, it appears that all compression schemes
typically generate an unstructured-noise, which covariance does not scale with H , contrarily to the
classical un-compressed Algorithm 1. The one exception is PP, which corresponds (on a single
worker) to performing fewer iterations. For other compression schemes, we show the impact of
the covariance H: depending on the correlation between features (H diagonal or not) and on the
pre-processing (e.g., standardization for which H has diagonal constant), the ordering between
compression scheme varies. In many cases, this highlights the need for an additional regularisation
when running Algorithm 2: all compression schemes (but PP) result in a significant noise that
accumulates along the low curvature directions. Our results can be extended to the ridge (a.k.a.,
Tikhonov) regularized case (see Dieuleveut et al., 2017), which creates an additional bias but changes
the rate Tr

(
H−1Cania

)
/K into Tr

(
(H + λI)−1Cania

)
/K. The theoretical optimal choice for λ

depending on H and the compression scheme could be obtained from our analysis but is left as future
work.
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We now turn to the distributed/federated case, which motivates the study of compression schemes
for practical applications.

4. Application to Federated Learning

In this section, we consider Algorithm 3 under Model 1, which corresponds to heterogeneous
Federated Learning on a network composed of N clients. We hereafter consider two particular cases
of Model 1. First, in Subsection 4.1, the covariate-shift case, i.e., Model 1 with wi

∗ = w∗ for all i
(thus the distribution of yi conditional to xi does not change between workers), but on the other hand,
the features’ marginal distributions are different, in particular, Hi ̸= Hj . Second, in Subsection 4.2,
the optimal-point-shift case, i.e., for each client i, j ∈ [N ], their optimal points are different wi

∗ ̸= wj
∗,

but Hi = Hj . In the rest of the section, we denote H := 1
N

∑N
i=1Hi, R

2
:= 1

N

∑N
i=1R

2
i , and we

have F (wk)− F (w∗) = 1
2

〈
ηk−1, Hηk−1

〉
.

4.1 Heterogeneous covariance

In this section, we first show that Theorems 1 and 2 on (LSA) from Section 2 can be applied to the
Federated Learning case within the scenario of covariate-shift. Corollary 4 is proved in Appendix F.1.

Corollary 4 (Algorithm 3 with covariate-shift). Consider Algorithm 3 under Model 1 with wi
∗ = wj

∗
(and potentially Hi ̸= Hj).

1. For a compressor C ∈ {Cq, Csq, Crdh, Cs, CΦ, CPP}, Theorem 1 holds, with HF = H , R2
F = R

2,
A = (ω + 1)R

2
σ2/N , M2 = (ω + 1)maxi∈[N ](R

2
i )/N , M1 = Ωσmaxi∈[N ](R

2
i )/N .

2. Moreover for any linear compressor C ∈ {Crdh, Cs, CΦ, CPP}, Theorem 2 holds, with the
same constants and Xadd = σ2maxi∈[N ](XHi)/N and Xmult = maxi∈[N ](R

2
iXHi)/N ,

with (XHi)
N
i=1 given in Corollary 2.

The Hessian of the objective function is now H , and Theorems 1 and 2 still hold. The proof
consists in showing that with Lemma 1, Assumptions 1 to 4 on the resulting random field (ξk)k∈N∗

are valid, with the constants given above.

In order to understand the impact of the compressor on the limit convergence rate, we establish a
formula for Cania similar to Equation (4). In the setting of covariate-shift, we have for any clients
i, j ∈ [N ], wi

∗ = wj
∗, thus

ξaddk
def. 2
= ξk(0)

algo 3
= ∇F (w∗)−

1

N

N∑
i=1

Ci
k(g

i
k(w∗))

eq. 2
= − 1

N

N∑
i=1

Ci
k((
〈
xik, w∗

〉
− yik)x

i
k)

model 1
=

with wi∗=wj
∗

1

N

N∑
i=1

Ci
k(ε

i
kx

i
k) .
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Next for all operators under consideration we have Ci
k(ε

i
kx

i
k)

a.s.
= εikCi

k(x
i
k), thus, with pHi denoting

the distribution of xik with covariance Hi, we have:

Cania = E
[
(ξaddk )⊗2

]
= E

( 1

N

N∑
i=1

Ci
k(ε

i
kx

i
k)

)⊗2
 indep. of (Ci

k)
d
i=1=

1

N2

N∑
i=1

E
[
Ci
k(ε

i
kx

i
k)

⊗2
]

=
σ2

N2

N∑
i=1

E
[
Ci
k(x

i
k)

⊗2
] Def. 5

=
σ2

N2

N∑
i=1

C(Ci
k, pHi)

notation
=:

σ2

N
C((Ci, pHi)

N
i=1) . (5)

The operator C((Ci, pHi)
N
i=1) generalizes the notion of compressor’s covariance (Definition 5) to the

case of multiple clients, and Equation (5) corresponds to Equation (4).

Remark 11 (All clients use the same linear compressor). If for all i ∈ [N ], Ci (d)
= C and C ∈

{CPP, Cs, Crdh, CΦ}, leveraging Remark 10, we have

C((Ci, pHi)
N
i=1) = C(C, H) .

The analysis of (LSA) on a single worker made in Section 3 is still valid in this setting with now the
Hessian of the problem being equal to the average of covariance H . Corollary 4 and Equation (5)
prove that the case of covariate-shift is identical to the centralized setting with a variance reduced by
a factor N .

Remark 12 (Varying compressor, or compression level, or non-linear compression). In most other
cases, the computation of σ2

N C((Ci, pHi)
N
i=1) =

σ2

N2

∑N
i=1 C(Ci

i , pHi) is possible using the results of
Subsection 3.3

Overall, in the covariate-shift case, most insights from the centralized case remain valid, espe-
cially, client sampling (i.e., PP) is the safest way to limit the impact of compression. Moreover,
the trade-offs and ordering between compressors remain preserved, especially regimes in which
quantization outperforms other competitors.

4.2 Heterogeneous optimal point

Hereafter, we focus on the case of heterogeneous optimal points and consider that all clients share the
same covariance matrix, i.e. for any i, j ∈ [N ], Hi = H , but potentially wi

∗ ̸= wj
∗. This can be seen

as a case of concept-shift (Kairouz et al., 2019), and we also refer to the situation as optimal-point-
shift. This setting could eventually be combined with the covariate-shift case. Similarly, Theorems 1
and 2 on (LSA) from Section 2 can be applied.

Corollary 5 (Algorithm 3 with concept-shift). Consider Algorithm 3 under Model 1 with Hi = Hj

(and potentially wi
∗ ̸= wj

∗).
1. For a compressor C ∈ {Cq, Csq, Crdh, Cs, CΦ, CPP}, Theorem 1 holds, with HF = H , R2

F = R2,
A = R2(ω+1)

N (κTr (HCov [W∗]) + σ2) with W∗ ∼ Unif({wi
∗, i ∈ [N ]}), M2 = (ω + 1)2/N ,

and M1 = ΩR2σ/N .

2. Moreover for any linear compressor C ∈ {Crdh, Cs, CΦ, CPP}, Theorem 2 holds, with the same
constants and Xadd = σ2XH/N and Xmult = R2XH/N , with XH given in Corollary 2.
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Corollary 5 can be proved reusing computation made for Corollary 4 and using below Propo-
sition 5. We next aim at computing the additive noise covariance. We note gik,∗ = gik(w∗) the
local stochastic gradient evaluated at optimal point w∗. We have, in Model 1, for any w ∈ Rd,
Fi(w) := E(⟨xik, w − wi

∗⟩ − xikε
i
k)

2, thus ∇F (w) = 1
N

∑N
i=1H(w − wi

∗), and w∗ =
∑N

i=1w
i
∗/N .

The setting of Definition 1 is verified with HF = H , and for any w ∈ Rd, that the random field ξk
can be computed as:

ξk(w − w∗)
Def. 1&Alg.3

= HF (w − w∗)−
1

N

N∑
i=1

Ci(gik(w)), thus ξaddk
Def. 2
= − 1

N

N∑
i=1

Ci(gik,∗),

with gik,∗ = (xik ⊗ xik)(w∗ − wi
∗) + xikε

i
k. We thus have, for any k ∈ N:

Cania = E
[
(ξaddk )⊗2

] ∇F (w∗)=0
= E

( 1

N

N∑
i=1

Ci(gik,∗)−∇Fi(w∗)

)⊗2


∀i ̸=j, Ci
k⊥Cj

k=
ECi

k(g
i
k,∗)=∇Fi(w∗)

1

N2

N∑
i=1

E
[(
Ci
k(g

i
k,∗)−∇Fi(w∗)

)⊗2
]

=
1

N2

N∑
i=1

(
E[Ci

k(g
i
k,∗)

⊗2]−∇Fi(w∗)⊗2
)

=
σ2

N2

N∑
i=1

C(Ci, pΘi)−
1

N2H

N∑
i=1

(w∗ − wi
∗)

⊗2H ≼
σ2

N
C((Ci, pΘi)

N
i=1) ,

where pΘi is the distribution of gik,∗ (for any k). In the last inequality, we simply discarded the
non-positive term −H

∑N
i=1(w∗ − wi

∗)
⊗2H . For linear compressors, by Proposition 2, Cania is a

linear function of 1
N

∑N
i=1Θi – the averaged second-order moment of the local gradients (gik,∗)

N
i=1.

In order to bound this quantity, following Dieuleveut et al. (2017), we make the following assumption.

Assumption 5. The kurtosis for the projection of the covariates xi1 (or equivalently xik for any k) is
bounded on any direction z ∈ Rd, i.e., there exists κ > 0, such that:

∀i ∈ [N ], ∀z ∈ Rd, E
[〈
z, xi1

〉4] ≤ κ⟨z,Hz⟩2

For instance, it is verified for Gaussian vectors with κ = 3. By Cauchy-Schwarz inequality, it
implies that E[

〈
z, xi1

〉2
(xi1)

⊗2] ≼ κ⟨z,Hz⟩H for all z ∈ Rd. We obtain the following proposition.

Proposition 5 (Impact of client-heterogeneity.). Let W∗ be a random variable uniformly distributed
over {wi

∗, i ∈ [N ]}, thus such that, Cov [W∗] = 1
N

∑N
i=1(w∗ − wi

∗)
⊗2, then:

1

N

N∑
i=1

Θi ≼ (κTr (HCov [W∗]) + σ2) H .

Proof We have:

Θi = E[((xik ⊗ xik)(w∗ − wi
∗) + xikε

i
k)

⊗2]
(εik)⊥(xi

k)= E[(xik ⊗ xik)(w∗ − wi
∗)

⊗2(xik ⊗ xik)] + σ2H

Ass. 5
≼ κ

〈
w∗ − wi

∗, H(w∗ − wi
∗)
〉
H + σ2H = κTr

(
H(w∗ − wi

∗)
⊗2
)
H + σ2H .
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In words, we have the following two main observations.

Remark 13 (Structured noise before compression.). Before compression is possibly applied, the
noise remains structured, i.e., with covariance proportional to H , in the case of concept-shift. As a
consequence, the rate for un-compressed Equation (LSA) will remain independent of the smallest
eigenvalue of H . This remark extends to the case where CPP is applied.

Remark 14 (Heterogeneous vs homogeneous case). Compared to the homogeneous case, in which
Θi = σ2Hi and Cania = σ2

N C((Ci, pHi)
N
i=1), the averaged second-order moment increases from

σ2H to (κTr (HCov [W∗]) + σ2)H , showing the impact of the dispersion of the optimal points
(wi

∗)
N
i=1. This corresponds to the typical variance increase in the compressed heterogeneous SGD

case (Mishchenko et al., 2019; Philippenko and Dieuleveut, 2020).

Concept-shift thus hinders the limit convergence rate. To limit this effect, a solution is to
introduce a control-variate term (hik)k∈N∗,i∈[N ], that is subtracted to the gradient before compression
and asymptotically approximate ∇Fi(w∗) for any i ∈ [N ] (see Mishchenko et al., 2019). We explore
this direction in Appendix F.2.

4.3 Numerical experiments

We support the theoretical results from Subsections 4.1 and 4.2 by performing experiments in the FL
framework that extend the ones from Section 3.

On figures Figure 8, we present the results of the excess loss of the Polyak-Ruppert iterate
F (wk)− F (w∗) versus the number of iterations in log/log scale. The experiments were run 5 times,
each time with different datasets (dispersion is shown by shaded area).

Settings. (a) Synthetic dataset generation: The dataset is generated using Model 1 with N = 10,
K = 106 on each client, σ2/N = 1. For any clients i in [N ], the covariance matrix is Hi =
QiDiQ

T
i , where Qi is an orthogonal matrix. For heterogeneous clients, the dataset generation is

as follows. Covariate shift: The rotation matrix Qi is sampled independently for each client and
the diagonal matrix Di is Diag

(
(1/jβi)dj=1

)
where βi ∼ Unif({3, 4, 5, 6}). Concept-shift: The

optimal models of the clients i ∈ [N ] were drawn from a zero-centered normal distribution with
a variance of 100Id, that is, wi

∗ ∼ N (0, 100Id). We also take for all client i in [N ], Hi = QDQT ,
with D = Diag ((1/j))dj=1. (b) Real-dataset and covariate-shift: To simulate non-i.i.d. clients, we
split the dataset in heterogeneous groups (with equal number of points) using a K-nearest neighbors
clustering on the TSNE representations (defined by Maaten and Hinton, 2008). Thus, the marginal
feature distribution significantly varies between clients, providing a covariate-shift, while keeping
the same distribution for the output conditional to the features on all clients. (c) Algorithm 3: We
take a constant step-size γ = 1/(2(ω + 1)R2) with R2 = Tr (H) and w0 = 0 as initial point. We
set the batch-size b = 1 for synthetic datasets and b = 16 for real datasets, the compressor variance
is ω = 10. (d) Algorithm 3 vs Algorithm 4: We take a bigger constant step-size γ = (2R2)−1 in
order to emphasize the difference between the case w./w.o. control variate, we set w0 = 0 as initial
point and the compressor variance is ω = 10. We set the batch-size b = 32 for Figure 8c and b = K
for Figure 8f.

Interpretation – homogeneous case and covariate-shift case (Figures 8a, 8b, 8d and 8e).
These experiments extend those presented in Subsection 3.4 in the case of a single client. The
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(f) True gradient gik = ∇Fi

Figure 8: Logarithm excess loss of the Polyak-Ruppert iterate iterations for N = 10 clients.

observations made in the centralized case (Figure 7), especially on the impact of the compressor
choice on the convergence and the ordering between limit convergence rates remain valid. This
illustrates Corollary 4 and Remark 11: Theorems 1 and 2 hold in the case of homogeneous client or in
the case of heterogeneous covariance and the only compressor that ensures that the noise is structured
is client sampling (partial participation). On the real datasets, quantization is also competitive.

Interpretation – concept-shift case (Figures 8c and 8f). These experiments extend those
presented on Figure 7e (slow eigenvalues’ decay with µ = 10−2) to the scenario of concept shift.
First, we observe on Figure 8c that for all compressors the convergence rate remains in O(1/K),
(though vanilla SGD converges faster during the first iterations). Second, we observe that control-
variates improve convergence for compressors inducing un-structured noise ; this is predicted by
theory, see Theorem S4. Third, on Figure 8f, at each iteration k ∈ [K], we use deterministic
gradients gik = ∇Fi which leads to having a.s. ξaddk = 0, and in the absence of compression, we
obtain a O(1/K2) convergence rate for wK which corresponds in Theorem 1 to the case where the

dependency on the initial condition is dominated by ∥H−1/2
F η0∥2
γ2K2 . Overall, these experiments illustrate

and support our theoretical insights.

5. Conclusion and open directions

Conclusion. In short, we investigate the impact of the choice of compression scheme on the
convergence of the Polyak-Ruppert averaged iterate. By analysing the case of compressed least-
squares regression, we shed light on the interplay between the Hessian of the optimization problem
HF , the features’ distribution, the additive noise’s covariance Cania, and the compression scheme.
This shows fundamental differences between compression that deemed equivalent under the classical
worst-case-variance assumption. We extend our analysis to the case of heterogeneous federated
learning, a setting in which compression is widely used and its impact not fully understood.
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More precisely, first, the analysis of the generic stochastic approximation algorithm (LSA)
provides (1) the fact that projection based compressions achieve a faster convergence rate than
quantization based, and that yet, their asymptotic rate is similar; (2) the analysis of quantization-
based compression requires introducing a new Hölder-type regularity assumption for the analysis
of the stochastic approximation scheme, and showing that such an assumption is satisfied for
quantization.

Second, the computation of the additive noise’s covariance Cania reveals the impact of the
compression scheme and the data distribution on the asymptotically dominant term. We obtain
that (1) partial participation (i.e., client sampling in the federated case) is the only method that
systematically ensures a convergence without a dependency on the strong-convexity constant; (2)
other compressors may all induce an un-structured noise, with covariance scaling with I or

√
H , that

strongly hinders convergence by accumulating noise on low curvature directions; (3) the relative
performance or various schemes changes depending on the pre-processing applied to the data, making
quantization the best method (apart from PP) when standardization is applied, but one of the worst
(with random Gaussian projection) when the features are independent and the eigenvalues of the
covariance decay rapidly (4) in that particular last setting, all projection based methods (but Gaussian
projection) behave similarly.

Third, we discuss how these results apply to the federated case, that corresponds to the initial
motivation. We show that we encompass two particular heterogeneity situations and how our analysis
applies. Overall, these results are a step towards a better understanding of the impact of a widely
used tool.

Open directions. This analysis can be extended to include various aspects that are beyond the
scope of this work. First, one natural improvement for application in FL would be to consider also the
scenario where each client runs several local iterations (McMahan et al., 2017; Karimireddy et al.,
2020) before sending their updates, reducing further the cost of communication. Similar approach
can be used, although the additive noise field would be more complicated, which potentially implies
a different additive noise’s covariance. Second, as mentioned in Subsection 3.5, our analysis could
also be extended to the case of stochastic approximation with ridge regularization (e.g., following
Dieuleveut et al., 2017) which in practice is helpful to mitigate the impact of the lack of strong
convexity. Third, an obvious direction is to extend beyond quadratic functions and considering other
objective functions, such as logistic regression or even shallow neural networks. Several results in the
literature can be leveraged to tackle non quadratic but self-concordant losses Bach (2010); Gadat and
Panloup (2023). Fourth, our analysis still only relies on second moments (variance and covariance)
of the stochastic field. One major drawback of partial participation is to induce a significant increase
on higher order moments. Incorporating higher order bounds may also bring novel insights to the use
of compression in FL. Finally, all our analysis is made in finite dimension and our asymptotic focuses
on K → ∞: further works should analyze the case of infinite dimension: within the reproducing
kernel Hilbert space (Dieuleveut and Bach, 2016) framework or within the overparametrized setting
(Belkin et al., 2019).
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Léon Bottou and Olivier Bousquet. The Tradeoffs of Large Scale Learning. Advances in Neural
Information Processing Systems, 20:161–168, 2007.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný, H. Brendan
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Supplementary material

In this appendix, we provide additional information to supplement our work. In Appendix A, we
begin by detailing technical results, by introducing an auxiliary lemma and by proving Proposition 1
which gives a CLT for (LSA). Secondly, in respectively Appendix B and Appendix C, we give
the proof of Theorems 1 and 2. Thirdly, in Appendix D, we verify that the setting of single-client
compressed LSR fulfills the setting presented in Section 2. In Appendix E we prove that Lemma 1
hold and compute the compressors’ covariance to establish Proposition 2 and Corollary 3. Finally,
in Appendix F, we provide demonstrations for the federated learning case, including verifying
assumptions (covariate-shift scenario) on random fields in Appendix F.1, and proving a Central Limit
Theorem S4 in Appendix F.2 for the concept-shift scenario.

Additional notations. We use the Frobenius norm ∥A∥2 := Tr
(
A⊤A

)
, which is the same notation

as the vector Euclidean norm (no ambiguity in general), Jr to denote the d × d diagonal matrix
whose r first diagonal elements are equal to one and all the other matrix’s coefficients equal to
zero, S++

d (R) the cone of positive definite symmetric matrices, and Lp(Ω,A,P) the set of random
vectors defined on the probability space (Ω,A,P) such that E[∥X∥p] < ∞. We define also the
operator norm |||A||| :=

√
max eig(A⊤A).
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A. Technical results

A.1 Settings of experiments

In Tables S1 and S2, we summarize the settings of experiments presented in Subsection 3.4.

Table S1: Settings of experiments for a single client (N = 1) on synthetic data (Figures 7a and 7b).

Parameter K d eig(H)i w∗ σ2 ω γ−1 w0 #runs

Values 107 100 1/i4 (1)di=1 1 10 2(ω + 1)R2 0 5

Table S2: Settings of experiments for a single client (N = 1) on real data (Figures 7c and 7f).

Dataset d standardization b ω γ−1 w0 #runs reference

quantum 65
✓ 16 1 2(ω + 1)R2 0 5

(CTL04)
cifar-10 256 (Kri09)

A.2 Useful identities and inequalities

In this Subsection, we recall some classical inequalities and results.

Inequality 1. Let N ∈ N and d ∈ N. For any sequence of vector (ai)
N
i=1 ∈ Rd, we have the

following inequalities: ∥∥∥∥∥
N∑
i=1

ai

∥∥∥∥∥
2

≤
(

N∑
i=1

∥ai∥
)2

≤ N

N∑
i=1

∥ai∥2 .

The first part of the inequality corresponds to the triangular inequality, while the second part is
Cauchy’s inequality.

Inequality 2. Let x in Rd and A in Md,d(R), then we have ∥Ax∥ ≤ |||A|||∥x∥.

Below, we recall Minkowski’s and Jensen’s inequalities. Additionally, we recall the Cauchy-Schwarz
inequality for conditional expectations.
Let a probability space (Ω,A,P) with Ω a sample space, A a σ-algebra, and P a probability measure.

Minkowski’s inequality. Let p > 1 and suppose that X,Y are two random variables in Lp(Ω,A,P)
(i.e. their pth moment is bounded), we have the following triangular inequality:

E[∥X + Y ∥p]1/p ≤ E[∥X∥p]1/p + E[∥Y ∥p]1/p . (S1)

Jensen’s inequality. Suppose that X : Ω −→ Rd is a random variable, then for any convex function
f : Rd −→ R we have:

f (E(X)) ≤ Ef(X) . (S2)
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Cauchy-Schwarz’s inequality for conditional expectations. Suppose that X,Y are two random
variables in L2(Ω,A,P) (i.e. their second moment is bounded), then for any σ-algebra F ⊂ A we
have a.s.:

E [XY | F ]2 ≤ E
[
X2

∣∣ F]E
[
Y 2
∣∣ F] . (S3)

Convergence in Lp-norm. Suppose that (Xn)n∈N is a sequence of random variables in Lp(Ω,A,P),
and that X is a random variable in Lp(Ω,A,P). We say that (Xn)n∈N converges in Lp-norm towards

X if E(∥Xn −X∥p) −−−−−→
n→+∞

0, it is denoted by: Xn
Lp

−−−−−→
n→+∞

X .

In Subsection 3.3, we use ellipses to visual quadratic functions, therefore we provide in Definition S1
the mathematical definition.

Definition S1 (Representing positive matrices through ellipsoids). Any symmetric positive definite
matrix M in S++

d (R) defines an ellipsoid EM = {x ∈ Rd, x⊤M−1x = 1} centered around zero.
The eigenvectors of M are the principal axes of the ellipsoid, and the squared root of the eigenvalues
are the half-lengths of these axes. The ellipse corresponds to the sphere of radius 1 associated with
the norm NM−1 =

√
x⊤M−1x.

A.3 An auxiliary inequality

In this Section, we provide an auxiliary lemma that is specific to the framework considered in
Section 2. It will be used in the proof of Theorem 1 and corresponds to an adaptation of Lemma 1
from Bach and Moulines (2013).

Lemma S1 (Auxiliary inequality on
∑K

k=1 E[∥H1/2
F ηk∥2]/K). Under Assumptions 1 and 2.1, for

any K in N∗ and any step-size γ ∈ R+ s.t. γ(R2
F + 2M2) ≤ 1, the sequence (wk)k∈N∗ produced by

a setting such as in Definition 1, verifies the following bound:

1

K

K−1∑
k=0

E[∥H1/2
F (wk − w∗)∥2] ≤

∥η0∥2
2γK(1− γ(R2

F + 2M2))
+

5Aγ

1− γ(R2
F + 2M2)

.

Proof Let k in N∗, we start writing that by Definition 1, we have wk = wk−1 − γ∇F (wk−1) +
γξk(ηk−1). Thus taking the squared norm and developing it, gives:

∥ηk∥2 = ∥ηk−1∥2 − 2γ ⟨ηk−1,∇F (wk−1)− ξk(ηk−1)⟩+ γ2 ∥∇F (wk−1)− ξk(ηk−1)∥2 . (S4)

We need to bound the last term. By Definition 2, we have ξk(ηk−1) = ξmult
k (ηk−1) + ξaddk , hence

using Inequality 1, we have:

∥∇F (wk−1)− ξk(ηk−1)∥2 ≤ 2∥∇F (wk−1)− ξmult
k (ηk−1) ∥2 + 2∥ξaddk ∥2 ,

taking expectation w.r.t the σ-algebra Fk−1, developping
∥∥∇F (wk−1)− ξmult

k (ηk−1)
∥∥2 and because

E
[
ξmult
k (ηk−1)

∣∣ Fk−1

]
= 0 (the random fields (ξk)k∈N∗ are zero-centered, see Definition 1), we

have:

E
[
∥∇F (wk−1)− ξk(ηk−1)∥2

∣∣∣ Fk−1

]
≤ 2E

[
∥∇F (wk−1)∥2

∣∣ Fk−1

]
+ 2E

[
∥ξmult

k (ηk−1) ∥2
∣∣∣ Fk−1

]
+ 2E

[
∥ξaddk ∥2

∣∣∣ Fk−1

]
.
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Now, we use Definition 1 and Assumptions 1 and 2.1: it leads to:

E
[
∥∇F (wk−1)− ξk(ηk−1)∥2

∣∣∣ Fk−1

]
≤ 2R2

F ∥H1/2
F ηk−1∥2 + 4M2∥H1/2

F ηk−1∥2 + 8A+ 2A
≤ 2(R2

F + 2M2)∥H1/2
F ηk−1∥2 + 10A .

Because the sequence of random field (ξk)k∈N∗ is zero-centered (Definition 1), we have:

E [⟨ηk−1,∇F (wk−1)− ξk(ηk−1)⟩ | Fk−1] = ⟨ηk−1, HF ηk−1⟩ = ∥H1/2
F ηk−1∥2 ,

hence back to Equation (S4), we obtain:

E
[
∥ηk∥2

∣∣∣ Fk−1

]
≤ ∥ηk−1∥2 − 2γ(1− γ(R2

F + 2M2))∥H1/2
F ηk−1∥2 + 10Aγ2 . (S5)

It follows that if γ(R2
F + 2M2) ≤ 1, summing the previous bound and taking full expectation gives:

1

K

K∑
k=1

E
[
∥H1/2

F ηk−1∥2
]
≤ ∥η0∥2 − E ∥ηK∥2

2γK(1− γ(R2
F + 2M2))

+
5Aγ

1− γ(R2
F + 2M2)

,

which allows concluding.

A.4 Asymptotic results: central limit theorem for (LSA)

The demonstration of Proposition 1 uses the following theorem from Polyak and Juditsky (1992)
guaranteeing the asymptotic normality of the Polyak-Ruppert iterate.

Theorem S1. From Polyak and Juditsky (1992, see Theorem 1).
For k in N∗, we denote ηk = wk − w∗ and we define wk = wk−1 − γk∇F (wk−1) + γkξ(ηk−1). If
we assume that:

• γk −−−−→
k→+∞

0 and γ−1
k (γk − γk+1) = o

k→+∞
(γk),

• F is strongly convex and
∥∥∇2F

∥∥
∞ < ∞,

• the convergence in probability of the conditional covariance to a matrix Σ holds, i.e., we have
a.s. E[ξ(ηk−1)ξ(ηk−1)

⊤ | Fk−1]
P−−−−→

k→+∞
Σ .

Then for any K in N∗, we have the asymptotic normality of (
√
KηK−1)K∈N∗:

√
KηK−1

L−−−−−→
K→+∞

N (0,Σ∗) with Σ⋆ =
{
∇2F (w∗)

}−1
Σ
{
∇2F (w∗)

}−1
.

Below we present our CLT that gives the asymptotic normality of (
√
KηK−1)K∈N∗ in the case of

strongly-convex case and decreasing step size.
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Proposition S1 (CLT for (LSA) in the strongly convex-case and deacreasing step-size). Under
Assumptions 1 and 2, consider a sequence (wk)k∈N∗ produced in the setting of Definition 1
using a step-size (γk)k∈N∗ s.t. γk = k−α, α ∈ (0, 1). Then (ηK)K≥0 converges in L2-norm to

0, i.e. ηK
L2

−−−−−→
K→+∞

0.

Furthermore, (
√
KηK−1)K≥0 is asymptotically normal with mean zero and covariance such

that: √
KηK−1

L−−−−−→
K→+∞

N (0, H−1
F CaniaH

−1
F ).

Proof
First, we have that in the case of decreasing step size s.t. for any k in N, γk = k−α, we have:
ηK

L2

−−−−−→
K→+∞

0. This is a classical computation for SGD with bounded variance (Assumptions 1

and 2.1.). Detailed computations are for instance given in lectures notes of Bach (2022, pages
164-167 and 182), and Kushner and Yin (2003). To apply Theorem 1 from Polyak and Juditsky
(1992, recalled in Theorem S1), which gives the desired result, it suffices to prove the convergence in
probability of the covariance of the noise ξk(ηk−1) towards Cania, as k → ∞.

In the following, we show that lim
k→+∞

E
[
ξk(ηk−1)ξk(ηk−1)

⊤ ∣∣ Fk−1

] P
= Cania. We start writing:

ξk(ηk−1)ξk(ηk−1)
⊤ = (ξaddk − ξmult

k (ηk−1))(ξ
add
k − ξmult

k (ηk−1))
⊤

= (ξaddk )⊗2 − ξaddk ξmult
k (ηk−1)

⊤ − ξmult
k (ηk−1) (ξ

add
k )⊤ + ξmult

k (ηk−1)
⊗2 .

(i) First, from Definition 2, it flows that E
[
ξaddk ⊗ ξaddk

∣∣ Fk−1

]
= Cania.

(ii) Second, we show that E[ξmult
k (ηk−1)

⊗2 | Fk−1] converges to 0 in probability: it is suffi-
cient to show that: E[∥ξmult

k (ηk−1)
⊗2 ∥F | Fk−1] −−−−→

k→+∞
0 . To do so, we use the fact that

∥ξmult
k (ηk−1)

⊗2 ∥F = ∥ξmult
k (ηk−1) ∥22, then with Assumption 2.2: E[∥ξmult

k (w−w∗)∥2 | Fk−1] ≤
M1∥H1/2ηk−1∥+M2∥H1/2ηk−1∥2. And we have the result as we showed that ηk−1

L2

−−−−→
k→+∞

0.

(iii) Third, it remains to show that E[ξmult
k (ηk−1) (ξ

add
k )⊤ | Fk−1]

L1

−−−−→
k→+∞

0. We use the Cauchy-

Schwarz inequality’s S3 for conditional expectation:

E
[
∥ξmult

k (ηk−1) (ξ
add
k )⊤∥F

∣∣∣ Fk−1

]2
= E

[
∥ξmult

k (ηk−1) ∥2∥(ξaddk )⊤∥2
∣∣∣ Fk−1

]2
≤ E

[
∥ξmult

k (ηk−1) ∥22
∣∣∣ Fk−1

]
E
[
∥ξaddk ∥2

∣∣∣ Fk−1

]
.

The sequence of random vectors (ξaddk )k∈N∗ is i.i.d., and moreover we have shown previously
that E[∥ξmult

k (ηk−1) ∥2 | Fk−1] tends to 0, hence E[ξmult
k (ηk−1) (ξ

add
k )⊤ | Fk−1] converges to 0 in

probability. Consequently, we can state that E[ξk(ηk−1)
⊗2 | Fk−1]

P−−−−→
k→+∞

Cania .
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B. Generalization of Bach and Moulines (2013).

In this section, we give the demonstration of Theorem 1 which extends Theorem 1 from Bach and
Moulines (2013); the demonstration is close to the original one.

B.1 Proof principle

For k in N∗, the proof relies (1) on decomposing E[∥H1/2
F ηK−1∥2] in two terms using the Minkowski

inequality S1 to make appear a recursion (η0k)k∈N∗ without multiplicative noise, and another (αk)k∈N∗

without additive noise, (2) on an expansion of η0k and η0k as polynomials in γ, and (3) on using the
Hölder-type Assumption 2.2 to bound αk. We define the sequence (η0k)k∈N∗ such that it involves
only an additive noise:

η0k = (Id − γHF )η
0
k−1 + γξaddk . (S6)

Then, we decompose E[∥H1/2
F ηK−1∥2] in the following way using Minkowski inequality S1:

E
[
∥H1/2

F ηK−1∥2
]
≤
(

E
[
∥H1/2

F η0K−1∥2
]1/2

+ E
[
∥H1/2

F (ηK−1 − η0K−1)∥2
]1/2)2

. (S7)

The goal is then to establish a bound for the two above quantities.
1. Bounding E[∥H1/2

F η0K−1∥2].
The bound on E[∥H1/2

F η0K−1∥2] is given in Lemma S2. For k in N∗, the proof relies on an expansion
of η0k and η0k as polynomials in γ. The recursion defining the sequence (η0k)k∈N∗ is η0k = (Id −
γHF )η

0
k−1 + γξaddk . If we denote Mk

i = (Id − γHF )
k−i and M i−1

i = Id, we have:

η0k = Mk
1 η

0
0 + γ

k∑
i=1

Mk
i+1ξ

add
k .

For K in N∗, it leads to η0K−1 = 1
K

∑K−1
k=0 Mk

1 η
0
0 + γ

K

∑K−1
k=1

(∑K
i=k M

i
k+1

)
ξaddk , and with

Minkowski inequality S1 to:

E
[
∥H1/2

F η0K−1∥2
]1/2

≤ E

∥∥∥∥∥H
1/2
F

K

K−1∑
k=0

Mk
1 η

0
0

∥∥∥∥∥
2
1/2

+ E

∥∥∥∥∥γH
1/2
F

K

K−1∑
k=1

K∑
i=k

M i
k+1ξ

add
k

∥∥∥∥∥
2
1/2

.

(S8)

The left term depends only on initial conditions η00 (= η0) and the right term depends only on the
additive noise. This is why, in the proof, we expend η0k−1 and η0k−1 separately for the noise process
(i.e., when assuming η0 = 0) and for the noise-free process that depends only on the initial conditions
(i.e. when assuming that the additive noise (ξaddk )k∈N∗ is uniformly equal to zero). In the end, the
two bounds computed separately may be added.
2. Bounding E[∥H1/2

F (ηK−1 − η0K−1)∥2].
The bound on E[∥H1/2

F (ηK−1 − η0K−1)∥2] is given in Lemma S3. For k in N∗, the demonstration is
based on an exact expression of αk = ηk − η0k and αk computed by unrolling the recursion from αk
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Figure S1: Proof principle of Theorem S2

to α0. Because α0 = 0 and because there is no additive noise involved in αk, we obtain for K in N∗,
an expression of αK−1 that depends only on the multiplicative noise at iteration k in {1, · · · ,K}:

αK−1 =
γ

K

K−1∑
k=1

(Id − (Id − γHF )
K−k)(γHF )

−1ξmult
k (ηk−1) .

We then show (Equation (S11)) that bounding E[∥H1/2
F (ηK−1 − η0K−1)∥2] leads to bound the

following sum 1
K2

∑K−1
k=1 E[∥H−1/2

F ξmult
k (ηk−1)∥2 | Fk−1], and this bound is established using the

Hölder-type Assumption 2.2; which concludes this part of the proof.

B.2 Two bounds

In this subsection, we give two lemmas that provide a bound on E[∥H1/2
F η0K−1∥2] and E[∥H1/2

F (ηK−1−
η0K−1)∥2]. These bounds are required due to the decomposition of E[∥H1/2

F ηK−1∥2] done in Equa-
tion (S7).

• The bound on E[∥H1/2
F η0k∥2] is given in Lemma S2. It is established by decomposing the noise

process and the noise-free process. The bound on the noise process comes from Lemma 2 (Bach
and Moulines, 2013) and involves the additive noise’s covariance Cania.

• The bound on E[∥H1/2
F (ηK − η0K)∥2] is established in Lemma S3.

Note that in order to demonstrate Lemma S3, we need to bound
∑K

k=1 ∥H
1/2
F ηk∥2/K. This is

done in Lemma S1 which is an adaptation of Lemma 1 from Bach and Moulines (2013) to random
mechanisms. This auxiliary lemma holds for any kind of multiplicative noise – linear or non-linear.
Below lemma provides a bound on E[∥H1/2

F η0k∥2].
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Lemma S2 (Bound on E[∥H1/2
F η0k∥2]). Under the setting considered in Definition 1, under Assump-

tion 1, for any K in N∗ and any step-size γ ∈ R+ s.t. γR2
F ≤ 1, the sequence (η0k)k∈N∗ defined in

Equation (S6) verifies the following bound:

E
[
∥H1/2

F η0K−1∥2
]1/2

≤ 1√
K

(
∥H−1/2

F η0∥
γ
√
K

∧ ∥η0∥√
γ

+
√

Tr
(
CaniaH

−1
F

))
.

Proof
The proof relies on the proof presented by Bach and Moulines (2013) and is done separately for the
noise process and for the noise-free process that depends only on the initial condition. The bounds
may then be added (see the discussion in Appendix B.1).
Noise-free process.
As in section A.3 from Bach and Moulines (2013), we assume in this section that the random
fields (ξaddk )k∈N∗ is uniformly equal to zero and that γR2

F ≤ 1. We thus have for any k in N∗

that η0k = (Id − γHF )η
0
k−1.

First inequality. By recursion, we have η0k = (Id−γHF )
kη00 , averaging over K in N∗ and computing

the resulting geometric sum, we have:

η0K−1 =
1

K

K−1∑
k=0

(Id − γHF )
kη00 =

1

K
(Id − (Id − γHF )

K−1)(γHF )
−1η00 ≼

1

γK
H−1

F η00.

And because η00 = η0, it gives E
[〈
η0K−1, HF η

0
K−1

〉]
≤ ∥H1/2

F η0∥2
γ2K2 .

Second inequality. From the expression of η0k flows:

E[∥η0k∥2] = E[∥η0k−1∥2]− 2γ
〈
η0k−1, HF η

0
k−1

〉
+ γ2

〈
η0k−1, H

2
F η

0
k−1

〉
.

Considering that HF ≼ Tr (HF ) Id ≼ R2
F Id (Definition 1) and that γR2

F ≤ 1, because η00 = η0, by

convexity we have: E[∥H1/2
F η0K−1∥2] ≤ 1

K

∑K
k=1 E[∥H1/2

F η0k−1∥2] ≤
∥η0∥2
γK .

Putting things together.
In the end, we take the minimum of the two above bounds and obtain that:

E[∥H1/2
F η0K−1∥2] ≤

∥H−1/2
F η0∥2
γ2K2 ∧ ∥η0∥2

γK
. (S9)

Noise process.
We assume in this part that η00 = η0 = 0. We apply Lemma 2 from Bach and Moulines
(2013) to η0k−1. This sequence of iterates has an i.i.d. noise process (ξaddk )k∈N∗ which is such
that E

[
ξaddk ⊗ ξaddk

]
= Cania (existence guaranteed by Assumption 1). Therefore we have:

E[∥H1/2
F η0K−1∥2] ≤

Tr
(
CaniaH

−1
F

)
K

. (S10)

Putting things together. We now take results derived from the part without noise and the part with
noise, and we get from Minkowski inequality:

E
[
∥H1/2

F η0K−1∥2
]1/2

≤ 1√
K

(
∥H−1/2

F η0∥
γ
√
K

∧ ∥η0∥√
γ

+
√
Tr
(
CaniaH

−1
F

))
.
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Below lemma provides a bound on E[∥H1/2
F (ηK − η0K)∥2].

Lemma S3 (Bound on E[∥H1/2
F (ηK − η0K)∥2]). Under the setting considered in Definition 1 with

µ > 0, under Assumption 1 , under Assumptions 2.1 and 2.2, for any K in N∗ and any step-size
γ ∈ R+ s.t. γ(R2

F + 2M2) < 1, the sequence (ηk − η0k)k∈N∗ verifies the following bound:

E
[
∥H1/2

F (ηK − η0K)∥2
]1/2

] ≤ 1√
K

(√
M1µ−1

(
5Aγ

1− γ(R2
F + 2M2)

)1/4

+
√
M2µ−1

(
15Aγ

1− γ(R2
F + 2M2)

)1/2
)
.

Remark S1. To demonstrate Lemma S3, we use the Hölder-type Assumption 2.2. This is why we
obtain a term with a square root in the bound.

Proof
Let k in N∗, we denote αk = ηk − η0k, with ηk = (Id − γHF )ηk−1 + γξk(ηk−1) and η0k =
(Id − γHF )η

0
k−1 + γξaddk . First, we write the exact expression of αk−1:

αk = (Id − γHF )αk−1 + γ(ξk(ηk−1)− ξaddk )

= (Id − γHF )
kα0 + γ

k∑
i=1

(Id − γHF )
k−i(ξi(ηi−1)− ξaddi ) ,

and because η00 = η0, it follows that α0 = η0 − η00 = 0. Averaging over K in N∗, we have the exact
expression of αK−1:

αK−1 =
γ

K

K−1∑
k=0

k∑
i=1

(Id − γHF )
k−i(ξi(ηi−1)− ξaddi ))

=
γ

K

K−1∑
i=1

(
K−1∑
k=i

(Id − γHF )
k−i

)
(ξi(ηi−1)− ξaddi )) .

Computing the geometric sum results in:

αK−1 =
γ

K

K−1∑
k=1

(Id − (Id − γHF )
K−k)(γHF )

−1(ξk(ηk−1)− ξaddk ) .

And because for any k in N, 0 ≼ (Id − γHF )
k ≼ Id, we obtain:

αK−1 ≼
1

K

K−1∑
k=1

H−1
F (ξk(ηk−1)− ξaddk ) ,

hence ∥H1/2
F αK−1∥2 = ∥ 1

K

∑K−1
k=1 H

−1/2
F (ξk(ηk−1)− ξaddk )∥2. We take full expectation, because

for any k in N∗, by Definitions 1 and 2, ξmult
k (ηk−1) = ξk(ηk−1) − ξaddk is Fk-measurable and
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E
[
ξmult
k (ηk−1)

∣∣ Fk−1

]
= 0, we can unroll the sum and we have in the end that the variance of the

sum is the sum of variances:

E

[∥∥∥H1/2
F αK−1

∥∥∥2] ≤ 1

K2

K−1∑
k=1

E

[∥∥∥H−1/2
F ξmult

k (ηk−1)
∥∥∥2 ∣∣∣∣ Fk−1

]
. (S11)

Computing E[∥H−1/2
F ξmult

k (ηk−1) ∥2 | Fk−1] for k in N, we first have:

∥H−1/2
F ξmult

k (ηk−1) ∥2 ≤ |||H−1/2
F |||

2
∥ξmult

k (ηk−1) ∥2 ,

where we used Inequality 2. Because HF is a symmetric semi-positive matrix, we have |||H−1/2
F |||

2
=

1/µ, hence: ∥H−1/2
F ξmult

k (ηk−1) ∥2 ≤ µ−1∥ξmult
k (ηk−1) ∥2. Taking expectation conditionally to the

σ-algebra Fk−1 and invoking Assumption 2.2 gives:

E[∥H−1/2
F ξmult

k (ηk−1) ∥2 | Fk−1] ≤ µ−1(M1∥H1/2
F ηk−1∥+ 3M2∥H1/2

F ηk−1∥2) . (S12)

Combining equations S11 and S12, we obtain:

E[∥H1/2
F αK−1∥2] ≤

M1

µK2

K−1∑
k=1

E[∥H1/2
F ηk−1∥] +

3M2

µK2

K−1∑
k=1

E[∥H1/2
F ηk−1∥2] .

Now using Jensen’s inequality for concave function allows us to write:

1

K

K∑
k=1

E[∥H1/2
F (w − w∗)∥] ≤

1

K

K∑
k=1

√
E[∥H1/2

F (w − w∗)∥2] ≤

√√√√ 1

K

K∑
k=1

E[∥H1/2
F (w − w∗)∥2] ,

thus we have:

E[∥H1/2
F αK−1∥2] ≤

M1

µK

√√√√ 1

K

K−1∑
k=1

E[∥H1/2
F ηk−1∥2] +

3M2

µK2

K−1∑
k=1

E[∥H1/2
F ηk−1∥2] .

Using Lemma S1 (with η0 = 0), we finally obtain:

E[∥H1/2
F αK−1∥2] ≤

1

K

(
M1µ

−1

√
5Aγ

1− γ(R2
F + 2M2)

+
15AγM2µ

−1

1− γ(R2
F + 2M2)

)
.

In the end, we take the square root (and use that for any a, b in R+,
√
a+ b ≤ √

a +
√
b) which

allows concluding:

E
[
∥H1/2

F (ηK − η0K)∥2
]1/2

≤ 1√
K

(√
M1µ−1

(
5Aγ

1− γ(R2
F + 2M2)

)1/4

+
√
M2µ−1

(
15Aγ

1− γ(R2
F + 2M2)

)1/2
)
.
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B.3 Final theorem

In this section, we gather the pieces of proof required to demonstrate Theorem 1.
Theorem S2 (Non-linear multiplicative noise). Under Assumptions 1 and 2, considering any constant
step-size γ such that γ(R2

F + 2M2) ≤ 1/2, then for any K in N∗, the sequence (wk)k∈N∗ produced
by a setting such as in Definition 1 verifies the following bound:

E[F (wK−1)− F (w∗)] ≤
1

2K

(
∥H−1/2

F η0∥
γ
√
K

∧ ∥η0∥√
γ

+
√
Tr
(
CaniaH

−1
F

)
+ (10Aγ)1/4

√
M1µ−1

+ (30Aγ)1/2
√

M2µ−1

)2

.

Proof
As explained in the discussion in Appendix B.1 (Equation (S7)), we define the sequence (η0k)k∈N∗

which involves only an additive noise η0k = (Id − γHF )η
0
k−1 + γξaddk . Then, we decompose

E[∥H1/2
F ηK−1∥] using Minkowski’s inequality S1:

E
[
∥H1/2

F ηK−1∥2
]
≤
(

E
[
∥H1/2

F η0K−1∥2
]1/2

+ E
[
∥H1/2

F (ηK−1 − η0K−1)∥2
]1/2)2

. (S13)

First term.
To bound the first term, we use Lemma S2 which gives:

E
[
∥H1/2

F η0K−1∥2
]1/2

≤ 1√
K

(
∥H−1/2

F η0∥
γ
√
K

∧ ∥η0∥√
γ

+
√
Tr
(
CaniaH

−1
F

))
.

Second term.
From Lemma S3, we have:

E
[
∥H1/2

F (ηK − η0K)∥2
]1/2

≤ 1√
K

(√
M1µ−1

(
5Aγ

1− γ(R2
F + 2M2)

)1/4

+
√
M2µ−1

(
15Aγ

1− γ(R2
F + 2M2)

)1/2
)
.

Final bound. Hence, back to Equation (S13), we get:

E
[
∥H1/2

F ηK−1∥2
]1/2

≤ 1√
K

(
∥H−1/2

F η0∥
γ
√
K

∧ ∥η0∥√
γ

+
√

Tr
(
CaniaH

−1
F

)
+
√
M1µ−1

(
5Aγ

1− γ(R2
F + 2M2)

)1/4

+
√
M2µ−1

(
15Aγ

1− γ(R2
F + 2M2)

)1/2
)
,
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and considering γ(R2
F + 2M2) ≤ 1/2, it concludes the proof because E[F (wK−1) − F (w∗)] =

E[∥H1/2
F ηK−1∥2]/2:

E[F (wK−1)− F (w∗)] ≤
1

2K

(
∥H−1/2

F η0∥
γ
√
K

∧ ∥η0∥√
γ

+
√

Tr
(
CaniaH

−1
F

)
+ (10Aγ)1/4

√
M1µ−1

+ (30Aγ)1/2
√
M2µ−1

)2

.

C. Generalisation of Bach and Moulines (2013) for linear multiplicative noise.

In this Section, we give the demonstration of Theorem 2 which extends Theorem 1 from Bach and
Moulines (2013) to the case of linear multiplicative noise. The demonstration follows the same steps
as the one given by Bach and Moulines (2013). The minor differences lie in the generality of the
form of the multiplicative noise in our approach. Bach and Moulines (2013) only analyse LMS
algorithm, while we here consider (LSA) with assumptions on the linear multiplicative noise process.
Moreover, our theorem decomposes into 3 terms instead of 2.

C.1 Proof principle

For k in N∗, the proof relies on an expansion of ηk and ηk as polynomials in γ. Because we consider
a linear multiplicative noise, there exists a matrix Ξk in Rd×d s.t. for any z in Rd, ξmult

k (z) = Ξkz
(Assumption 3); hence the recursion defined in Definition 1 can be rewritten as:

ηk = ηk−1 − γ∇F (ηk−1) + γξmult
k (ηk−1) + γξaddk = (Id − γHF + γΞk)ηk−1 + γξaddk .

We denote Mk
i = (Id − γHF + γΞk) · · · (Id − γHF + γΞi) and M i−1

i = Id, then we have that
ηk = Mk

1 η0 + γ
∑k

i=1M
k
i+1ξ

add
k .

For K in N∗, it leads to ηK−1 = 1
K

∑K−1
k=0 Mk

1 η0 + γ
K

∑K−1
k=1

(∑K
i=k M

i
k+1

)
ξaddk , and with

Minkowski’s inequality S1 to:

√
E

[∥∥∥H1/2
F ηK−1

∥∥∥2] ≤ E

∥∥∥∥∥H
1/2
F

K

K−1∑
k=0

Mk
1 η0

∥∥∥∥∥
2
1/2

+ E

∥∥∥∥∥γH
1/2
F

K

K−1∑
k=1

K∑
i=k

M i
k+1ξ

add
k

∥∥∥∥∥
2
1/2

.

(S14)

The left term depends only on initial conditions and the right term depends only on the noise process.
This is why, in the proof, we expend ηk−1 and ηk−1 separately for the noise process (i.e., when
assuming η0 = 0) and for the noise-free process that depends only on the initial conditions (i.e. when
assuming that the additive noise (ξaddk )k∈N∗ is uniformly equal to zero). In the end, the two bounds
computed separately may be added.
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Figure S2: Proof principle of Theorem S3.

To study the noise process, inspiring from Bach and Moulines (2013), we define the following
sequence: {

η0k = (Id − γHF )η
0
k−1 + γξaddk

ηrk = (Id − γHF )η
r
k−1 + γξmult

k

(
ηr−1
k−1

)
with ∀r ≥ 0 , ηr0 = 0 .

(S15)

Then, we decompose E[∥H1/2
F ηK−1∥2] in the following way using Minkowski’s inequality S1:√

E
[
∥H1/2

F ηK−1∥2
]
≤ E[∥H1/2

F

r∑
i=0

ηiK−1∥2]1/2 + E[∥H1/2
F (ηK−1 −

r∑
i=0

ηiK−1)∥2]1/2.

The goal is then to establish a bound for the two above quantities.

C.2 Lemmas for the noise process

In this Subsection, we provide lemmas for the noise process, and thus we suppose that η0 = 0.
The noise-free process is later considered in Appendix C.3 and puts together with the results of the
coming Subsection. The sketch of the proof relies on establishing two bounds.
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• For r, k in N × N∗, noting αr
k = ηk −

∑r
i=0 η

i
k, the first one is a bound on E[∥H1/2

F αr
K−1∥2] that

tends to zero when r tends to +∞.
• The second one is on

∑r
i=0 E[∥H1/2

F ηiK−1∥2] and is established using Lemma 2 from (Bach and
Moulines, 2013). It will correspond to the final variance term and it involves the additive noise’s
covariance Cania.

In the following, we provide Lemmas S4 to S6. Let r, k in N × N∗.

• Lemma S4 builds a recursive expression of αr
k = ηk −

∑r
i=0 η

i
k.

• Lemma S5 provides a bound on E[∥H1/2
F αr

K−1∥2] which involves E∥ξmult
k

(
ηrk−1

)
∥2.

• Lemma S6 bounds the covariance of ηrk−1, this result will be necessary when computing the
expectation of ξmult

k

(
ηrk−1

)⊗2.

Below, we provide the lemma that builds a recursive expression of ηk −
∑r

i=0 η
i
k, with k, r in N∗.

Lemma S4 (A recursion on ηk −
∑r

i=0 η
i
k). Under the setting given in Definition 1, considering that

ξmult
k (·) is linear (Assumption 3), for any k in N∗ and any step-size γ > 0, considering (ηrk)r∈N as

given by Equation (S15), denoting for r in N, αr
k = ηk −

∑r
i=0 η

i
k, we have the following recursive

expression for the sequence of iterate (αr
k)r∈N:

∀r ≥ 0, αr
k = (Id − γHF )α

r
k−1 + ξmult

k

(
αr
k−1

)
+ γξmult

k

(
ηrk−1

)
.

Proof Let k in N∗, the proof is done by recursion. For r = 0, by Definitions 1 and 2, we have
ηk = ηk−1 − γ∇F (wk−1) + γξk(ηk−1) = (Id − γHF )ηk−1 + γξaddk + γξmult

k (ηk−1), which gives:

α0
k = ηk − η0k =

{
(Id − γHF )ηk−1 + γξaddk + γξmult

k (ηk−1)

}
−
{
(Id − γHF )η

0
k−1 + γξaddk

}
= (Id − γHF )(ηk−1 − η0k−1) + γξmult

k (ηk−1)

= (Id − γHF )(ηk−1 − η0k−1) + γξmult
k

(
ηk−1 − η0k−1

)
+ γξmult

k

(
η0k−1

)
,

which is possible because ξmult
k is linear (Assumption 3). To go from r to r + 1, we have αr+1

k =

ηk −
∑r+1

i=0 η
i
k = ηk −

∑r
i=0 η

i
k − ηr+1

k . Then by definition of ηr+1
k and using the hypothesis:

αr+1
k = (Id − γHF )

(
ηk−1 −

r∑
i=0

ηik−1

)
+ ξmult

k

(
ηk−1 −

r∑
i=0

ηik−1

)
+ γξmult

k

(
ηrk−1

)
− (Id − γHF )η

r+1
k−1 − γξmult

k

(
ηrk−1

)
= (Id − γHF )

(
ηk−1 −

r+1∑
i=0

ηik−1

)
+ ξmult

k

(
ηk−1 −

r+1∑
i=0

ηik−1

)
+ γξmult

k

(
ηr+1
k−1

)
,

again by linearity. This concludes the proof.

The next lemma is the adaptation to our settings of Lemma 1 from Bach and Moulines (2013). We
give a bound on E[∥H1/2

F αr
K−1∥2] with a quantity that tends to 0. This result will be used in the final

demonstration of Theorem S3.
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Lemma S5 (Bound on ηK −∑r
i=0 η

i
K). Under the setting given in Definition 1, considering that

ξmult
k is linear (Assumption 3), for any r,K in N × N∗ and any step-size γ s.t. γ(R2

F +M2) ≤ 1,
the recursion αr

K = ηK −∑r
i=0 η

i
K verifies the following bound:

∀r ≥ 0, (1− γ(R2
F +M2))E

〈
αr
K−1, HFα

r
K−1

〉
≤ γ

K

K∑
k=1

E∥ξmult
k

(
ηrk−1

)
∥2 .

Proof Let r, k in N × N∗, we denote αr
k = ηk −

∑r
i=0 η

i
k, then we have shown in Lemma S4 that:

αr
k = (Id − γHF )α

r
k−1 + ξmult

k

(
αr
k−1

)
+ γξmult

k

(
ηrk−1

)
.

Taking the squared norm and developing it:

∥αr
k∥2 =

∥∥αr
k−1

∥∥2 + 2γ
〈
αr
k−1, ξ

mult
k

(
αr
k−1

)
+ ξmult

k

(
ηrk−1

)
−HFα

r
k−1

〉
+ γ2∥ξmult

k

(
αr
k−1

)
+ ξmult

k

(
ηrk−1

)
−HFα

r
k−1∥2 ,

and developing the last term with Inequality 1 leads to:

∥αr
k∥2 ≤

∥∥αr
k−1

∥∥2 + 2γ
〈
αr
k−1, ξ

mult
k

(
αr
k−1

)
+ ξmult

k

(
ηrk−1

)
−HFα

r
k−1

〉
+ 2γ2

{
∥ξmult

k

(
ηrk−1

)
∥2 + ∥HFα

r
k−1 − ξmult

k

(
αr
k−1

)
∥2
}
.

Because αr
k−1 is Fk−1-measurable and E[ξmult

k

(
αr
k−1

)
| Fk−1] = 0 (expectation of ξmult

k (·) is zero,
see Definitions 1 and 2), taking expectation w.r.t. the σ-algebra Fk−1, using Assumption 3 and again
Definition 1 gives:

E[∥HFα
r
k−1 − ξmult

k

(
αr
k−1

)
∥2 | Fk−1] = E[∥HFα

r
k−1∥2 | Fk−1]

+ E[∥ξmult
k

(
αr
k−1

)
∥2 | Fk−1]

≤ (R2
F +M2)∥H1/2

F αr
k−1∥2 .

Hence:

E[∥αr
k∥2 | Fk−1] ≤ ∥αr

k−1∥2 − 2γ(1− γ(R2
F +M2))

〈
αr
k−1, HFα

r
k−1

〉
+ 2γ2E[∥ξmult

k

(
ηrk−1

)
∥2 | Fk−1] ,

which gives when taking full expectation and averaging over K in N∗:

(1− γ(R2
F +M2))

1

K

K∑
k=1

E
〈
αr
k−1, HFα

r
k−1

〉
≤ 1

2γ
(∥αr

0∥2 −
∥∥αr

k−1

∥∥2)
+

γ

K

K∑
k=1

E[∥ξmult
k

(
ηrk−1

)
∥2] ,

and by convexity
〈
αr
K−1, Hαr

K−1

〉
⩽ 1

K

∑K
k=1

〈
αr
k−1, HFα

r
k−1

〉
, which allows to conclude as

αr
0 = 0.
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In below lemma, we bound E
[
ηrk−1 ⊗ ηrk−1

]
for r, k in N × N∗. It is required because we will use

Lemma 2 from Bach and Moulines (2013) and apply it to the sequence (ηrk−1)k∈N∗,r∈N. The noise
process of this sequence is equal to ξmult

k

(
ηr−1
k−1

)
; and computing the expectation of its covariance

involves knowing E
[
ηrk−1 ⊗ ηrk−1

]
.

Lemma S6 (Bounding the covariance of ηrk−1). Under the setting in Definition 1, under Assump-
tions 1, 3 and 4, i.e. considering that ξmult

k (·) is linear, for any K in N∗, any step-size γ > 0, and
for any r ≥ 0, we have the following bound on the covariance of ηrk−1:

E
[
ηrk−1 ⊗ ηrk−1

]
≼ γr+1XaddXr

multId .

Proof
Let r > 0, we first prove by recursion that we have:

∀k > 0 , ηr+1
k = γ

k∑
i=1

(Id − γHF )
k−iξmult

i (ηri−1) .

For k = 0, we indeed have ηr+1
0 = 0. To go from k to k + 1:

ηr+1
k+1 = (Id − γHF )η

r+1
k + γξmult

k+1 (η
r
k) by definition,

= γ
k∑

i=1

(Id − γHF )
k−iξmult

i (ηri−1) + γ(Id − γHF )
(k+1)−(k+1)ξmult

k+1 (η
r
k) ,

by hypothesis, which allows concluding.
We now prove by recursion the main result of the lemma.
Initialization. For r = 0, by definition, we have η0k = (Id − γHF )η

0
k−1 + γξaddk , unrolling the sum

gives η0k = (Id − γHF )
kη00 + γ

∑k
i=1(Id − γHF )

k−iξaddi . Because we consider η00 = 0 and given
that the sequence of noise (ξaddi )i∈J1,kK is independent at each iterations, we have:

E
[
η0k ⊗ η0k

]
= γ2

k∑
i=1

(Id − γHF )
k−iE

[
ξaddi ⊗ ξaddi

]
(Id − γHF )

k−i .

Because the sequence of additive noise (ξaddi )i∈N∗ is i.i.d., for any i in {1, · · · , k}, we have that
E
[
ξaddi ⊗ ξaddi

]
= Cania ≼ XaddHF (Assumption 4.1), hence:

E
[
η0k ⊗ η0k

]
≼ γ2

k∑
i=1

(Id − γHF )
k−iXaddHF (Id − γHF )

k−i .

These matrices commute:

E
[
η0k ⊗ η0k

]
≼ γ2Xadd

k∑
i=1

(Id − γHF )
2k−2iHF , and because it is a geometric sum:

≼ γ2Xadd

(
Id − (Id − γHF )

2k−2
) (

Id − (Id − γHF )
2
)−1

HF

≼ γ2Xadd

(
Id − (Id − γHF )

2k−2
) (

2γHF − γ2H2
F

)−1
HF

≼ γXaddH
−1
F HF because γHF ≼ Id,

≼ γXaddId .
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Recursion. Let r ≥ 0, to go from r to r + 1, we start writing:

ηr+1
k ⊗ ηr+1

k = γ2
k∑

i=1

(Id − γHF )
k−1−iξmult

i (ηri−1)⊗ ξmult
i (ηri−1)(Id − γHF )

k−1−i .

Now we use linearity of the multiplicative noise (Assumption 3), thus there exists a matrix Ξk in
Rd×d s.t. for any z in Rd, we have ξmult

k (z) = Ξkz, and it leads to:

ηr+1
k ⊗ ηr+1

k = γ2
k∑

i=1

(Id − γHF )
k−iΞi(η

r
i−1 ⊗ ηri−1)Ξ

⊤
i (Id − γHF )

k−i .

Taking full expectation, we have:

E
[
ηr+1
k ⊗ ηr+1

k

]
= γ2

k∑
i=1

(Id − γHF )
k−iE

[
E
[
Ξi(η

r
i−1 ⊗ ηri−1)Ξ

⊤
i

∣∣∣ σ(Ξi)
]]

(Id − γHF )
k−i

= γ2
k∑

i=1

(Id − γHF )
k−iE

[
ΞiE[η

r
i−1 ⊗ ηri−1 | σ(Ξi)]Ξ

⊤
i

]
(Id − γHF )

k−i ,

and because for any i in {1, · · · , k}, ηri−1 is independent of Ξi, we have E
[
ηri−1 ⊗ ηri−1

∣∣ σ(Ξi)
]
=

E
[
ηri−1 ⊗ ηri−1

]
≼ γr+1XaddXr

multId, where we use the hypothesis for r. We have in the end:

E
[
ηr+1
k ⊗ ηr+1

k

]
≼ γr+3XaddXr

mult

k∑
i=1

(Id − γHF )
k−iE

[
ΞiΞ

⊤
i

]
(Id − γHF )

k−i .

Furthermore, by Assumption 4.2 we have E
[
ΞiΞ

⊤
i

]
≼ XmultHF , thus:

E
[
ηr+1
k ⊗ ηr+1

k

]
≼ γr+3XaddXr+1

mult

k∑
i=1

(Id − γHF )
2k−2−2iHF

≼ γr+3XaddXr+1
multγ

−1H−1
F HF ,

because
∑k

i=1(Id− γHF )
2k−2−2i =

(
Id − (Id − γHF )

2k
) (

2γHF − γ2H2
F

)−1
≼ γ−1H−1

F . In the
end, we have E[ηr+1

k ⊗ ηr+1
k ] ≼ γr+2XaddXr+1

multId, which concludes the proof.

C.3 Final theorem

In this section, we gather the pieces of proof required to demonstrate Theorem 2. As done in
Appendix B, we consider separately the noise process and the noise-free process, then put them
together to obtain the final result.

Theorem S3 (Linear multiplicative noise, convex case). Under Assumption 1, under Assumptions 3
and 4 i.e. with a linear multiplicative noise, considering any constant step-size γ such that γ(R2

F +
M2) ≤ 1 and 4γXmultR

2
F ≤ 1, then for any K in N∗, the sequence (wk)k∈N∗ produced by a

setting such as in Definition 1, verifies the following bound:

E[F (wK−1)− F (w∗)] ≤
1

2K

(
∥η0∥√

γ
+
√

Tr
(
CaniaH

−1
F

)
+

(γdXaddXmult)
1/2

1−
√

γXmult

)2

.
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Proof Let K in N∗, the proof relies on the proof presented by Bach and Moulines (2013) and is
done separately for the noise process and for the noise-free process that depends only on the initial
condition. The bounds may then be added (see the discussion in Appendix C.1).
Noise-free process. As in section A.3 from Bach and Moulines (2013), we assume here that the
additive noise (ξaddk )k∈N∗ is uniformly equal to zero and that γ(R2

F +M2) ≤ 1. Using Definitions 1
and 2, we thus have for any k in N∗ that ηk = ηk−1 − γHF ηk−1 + γξmult

k (ηk−1), it flows:

E[∥ηk∥2] = E[∥ηk−1∥2]− 2γE[⟨ηk−1, HF ηk−1⟩] + γ2E[∥HF ηk−1 − ξmult
k (ηk−1)∥2]

= E[∥ηk−1∥2]− 2γE[⟨ηk−1, HF ηk−1⟩] + γ2E[∥HF ηk−1∥2] + γ2E[∥ξmult
k (ηk−1)∥2] .

Considering that HF ≼ Tr (HF ) Id ≼ R2
F Id and using Assumption 3, we obtain:

E[∥ηk∥2] ≤ E[∥ηk−1∥2]− 2γE[∥H1/2
F ηk−1∥2] + γ2(R2

F +M2)E[∥H1/2
F ηk−1∥2] .

Because the step-size γ is s.t. γ(R2
F +M2) ≤ 1, we recover that in the absence of noise, we have:

E[∥H1/2
F ηK−1∥2] ≤

∥η0∥2
γK

. (S16)

Noise process. Now, all the following results comes from Appendix C.2 where we assume that
η0 = w0 − w∗ = 0, we start using Minkowski’s inequality S1:

E
[
∥H1/2

F ηK−1∥2
]1/2

≤ E

[
∥H1/2

F

r∑
i=0

ηiK−1∥2
]1/2

+ E

[
∥H1/2

F (ηK−1 −
r∑

i=0

ηiK−1)∥2
]1/2

.

(S17)

First term.
Let r ∈ N, again using Minkowski’s inequality S1, we have

E[∥H1/2
F

r∑
i=0

ηiK−1∥2]1/2 ≤
r∑

i=0

E[∥H1/2
F ηiK−1∥2]1/2

= E[∥H1/2
F η0K−1∥2]1/2 +

r∑
i=1

E[∥H1/2
F ηiK−1∥2]1/2 . (S18)

By Equation (S15), we have η0k = (Id − γHF )η
0
k−1 + γξaddk , hence to bound the first term, we have

to apply Lemma 2 from Bach and Moulines (2013) to the sequence (η0k−1)k∈N∗ and we obtain

E[∥H1/2
F η0K−1∥2] ≤ Tr

(
CaniaH

−1
F

)
/K . (S19)

Let i in {1, · · · , r}, to bound the second term, we have to apply Lemma 2 from Bach and Moulines
(2013) to the sequence (ηik−1)k∈N∗ . To do so, we bound the covariance of the noise which is here
equal to ξmult

k

(
ηi−1
k−1

)
(by definition of ηik−1, see Equation (S15)).

Because the multiplicative noise is linear, using Assumption 3, there exists a matrix Ξk in Rd×d

s.t. ξmult
k

(
ηi−1
k−1

)
= Ξkη

i−1
k−1. It follows that taking the expectation w.r.t to the σ-algebra σ(Ξk), and

because ηi−1
k−1 is independent of it, using Lemma S6, we have:

E
[
ηi−1
k−1 ⊗ ηi−1

k−1

∣∣ σ(Ξk)
]
= E

[
ηi−1
k−1 ⊗ ηi−1

k−1

]
≼ γiXaddXi−1

multId .
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Thus, the noise ξmult
k

(
ηi−1
k−1

)
is such that:

E[ξmult
k

(
ηi−1
k−1

)
⊗ ξmult

k

(
ηi−1
k−1

)
| σ(Ξk)] = ΞkE

[
ηi−1
k−1 ⊗ ηi−1

k−1

]
Ξ⊤
k ≼ γiXaddXi−1

multΞkΞ
⊤
k .

Taking full expectation, we furthermore consider Assumption 4.2 which gives that: E
[
ΞiΞ

⊤
i

]
≼

XmultHF , hence:

E
[
ξmult
k

(
ηi−1
k−1

)
⊗ ξmult

k

(
ηi−1
k−1

)]
≤ γiXaddXi

multHF . (S20)

Using Lemma 2 from Bach and Moulines (2013) results to:
r∑

i=1

E[∥H1/2
F ηiK−1∥2]1/2 ≤

r∑
i=1

γiXaddXi
multTr

(
HFH

−1
F

)
/K . (S21)

In the end, we obtain from Equation (S18):

E[∥H1/2
F

r∑
i=0

ηiK−1∥2]1/2 ≤

√
Tr
(
CaniaH

−1
F

)
√
K

+

√
dXadd√
K

r∑
i=1

γi/2Xi/2
mult

≤

√
Tr
(
CaniaH

−1
F

)
√
K

+

√
γdXaddXmult

(
1− (γXmult)

r/2
)

√
K
(
1−√

γXmult

) .

Second term.
If γ(R2

F +M2) ≤ 1, Lemma S5 gives:

E

〈
ηK−1 −

r∑
i=0

ηiK−1, H(ηK−1 −
r∑

i=0

ηiK−1)

〉
≤ γ

(1− γ(R2
F +M2))K

K∑
k=1

E
[
∥ξmult

k

(
ηrk−1

)
∥2
]
.

(S22)

Furthermore,
∥∥ξmult

k

(
ηrk−1

)∥∥2 = Tr
(
ξmult
k

(
ηrk−1

)⊗2
)

, by reusing what has been written in the
previous paragraph (Equation (S20)), we obtain:

∥ξmult
k

(
ηrk−1

)
∥2 ≤ γr+1XaddXr+1

multTr (HF )

≤ γr+1XaddXr+1
multR

2
F (Definition 1).

It follows that we have:

E

〈
ηK−1 −

r∑
i=0

ηiK−1, H(ηK−1 −
r∑

i=0

ηiK−1)

〉
≤ γr+2XaddXr+1

multR
2
F

(1− γ(R2
F +M2))

. (S23)

Putting things together. In the end, from the Minkowski decomposition done in Equation (S17), we
combine the two terms and it leads to:

E
[〈
ηK−1, HF ηK−1

〉]1/2 ≤ (γr+2XaddXr+1
multR

2
F

(1− γ(R2
F +M2))

)1/2

+

√
Tr
(
CaniaH

−1
F

)
√
K

+

√
γdXaddXmult

(
1− (γXmult)

r/2
)

√
K
(
1−√

γXmult

) .

51



APPLICATION TO FEDERATED LEARNING

This implies that for any γXmult ≤ 1, we obtain, by letting r tend to +∞:

E
[〈
ηK−1, HF ηK−1

〉]1/2 ≤ 1√
K

(√
Tr
(
CaniaH

−1
F

)
+

(γdXaddXmult)
1/2

1−
√

γXmult

)
. (S24)

Final bound. We now take results derived from the part without noise, and the part with noise, to
get:

E[
〈
ηK−1, HF ηK−1

〉
]1/2 ≤ 1√

K

(
∥η0∥√

γ
+
√
Tr
(
CaniaH

−1
F

)
+

(γdXaddXmult)
1/2

1−
√
γXmult

)
,

which leads to the desired result considering that 4γXmult ≤ 1.

D. Validity of the assumptions made on the random fields

In this section, we verify that all the assumptions on the random fields done in Subsection 2.1 are
fulfilled in the setting of compressed least-squares regression analyzed in Section 3. To do so, we
first need to define the filtrations considered in this section.
For k in N∗, we note uk the noise that controls the randomization Ck(·) at round k. In Section 2, we
have denoted by Fk the σ-algebra generated by (x1, ε1, u1, · · · , xk, εk). In particular, wk and wk

are Fk-measurable. We also consider the following filtrations.

Definition S2. We note (Gk)k∈N the filtration associated with the features noise, (Hk)k∈N the
filtration associated with the output noise, and (Ik)k∈N the filtration associated with the stochastic
gradient noise, which is the union of the two previous filtrations. Thus, we define F0 = {∅} and for
k ∈ N∗:

Gk = σ (Fk−1 ∪ {xk})
Hk = σ (Fk−1 ∪ {εk})
Ik = σ (Fk−1 ∪ {xk, εk})
Fk = σ (Fk−1 ∪ {xk, εk, uk}) .

Note that there are two filtrations G and H for the two independent noises that are both involved
to compute the stochastic gradient. This will help us to compute the scalar product of these two
quantities.

We start by providing a bound on the distance between two compressions, this lemma will be used to
prove Property S3.

Lemma S7. For any compressor C in C verifying Lemma 1, for all x, y in Rd, we have:

E[∥C(x)− C(y)∥2] ≤ 2(ω + 1) ∥x∥2 + 2(ω + 1) ∥y∥2 .

Proof Let a compressor C in C and x, y in Rd, using Inequality 1, we have that:

∥C(x)− C(y)∥2 ≤ 2 ∥C(x)∥2 + 2 ∥C(y)∥2 .
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Taking expectation and using Lemma 1 allows to conclude:

E
[
∥C(x)− C(y)∥2

]
≤ 2(ω + 1) ∥x∥2 + 2(ω + 1) ∥y∥2 .

Now we prove that all the assumptions done in Section 2 are correct.

Property S1 (Validity of the setting presented in Definition 1). Consider Algorithm 2 in the context
of Model 2, we have that the setting presented in Definition 1 is verified.

Proof From Algorithm 2, we have for any k in N∗ and any w in Rd ξk(w − w∗) = ∇F (w) −
Ck(gk(w)). Because (gk)k∈N∗ and (Ck)k∈N∗ are by definition two sequences of i.i.d. random fields
(Algorithm 2), it follows that their composition is also i.i.d., hence (ξk)k∈N∗ is a sequence of i.i.d.
random fields.
Taking expectation w.r.t. the σ-algebra Ik, we have E [Ck(gk(w)) | Ik] = gk(w) (Lemma 1), next
with the σ-algebra Fk−1, we have E [gk(w) | Fk−1] = ∇F (w) (Equation 2). Hence, the random
fields are zero-centered.
From Model 2, we have for any k in N∗ and any w in Rd that:

F (w) =
1

2
E
[
(⟨xk, w⟩ − yk)

2
]
=

1

2
E
[
(w − w∗)⊤(xk ⊗ xk)(w − w∗)− 2εk ⟨xk, w − w∗⟩+ ε2k

]
=

1

2
((w − w∗)⊤H(w − w∗) + σ2) ,

hence F is quadratic with Hessian equal to H whose trace is equal to R2.

Property S2 (Validity of Assumption 1). Considering Algorithm 2 under the setting of Model 2 with
Lemma 1, for any iteration k in N∗, the second moment of the additive noise ξaddk can be bounded
by (ω + 1)R2σ2, i.e., Assumption 1 is verified.

Proof Let k in N∗. Because we consider Algorithm 2, with Definitions 1 and 2, we first have ξaddk =
−Ck(gk,∗), then with Lemma 1 we obtain E[∥Ck(gk,∗)∥2 | Ik] ≤ (ω + 1) ∥gk,∗∥2. Next, we first
have from Model 2 and Equation (2) that gk,∗ = εkxk, secondly because

(
(εk)k∈[K]

)
is independent

from
(
(xk)k∈[K]

)
(Model 2), we have that E[∥εkxk∥2] ≤ σ2R2, hence it results to:

E[∥ξaddk ∥2 | Fk−1] = E[∥ξaddk ∥2] ≤ (ω + 1)σ2R2 .

Property S3 (Validity of Assumption 2.1). Considering Algorithm 2, under the setting of Model 2
with Lemma 1, for any iteration k in N∗, the second moment of the multiplicative noise ξmult

k (w) can
be bounded for any w in Rd by 2(ω+1)R2

∥∥H1/2(w − w∗)
∥∥2+4(ω+1)σ2R2, i.e., Assumption 2.1

is verified.
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Proof Let k in N∗, we note η = w −w∗. First, because we consider Algorithm 2, with Definitions 1
and 2, we have ξk(η) = ∇F (w)− Ck(gk(w)) and ξaddk = −Ck(gk,∗), hence:

ξmult
k (η) = ξk(η)− ξaddk = ∇F (w)− Ck(gk(w)) + Ck(gk,∗) ,

thus developing the squared-norm of ξmult
k (η) gives:

∥ξmult
k (η)∥2 = ∥∇F (w)∥2 + 2 ⟨∇F (w), Ck(gk,∗)− Ck(gk(w))⟩+ ∥Ck(gk,∗)− Ck(gk(w))∥2 .

On the first side we have E [E [Ck(gk,∗)− Ck(gk(w)) | Ik] | Fk−1] = −∇F (wk−1). On the second
side, we use Lemma S7; this allows us to write:

E
[
∥Ck(gk,∗)− Ck(gk(w))∥2

∣∣∣ Ik] ≤ 2(ω + 1) ∥gk(w)∥2 + 2(ω + 1) ∥gk,∗∥2 .

Note that this bound is far from being optimal when gk(w) = gk,∗ or if C is the identity. Next, we
decompose as follows:

E
[
∥Ck(gk,∗)− Ck(gk(w))∥2

∣∣∣ Ik] ≤ 2(ω + 1) ∥gk(w)− gk,∗∥2

+ 4(ω + 1) ⟨gk(w)− gk,∗, gk,∗⟩+ 4(ω + 1) ∥gk,∗∥2 .

Taking expectation w.r.t. the σ-algebra Gk, recalling that gk(w) − gk,∗ is Gk-measurable (Defini-
tion S2) and considering Model 2 allows to write:

E
[
∥Ck(gk,∗)− Ck(gk(w)∥2

∣∣∣ Gk

]
≤ 2(ω + 1) ∥gk,∗ − gk(w)∥2 + 4(ω + 1)σ2R2

≤ 2(ω + 1) ∥(xk ⊗ xk)ηk−1∥2 + 4(ω + 1)σ2R2 ,

and now taking expectation w.r.t the σ-algebra Fk−1 concludes the proof:

E[∥Ck(gk,∗)− Ck(gk(w))∥2 | Fk−1] ≤ 2(ω + 1)R2∥H1/2(wk − w∗)∥2 + 4(ω + 1)σ2R2 .

Property S4 (Validity of Assumption 2.2). Considering Algorithm 2, under the setting of Model 2
with Lemma 1, for any iteration k in N∗, the second moment of the multiplicative noise ξmult

k (w)
can be bounded for any w in Rd by ΩR2σ∥H1/2(w − w∗)∥ + 3(ω + 1)R2∥H1/2(w − w∗)∥2, i.e.
Assumption 2.2 is verified.

Proof Let k in N∗, we note η = w − w∗. Because we consider Algorithm 2, with Definitions 1
and 2, we have the following decomposition:

ξmult
k (η) = ∥∇F (w)∥2 + 2 ⟨∇F (w), Ck(gk,∗)− Ck(gk(w))⟩+ ∥Ck(gk,∗)− Ck(gk(w))∥2 .

We take expectation w.r.t. the σ-algebra Ik and use Item L.2 of Lemma 1:

E
[
ξmult
k (η)

∣∣∣ Ik] ≤ ∥∇F (w)∥2 + 2 ⟨∇F (w), gk,∗ − gk(w)⟩
+Ωmin(∥gk,∗∥, ∥gk(w)∥)∥gk,∗ − gk(w)∥+ 3(ω + 1)∥gk,∗ − gk(w)∥2 .
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Then, we have min(∥gk,∗∥, ∥gk(w)∥)∥gk,∗ − gk(w)∥ ≤ ∥gk,∗∥∥gk,∗ − gk(w)∥, taking expectation
conditionally to the σ-algebra Fk−1, applying the Cauchy-Schwarz’s Equation (S3) and considering
Model 2, we have:

E[∥gk,∗∥∥gk,∗ − gk(w)∥ | Fk−1]
2 ≤ E[∥gk,∗∥2 | Fk−1]E[∥gk,∗ − gk(w)∥2 | Fk−1]

≤ σ2R4∥H1/2(w − w∗)∥2 .

Therefore, we can conclude:

E
[
ξmult
k (η)

∣∣∣ Fk−1

]
≤ −∥∇F (w)∥2 + σR2Ω∥H1/2(w − w∗)∥+ 3(ω + 1)R2∥H1/2(w − w∗)∥2 .

Property S5 (Validity of Assumption 3). Considering Algorithm 2, under the setting of Model 2
with Lemma 1, if the compressor C is linear, then for any iteration k in N∗, the multiplicative noise
ξmult
k is linear, thus there exist a matrix Ξk in Rd×d such that for any w in Rd, ξmult

k (w) = Ξkw.
Furthermore, the second moment of the multiplicative noise can be bounded for any w in Rd by
(ω + 1)R2

∥∥H1/2(w − w∗)
∥∥2, hence Assumption 3 is verified.

Proof Let k in N∗, we note η = w −w∗. First, because we consider Algorithm 2, with Definitions 1
and 2, we have ξk(η) = ∇F (w)− Ck(gk(w)) and ξaddk = −Ck(gk,∗), hence:

ξmult
k (η) = ξk(η)− ξaddk = ∇F (w)− Ck(gk(w)) + Ck(gk,∗) .

Because the random mechanism Ck is linear, there exists a random matrix Πk in Rd×d such that for
any z in Rd, we have Ck(z) = Πkz, it follows that:

ξmult
k (η) = ∇F (w) + Ck(gk,∗ − gk(w)) = (H −Πk(xk ⊗ xk))η .

Hence, the first part of Assumption 3 is verified with Ξk = H − Πk(xk ⊗ xk). Now, we compute
the second moment of the multiplicative noise. We start by developing its squared norm:

∥ξmult
k (η) ∥2 = ∥∇F (w)∥2 + 2 ⟨∇F (w), Ck(gk,∗ − gk(w))⟩+ ∥Ck(gk,∗ − gk(w))∥2 .

Taking expectation conditionally to the σ-algebra Ik, and using Lemma 1 gives:

E
[
∥ξmult

k (η))∥2
∣∣∣ Ik] = ∥∇F (w)∥2 + 2 ⟨∇F (w), gk,∗ − gk(w)⟩+ (ω + 1) ∥gk,∗ − gk(w)∥2 .

Finally, with σ-algebra Fk−1 and considering Model 2 we have:

E
[
∥ξmult

k (η) ∥2
∣∣∣ Fk−1

]
= −∥∇F (w)∥2 + (ω + 1)R2∥H1/2(w − w∗)∥2 ,

which allows to conclude.

Property S6 (Validity of Assumption 4). Considering Algorithm 2 under the setting of Model 2 with
Remark 1 and Lemma 1, if the compressor C is linear, then for any k in N∗, there exists a constant
XH > 0 s.t. Cania ≼ σ2XHHF and E

[
ΞkΞ

⊤
k

]
≼ R2XHH; Assumption 4 is thus verified.
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Proof
Let k in N∗, we note η = w − w∗. We first need to compute XH in Rd for each compressor C in
{Cq, Csq, Crd1, Cs, CΦ, CPP}, it comes from Proposition 2 which results having a constant XH s.t.:

C(C , pH) = EE∼pH [C(E)⊗2] ≼ XHH . (S25)

Indeed, Diag (H) car be bounded by Tr (H) Id, and then Id by µ−1H . This constant XH can be
computed from Proposition 2 for any compressor:

Compressor Crdh Cs CPP CΦ
XH

h−1
p(d−1) + (1− h−1

d−1 )
τ
p 1 + (1−p)τ

p
1
p

α−β
p + βτ

p

XH (if H diagonal) 1
p

1
p

1
p

α−β
p + βτ

p

Where p = h/d, τ = Tr (H) /µ, and for sketching α = h+2
d+2 and β = d−h

(d−1)(d+2) .
We now show that the two inequalities given in Assumption 4 are valid.
First inequality.
By Definition 3, we have Cania = E

[
ξaddk ⊗ ξaddk

]
= E

[
Ck(εkxk)⊗2

]
, because

(
(εk)k∈[K]

)
is

independent from
(
(xk)k∈[K]

)
(Model 2) and using compressor linearity and Equation (S25), it

gives: Cania = σ2E
[
Ck(xk)⊗2

]
= σ2C(C , pH) ≼ σ2XHH .

Second inequality.
Using Property S6, because the compressor C is linear, there exists two matrices Πk,Ξk in Rd×d s.t.
for any z in Rd, we have Ck(z) = Πkz and ξmult

k (z) = Ξkz, which gives that Ξk = H−Πk(xk⊗xk).
It follows that:

ΞkΞ
⊤
k = HH⊤ −HΠk(xk ⊗ xk)−Πk(xk ⊗ xk)H +Πk(xk ⊗ xk)(xk ⊗ xk)Π

⊤
k .

Given that the compression is unbiased (Lemma 1) we have E [Πk | Ik] = Id, hence:

E
[
ΞkΞ

⊤
k

∣∣∣ Ik] = HH⊤ −H(xk ⊗ xk)− (xk ⊗ xk)H + E
[
Πk(xk ⊗ xk)(xk ⊗ xk)Π

⊤
k

∣∣∣ Ik] ,
and now taking expectation w.r.t the σ-algebra Fk−1:

E
[
ΞkΞ

⊤
k

∣∣∣ Fk−1

]
= −HH⊤ + E

[
Πk(xk ⊗ xk)(xk ⊗ xk)Π

⊤
k

∣∣∣ Fk−1

]
.

In the end, we have that E
[
ΞkΞ

⊤
k

∣∣ Fk−1

]
≼ E

[
Πk(xk ⊗ xk)(xk ⊗ xk)Π

⊤
k

∣∣ Fk−1

]
, and if we

consider that the second moment of the features (xk)k∈N∗ is almost surely bounded (Remark 1), we
obtain:

E
[
ΞkΞ

⊤
k

∣∣∣ Fk−1

]
≼ R2E

[
Πk(xk ⊗ xk)Π

⊤
k

∣∣∣ Fk−1

]
≼ R2E

[
Ck(xk)⊗2

∣∣ Fk−1

]
. (S26)

Thus, using Equation (S25), we can state that E
[
ΞkΞ

⊤
k

∣∣ Fk−1

]
≼ R2XHH , which concludes the

second part of the verification of Assumption 4.
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E. Compression operators

In this Section, we provide additional details about compression operators. First, we prove in
Appendix E.1 that Lemma 1 hold and compute the compressor’s covariance given in Proposition 2.
The specific computations for sketching are given separately in Appendix E.2 because they are
more complex. Third, it allows to prove Propositions 3 and 4 in Appendix E.3. And finally, in
Appendix E.4, we plot the covariance matrix induced by quantization and sparsification for quantum
and cifar-10.

E.1 Computation of the variance and covariance of the compression operators

In this Subsection, we first prove Lemma 1. Item L.1 is frequently established in the literature and
corresponds to the worst-case assumption, see the introduction for references. On the other hand,
Item L.2 is the Hölder-type bound, which is not used in the literature up to our knowledge. Next, we
compute the compressors’ covariances that have been given in Proposition 2.

Lemma S8. For any compressor C ∈ {Cq, Csq, Crdh, Cs, CΦ, CPP}, there exists constants ω,Ω ∈ R∗
+,

such that the random operator C satisfies the following properties for all z, z′ ∈ Rd.

L.1: E[C(z)] = z and E[∥C(z)− z∥2] ≤ ω∥z∥2 (unbiasedness and variance relatively bounded),
L.2: E[∥C(z)− C(z′)∥2] ≤ Ωmin(∥z∥, ∥z′∥)∥z − z′∥+ 3(ω + 1)∥z − z′∥2(Hölder-type bound),

with ω =
√
d and Ω = 12

√
d (resp. ω = (1 − p)/p and Ω = 0) for Cq and Csq (resp. Crdh, Cs,

CΦ, CPP).

Proof

Value of ω (Item L.1 of Lemma 1). For projection-based compressors, the proof is straightforward,
for quantization-based, the proof can be found in Alistarh et al. (2017).

Value of Ω (Item L.2 of Lemma 1). For linear compressors, it is straightforward to obtain Ω = 0.
For quantization, we take x, y in Rd, we note (ui)

d
i=1 the vector controlling the randomness of

compression, and we write Cq(x)− Cq(y) = A+B + C, with:

1. A := ∥x∥sign(x)Bern( |x|
∥x∥)− ∥x∥sign(x)Bern( |x|

∥y∥)

2. B := ∥x∥sign(x)Bern( |x|
∥y∥)− ∥x∥sign(y)Bern( |y|

∥y∥)

3. C := ∥x∥sign(y)Bern( |y|
∥y∥)− ∥y∥sign(y)Bern( |y|

∥y∥).

We note ∥ · ∥ the 2-norm and ∥ · ∥1 the 1-norm. By symmetry, we suppose that ∥y∥2 ≥ ∥x∥2.
First term. We have ∥A∥2 = ∥x∥2∑d

i=1(1ui≤ |xi|
∥x∥

− 1
ui≤ |xi|

∥y∥
)2 = ∥x∥2∑d

i=1 12
|xi|
∥y∥≤ui≤ |xi|

∥x∥
because

∥y∥2 ≥ ∥x∥2. Taking expectation, it gives E[∥A∥2] = ∥x∥2∑d
i=1

|xi|
∥x∥ − |xi|

∥y∥ = ∥x∥2∥x∥1 ∥y∥−∥x∥
∥y∥∥x∥ .

Now with triangular inequality, we have:

E[∥A∥2] ≤ ∥x∥
∥y∥∥x∥1∥y − x∥ ≤ ∥x∥1∥y − x∥ ≤

√
d∥x∥∥y − x∥ ,

and by symmetry E[∥A∥2] ≤
√
dmin(∥x∥, ∥y∥)∥y − x∥.

Second term.
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We have ∥B∥2 = ∥x∥2∑d
i=1(sign(xi)1ui≤ |xi|

∥y∥
− sign(yi)1ui≤ |yi|

∥y∥
)2. Let i in [d], if sign(xi) =

sign(yi), then:

E
[
∥B∥2

]
= ∥x∥2

d∑
i=1

E

[
12

min(|xi|,|yi|)
∥y∥ ≤ui≤max(|xi|,|yi|)

∥y∥

]
=

∥x∥2
∥y∥

d∑
i=1

|yi − xi| ≤ ∥x∥∥x− y∥1 .

If sign(xi) ̸= sign(yi), developping (sign(xi)1ui≤ |xi|
∥y∥

− sign(yi)1ui≤ |yi|
∥y∥

)2, we have:

E
[
∥B∥2

]
= ∥x∥2

d∑
i=1

|xi|
∥y∥ +

|yi|
∥y∥ − 2sign(xi)sign(yi)

min(|xi|, |yi|)
∥y∥

=
∥x∥2
∥y∥

d∑
i=1

max(|xi|, |yi|) + 3min(|xi|, |yi|) .

Next, we have max(|xi|, |yi|) + min(|xi|, |yi|) = |xi|+ |yi|
sign(xi )̸=sign(yi)

= |xi − yi|, which results
to E

[
∥B∥2

]
≤ 3∥x∥2

∥y∥
∑d

i=1 |yi − xi| ≤ 3∥x∥∥x− y∥1 ≤ 3
√
d∥x∥∥x− y∥.

Third term. We have ∥C∥2 = (∥x∥ − ∥y∥)2∑d
i=1 12

ui≤ |yi|
∥y∥

, taking expectation, it gives:

E[∥C∥2] = (∥x∥ − ∥y∥)2
d∑

i=1

|yi|
∥y∥ ≤ ∥x− y∥2 ∥y∥1∥y∥ ≤

√
d∥x− y∥2 .

Overall, using Inequality 1, we have:

E[∥Cq(x)− Cq(y)∥2] ≤ 12
√
dmin(∥x∥, ∥y∥)∥x− y∥+ 3

√
d∥x− y∥2 ,

which allows to conclude as for 1-quantization, we have ω =
√
d.

We now compute the compressors’ covariance given in Proposition 2 and Corollary 3. However,
sketching requires more involved computations, they are provided in Appendix E.2.

Proposition S2 (Structure of the compressor’s covariance). The following formulas of compressors’
covariance hold:

• C(C∅, pM) = M

• C(Cq, pM) ≼ M +
√
Tr (M)

√
Diag (M)−Diag (M)

• C(Cs, pM) = M + 1−p
p Diag (M)

• C(CΦ, pM) = 1
p ((α− β)M + βTr (M) Id) with α = h+2

d+2 and β = d−h
(d−1)(d+2)

• C(Crdh, pM) = d(h−1)
h(d−1)M +

(
d
h − d(h−1)

h(d−1)

)
Diag (M)

• C(CPP, pM) = 1
pM .

Proof
In this proof, we denote F the σ-field generated by the random sampling of E ∼ pM ∈ PM , and G
the σ-field generated by the noise from the compression process. Let E ∼ pM ∈ PM .

Quantization. By definition, we have Cq(E) = ∥E∥2sign(E)⊙ χ, with χ =
(
Bern( |Ei|

∥E∥2 )
)d
i=1

. It

follows that Cq(E)⊗2 = ∥E∥22sign(E)⊗2 ⊙ χ⊗2.
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Because:

E
[
χ⊗2

∣∣ F] =


|Ei|
∥E∥2 if i = j

|Ei| |Ej |
∥E∥22

else,

and considering that sign(E)⊗2 =

 1 sign(Ei)sign(Ej)
. . .

sign(Ei)sign(Ej) 1

 , we have:

E
[
Cq(E)⊗2

∣∣ F] =
 ∥E∥2 |Ei| if i = j ,

EiEj else.

Taking the complete expectation gives:

E
[
Cq(E)⊗2

]
=

 E [∥E∥2 |Ei|] if i = j

Mij else.

Changing the diagonal to make appear M , we obtain:

E
[
Cq(E)⊗2

]
= M + E

[
∥E∥2Diag (|Ei|)di=1

]
− E

[
Diag

(
E2

i

)d
i=1

]
.

Furthermore, we first have that E
[
Diag

(
E2

i

)d
i=1

]
= Diag (M) and secondly, by Cauchy-Schwarz

Equation (S3) that:

E
[
∥E∥2Diag (|Ei|)di=1

]2
≼ E

[
∥E∥22

]
E
[
Diag

(
E2

i

)d
i=1

]
= Tr (M)Diag (M) ,

which finally gives E
[
Cq(E)⊗2

]
≼ M +

√
Tr (M)

√
Diag (M)−Diag (M) .

Sparsification. By definition, we have Cs(E) = 1
pB ⊙ E ∈ Rd, with B ∼ (Bern(p))di=1, thus

Cs(E)⊗2 = 1
p2
B⊗2⊙E⊗2. Taking the expectation w.r.t. to the σ-filtration F , we have E

[
Cs(E)⊗2

∣∣ F] =
1
p2
P ⊙E⊗2 with P =

 p p2

. . .
p2 p

 , because for all i, j in J1, dK, we have E
[
B2

i

∣∣ F] = p and

E [BiBj | F ] = p2. This naturally gives: E
[
Cs(E)⊗2

]
= 1

p2
P ⊙M .

Sketching. The proof is more complex and therefore is given separately, in Appendix E.2.3.
Rand-h. By definition, we have Crdh(E) := d

hB(S) ⊙ E with S ∼ Unif(Ph([d])) and B(S)i =
1i∈S , thus Crdh(E)⊗2 = 1

p2
B⊗2⊙E⊗2 (p = h/d). We have that for any i, j in {1, . . . , d}, Bi and Bj

are not independent and that Bi ∼ (Bern(p)), therefore we have that E[B2
i ] = p and that: h2 =(∑d

i=1Bi

)2
=
∑d

i=1B
2
i +

∑
i ̸=j BiBj . Taking expectation, it gives h2 = h+ d(d− 1)E[BiBj ]

i.e. E[BiBj ] =
h(h−1)
d(d−1) . Taking the expectation w.r.t. to the σ-filtration F , we have :

E
[
Crdh(E)⊗2

∣∣ F] = d(h− 1)

h(d− 1)
E⊗2 +

(
d

h
− d(h− 1)

h(d− 1)

)
Diag

(
E⊗2

)
.
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And taking full expectation allows conclusion.
Partial Participation. This result is straightforward.

E.2 Variance and covariance of sketching

In this Subsection, we compute the expectation, the variance, and the covariance of sketching. In
Appendix E.2.1, we give the proof principle of our computation, in Appendix E.2.2, we compute the
expectation and the variance, and in Appendix E.2.3, we compute the covariance.
We thank Baptiste Goujaud (École polytechnique, CMAP) who greatly helped to prove the following.

E.2.1 PROOF PRINCIPLE

Let y in Rd with ∥y∥2 = 1, and x in Rd. By Definition 4, for Φ in Rh×d, we have CΦ(x) = 1
pΦ

†Φx

with Φ† = Φ⊤(ΦΦT )−1 and p = h/d.
To compute the expectation, the variance, and the covariance of CΦ(x), the idea is to compute E[y⊤CΦ(x)]
and E[(y⊤CΦ(x))

2] by establishing Equation (S27) which allows controlling the randomness of
sketching by using Equation (S28). To establish Equation (S27), first observe that pCΦ(· · · ) is a
projector into a subspace of dimension h, indeed we have (pCΦ ⊙ pCΦ)(x) = pCΦ(x). Then there
exists a random matrix P in Od s.t. pCΦ(x) = P⊤JhPx. It leads to:

y⊤CΦ(x) =
1

p
y⊤P⊤JhPx =

1

p
(Py)⊤Jh(Px) .

Now we note X = Px/∥x∥ and Y = Py, hence y⊤CΦ(x) =
∥x∥
p Y ⊤JhX , and because P is in Od,

we have: 
∥X∥2 = 1

∥Y ∥2 = ∥y∥2 = 1
⟨X,Y ⟩ = ⟨x, y⟩ /∥x∥ .

Furthermore, P is a random projector, it follows that X and Y are sampled uniformly from the
zero-center sphere of radius 1; i.e. X ∼ Unif(Sd(0, 1)) and Y ∼ Unif(Sd(0, 1)). However, X
and Y are not independent, this is why, we consider that X ∼ Unif(Sd(0, 1)) and write Y s.t.
Y = aX + bu with u a random vector in Rd of norm 1 orthogonal to X , that is to say, u|X is
uniformly sampled on a zero-centered hyper-sphere of radius 1 orthogonal to the vector X (see
illustration on Figure S3). It comes that:

y⊤CΦ(x) =
∥x∥
p

Y ⊤JhX =
∥x∥
p

(aX⊤ + buT )JhX =
∥x∥
p

(aX⊤JhX + bu⊤JhX) . (S27)

Observe that for any i, j in {1, · · · , d}, Xi, Xj (resp. ui, uj) have the same law, it results to:

∀(i, j) ∈ {1, · · · , d}2, ∀k ∈ N, E[Xk
i ] = E[Xk

j ] and E[uki ] = E[ukj ] . (S28)

This property is the key to compute the expectation, the variance, and the covariance of sketching.
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Figure S3: Sphere zero-center
with radius 1: X and u are or-
thogonal.

We now compute a and b. First, by definition, we have:

⟨x, y⟩
∥x∥ = ⟨X,Y ⟩ = a ∥X∥2 = a ,

then we write that:

1 = ∥Y ∥2 = ⟨x, y⟩2
∥x∥4 ∥X∥2 + b2 ∥u∥2 = ⟨x, y⟩2

∥x∥2 + b2 ,

which gives b =

√
1− ⟨x,y⟩2

∥x∥2 .

At the end, we have: Y = aX + bu = ⟨x,y⟩
∥x∥ X +

√
1− ⟨x,y⟩2

∥x∥2 u.

E.2.2 EXPECTATION AND VARIANCE OF SKETCHING

In this Subsection, we prove that sketching verifies Item L.1 in Lemma 1; for this purpose, we show
that it is unbiased, then we compute its variance.

Proposition S3. Sketching is unbiased and its variance is relatively bounded, i.e., it verifies Item L.1
in Lemma 1 with ω = (1− p)/p where p = h/d.

Proof Starting from Equation (S27), we have y⊤CΦ(x) =
∥x∥
p (aX⊤JhX + bu⊤JhX). We first

compute the expectation w.r.t. the σ-algebra σ({X}) generated by the noise involved in the random
vector X , it gives:

E[y⊤CΦ(x) | σ({X})] = ∥x∥
p

h∑
i=1

aX2
i + bXiE [ui | σ({X})] .

Because u is sampled uniformly from the zero-center sphere of radius 1 s.t. it is orthogonal to X , for
any i in {1, · · · , d}, we have E[ui | σ({X})] = 0, hence taking full expectation, we obtain:

E[y⊤CΦ(x)] =
∥x∥
p

h∑
i=1

aE[X2
i ] .

Using Equation (S28), we have E[X2
i ] =

1
d

∑d
j=1 E[X2

j ], next recalling that p = h/d and ∥X∥2 =
1, it leads to E[y⊤CΦ(x)] = a∥x∥E[

∑d
j=1X

2
j ] = a∥x∥E[∥X∥2] = a∥x∥. And because a =

⟨x, y⟩ /∥x∥, we have at the end that E[CΦ(x)] = x. Now we compute the variance:

E[CΦ(x)
⊤CΦ(x)] =

1

p2
E[x⊤P⊤JhPP⊤JhPx] =

1

p2
E[x⊤P⊤JhPx] =

∥x∥2
p2

E[X⊤JhX] .

E[X⊤JhX] has been computed above and is equal to p, it results that E[CΦ(x)
⊤CΦ(x)] = ∥x∥2 /p.

In the end, sketching verifies Lemma 1 with ω = (1− p)/p.
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E.2.3 COVARIANCE OF SKETCHING.

In this Subsection, we compute the covariance of sketching. For the sake of demonstration, we need
to compute the 4th-moment of X1 and the 2nd-moment of u1. For any i in [d] and any vector v in
Rd, we note v−i = (vj)j∈[d],j ̸=i in Rd−1.

Computing the 4th-moment of X1.
The marginal density of X1 is fX1 : x 7→ B(d−1

2 , 12)
−1(1 − x2)(d−3)/2 where B is the beta

function defined as B : x, y 7→
∫ 1
0 tx−1(1 − t)y−1 = 2

∫ π/2
0 sin2x−1(t) cos2y−1(t)dt. This result

can be obtained either by an application of the formula for the surface area of a sphere (Li, 2010;
Sidiropoulos, 2014), either by writing that X1 =

Z1
∥Z∥ with Z a Gaussian vector with d components.

Therefore we have that:

E[X4
1 ] =

∫ 1
−1 x

4(1− x2)(d−3)/2dx

2
∫ π/2
0 sind−2(t)dt

(i)
=

2
∫ π/2
0 cos4(t) sind−2(t)dt

2
∫ π/2
0 sind−2(t)dt

(ii)
=

Wd−2 − 2Wd +Wd+2

Wd−2
,

where at (i) we set x = cos(t) and at (ii) we make appears the Wallis’ integrals defined for any n in
N as Wn =

∫ π/2
0 sinn(t)dt. Furthermore, we have the following recursion using integration by parts:

Wd+2 =
d+1
d+2Wd, therefore, we have:

E[X4
1 ] =

(
1− 2(d− 1)

d
+

(d− 1)(d+ 1)

d(d+ 2)

)
=

3

d(d+ 2)
. (S29)

Computing the 2nd-moment of u1 w.r.t the σ-algebra σ(X).

Figure S4: Parallel hyperplanes P and P ′ with the
sphera S.

We define three (d− 2)–dimensional man-
ifolds, two parallel hyperplanes P, P ′ and
a sphere S, as follows:


P = {ũ ∈ Rd−1 | ⟨ũ, X−i⟩ = −Xiui}
P ′ = {ũ ∈ Rd−1 | ⟨ũ, X−i⟩ = 0}
S = Sd−1(0,

√
1− u21)

Obviously u−i is in P ∩ S; then we de-
compose u−i in two terms n+ v, with v ∼
Unif(P ′) orthogonal to X and independent
of ui: n is the center of the sphere S ∩ P
and v is its radius, n corresponds also to the normal vector of both P, P ′ with norm equal to the
distance between the two hyperplanes, hence n = ⟨u−i,X−i⟩

∥X−i∥2 X−i = − uiXi
∥X−i∥2X−i.

First, because u−1 ∈ S, we have ∥n+ v∥2 = 1− u21, next by Pythagorean theorem this is equivalent

to ∥v∥2 = 1 − u21 − ∥n∥2 = 1 − u2
1

∥X−1∥2 . Second, because u−1 ∈ P , we have u1 = −⟨u−1,X−1⟩
X1

,
that is to say the probability density function of u1 | X is proportional to the number of possible
values for u−1, which corresponds to the surface area of the hypersphere P ∩ S. This surface is
proportional to the radius ∥v∥d−4 = (1− u2

1
∥X−1∥2 )

(d−4)/2 given that P ∩ S is a (d− 3)–dimensional
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manifold, therefore:

E[u21 | σ({X})] =
∫ ∥X−1∥
−∥X−1∥ x

2
(
1− x2

∥X−i∥2
)(d−4)/2

dx∫ ∥X−1∥
−∥X−1∥

(
1− x2

∥X−i∥2
)(d−4)/2

dx

(i)
=

∥X−1∥2
∫ 1
−1 y

2
(
1− y2

)(d−4)/2
dy∫ 1

−1 (1− y2)(d−4)/2 dy

(ii)
= ∥X−1∥2

Wd−3 −Wd−1

Wd−3
,

where at (i) we set y = x
∥X−1∥ and at (ii) we reuse the previous computations to make appear the

Wallis’ integral. In the end, we obtain:

E[u21 | σ({X})] = (1− d− 2

d− 1
)∥X−1∥2 =

∥X−1∥2
d− 1

. (S30)

Note that this result is consistent with the fact that
∑d

i=1 E[u2i | σ({X})] = d−∑d
i=1 X

2
i

d−1 = 1. Now
we can compute the covariance of the sketching operator.

Proposition S4. Let x in pM , the covariance of sketching is equal to:

E[CΦ(x)⊗2] =
1

p
((α− β)M + βTr (M) Id) ,

with α = h+2
d+2 and β = d−h

(d−1)(d+2) .

Proof
Let x in Rd and y in Rd with ∥y∥2 = 1, starting from Equation (S27), we have:

(y⊤CΦ(x))
2 =

∥x∥2
p2

(aX⊤JhX + bu⊤JhX)2

=
∥x∥2
p2

(
a2(X⊤JhX)2 + 2ab(X⊤JhXu⊤JhX) + b2(u⊤JhX)2

)
.

First term. Taking expectation, we have E[(X⊤JhX)2] =
∑h

i=1

(
E[X4

i ] +
∑h

j=1,j ̸=i E[X2
i X

2
j ]
)

.
However:

h∑
j=1,j ̸=i

E[X2
i X

2
j ] = E

X2
i

h∑
j=1,j ̸=i

X2
j

 (i)
= E

X2
i

h∑
j=1,j ̸=i

1

d− 1

d∑
k=1,k ̸=i

X2
k


(ii)
=

h− 1

d− 1
E
[
X2

i (1−X2
i )
]
,

where we use at line (i) Equation (S28) and at line (ii)
∑d

i=1X
2
i = 1. It follows that:

E[(X⊤JhX)2] =

h∑
i=1

(
d− h

d− 1
E[X4

i ] +
h− 1

d− 1
E
[
X2

i

])
(i)
=

h(d− h)

d− 1
E[X4

1 ] +
h− 1

d− 1

h∑
i=1

E
[
X2

i

]
(iii)
=

h(d− h)

d− 1
E[X4

1 ] +
h(h− 1)

d(d− 1)

eq. S29
=

3h(d− h)

d(d− 1)(d+ 2)
+

h(h− 1)

d(d− 1)
=

h(h+ 2)

d(d+ 2)
:= α′ .
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Where we considered at line (i) that for any i in {1, · · · , h}, E[X4
i ] = E[X4

1 ], and at line (ii) that∑h
i=1 E

[
X2

i

]
= h

dE[∥X∥2] = h/d.
Second term. We compute the expectation w.r.t. the σ-algebra σ({X}) generated by the noise
involved in the random vector X . It gives E

[
X⊤JhXu⊤JhX

∣∣ σ({X})
]
= 0, because u|X

is uniformly sampled on a zero-centered hyper-sphere, and thus for any i in {1, · · · , d}, we
have E[ui | σ({X})] = 0.
Third term. We have (u⊤JhX)2 =

∑h
i=1 u

2
iX

2
i +

∑h
j=1,j ̸=i uiujXiXj . On one side, we compute

the expectation w.r.t. the σ-algebra σ({X}) generated by the noise involved in the random vector X:

h∑
i=1

E
[
u2iX

2
i

∣∣ σ({X})
]
=

h∑
i=1

X2
i E
[
u2i
∣∣ σ({X})

] eq. S30
=

1

d− 1

h∑
i=1

X2
i ∥X−i∥2 .

Taking full expectation, we have
∑h

i=1 E[u2iX
2
i ] =

1
d−1

∑h
i=1 E[X2

i (1−X2
i )] =

h
d−1(

1
d − E[X4

1 ]),
because for any i in {1, . . . , h}, E[X4

i ] = E[X4
1 ] and

∑h
i=1 E

[
X2

i

]
= h

dE[∥X∥2] = h/d.
Let i in [d], on the other side, we compute the expectation w.r.t. the σ-algebra σ({X,ui}) generated
by the noise involved in the random vector X and the random variable ui, hence we requires
to compute E [uj | σ({X,ui})]. To do so, as before, we decompose u−i in two terms n + v (see
Figure S4), with v ∼ Unif(P ′) orthogonal to X and independent of ui, hence E [v | σ({X,ui})] = 0.
It gives that E [u−i | σ({X,ui})] = − uiXi

∥X−i∥2X−i. Thereby, replacing for any coordinate j ̸= i in
[d] the value of u−i and taking expectation w.r.t. the σ-algebra σ({X}), we obtain:

h∑
i=1

h∑
j=1,j ̸=i

XiXjE [uiuj | σ({X})] = −
h∑

i=1

h∑
j=1,j ̸=i

1

∥X−i∥2
X2

i X
2
j E
[
u2i
∣∣ σ({X})

]
eq. S30
= − 1

d− 1

h∑
i=1

h∑
j=1,j ̸=i

X2
i X

2
j

= − 1

d− 1

h∑
i=1

h∑
j=1,j ̸=i

X2
i

1−X2
i

d− 1
.

Finally, we have:
∑h

i=1

∑h
j=1,j ̸=i E[XiXjuiuj ] = − h(h−1)

d(d−1)2
(1 −∑d

i=1 E[X4
i ]). Putting together

the two terms, we have that:

E
[
(u⊤JhX)2

]
=

h

d− 1
(
1

d
− E[X4

i ])−
h(h− 1)

d(d− 1)2
(1− dE[X4

1 ])
eq. S29
=

h(d− h)

d(d− 1)(d+ 2)
:= β′ .

In the end, we have E[(y⊤CΦ(x))
2] = ∥x∥2

p2
(a2α′ + b2β′). And because ∥y∥2 = 1, a = ⟨x, y⟩ /∥x∥

and b =
√

1− ⟨x, y⟩2 /∥x∥2, replacing them by their values gives:

y⊤E[CΦ(x))
⊗2]y =

∥x∥2
p2

(
α′ ⟨x, y⟩2

∥x∥2 + β′
(
y⊤y − ⟨x, y⟩2

∥x∥2

))
,

hence E[CΦ(x))
⊗2] = 1

p2

(
(α′ − β′)xx⊤ + β′ ∥x∥2 Id

)
. To conclude, we consider that x is a ran-

dom variable sampled from a distribution pM , then taking expectation on this random variable we
have: ECΦ(x)

⊗2 = 1
p ((α− β)M + βTr (M) Id), with α = α′

p = h+2
d+2 and β = β′

p = d−h
(d−1)(d+2) .
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Figure S5: H not diagonal, scenario using features standardization. Scatter plot of (xk)
K
i=1/

(C(xk))Ki=1 with its ellipse ECov[xk]/ECov[C(xk)].

E.3 Proof of Propositions 3 and 4

In this Subsection, we give the proof of Propositions 3 and 4 which provides generic comparisons
between the asymptotic convergence rate of compressors. We first give a lemma resulting from the
Cauchy-Schwarz’s inequality necessary to establish these proofs.

Lemma S9 (Cauchy-Schwarz’s inequality on matrices’ traces). For any matrix M in Rd×d, we
have Tr (M) Tr

(
M−1

)
≥ d2, with strict inequalities if M is not proportional to Id. And if M is

with constant diagonal equal to c in R, we have cTr
(
M−1

)
≥ d.

Proof Let M in Rd×d, using the Cauchy-Schwarz inequality, we have:

d2 = Tr (Id)
2 = Tr

(
M1/2M−1/2

)2 C.S
≤ Tr (M) Tr

(
M−1

)
,

and we have equality if M is proportional to Id.

Now we give the demonstration of Propositions 3 and 4. On Figure S5, we complete the numerical
illustration provided in Subsection 3.3.1 by illustrating the scenario of standardized features, i.e.,
when the diagonal of M is the identity.

Proposition S5 (Comparison between CPP, Cs, Crdh, CΦ, ω = d/h− 1). We consider C ∈ {CPP, Cs,
Crdh, CΦ} with p = h/d, such that C always satisfies Lemma 1 with ω = d/h − 1. For any
matrix M ∈ Rd×d:

1. If M is diagonal, then:

• C(CPP, pM) = C(Cs, pM) = C(Crdh, pM) = d
hM ,

• Tr
(
C(CPP/s/rdh, pM)M−1

)
≤ Tr

(
C(CΦ, pM)M−1

)
.

2. Moreover, for any matrix M with a constant diagonal (e.g., after standardization), we have:

Tr(C(CPP, pM)M−1) ≤ Tr(C(CΦ, pM)M−1) ≤ Tr(C(Cs, pM)M−1) ≤ Tr(C(Crdh, pM)M−1) .

With strict inequalities if M is not proportional to Id.

Proof
Let M in Rd×d and take p = h/d.
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Proof of Item 1 in Proposition 3. In the diagonal case, the first equalities are straightforward as we
have C(CPP, pM) = C(Cs, pM) = C(Crd1, pM) = d

hM . Next, we have (regardless if M is diagonal
or not):

Tr
(
(C(CΦ, pM)− C(CPP, pM))M−1

)
= (

h+ 1

d+ 2
+ δhd − 1)

Tr (Id)

p
+ (1− h− 1

d− 1
)
Tr (M) Tr

(
M−1

)
p(d+ 2)

Lemma S9
≥ d

p

(
h+ 1

d+ 2
+ δhd − 1 +

d

d+ 2
(1− h− 1

d− 1
)

)
= 0 .

Proof of Item 2 in Proposition 3. Suppose now that Diag (M) = cId, then we have C(CPP, pM) =
d
hM , C(Cs, pM) = M + ( dh − 1)cId, C(Crdh, pM) = d(h−1)

h(d−1)M + d
h(1− h−1

d−1 )cId and C(CΦ, pM) =

d
h

(
(h+1
d+2 − δhd)M +

(
1− h−1

d−1

)
Tr(M)
d+2 Id

)
. Firstly, from previous item, we have

Tr
(
C(CPP, pM)M−1

)
≤ Tr (C(CΦ, pM))M−1 .

Secondly, we write:

Tr
(
(C(CΦ, pM)− C(Cs, pM))M−1

)
=

d

p
(
h+ 1

d+ 2
+ δhd −

h

d
)

+
cTr

(
M−1

)
p

(
d

d+ 2
(1− h− 1

d− 1
)− (1− h

d
)

)
=

d

p
(
h+ 1

d+ 2
+ δhd −

h

d
)− cTr

(
M−1

)
p

· (d− 2)(d− h)

d(d− 1)(d+ 2)
Lemma S9

≤ d

p

(
h+ 1

d+ 2
+ δhd −

h

d
− (d− 2)(d− h)

d(d− 1)(d+ 2)

)
= 0 .

Thirdly, we have:

Tr
(
(C(Crdh, pM)− C(Cs, pM))M−1

)
=

h− d

h(d− 1)
Tr (Id) +

d− h

h(d− 1)
cTr

(
M−1

)
Lemma S9

≥ d

h

(
h− d

d− 1
+

d− h

d− 1

)
= 0 .

Proposition S6 (Comparison between CPP, Cq, Cs, ω =
√
d ). We consider C ∈ {CPP, Cq, Cs} with

p = (
√
d+ 1)−1, such that C always satisfies Lemma 1 with ω =

√
d.

1. For any symmetric matrix M diagonal, we have:

Tr
(
C(CPP, pM)M−1

)
= Tr

(
C(Cs, pM)M−1

) possib. ≪
≤

(
1 +

1√
d

)
Tr
(
C̃(Cq,M)M−1

)
.

2. If M is not necessarily diagonal but with a constant diagonal (e.g., after standardization), then

66



DISTRIBUTED, COMPRESSED AND AVERAGED LEAST-SQUARES REGRESSION

• C̃(Cq,M) ≼ C(Cs, pM)

• Tr
(
C(CPP, pM)M−1

)
≤
(
1 + 1√

d

)
Tr
(
C̃(Cq,M)M−1

)
.

Proof
Let M in Rd×d and take p = 1

1+
√
d

.

Proof of Item 1 in Proposition 4. In the diagonal case with p = 1
1+

√
d
, we have C̃(Cq,M) =√

Tr (M)
√
M and C(CPP, pM) = (1+

√
d)M , hence Tr

(
C̃(Cq,M)M−1

)
=
√

Tr (M)Tr
(√

M−1
)

and Tr
(
C(CPP, pM)M−1

)
= (1 +

√
d)d. Noting (λi)i∈[d] the eigenvalues of M , and using the

Cauchy-Schwarz inequality’s, we have:

d2 =

(
d∑

i=1

1

)2

=

(
d∑

i=1

λ
1/4
i λ

−1/4
i

)2
C.S
≤
(

d∑
i=1

λ
1/2
i

)(
d∑

i=1

λ
−1/2
i

)

C.S
≤

√√√√ d∑
i=1

λi

√√√√ d∑
i=1

1

(
d∑

i=1

λ
−1/2
i

)
=
√

dTr (M)Tr
(
M−1/2

)
=

√
dTr

(
C̃(Cq,M)M−1

)
.

Which follows that Tr
(
C̃(Cq,M)M−1

)
≥ d3/2 =

√
d(1 +

√
d)−1Tr

(
C(CPP, pM)M−1

)
and it

allows to conclude.

Proof of Item 2 in Proposition 4. Suppose now that Diag (M) = cId, then we have C(CPP, pM) =

(
√
d+ 1)M , C̃(Cq,M) = M + (

√
d− 1)cId, and C(Cs, pM) = M + c

√
dId. Firstly, it follows that:

C(Cs, pM)− C̃(Cq,M) =
(
M +

√
dcId

)
−
(
M + (

√
d− 1)cId

)
= cId ≽ 0 ,

Secondly, we have (1+ 1√
d
)C̃(Cq,M)−C(CPP, pM) = −(1− 1√

d
)M +(

√
d− 1√

d
)cId, which gives:

Tr

((
(
√
d− 1√

d
)C̃(Cq,M)− C(CPP, pM)

)
M−1

)
= (

√
d− 1√

d
)cTr

(
M−1

)
− (1− 1√

d
)Tr (Id)

≥ (
√
d− 1√

d
)d− (1− 1√

d
)d (Lemma S9)

≥ d(
√
d− 1) ≥ 0 .

And the proof is concluded.

E.4 Empirical covariances computed on quantum and cifar10

On Table S3, for both quantum and cifar-10, we first plot the covariance matrix (1) without
any processing and (2) with standardization. In this latter case, we then plot the covariances induced
by quantization and sparsification for ω = 1 and 8. For quantum, without standardization, only
four points are visible; it is caused by some rows having extremely large values at features 27 and 43,
resulting in a feature mean 100 times greater than the others.
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Table S3: (1) Data covariances for quantum and cifar-10. (2) Covariance C(CM , pH) w./w.o.
standardization for quantization and sparsification; see Figure 6 to have the corresponding trace of
C(CM , pH)M−1.

M Quantization Sparsification
raw-data standardized ω = 1 ω = 8 ω = 1 ω = 8

q
u
a
n
t
u
m

c
i
f
a
r
-
1
0

Looking at the covariance induced by the compressors, we observe that for small ω, quantization
better preserves the matrix structure compared to sparsification. This fact is consistent with Figure 6
where is given the trace of C(CM , pH)M−1 for these eight covariances: the traces for quantization
are indeed smaller than for sparsification. This is also consistent with Figures 7c and 7f where ω = 1
and where quantization outperforms sparsification.

F. Technical results on federated learning.

F.1 Validity of the assumptions made on the random fields in the case of covariate-shift

In this Subsection, we examine the setting of federated and compressed LSR under the scenario of
covariate-shift (Subsection 4.1). Specifically, we consider the case where for any i, j in J1, NK, we
have heterogeneous covariances, i.e., Hi ̸= Hj , but a unique optimal model i.e. wi

∗ = w∗. We verify
that all the assumptions on the random fields done in Subsection 2.1 are fulfilled in the setting. For
this purpose, we redefine the filtration given in Appendix D to align them with the FL setting. For k
in N∗ and for i in [N ], we note uik the noise that controls the compression Ci

k(·) at round k.

Definition S3. We note (Gk)k∈N the filtration associated with the features noise, (Hk)k∈N the
filtration associated with the label noise, and (Ik)k∈N the filtration associated to the stochastic
gradient noise, which is the union of the two previous filtrations. For k ∈ N∗, we define F0 = {∅}
and

Gk = σ
(
Fk−1 ∪ {(xik)Ni=1}

)
Hk = σ

(
Fk−1 ∪ {(εik)Ni=1}

)
Ik = σ

(
Fk−1 ∪ {(xik, εik)Ni=1}

)
Fk = σ

(
Fk−1 ∪ {(xk, εik, uik)Ni=1}

)
.

Now we prove that all assumptions done in Section 2 are correct in this setting.

Property S7 (Validity of the setting presented in Definition 1). Consider Algorithm 3 in the context
of Model 1, we have that the setting presented in Definition 1 is verified.
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Proof From Algorithm 3, we have for any k in N∗ and any w in Rd, ξk(w − w∗) = ∇F (w) −
1
N

∑N
i=1 Ci

k(g
i
k(w)). Because (gik)k∈N∗,i∈J1,NK and (Ci

k)k∈N∗,i∈J1,NK are by definition two sequences
of i.i.d. random fields (Algorithm 3), it follows that their composition is also i.i.d., hence (ξk)k∈N∗ is
a sequence of i.i.d. random fields.
Taking expectation w.r.t. the σ-algebra Ik we have E

[
Ci
k(g

i
k(w))

∣∣ Ik] = gik(w) (Lemma 1), next
with the σ-algebra Fk−1, we have E

[
gik(w)

∣∣ Fk−1

]
= ∇Fi(w) (Equation (2)). And because

1
N

∑N
i=1∇Fi(w) = ∇F (w), we obtain that the random fields are zero-centered.

From Model 1, we have for any k in N∗ and any w in Rd that:

F (w) =
1

2N

N∑
i=1

E
[
(
〈
xik, w

〉
− yik)

2
]

=
1

2N

N∑
i=1

E
[
(w − w∗)⊤(xik ⊗ xik)(w − w∗)− 2εik

〈
xik, w − w∗

〉
+ (εik)

2
]

=
1

2N

N∑
i=1

(w − w∗)⊤Hi(w − w∗) + σ2 =
1

2
((w − w∗)⊤H(w − w∗) + σ2) .

And we have from Model 1: Tr
(
H
)
= 1

N

∑N
i=1Tr (Hi) =

1
N

∑N
i=1R

2
i =: R

2, which concludes
the verification.

Property S8 (Validity of Assumption 1). Consider Algorithm 3 in the context of Model 1 with
Lemma 1, for any iteration k in N∗, the second moment of the additive noise ξaddk can be bounded by
(ω + 1)R

2
σ2/N i.e. Assumption 1 is verified.

Proof Let k in N∗. Because we consider Algorithm 3, with Definitions 1 and 2, we first have
ξaddk = − 1

N

∑N
i=1 Ci

k(g
i
k,∗), hence taking expectation w.r.t the σ-algebra Ik and because the N

compressions are independent (Algorithm 3), using Lemma 1, we have that:

E
[
∥ξaddk ∥2

∣∣∣ Ik] = 1

N2

N∑
i=1

E
[∥∥Ci

k(g
i
k,∗)
∥∥2 ∣∣∣ Ik]+ 1

N2

∑
i ̸=j

〈
gik,∗, g

j
k,∗

〉

≤ ω + 1

N2

N∑
i=1

∥∥gik,∗∥∥2 + 1

N2

∑
i ̸=j

〈
gik,∗, g

j
k,∗

〉
.

Next, we first have from Model 1 and Equation (2) that for any i in [N ], gik,∗ = −εikx
i
k, sec-

ondly because
(
(εik)k∈[K],i∈[N ]

)
are independent from

(
(xik)k∈[K],i∈[N ]

)
(Model 1), we have that

E[∥εikxik∥2] ≤ σ2R2
i , hence it results to E

[
∥ξaddk ∥2

∣∣ Fk−1

]
= E[∥ξaddk ∥2] = ω+1

N2

∑N
i=1 σ

2R2
i .

Property S9 (Validity of Assumption 2.1). Consider Algorithm 3 in the context of Model 1 with
Lemma 1, for any iteration k in N∗, the second moment of the multiplicative noise ξmult

k (w) can be

bounded for any w in Rd by 2(ω+ 1)maxi∈[N ](R
2
i )
∥∥∥H1/2

(w − w∗)
∥∥∥2 /N + 4(ω+ 1)R

2
σ2/N i.e.

Assumption 2.1 is verified.
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Proof Let k in N∗, we note η = w − w∗. Because we consider Algorithm 3, with Definitions 1
and 2, we write ξmult

k (η) = 1
N

∑N
i=1 ξ

i,mult
k (η), where ξi,mult

k (η) = Hiη − C(gik(w)) + C(gik,∗) is
the multiplicative noise on client i in [N ], hence developing the squared norm gives:

∥∥∥ξmult
k (η)

∥∥∥2 = ∥∥∥∥∥ 1

N

N∑
i=1

ξi,mult
k (η)

∥∥∥∥∥
2

=
1

N2

N∑
i=1

∥∥∥ξi,mult
k (η)

∥∥∥2 + 1

N2

∑
i ̸=j

〈
ξi,mult
k (η), ξj,mult

k (η)
〉
.

Taking expectation w.r.t. the σ-algebra Fk−1, using that the N compressions are independent
(Algorithm 3) and that for any i in [N ], E[ξi,mult

k (η) | Fk−1] = 0 (Lemma 1) results to have:

E[∥ξmult
k (η) ∥2 | Fk−1] =

1

N2

N∑
i=1

E[∥ξi,mult
k (η)∥2 | Fk−1] .

Next, we use the result of Property S3 for each client i in [N ] and we obtain:

E
[
∥ξmult

k (η) ∥2
∣∣∣ Fk−1

]
≤ 1

N2

N∑
i=1

(
2(ω + 1)R2

i ∥H1/2
i (w − w∗)∥2 + 4(ω + 1)R2

i σ
2
)

≤
2(ω + 1)maxi∈[N ](R

2
i )

N
∥H1/2

(w − w∗)∥2 +
4(ω + 1)R

2
σ2

N
,

which allows concluding.

Property S10 (Validity of Assumption 2.2). Consider Algorithm 3 in the context of Model 1 with
Lemma 1, for any iteration k in N∗, the second moment of the multiplicative noise ξmult

k (w) can be

bounded for any w in Rd by (Ωσmaxi∈[N ](R
2
i )∥H

1/2
(w−w∗)∥+(ω+1)maxi∈[N ](R

2
i )∥H

1/2
(w−

w∗)∥2)/N i.e. Assumption 2.2 is verified.

Proof Let k in N∗, we note η = w − w∗. From Property S9, taking expectation w.r.t. the σ-algebra
Fk−1, decomposing the multiplicative noise results to have:

E[∥ξmult
k (η) ∥2 | Fk−1] =

1

N2

N∑
i=1

E[∥ξi,mult
k (η)∥2 | Fk−1] .

Next we use the result of Property S4 for each client i in [N ] and we obtain:

E[∥ξmult
k (η) ∥2 | Fk−1] ≤

1

N2

N∑
i=1

ΩR2
i σ

√
∥H1/2

i (w − w∗)∥2 + (ω + 1)R2
i ∥H1/2

i (w − w∗)∥2 .

70



DISTRIBUTED, COMPRESSED AND AVERAGED LEAST-SQUARES REGRESSION

With Jensen’s inequality S2 used for concave function:

E

[∥∥∥ξmult
k (η)

∥∥∥2 ∣∣∣∣ Fk−1

]
≤

Ωσmaxi∈[N ](R
2
i )

N

√√√√ 1

N

N∑
i=1

∥H1/2
i (w − w∗)∥2

+
(ω + 1)maxi∈[N ](R

2
i )

N2

N∑
i=1

∥H1/2
i (w − w∗)∥2

≤
Ωσmaxi∈[N ](R

2
i )

N

√
∥H1/2

(w − w∗)∥2

+
1

N
(ω + 1)max

i∈[N ]
(R2

i )∥H
1/2

(w − w∗)∥2 ,

which allows concluding.

Property S11 (Validity of Assumption 3). Consider Algorithm 3 in the context of Model 1 with
Lemma 1, if the compressor C is linear, then for any iteration k in N∗, the multiplicative noise
ξmult
k is linear, thus there exist a matrix Ξk in Rd×d such that for any w in Rd, ξmult

k (w) = Ξkw.
Furthermore the second moment of the multiplicative noise can be bounded for any w in Rd by

(ω + 1)maxi∈[N ](R
2
i )
∥∥∥H1/2

(w − w∗)
∥∥∥2 /N , hence Assumption 3 is verified.

Proof Let k in N∗, we note η = w − w∗. Because we consider Algorithm 3, with Definitions 1
and 2, we write ξmult

k (η) = 1
N

∑N
i=1 ξ

i,mult
k (η), where ξi,mult

k (η) = Hiη − C(gik(w)) + C(gik,∗) is
the multiplicative noise on client i in [N ]. And because for any clients i in {1, · · ·N} the random
mechanism Ci

k is linear, there exists a random matrix Πi
k in Rd×d s.t. for any z in Rd, we have

Ci
k(z) = Πi

kz, it follows that:

ξmult
k (η) = ∇F (w)− 1

N

N∑
i=1

Ci
k(g

i
k(w)) + Ci

k(g
i
k,∗) =

(
H − 1

N

N∑
i=1

Πi
k(x

i
k ⊗ xik)

)
η .

Hence, the first part of Assumption 2.2 is verified with Ξk = 1
N

∑N
i=1Hi − Πi

k(x
i
k ⊗ xik). From

Property S9, taking expectation w.r.t. the σ-algebra Fk−1, decomposing the multiplicative noise
results to have:

E

[∥∥∥ξmult
k (η)

∥∥∥2 ∣∣∣∣ Fk−1

]
=

1

N2

N∑
i=1

E

[∥∥∥ξi,mult
k (η)

∥∥∥2 ∣∣∣∣ Fk−1

]
.

Next we use the result of Property S5 for each client i in [N ] and we obtain:

E

[∥∥∥ξmult
k (η)

∥∥∥2 ∣∣∣∣ Fk−1

]
≤ 1

N

N∑
i=1

(ω + 1)R2
i

∥∥∥H1/2
i (w − w∗)

∥∥∥2
≤

(ω + 1)maxi∈[N ](R
2
i )

N2

∥∥∥∥∥ 1

N

N∑
i=1

H
1/2
i (w − w∗)

∥∥∥∥∥
2

,
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which allows concluding.

Property S12 (Validity of Assumption 4). Considering Algorithm 3 under the setting of Model 2
with Remark 1 and Lemma 1, if the compressor C is linear, then for any k in N∗, we have Cania ≼
σ2maxi∈[N ](XHi)H/N and E

[
ΞkΞ

⊤
k

]
≼ maxi∈[N ](R

2
iXHi)H/N , with (XHi)i∈[N ] given in

Corollary 2. Overall, Assumption 4 is thus verified.

Proof
First inequality.
By Definition 3, we have Cania = E[ξaddk ⊗ ξaddk | Fk−1] =

1
N2

∑N
i=1 E[Ci

k(g
i
k,∗)

⊗2 | Fk−1], because
for any client i in [N ]

(
(εik)k∈[K]

)
is independent from

(
(xik)k∈[K]

)
(Model 1) and using compressor

linearity and Equation (S25), it gives:

Cania = σ2 1

N2

N∑
i=1

E
[
Ci
k(x

i
k)

⊗2
]
=

σ2

N2

N∑
i=1

C(Ci, pHi) ≼
σ2

N2

N∑
i=1

XHiH ≼
σ2maxi∈[N ](XHi)

N
H .

Second inequality.
Using Property S11, because the random mechanism Ci is linear, there exists two matrices Πi

k,Ξ
i
k

in Rd×d s.t. for any z in Rd, we have Ci
k(z) = Πi

kz and ξmult,i
k (z) = Ξi

kz = (Hi − Πi
k(x

i
k ⊗ xik)z,

which gives that Ξk = 1
N

∑N
i=1Hi −Πi

k(x
i
k ⊗ xik). It follows that:

ΞkΞ
⊤
k =

1

N2

N∑
i=1

(Ξi
k)(Ξ

i
k)

⊤ +
1

N2

∑
i ̸=j

(Ξi
k)(Ξ

j
k)

⊤ .

Taking the σ-algebra Fk−1, using that the N compressions are independent (Algorithm 3) and
that for any i in [N ], E

[
ξi,mult
k

∣∣∣ Fk−1

]
= 0 (Lemma 1) results to have E[ΞkΞ

⊤
k | Fk−1] =

1
N2

∑N
i=1 E

[
(Ξi

k)(Ξ
i
k)

⊤ ∣∣ Fk−1

]
. Now, we can reuse the computations given in Property S6 to

obtain E
[
(Ξi

k)(Ξ
i
k)

⊤ ∣∣ Fk−1

]
≼ R2

iXHiHi. Therefore, we can state that E
[
ΞkΞ

⊤
k

∣∣ Fk−1

]
≼

maxi∈[N ](R
2
iXHi)H/N , which concludes the second part of the verification of Assumption 4.

F.2 Heterogeneous optimal point

In this section, we explore further the scenario of concept-shift by adding a memory mechanism
(Mishchenko et al., 2019). This mechanism has been shown by Philippenko and Dieuleveut (2020)
to improve the convergence in the case of heterogeneous clients. We give below the updates equation
defining the algorithm of distributed compressed LSR with memory.

Algorithm 4 (Distributed compressed LMS with control variates). Each client i ∈ [N ] maintains
a sequence (hik)i∈[N ] in Rd, observes at any step k ∈ [K] an oracle gik(·) on the gradient of the
local objective function Fi and applies an independent random compression mechanism Ci

k(·) to
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the difference gik − hik. And for any step-size γ > 0, any k ∈ N∗, the sequence of iterates (wk)k∈N

satisfies: 
wk = wk−1 −

γ

N

N∑
i=1

Ci
k(g

i
k(wk−1)− hik−1) + hik−1

hik = hik−1 + αCi
k(g

i
k(wk−1)− hik−1) ,

(S31)

with α = 1/2(ω + 1).

The counterpart of adding memory is that the random fields are no more identically distributed,
thus Definition 1 is not fulfilled, and results from Section 2 cannot be applied, especially because
E
[
ξaddk ⊗ ξaddk

]
changes along iterations. To remedy this problem, we define here the limit of the

covariance of the additive noise i.e. C∞
ania = lim

k→+∞
E
[
ξaddk ⊗ ξaddk

]
. In the following result, we

establish an asymptotic result on the convergence, similar to Theorem 1.

Theorem S4 (CLT for concept-shift heterogeneity). Consider Algorithm 4 under Model 1 with µ > 0
and Lemma 1, for any step-size (γk)k∈N∗ s.t. γk = 1/

√
k. Then

1. (
√
KηK−1)K>0

L−−−−−→
K→+∞

N (0, H−1
F C∞

aniaH
−1
F ),

2. C∞
ania = C((Ci, pΘ′

i
)Ni=1), where pΘ′

i
is the distribution of gik,∗ −∇Fi(w∗).

Theorem S4 shows that when using memory, in the settings of heterogeneous optimal points (wi
∗)

N
i=1,

convergence is still impacted by heterogeneity but with a smaller additive noise’s covariance as
Θ′

i ≺ Θi. In particular, in the case of deterministic gradients (batch case), we case Θ′
i ≡ 0. From a

technical standpoint, it shows that we recover asymptotically the results stated by Theorems 1 and 2
in the general setting of i.i.d. random fields (ξk(ηk−1))k∈N∗ . To prove this theorem, we show that
the assumptions required by Theorem S1 are fulfilled by this framework.
Proof
For the sake of demonstration, we define a Lyapunov function Vk (as in Mishchenko et al., 2019; Liu
et al., 2020; Philippenko and Dieuleveut, 2020), with k in J1,KK:

Vk = ∥ηk∥2 + 2γ2kC
1

N

N∑
i=1

∥∥hik−1 −∇Fi(w∗)
∥∥2 ,

with C in R∗ being a Lyapunov constant that verifies some conditions given in Theorem S6 in
Philippenko and Dieuleveut (2020). For any k in N, the Lyapunov function is defined combining two
terms: (1) the distance from parameter wk to the optimal parameter w∗, (2) for any client i in [N ],
the distance between the memory term hik−1 and the true gradient ∇Fi(w∗).
First, we have that in the case of decreasing step size s.t. for any k in N, γk = k−α, we have
ηK

L2

−−−−−→
K→+∞

0 and hiK
L2

−−−−−→
K→+∞

∇Fi(w∗).

Let k in N∗, from the demonstration of the Artemis algorithm with memory, we have from Theorem
S6 in Philippenko and Dieuleveut (2020) (see page 41-45) that (1) combining Equations (S14) and
(S15) in the form (S14)+2γ2kC(S15), (2) and applying strong-convexity, allows to obtain Equation
(S17) but adapted to decreasing step-size:

E [Vk | Fk−1] ≤ (1− 2γkµ□k) ∥wk−1 − w∗∥2 +
2γ2kC♢

N

N∑
i=1

∥∥hik−1 −∇Fi(w∗)
∥∥2 + 2γ2kσ△

N
,
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with □k,♢,△ being three constants in R whose exact expression can be found on pages 42-43 in
Philippenko and Dieuleveut (2020). Furthermore, in the same article, they verify that to obtain a
(1− γkµ) convergence, the following condition on □k,♢,△ are fulfilled for any k in N∗: □k ≤ 1/2
and ♢ ≤ 1− γkµ.
These properties are valid under some conditions on the Lyapunov constant C, the step-size γk, and
the learning rate α; these conditions are provided in the statement of Theorem S6 from (Philippenko
and Dieuleveut, 2020) and we don’t recall them here. Hence, we can write that we have:

E [Vk | Fk−1] ≤ (1− γkµ)

(
∥wk−1 − w∗∥2 +

2γ2kC

N

N∑
i=1

∥∥hik−1 −∇Fi(w∗)
∥∥2)+

2γ2kσ
2△

N
,

and because for any k in N , the step-size is decreasing, we have γk ≤ γk−1, which makes to recover
the Lyapunov function Vk−1 at step k − 1: E [Vk | Fk−1] ≤ (1− γkµ)Vk−1 +

2γ2
kσ

2△
N . Taking full

expectation and unrolling the sequence (Vk)k∈N, we obtain:

EVk ≤
k∏

i=1

(1− γiµ)V0 +
2σ2△
N

k∑
j=1

γ2j

k∏
i=j+1

(1− γiµ) .

To show that each part of the bound given in the above equation tends to zero when k grows to
infinity is classical computations and can be find for instance in lectures notes of Bach (2022, pages
164-167 and 182), and Kushner and Yin (2003).
To apply Theorem 1 from Polyak and Juditsky (1992, recalled in Theorem S1), which gives the
desired result, it suffices to prove the convergence in probability of the covariance of the noise
ξk(ηk−1) towards Cania, as k → ∞.

In the following, we show that lim
k→+∞

E
[
ξk(ηk−1)ξk(ηk−1)

⊤ ∣∣ Fk−1

] P
= C∞

ania. Let k in N∗, for this

purpose, we consider the following additive/multiplicative noise decomposition:
ξAk,∗ = − 1

N

N∑
i=1

Ci
k(g

i
k,∗ −∇Fi(w∗))

ξMk (ηk) = HF ηk −
1

N

N∑
i=1

Ci
k(g

i
k(wk−1)− hik−1) +

1

N

N∑
i=1

Ci
k(gk,∗ −∇Fi(w∗)) + hik−1 .

(S32)

Furthermore, we have that ξaddk
L2

−−−−→
k→+∞

ξAk,∗ because of the Hölder-inequality (Lemma 1) and

because we shown that hiK
L2

−−−−−→
K→+∞

∇Fi(w∗); thereby E[ξaddk ⊗ ξaddk ]
L1

−−−−→
k→+∞

C∞
ania. Next, from

Equation (S32), we write:

ξk(ηk−1)ξk(ηk−1)
⊤ = (ξAk,∗ − ξMk (ηk−1))(ξ

A
k,∗ − ξMk (ηk−1))

⊤

= ξAk,∗ ⊗ ξAk,∗ − ξAk,∗ξ
M
k (ηk−1)

⊤ − ξMk (ηk−1)(ξ
A
k,∗)

⊤ + ξMk (ηk−1)⊗ ξMk (ηk−1) .

(i) Developing the covariance of the additive noise and considering Model 1 and Algorithm 3 results
to E[ξAk,∗ ⊗ ξAk,∗ | Fk−1] =

1
N2

∑N
i=1 E[Ci

k(g
i
k,∗ − ∇Fi(w∗))⊗2 | Fk−1]. For any iteration k in N∗

and any client i in [N ], we note Θ′
i the covariance of gik,∗ −∇Fi(w∗), then gik,∗ −∇Fi(w∗) is an
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i.i.d. zero-centered random vectors draw from a distribution pΘ′
i
, hence we have for any iteration k

in N∗, C∞
ania = E[ξAk,∗ ⊗ ξAk,∗ | Fk−1] = C(Ci, (pΘ′

i
)Ni=1) .

(ii) Second, we show that E
[
ξMk (ηk−1)

⊗2
∣∣ Fk−1

]
converge to 0 in probability: it is sufficient to show

that ∥ξMk (ηk−1)
⊗2∥F tends to 0. To do so, we use the fact that ∥ξMk (ηk−1)

⊗2∥F = ∥ξMk (ηk−1)∥22, it
results to the following decomposition:

∥ξMk (ηk−1)
⊗2∥ ≤ 3 ∥Hηk−1∥2 + 3

∥∥∥∥∥ 1

N

N∑
i=1

Ci
k(g

i
k(wk−1)− hik−1)− Ci

k(g
i
k,∗ −∇Fi(w∗))

∥∥∥∥∥
2

+ 3

∥∥∥∥∥ 1

N

N∑
i=1

hik−1 −∇Fi(w∗)

∥∥∥∥∥
2

.

Considering the Hölder inequality given in Item L.2 from Lemma 1, because ηk
L2

−−−−→
k→+∞

0 and

hik
L2

−−−−→
k→+∞

∇Fi(w∗), we deduce that E
[
ξMk (ηk−1)

⊗2
∣∣ Fk−1

]
tends to 0 in L1-norm.

(iii) Third, it remains to show that E[ξMk (ηk−1)(ξ
A
k,∗)

⊤ | Fk−1]
P−−−−→

k→+∞
0. We use the Cauchy-

Schwarz inequality’s S3 for conditional expectation:

E
[
ξMk (ηk−1)(ξ

A
k,∗)

⊤∥F
∣∣∣ Fk−1

]2
= E

[
ξMk (ηk−1)∥2∥(ξAk,∗)⊤∥2

∣∣∣ Fk−1

]2
≤ ∥E

[
ξMk (ηk−1)∥22

∣∣ Fk−1

]
E
[
∥(ξAk,∗)⊤∥22

∣∣∣ Fk−1

]
.

The sequence of random vectors (ξAk,∗)k∈N is i.i.d., and moreover we have shown previously that
ξMk (ηk−1)

⊗2 tends to 0, hence E[ξMk (ηk−1)(ξ
A
k,∗)

⊤ | Fk−1] converges to 0 in distribution. Conse-
quently, noting Θ′

i = E[gik,∗ −∇Fi(w∗))⊗2] we can state that:

E
[
ξk(ηk−1)

⊗2
∣∣ Fk−1

] P−−−−→
k→+∞

C∞
ania = C(Ci, (pΘ′

i
)Ni=1) .
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