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Abstract

The quest for higher spatial and/or temporal resolution in functional MRI (fMRI) while
preserving a sufficient temporal signal-to-noise ratio (tSNR) has generated a
tremendous amount of methodological contributions in the last decade ranging from
Cartesian vs. non-Cartesian readouts, 2D vs. 3D acquisition strategies, parallel imaging
and/or compressed sensing (CS) accelerations and simultaneous multi-slice acquisitions
to cite a few. In this paper, we investigate the use of a finely tuned version of
3D-SPARKLING. This is a non-Cartesian CS-based acquisition technique for high
spatial resolution whole-brain fMRI. We compare it to state-of-the-art Cartesian
3D-EPI during both a retinotopic mapping paradigm and resting-state acquisitions at
1mm3 (isotropic spatial resolution). This study involves six healthy volunteers and both
acquisition sequences were run on each individual in a randomly-balanced order across
subjects. The performances of both acquisition techniques are compared to each other
in regards to tSNR, sensitivity to the BOLD effect and spatial specificity. Our findings
reveal that 3D-SPARKLING has a higher tSNR than 3D-EPI, an improved sensitivity
to detect the BOLD contrast in the gray matter, and an improved spatial specificity.
Compared to 3D-EPI, 3D-SPARKLING yields, on average, 7% more activated voxels in
the gray matter relative to the total number of activated voxels.
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Introduction 1

Functional MRI (fMRI) is currently one of the most commonly used functional 2

neuroimaging techniques to probe brain activity non-invasively through the blood 3

oxygen level-dependent (BOLD) contrast that reflects neurovascular coupling. It offers 4

an interesting trade-off between spatial and temporal resolution in order to study the 5

whole brain as an aggregation of intrinsic functional systems [1]. In particular, by using 6

BOLD fMRI [2] and taking advantage of the neuro-vascular coupling [3], statistical 7

inference about brain activity can be performed at rest [4] and during task 8

performance [5–7]. Whole brain fMRI has been to date, primarily performed at 3 9
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Tesla (3T) at a usual spatial resolution of 2 to 3 mm3 isotropic and a temporal 10

resolution of 2-3s using 2D echo planar imaging (EPI). This has recently changed with 11

significant progress in two areas, namely the rise of ultra-high magnetic fields (UHF, 7T 12

and beyond) and the possibility to accelerate data acquisition. Both improvements offer 13

the opportunity to reach higher spatio-temporal resolution [8–12]. 14

On the one hand, collecting fMRI data at higher spatial (e.g. submillimetric) 15

resolution is instrumental in obtaining an improved specificity in the gray matter, which 16

enables laminar fMRI [13–15] as it limits the contribution of large draining veins to the 17

BOLD effect [16] elicited by task performance. On the other hand, higher temporal 18

resolution in fMRI has allowed the community to revisit the question and relevance of 19

fast detectable components in the BOLD effect [17,18], which precede the well-known 20

sluggish haemodynamic response peaking 4 to 6 seconds after stimulus presentation [19]. 21

Additionally, short repetition times in resting-state fMRI make it possible to remove 22

aliasing artifacts caused by heartbeat and breathing rate [20,21] and thus to study a 23

cleaner neuro-vascular coupling. 24

Importantly, acquiring high-resolution fMRI data without sacrificing the 3D 25

field-of-view (3D FOV) and using conventional MR systems degrades both the 26

signal-to-noise ratio (SNR) [22] and temporal SNR (tSNR) as the two indices are 27

linearly linked in the thermal noise regime [23]. As the tSNR is a proxy of the temporal 28

stability in fMRI, significant efforts have been deployed to mitigate this issue either by 29

moving to stronger magnetic fields (7T and beyond) or by using advanced coil designs 30

or both [24]. Combining high spatial and high temporal resolution can be achieved 31

using more powerful MR gradient systems or accelerated acquisition schemes. As the 32

latter is a more cost-effective and versatile option, significant efforts have been pushed 33

forward to develop and implement more efficient encoding techniques and image 34

reconstruction methods. 35

Under-sampling the k-space in the Cartesian framework was made possible through 36

the progress of parallel imaging (PI) [25–28] and the corresponding reconstruction 37

methods such as SENSE [29] or GRAPPA [30]. These developments helped improve the 38

spatio-temporal resolution in whole brain fMRI: By using multi-band excitation pulses, 39

2D SMS-EPI [31,32] is able to acquire several slices using a single shot. 3D-EPI [33] has 40

the same acceleration capabilities than 2D SMS-EPI as they both enable acceleration 41

in-plane and along the partition encoding direction, however, 3D-EPI requires lower flip 42

angles and provides a better SNR. Nevertheless, 3D-EPI is more sensitive to 43

physiological noise than 2D SMS-EPI. In [34], the authors report very comparable 44

performances between 3D-EPI and 2D SMS-EPI. That being said, the high specific 45

absorption rate (SAR) associated with 2D SMS-EPI strategy constitutes a limitation for 46

in vivo applications at UHF. Furthermore, CAIPIRINHA for multi-slice imaging [35] 47

and 2D CAIPIRINHA [36] for 3D acquisitions can be applied to improve the g-factor 48

map [37,38] which quantifies, among other things, the effect of the sampling pattern on 49

the noise spatial distribution in the parallel imaging setting. 50

Despite offering shorter scan times, PI-based accelerated Cartesian strategies remain 51

limited due to the suboptimal gradient waveforms they use. This has motivated the 52

development of non-Cartesian encoding patterns such as radial and spiral as a way to 53

further enhance the sampling efficiency by enabling a denser coverage of the low 54

frequencies and an optimal use of the gradient power. In addition to a faster coverage of 55

the k-space, non-Cartesian strategies yield fewer (but more complex) coherent 56

under-sampling artifacts. This feature, combined with the difficulty of accurately 57

regridding non-Cartesian samples into a Cartesian grid, has led to a shift in 58

reconstruction methods: The non-Uniform fast Fourier Transform (NUFFT) gained 59

ground over the fast Fourier Transform (FFT) and new iterative reconstruction 60

algorithms such as conjugate gradient SENSE (CG SENSE) [39] or SPIRiT [40] have 61
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been implemented. Spiral-based acquisition schemes are today, the most used 62

non-Cartesian alternatives for high-resolution fMRI [41–43]. 63

Even though a more efficient traversal of the k-space was the main motivation 64

behind their development, non-Cartesian methods naturally implement variable density 65

sampling (VDS), thereby implicitly capitalizing on the idea that some data points bring 66

more knowledge than others. However, given the deterministic character of their 67

trajectories, they do not fully exploit an important notion that emerged recently: MR 68

images are inherently sparse or compressible in a well-chosen transform domain like 69

wavelets, for instance. 70

Following the later idea and in the context of further shortening the acquisition time, 71

compressed sensing (CS) was first introduced in the MRI field [44] in an attempt to 72

reach higher acceleration factors and, therefore, better image resolution without 73

extending the scan time. CS can be optimally combined with multi-coil 74

acquisition [45,46], and allows us to accurately reconstruct images from highly 75

under-sampled measurements using three complementary ingredients: VDS, locally 76

uniform coverage of k-space and nonlinear sparsity-promoting reconstruction methods. 77

Successful applications of CS-MRI implement VDS where the central portion of k-space 78

is oversampled compared to its periphery [47,48]. 79

The application of CS to dynamic MR imaging, such as fMRI, should optimally 80

enforce sparsity both in space and time. However, sparsity in the time domain is 81

difficult to achieve in fMRI applications as the recorded fMRI signal is not 82

quasi-periodic in contrast to the heartbeat in cardiac cine imaging, for instance. Hence, 83

finding a sparsifying basis for the BOLD signal, such as activelets [49], has been a 84

research topic in itself. This is why the application of CS in fMRI [50–53] remains 85

sparse and limited. Moreover, the k-space under-sampling is never performed according 86

to the three encoding directions in an isotropic way in 3D. 87

Recently, the CS-based SPARKLING (Spreading Projection Algorithm for Raping 88

K-space sampLING) encoding scheme was introduced for 2D [54] and 3D [55,56] T ∗
2w 89

MR anatomical imaging. 3D-SPARKLING [56] generates non-Cartesian multi-shot 90

pseudo-random sampling patterns that fit a non-uniform target sampling density. These 91

patterns perform VDS and are locally uniform. The shots generation is 92

optimization-driven and ensures that they are fully optimized in 3D. A projection step 93

in the optimization algorithm ensures that each shot fits the hardware 94

constraints (gradient magnitude and slew rate) as well as the contrast constraint (same 95

echo time). 96

In this work, we demonstrate the potential of 3D-SPARKLING for fMRI for the first 97

time by comparing it with state-of-the-art 3D-EPI at 1mm3 and a temporal 98

resolution (volumetric TR) of 2.4s for whole-brain fMRI at 7T. 3D-SPARKLING was 99

used in a scan-and-repeat mode and assessed during retinotopic mapping in task-based 100

fMRI as well as during resting-state fMRI acquisitions in order to demonstrate its 101

potential as a suitable alternative to 3D-EPI. 102

Theory 103

3D-SPARKLING implementation is detailed in [56] and is based on earlier 104

works [54,57]. Hereafter, we briefly explain the theory underpinning the trajectories 105

design. More details can be found in [54,56–58]. 106

Let K = (ki)
Nc
i=1 be a segmented 3D sampling pattern consisting of Nc shots and 107

each shot has Ns sampling points. Each shot can be written in 3D as follows 108

ki(t) = (ki,x(t), ki,y(t), ki,z(t)). K-space trajectories in MRI are run using varying 109

magnetic field gradients according to the following equation ki(t) =
γ
2π

∫ t

0
Gi(τ)dτ 110

where Gi(t) = (Gi,x(t), Gi,y(t), Gi,z(t)). 111
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Let Kmax define the boundaries of a 3D k-space domain such as 112

Kmax = Kx
max = Ky

max = Kz
max for simplicity. 3D-SPARKLING shots are defined 113

according to the following set of constraints: 114

QNc

α,β =


∀i = 1, . . . , Nc, ki ∈ R3×Ns ,

Aki = v,

∥k̇i∥2,∞ ≤ α, ∥k̈i∥2,∞ ≤ β,

 (1)

where ∥c∥2,∞ = sup0≤n≤Ns−1

(
|cx[n]|2 + |cy[n]|2 + |cz[n]|2

)1/2
. 115

k̇i and k̈i are the first and second-order time derivatives of the shot denoted ki. 116

α = 1
Kmax

min
(

γGmax

2π , 1
FOV ·δt

)
and β = γSmax

2πKmax
with Gmax and Smax the maximum 117

gradient and slew rate constraints respectively. 118

A and v define the linear constraints that ensure that each shot crosses the center of 119

k-space at the echo time (TE). 120

3D-SPARKLING trajectories are optimized to 1) match a target sampling density ρ
and 2) optimally cover the k-space Ω = [−1, 1]3 in a locally uniform way according to
the following formulation. Given a target sampling density ρ : Ω → R defined such as
ρ(x) ≥ 0 for all x and

∫
ρ(x) dx = 1, the sampling pattern K ∈ Ωp is generated by

minimizing the problem defined by:

K̂ = arg min
K∈QNc

α,β

Fp(K) =
[
F a
p (K)− F r

p(K)
]

(2)

with F a
p (K) =

1

p

p∑
i=1

∫
Ω

H(x−K[i])ρ(x) dx

and F r
p(K) =

1

2p2

∑
1≤i,j≤p

H(K[i]−K[j]) .

F a
p is an attraction term that guarantees 1) while F r

p is a repulsion term that ensures 2) 121

and H(x) = ∥x∥2. In this formulation, p = Nc ×Ns denotes the total number of 122

sampling points in K and QNc

α,β denotes the set of hardware and linear constraints 123

defined earlier. 124

Methods 125

Experimental setup and stimulation paradigm 126

Data was collected at 7T MRI (7T Siemens Magnetom scanner, Erlangen, Germany) 127

from seven healthy volunteers (3 females, 4 males) aged between 20 and 40 years old 128

with normal-to-corrected vision, and using a 1Tx-32Rx head coil (Nova Medical, 129

Willimgton, CO, USA). Data from only 6 volunteers (1 male excluded) was actually 130

involved in this work as the last volunteer felt asleep during the experiment. The 131

experimental protocol was approved by the national ethics committee (Comité de 132

Protection des Personnes) under the protocol identifier CPP 100048 (CPP Sud 133

Méditerranée 4 number 180913, IDRCB:2018-A011761-53). All participants gave their 134

written informed consent. 135

The functional data was collected with T ∗
2 -weighted 3D-EPI and 3D-SPARKLING 136

encoding schemes. Task-based fMRI data was acquired using a classical retinotopic 137

mapping experimental paradigm with a 32s-period rotating wedge (2 consecutive runs 138

per sequence: clockwise and counter-clockwise). In what follows, we denote this rotation 139

as Pcyc = 32. The code of the stimulation can be found in [59] The choice of the 140

retinotopic mapping paradigm emanated from two main factors: First, a higher tSNR 141
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available in the visual cortex and second, the fact that passive viewing is less prone to 142

variability or errors in task performance [60]. For technical reasons, resting-state fMRI 143

data was collected for only five volunteers out of the six in order to evaluate the tSNR. 144

The order in which 3D-EPI and 3D-SPARKLING sequences were run was randomized 145

across individuals. Resting-state data was always collected before task-based fMRI. 146

Fig 1 illustrates how the full fMRI experiment was conducted in each participant. 147

Fig 1. Time course of the resting-state and task-based fMRI sessions. From
subject V#2 to V#6, rs-fMRI data was systematically collected prior to retinotopic
mapping data to avoid any contamination in the visual network due to task
performance. The order in which 3D-EPI and 3D-SPARKLING were run was
randomized across individuals.

Data acquisition and sequence parameters 148

Functional data was collected at a 1-mm isotropic and 2.4s spatio-temporal resolution. 149

The same sequence parameters were used for 3D-SPARKLING and 3D-EPI as shown in 150

Table 1. 3D-EPI readouts were accelerated along the phase encoding direction and the 151

partition encoding direction by a factor of 4 and 2, respectively. Partial Fourier (6/8) 152

was also applied along both phase encoding directions. CAIPIRINHA 2D [36] 153

reconstruction was applied to the 3D-EPI data. 154

3D-SPARKLING encoding pattern consisted of 48 shots generated to match the 155

target sampling density that yielded the trajectories (Fig 2) with the best point spread 156

function (PSF) in terms of full width at half maximum (FWHM) and maximum-to-side 157

lobe ratio. The best identified cutoff C and decay D parameters of the target density 158

πC,D were set respectively to C = 0.25 and D = 2 (Eq.(3)) to separate out the sampling 159

regimes in the low and high frequencies as follows: 160

πC,D(x) =

κ |x| < C

κ
(

C
|x|

)D

|x| > C
(3)

where κ is a normalizing constant. 161

Both readouts had very close observation times: 26.33ms for 3D-EPI and 26.88ms 162

for 3D-SPARKLING and both were acquired in the P-A encoding direction. 163

Additionally, the two 3D gradient recalled echo (GRE) sequences involved a gradient 164

spoiling as well as a RF spoiling. 165

A 15s-calibration sequence was run at the beginning of each 3D-EPI sequence (be it 166

single or multi-repetition) to estimate coil sensitivity maps for 3D-EPI data and at the 167
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Fig 2. 3D-SPARKLING sampling scheme. The sampling scheme is segmented into
48 readouts plotted in red except for one plotted in blue for the sake of visualization.

same time ensure steady-state. An additional single-repetition 3D-EPI acquisition in 168

the opposite A-P encoding direction was then performed to correct 3D-EPI functional 169

data for ∆B0 distortions using the so-called TOPUP approach [61,62]. In contrast, for 170

3D-SPARKLING non-Cartesian data, we used a distinct 3D GRE sequence with three 171

consecutive echoes to estimate both an external field map (∆B0) and external coil 172

sensitivity maps. In order to have a reasonable acquisition time, the just-mentioned 173

sequence was run for a spatial resolution of 3mm3 as reported in Table 1. Raw data of 174

the first echo from the GRE sequence was used to compute the sensitivity maps whereas 175

the 3 echoes were used to obtain an accurate estimate of the ∆B0 field map. The latter 176

was extrapolated in the image domain to fit the spatial resolution and 3D FOV of the 177

3D-SPARKLING fMRI scans. The sensitivity maps were extrapolated in the k-space 178

domain for the same reason. Steady-state was achieved in 3D-SPARKLING acquisitions 179

by means of dummy scans corresponding to 960 unitary repetition times. 180

fMR image reconstruction and preprocessing 181

The 3D-EPI volumes were reconstructed independently from each other using a 182

calibrated multi-coil reconstruction which involves the 15s-calibration sensitivity maps 183

mentioned in the section above. The reconstruction is implemented using the vendor’s 184

ICE software. Since navigators were implemented into the 3D-EPI sequence, we 185

corrected the 3D-EPI volumes for zeroth order dynamic ∆B0 fluctuations. 3D-EPI data 186

was corrected for off-resonance artifacts using the additional single-repetition A-P 187

acquisition, and the TOPUP approach available in FSL [63] 188

The 3D-SPARKLING volumes were reconstructed independently from each other as 189

well as using a calibrated multi-coil CS-based reconstruction method [64] and the 190

external sensitivity maps mentioned earlier. This reconstruction method involves a 191

sparsity promoting prior (ℓ1-norm) in the wavelet domain and performs the optimization 192

using the proximal optimized gradient method (POGM) algorithm [65]. This approach 193

is implemented in the pysap-mri [66] plugin [67] of the pySAP package [68]. The 194

regularization parameter of this reconstruction was carefully chosen following a 195
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Table 1. Specifications of the different pulse sequences: 3D-SPARKLING and 3D-EPI
were used to acquire the fMRI data at 1mm3 and 2.4s-TRv (volumetric TR) resolution.
The native orientation was kept the same for the acquisitions associated with both
sequences: Oblique transverse orientation. The GRE sequence used for external field
maps had 3 echoes. An additional single-repetition 3D-EPI in A-P encoding was
acquired for ∆B0 correction on 3D-EPI. The MP2RAGE sequence was used to acquire
an anatomical T1w scan.

3D-SPARKLING 3D-EPI 3D GRE 3D-EPI MP2RAGE

TE(ms) 20 20
1.8, 3.06,

5.10
20 3.29

Unitary
TR(ms)

50 50 20 50 5000

Volumetric
TR(s)

2.4 2.4 58 2.4 347

Spatial
resolution
(mm)

1 1 3 1 1

FOV(mm) (192,192,128) (192,192,128) (192,192,132) (192,192,128) (192,192,128)
Number of
repetitions

120 125 120 125 1 1 1

Encoding
direction

P-A P-A A-P R-L

line-search and assessing its impact on image quality visually as well as on the temporal 196

aspect of the rs-fMRI data (tSNR and motion regression). Additionally, static ∆B0 was 197

corrected during single volume MR image reconstruction using the external ∆B0 map 198

mentioned earlier. The corresponding frequency offset δω0 = γ∆B0 was actually 199

injected in the definition of the non-Fourier forward operator F̃Ω that is classically used 200

to refine the MR signal model (see for instance [69, Eq. (2)]). The complete 201

reconstruction and correction pipeline we used for each 3D-SPARKLING volume is the 202

same as that described in [69, Supp. Mat.]. Its open-source implementation, which 203

follows the method proposed in [70], is available in the pysap-mri package as well. 204

Motion correction was applied similarly to 3D-EPI and 3D-SPARKLING fMRI data 205

using SPM12 [71]. Similarly, co-registration of the functional and the anatomical (i.e. 206

T1-weighted) volumes was performed using SPM12. Except for estimating BOLD phase 207

maps (cf. Section ”Accuracy of the retinotopic phase maps”), no spatial smoothing was 208

applied to the volumes in order to keep the advantages of the native 1-mm isotropic 209

spatial resolution. 210

Design matrix for capturing task-related BOLD signal 211

fluctuations 212

For each participant, the sequence of task-related fMRI volumes was analyzed using a 213

two-session first-level general linear model (GLM) that is summarized through a design 214

matrix X ∈ R2Nvol×Q with Nvol = 120 scans per run and Q defines the number of 215

regressors as detailed hereafter. The objective was to estimate the parameters of 216

interest β = (βi)
V
i=1 ∈ RQ×V in V voxels from the observed BOLD fMRI time series 217

Y = (yi)
V
i=1 ∈ R2Nvol×V , in the classical massively univariate linear model: 218

Y = Xβ +N, where N = (ni)
V
i=1 ∈ R2Nvol×V stands for the voxelwise additive serially 219

correlated Gaussian noise term. 220

Due to the repetition of the task over two consecutive sessions, matrix X has
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block-diagonal structure:

X =

(
X1 0Nvol,Q/2

0Nvol,Q/2 X2

)
,

where the non-zero diagonal blocks X1 and X2 are respectively associated with the
experimental paradigm that is carried out during the first and second sessions, namely
the clockwise and counter-clockwise rotating wedges. Each block Xs is composed of
Q/2 = 10 regressors defined as follows:

Xs =
(
xtask
s,1 xtask

s,2 xmot
s,3 . . . xmot

s,8 xpol
s,9 xbas

s,10

)
∈ RNvol×Q/2 , (4)

where two paradigm-related parametric and continuous regressors xs,1 and xs,2 serve to 221

capturing the BOLD fluctuations elicited by the stimulus presentation. For the 222

clockwise session (s = 1), we used 223
xtask
1,1 (t) = cos(−π

2 − 2ncyc t π
Nvol

) = − sin(
2ncyc t π

Nvol
)

xtask
1,2 (t) = sin(−π

2 − 2ncyc t π
Nvol

) = − cos(
2ncyc t π

Nvol
)

(5)

where ncyc = Nvol × TR/Pcyc = 9, while for the counter-clockwise session (s = 2) we 224

define the first regressor turning in the opposite direction: 225
xtask
2,1 (t) = cos(−π

2 +
2ncyc t π

Nvol
) = −xtask

1,1 (t)

xtask
2,2 (t) = sin(−π

2 +
2ncyc t π

Nvol
) = xtask

1,2 (t)

. (6)

Next, 6 session-specific motion-related regressors (xmot
s,3 , . . . ,xmot

s,8 ), three for 226

rotations and three for translations, were estimated using SPM12 while a simple 227

polynomial regressor xpol
s,9 (t) = t was fitted to capture the linear trend on top of the 228

mean signal modeled by xbas
s,10(t) = 1,∀t. 229

The parameter estimates β̂ = (β̂i)
V
i=1 were estimated in the maximum likelihood 230

sense using the Nilearn [72] package which implements a prewhitening procedure based 231

on a first-order autoregressive noise model for N. Massive univariate analysis was thus 232

carried out to obtain parameter estimates β̂ within the brain mask composed of V 233

voxels where V varies between 1,449 299 and 1, 649 380 across 234

participants (approximately one fourth of the 3D FOV). For the sake of simplicity, the 235

brain mask was computed from the mean volume of the 3D-EPI scan sequence using 236

compute epi mask from Nilearn. 237

Statistical analysis of the retinotopic mapping data 238

Firstly, a Fisher-test was constructed to estimate the global effect of interest associated
with the task-related regressors, namely the reduced model encoded by
X0 = (xtask

1,1 ,xtask
1,2 ,xtask

2,1 ,xtask
2,2 ) ∈ R2Nvol×4. The corresponding null hypothesis reads

H0,EOI : CTβ = 0 where CT ∈ {0, 1}4×Q is a contrast matrix given by:

CT =


xtask
1,1︷︸︸︷
1

xtask
1,2︷︸︸︷
0 . . . . . .

xtask
2,1︷︸︸︷
0

xtask
2,2︷︸︸︷
0 . . . . . . 0

0 1 0 . . . 0 0 . . . . . . 0
0 0 . . . . . . 1 0 . . . . . . 0
0 0 . . . . . . 0 1 0 . . . 0

 . (7)
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The degrees of freedom of the Fν1,ν2
-test are given by ν1 = rank(X)− rank(X0) = 16

and ν2 = 2Nvol − rank(X) = 220. In practice, β̂ was used in the computation of the
residual sums of squares:

RSS = ∥Y −Xβ̂∥22 and RSS0 = ∥Y −X0β̂0∥22 (8)

where β̂0 = (β̂0,i)
V
i=1 with β̂0,i = (β̂1,i, β̂2,i, β̂11,i, β̂12,i)

T . 239

These results were then used to form the Fisher statistics Fν1,ν2
= RSS0−RSS

RSS . The 240

resulting whole brain statistical Fν1,ν2
-map was thresholded according to three different 241

strategies where the null hypothesis H0,EOI was rejected if the p-value p met at least 242

one of the following criteria: 243

(i): p < 0.05 with false discovery rate (FDR) correction [73]; 244

(ii): p < 0.001 without correcting for multiple comparisons; 245

(iii): p < 0.05 without correcting for multiple comparisons and with a minimum cluster 246

size of 5 voxels. 247

In addition to strategies (i) and (ii) which were applied to all participants, 248

alternative (iii) has also been used in participant V#5 for whom the global effect of 249

interest was weak and the tSNR low. In addition, given the high spatial resolution and 250

the whole brain analysis, the false discovery rate correction was too restrictive for the 251

majority of the volunteers. 252

The individual F -maps have been used as statistical masks for further analysis of 253

retinotopic mapping at the subject level as detailed hereafter. 254

Secondly, in order to derive the retinotopic maps we also formed the Student-t tests
that are based on the following elementary null hypotheses:

H0,1 : β1,i = 0 ∀i = 1 : V,
H0,2 : β2,i = 0 ∀i = 1 : V,
H0,3 : β11,i = 0 ∀i = 1 : V,
H0,4 : β12,i = 0 ∀i = 1 : V.

We computed the corresponding z-score maps z = (zj,i)j=1:4,i=1:V from which we formed
the voxelwise estimates of the signal phase in a session-specific manner as follows:{

ϕClock,i = arctan(
−z1,i
−z2,i

) ∀i = 1 : V,

ϕCClock,i = arctan(
−z3,i
z4,i

) ∀i = 1 : V,

where ϕClock,i and ϕCClock,i respectively stand for the phase estimates associated with
the clockwise and counter-clockwise sessions. Then, after compensating for the recorded
BOLD response delay (dh,i =

ϕClock,i+ϕCClock,i

2 ∀i = 1 : V ) due to the haemodynamic
delay in ϕClock,i and ϕCClock,i ∀i = 1 : V , we derived the overall retinotopic phase
estimate as follows:

ϕi =
ϕClock,i − ϕCClock,i

2
∀i = 1 : V. (9)

Metrics used for quality assessment 255

Resting-state fMRI mean images (i.e. volumes) were visually inspected on an individual 256

basis to evaluate image quality, while the whole scan sequences were used to compute 257

the tSNR metric allowing us to make a comparison between the 3D-EPI and 258

3D-SPARKLING encoding schemes for each subject. 259
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Complementary to that, retinotopic mapping fMRI data was used to conduct both 260

qualitative and quantitative assessment at the subject level through a series of metrics 261

respectively referenced to as q- and Q-metric in the following in order to compare the 262

statistical performances of 3D-EPI and 3D-SPARKLING in terms of sensitivity and 263

specificity. First, the consistency of activation maps between the two acquisition 264

techniques was evaluated according to the following qualitative (q) and quantitative (Q) 265

criteria: 266

1) qCons1: Consistency of activation maps. The z-score maps derived from the 267

global effects of interest (cf. H0,EOI) were visually assessed and compared 268

subject-wise. 269

2) QCons1: Spatial overlap of the statistically significant activation maps. 270

Binarized activation masks were first generated from the respective 3D-EPI and 271

3D-SPARKLING above mentioned z-score maps, with z-scores 272

higher (respectively, lower) than 3.09 (corresponding to p = 0.001) set to the value 273

of 1 (respectively, 0). Then the Dice index [74] or F1-score was used to measure 274

the overlap between these 3D-EPI and 3D-SPARKLING activation masks, a value 275

closer to 1 (respectively, 0) indicating a strong (respectively, weak) overlap or 276

consistency between activation patterns. 277

Second, an evaluation of the sensitivity to the BOLD contrast was conducted on the 278

basis of complementary criteria: 279

3) QSens1: Number of activated voxels overall and in the gray matter. 280

These figures were computed from the global effect of interest statistical 281

maps (z-scores) after applying a threshold at p < 0.001 without multiple 282

comparisons correction in both 3D-EPI and 3D-SPARKLING data sets and 283

compared one another in each participant. 284

4) qSens1: Significance of the activation patterns. The activation patterns 285

derived from the data collected in two volunteers (V#3 and V#4) were displayed 286

on the same slices and visually compared. These two volunteers were selected to 287

specifically showcase the session order effect, namely what is the impact of 288

running 3D-SPARKLING or 3D-EPI prior to the other sequence respectively. 289

5) QSens2: Statistical comparison of the distributions of the significant 290

effects of interest. A Kolmogorov-Smirnov (KS) test [75] was performed 291

between the distributions of the statistically significant z-scores located in the 292

gray matter and associated either with 3D-EPI or 3D-SPARKLING retinotopic 293

fMRI data and denoted respectively PEPI(z) and PSPARK(z). The goal was to 294

assess what distribution had a heavier tail (i.e. was more shifted to the right). 295

Third, an evaluation of the spatial specificity was carried out according to the following 296

metric: 297

6) QSpe1: Percentage of activations in the brain tissues. For each participant, 298

we compared the percentages of activated voxels in gray and white matter (GM 299

and WM, respectively) as well as in the cerebrospinal fluid (CSF) for both 300

encoding schemes after carrying out the tissue segmentation on the anatomical 301

T1-weighted image and the co-registration of the mean fMRI images with the 302

anatomical scan using SPM12. This software actually yielded the tissue probability 303

masks for gray and white matter and the CSF. 304

7) QSpe2: Prevalence of true positives vs false positives. The total number of 305

activated voxels retrieved after thresholding the z-scores at p < 0.05 with FDR 306
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correction is reported for all participants and compared with the figures 307

corresponding to QSens1. 308

Finally, the accuracy of the BOLD phase maps was assessed qualitatively according to 309

the following criterion: 310

8) qAccu1: Accuracy of retinotopic mapping. The volumetric statistical phase 311

maps ϕ = (ϕi)i=1:V (cf. Eq. (9)) and their projection onto the pial cortical 312

surface were visually assessed for two volunteers (V#3 and V#4). The projection 313

was performed using vol to surf from Nilearn and the meshes corresponding to 314

the pial, inflated, sulcus and white matter surfaces were computed using 315

FreeSurfer 7. 316

The order of these metrics matters. It has been carefully chosen to progressively 317

demonstrate the benefits associated with 3D-SPARKLING. For the quantitative criteria 318

denoted QCons1, QSens1, QSens2, QSpe1, the statistically significant activations were 319

defined by thresholding the z-scores at 3.09 (corresponding to a p-value of 0.001). 320

Results 321

Image quality and temporal SNR 322

Fig 3 demonstrates on an individual basis the superior image quality yielded by 3D-EPI: 323

Fine-grained anatomical details are lost in 3D-SPARKLING mean fMRI images. 324

Moreover, the between-tissue contrast of 3D-EPI images is clearer compared to that of 325

the 3D-SPARKLING. The two encoding schemes are actually differently affected by the 326

signal loss: 3D-SPARKLING appears less impacted in the frontal lobes (blue arrows) 327

but more severely degraded around the ventricles (orange arrows). Geometric 328

distortions are also differently influencing the 3D-EPI and 3D-SPARKLING images and 329

are mostly visible in the sagittal views. These discrepancies arise from the well-known 330

differences between Cartesian and non-Cartesian imaging in terms of robustness to 331

static and dynamic B0 field inhomogeneities which affect their point spread 332

function (PSF) and therefore their effective spatial resolution differently. Consequently, 333

even after accounting for the impact of the partial Fourier (6/8) applied to 3D-EPI on 334

the PSF, the effective resolution of 3D-SPARKLING fMRI images is lower than that of 335

3D-EPI images. 336

The temporal stability of the fMRI signal is usually evaluated through the tSNR. 337

Fig 4 shows tSNR maps derived from 3D-EPI and 3D-SPARKLING resting-state fMRI 338

data and collected in five volunteers as previously mentioned. The tSNR values are 339

higher on 3D-SPARKLING data, which suggests improved temporal stability and 340

potentially a better sensitivity to the BOLD contrast, a feature that will be further 341

analyzed hereafter. It is, however, important to keep in mind that a direct comparison 342

between the tSNR yielded by the unbiased linear reconstruction applied to the k-space 343

data collected by 3D-EPI and that yielded by the CS-based reconstruction applied to 344

the k-space data collected by 3D-SPARKLING is limited as the latter induces some bias 345

and therefore a reduced variance. However, as a moderate amount of ℓ1 regularization 346

was used, the impact was limited. Additionally, we checked that the higher tSNR was 347

primarily explained by the non-Cartesian encoding scheme and not by the nonlinear 348

CS-based reconstruction. It is also worth mentioning that V#5 exhibits a lower tSNR 349

on average than the other participants for both encoding schemes. 350
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Fig 3. Subject-wise comparison of the mean images derived from 3D-EPI
and 3D-SPARKLING resting-state fMRI data. Anatomical details that are lost
in 3D-SPARKLING data are well recovered in 3D-EPI data. The overall contrast
between tissues is clearer using the 3D-EPI encoding scheme. Signal loss and geometric
distortions affect data collected using the two acquisition techniques differently. The
blue and orange arrows point to brain areas where 3D-SPARKLING is respectively less
and more affected by signal loss than 3D-EPI. The overall mean image quality of
3D-EPI data is superior to that of 3D-SPARKLING in all participants.
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Fig 4. Comparison of the tSNR maps derived from 3D-SPARKLING and
3D-EPI resting-state fMRI data. 3D-SPARKLING data reveals a higher tSNR in
comparison with 3D-EPI data. V#5 has a lower tSNR on average than the other
participants, notably in the visual cortex and the posterior part of the brain.

Consistency of activation maps between the two encoding 351

schemes 352

Fig 5 compares the significant global effects of interest estimated from the retinotopic 353

fMRI data collected using 3D-EPI and 3D-SPARKLING. It shows that the activation 354

patterns are well localized in the visual cortex (cf qCons1). 355

Compared to the other participants, V#5 elicits less activated voxels: p < 0.001 was 356

too conservative to extract a significant activation pattern for both techniques. Due to 357

this, we slightly relaxed the threshold to α = 0.05 to gain insight on functional activity 358

notably in 3D-SPARKLING. At this level of significance, the activation pattern 359

associated with 3D-EPI data remains meaningless. This is likely a consequence of the 360

lower tSNR observed in V#5, notably in the visual cortex as shown in Fig 4. Globally, 361

the statistically significant activation patterns are relatively consistent across encoding 362

schemes. This qualitative observation is supported by Table 2 which reports the 363
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Fig 5. Z-score maps derived from the global effects of interest. From top to
bottom: Activation maps displayed for the 6 participants and the two acquisition
techniques. The six first rows show the activation maps yielded after thresholding the
z-scores over the whole brain for p < 0.001 without applying any correction for multiple
comparisons. The seventh row shows the activation map obtained after thresholding the
z-scores over the whole brain for p < 0.05 with a minimum cluster size of 5 voxels for
the fifth participant. Row-wise, the color bars are unchanged but differ from one
volunteer to another. The slices were chosen according to the largest spatial extent of
the activation patterns.

F1-score (i.e. Dice index) values computed between the statistically significant 364

activation patterns derived from 3D-SPARKLING and 3D-EPI retinotopic fMRI data 365

(QCons1): As these values range between 0.82 and 0.99 across participants, this 366

showcases that the spatial supports of these activation patterns are very consistent and 367

cover the same brain areas. This simple yet meaningful sanity check between fMRI data 368

collected using the two competing encoding schemes allowed us to look further into their 369

potential differences as related to effect size i.e., height of activation peaks and recovery 370

of retinotopic maps. Indeed, the activation maps in Fig 5 suggest that: 371

(i): 3D-SPARKLING outperforms 3D-EPI in V#1-V#3 and V#5. 372
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(ii): 3D-EPI outperforms 3D-SPARKLING in V#4. 373

(iii): Both techniques perform similarly in V#6. 374

As 3D-SPARKLING (respectively, 3D-EPI) is run first for the volunteers indexed by 375

odd numbers (respectively, even numbers, cf. Fig 1), these observations suggest that the 376

differences in terms of effect size may not solely result from the difference in the 377

sampling techniques but also be partly driven by the order of execution of the runs. In 378

order to gain more insight into the impact of the encoding scheme versus the order of 379

acquisition, the sensitivity to the BOLD effect was studied and compared between the 380

two methods. 381

Table 2. Comparison of the F1-scores computed between the activation
patterns (thresholded z-score maps associated with the global effects of interest) derived
from 3D-EPI and 3D-SPARKLING retinotopic fMRI data for the 6 volunteers.

Volunteer F1-score
V#1 0.834
V#2 0.925
V#3 0.819
V#4 0.820
V#5 0.987
V#6 0.933

Sensitivity to the BOLD effect elicited by task performance 382

Table 3 reports the number of activated voxels within the whole brain and in the gray 383

matter for 3D-EPI and 3D-SPARKLING data (QSens1): The total number of voxels 384

activated is larger in 3D-EPI data for five participants out of six, however, this number 385

can be biased by false positives and it is far more problematic as no correction for 386

multiple comparisons was performed. It is then more interesting to examine the number 387

of activated voxels in the gray matter: The figures in Table 3 show that more voxels in 388

the gray matter were systematically activated in the data collected first. This can be 389

explained by a stimulus presentation effect also called the repetition suppression 390

effect [76,77]. 391

Such an observation supports the hypothesis that the higher sensitivity to the BOLD 392

effect is partly driven by the order of execution of the sequences, however, the number 393

of activated voxels in gray matter only partially reflects the sensitivity to the BOLD 394

effect. A more global insight can be obtained by examining the activation maps and 395

their potential differences in terms of peak heights using both qualitative and 396

quantitative metrics. 397

These activation maps were produced by thresholding the z-scores over the whole 398

brain for p < 0.001 (uncorrected for multiple comparisons). Despite the difference in 399

significance, the activation patterns fit the gray matter quite well for both 3D-EPI and 400

3D-SPARKLING. 401

To do this, we show in Fig 6 the same axial slices of activation maps for volunteers 402

V#3 and V#4 (qSens1): A higher statistical significance (or effect size) is observed for 403

3D-SPARKLING data in V#3 while the opposite statement holds in V#4 with more 404

significant activations for 3D-EPI data. This confirms that the data collected first (i.e. 405

3D-SPARKLING in V#3, 3D-EPI in V#4) elicits more evoked brain activity. 406

Optimally from a statistical perspective, if we had a larger cohort, a two-way 407

repeated measures analysis of variance (ANOVA) could have been performed voxelwise 408

in order to disentangle the contribution of the order of sequence execution from that of 409
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Table 3. Comparison of the number of activated voxels (statistically significant at
p < 0.001 without correcting for multiple comparisons) overall and in gray matter (GM)
for 3D-EPI and 3D-SPARKLING data in the 6 volunteers. The lowest numbers are
retrieved in V#5.

Volunteer
Total number of
activated voxels

Number of activated
voxels in GM

EPI SPARK EPI SPARK
V#1 7362 6661 4736 4863
V#2 8423 5246 5528 3949
V#3 9010 24410 6040 15263
V#4 11779 4847 8350 3101
V#5 3222 2606 1952 2265
V#6 6437 4350 4198 2815

Fig 6. Three axial slices showing the impact of the order of sequence
execution on the statistical sensitivity and activation patterns similarity
between the two encoding schemes in V#3 and V#4. The sequence run first
elicits more activation.

the encoding scheme to the sensitivity to the BOLD effect. However, since we only 410

collected fMRI data in six volunteers, we proceeded differently by first constructing for 411

each subject the distribution of the statistically significant z-scores in the gray matter 412

associated with 3D-EPI and 3D-SPARKLING retinotopic data, and then by testing the 413

statistical difference between these two ensuing distributions using a 414

Kolmogorov-Smirnov test (cf. QSens2). As we pulled the z-scores across voxels, this 415

within-subject test is no longer spatially localized. However, it is a good indicator to use 416

when deciding which encoding scheme elicits more evoked activity during task 417

performance. Hence, in each individual we considered the following null hypothesis (H0: 418

PEPI(z) = PSPARK(z), ∀z ≥ 3.09) and eventually rejected it for all 419

participants (p-values ranging between 10−6 and 10−70) as shown in Table 4. In the 420

latter we actually reported the unilateral (i.e. one-sided) p-values of the KS test we 421
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carried out subjectwise. 422

Table 4. Table summarizing the p-values and D-statistics of a Kolmogorov-Smirnov
test between the distributions of the statistically significant z-scores within the gray
matter extracted from 3D-EPI and 3D-SPARKLING retinotopic fMRI data: We used
the following null hypothesis H0: PEPI(z) = PSPARK(z), ∀z ≥ 3.09 and separately in
one-sided tests the two alternative hypotheses
HRight

Alt : ∃ z ≥ 3.09 |PSPARK(z) > PEPI(z)
and HLeft

Alt : ∃ z ≥ 3.09 |PSPARK(z) < PEPI(z).

Volunteer
HRight

Alt HLeft
Alt

D-statistic p-value D-statistic p-value
V#1 0.18 10−70 0.0 1.0
V#2 0.06 10−9 0.005 0.84
V#3 0.07 10−23 0.001 0.98
V#4 0.015 0.3489 0.053 10−6

V#5 0.29 10−79 0.0004 0.99
V#6 0.12 10−24 0.0 1.0

In five volunteers out of six, the distribution of activations elicited during 423

3D-SPARKLING retinotopic fMRI acquisitions is significantly shifted to the right (i.e. 424

higher z-scores) compared to the similar distribution associated with 3D-EPI 425

retinotopic fMRI data. The opposite effect is only retrieved in V#4. Therefore, 426

irrespective of the order of sequence execution, the 3D-SPARKLING encoding scheme 427

and its associated preprocessing pipeline yield a higher statistical sensitivity to detect 428

evoked brain activity in the gray matter compared to the 3D-EPI acquisition technique. 429

Spatial specificity of activation maps on retinotopic fMRI data 430

In order to compare the two encoding methods according to the spatial specificity 431

criterion QSpe1, the percentages of activated voxels within the GM, WM, CSF and 432

other tissues were extracted in each individual. Table 5 reports the main findings and 433

shows that 3D-SPARKLING induces a higher percentage of activated voxels in the gray 434

matter than 3D-EPI. The mean gap between the two encoding methods is quite 435

large (71% for 3D-SPARKLING vs 64.5% for 3D-EPI). Similar analysis conducted in 436

the white matter shows a marginal difference between 3D-SPARKLING (22% of 437

activated voxels) and 3D-EPI (21%). 438

Although these average differences are quite small, they hide a large variability 439

across individuals (V#2 vs V#5 for 3D-EPI, V#2 vs V#6 for 3D-SPARKLING) and 440

even across encoding methods in the same participant (e.g. V#5). 441

Additionally, the percentage of activated voxels in the CSF and other tissues is on 442

average twice (respectively, 20 times) higher for 3D-EPI than for 3D-SPARKLING, 443

namely 12.27% (respectively, 2.15%) for 3D-EPI as compared to 6.68% (respectively, 444

0.11%) for 3D-SPARKLING. 445

These observations reveal first an increased average specificity of activations in gray 446

matter using 3D-SPARKLING. This finding actually holds in 4 participants out of 6 447

including V#2 for whom 3D-EPI data were collected first. 448

Second, the fact that both encoding schemes yielded a fairly large mean percentage 449

of activations in the white matter suggests a mismatch in the co-registration between 450

the mean fMRI image and the anatomical scan on an individual basis. The higher mean 451

percentage of activations in the white matter using 3D-SPARKLING data can be 452

explained by the fact that the images are more blurry and the borders between white 453

and gray matter less sharp. 454
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Third, the larger amount of unexpected activations in the CSF and other tissues 455

using 3D-EPI is questionable. As we demonstrated that this encoding scheme is 456

associated with improved image quality, it is unlikely that this is due to an intrinsic lack 457

of specificity. Instead, we suspect that the differences in addressing B0 field 458

inhomogeneities (TOPUP for 3D-EPI vs our own correction/reconstruction pipeline for 459

3D-SPARKLING) might induce co-registration mismatches, especially in the frontal 460

cortex as pointed out by the yellow arrows in Fig 7. Such an explanation is consistent 461

with the observations in Fig 3 where 3D-EPI is more impacted by signal loss in the 462

frontal regions than 3D-SPARKLING. Of course, correcting the statistical tests for 463

multiple comparisons might eradicate these false positives but in that case the 464

statistical approach would fully hide the outlined intrinsic differences between the two 465

encoding methods. 466

Fig 7. The contour edges of the T1-w anatomical scan overlaid on the mean
fMRI images acquired using 3D-EPI and 3D-SPARKLING encoding schemes
in V#1 during the retinotopic experiment. The yellow arrows point to regions
where the difference of mismatch between the functional and anatomical scans is visible.

To further bring evidence that 3D-SPARKLING has intrinsically a better spatial 467

specificity than 3D-EPI and that the higher mean percentage of activated voxels in gray 468

matter is not merely a result of a mismatch in co-registration, Table 6 reports the 469

number of activated voxels after thresholding the z-scores over the whole brain at a 470

statistical threshold of p < 0.05 with FDR correction (QSpe2). The figures in Table 6 471

are in agreement with the numbers of activated voxels in GM at p < 0.001 without 472

correcting for multiple comparisons as originally reported in Table 3: In fact, we 473

systematically found more activated voxels in the data collected first. This first 474

demonstrates that the larger number of activated voxels yielded by 3D-EPI for five 475

volunteers out of six when no correction for multiple comparisons is applied (cf. second 476

column of Table 3) is merely biased by false positives. Second, it suggests that the data 477

collected using 3D-SPARKLING yields functional maps that contain fewer false 478

positives and more true positives at a given level of control in comparison with 3D-EPI, 479
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hence an improved spatial specificity. 480

Table 5. Percentage of activated voxels in gray matter (%GM), white matter (%WM),
cerebrospinal fluid (%CSF) and other tissues with regards to the total number of
activated voxels for 3D-EPI and 3D-SPARKLING denoted respectively EPI and
SPARK in each participant. Significant p-values were thresholded at 0.001 uncorrected
for multiple comparisons. The higher the better (in bold font) in the % GM column, the
lower the better (in bold font) in others.

Volunteer
%GM %WM %CSF %other tissues

EPI SPARK EPI SPARK EPI SPARK EPI SPARK
V#1 64.33 73.01 20.71 18.75 11.06 8.05 3.9 0.19
V#2 65.63 75.28 15.26 17.55 18.34 7.05 0.77 0.12
V#3 60.04 62.53 16.27 26.49 16.13 10.84 7.56 0.14
V#4 70.90 63.98 15.84 28.57 13.08 7.37 0.18 0.08
V#5 60.58 86.57 30.94 10.09 8.27 3.34 0.25 0
V#6 65.12 64.71 27.97 31.77 6.7 3.4 0.21 0.12

Average 64.43 71.01 21.17 22.2 12.26 6.68 2.15 0.1

Table 6. Total number of activated voxels for 3D-EPI and 3D-SPARKLING data in
the 6 volunteers. These figures were retrieved by thresholding the z-scores over the
whole brain at a p-value of 0.05 after FDR correction for multiple comparisons.

Volunteer
Total number of activated voxels
at p<0.05 after FDR correction
3D-EPI 3D-SPARKLING

V#1 3197 4535
V#2 2853 1708
V#3 4891 25193
V#4 9392 3235
V#5 4 660
V#6 2722 2253

Accuracy of the retinotopic phase maps 481

To go one step further in examining the quality of the collected retinotopic fMRI data, 482

we estimated the retinotopic phase maps (cf. Eq. (9)) from 3D-SPARKLING and 483

3D-EPI raw fMRI data (i.e. spatially unsmoothed). In Fig 8 we visualize these maps on 484

selected axial views to check their consistency as well as their closeness to prior 485

knowledge on the projection of the retina (represented by a colored disk in Fig 8) onto 486

the visual cortex. As V#3 and V#4 were the most compliant volunteers during the 487

whole fMRI experiment (no motion, results not shown), and as such, data reliability is 488

enhanced and hence, a stronger evoked activity was elicited leading to more accurate 489

retinotopic maps. 490

More precisely, 3D-SPARKLING data yields a higher quality phase map in V#3 (cf. 491

top of Fig 8) with a smoother color coded (i.e. directional) gradient. In contrast, 492

3D-EPI data produced a more spatially extended and accurate phase map in V#4 (cf. 493

bottom of Fig 8), reflecting again the order of sequence execution. As the visual fields 494

in the retina are actually mirrored in the visual cortex, this means that the two visual 495

hemifields project respectively onto the contra-lateral hemisphere in the visual 496

cortex [78,79]. For this particular reason, it is easier to visualize the projection of 497

retinotopic maps on the cortical pial (qAccu1), as illustrated in Fig 9 for both raw (i.e. 498
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Fig 8. BOLD phase maps computed for participants V#3 and V#4. The
BOLD phase maps agree with how the retina is supposed to be projected onto the
visual cortex for both techniques.

unsmoothed) and spatially smoothed (using a Gaussian kernel with a full width at half 499

maximum (FWHM) of 2mm). fMRI data collected in V#3 and V#4. This 2-mm 500

isotropic smoothing was applied during preprocessing prior to re-running a GLM 501

analysis subjectwise. 502

The projected phase maps computed from the raw data illustrate once again the 503

session effect as 3D-SPARKLING (resp., 3D-EPI) yields a larger effect for V#3 (resp., 504

V#4). The data collected first yields a size effect that is large enough to retrieve an 505

appreciable retinotopic organization. In contrast, the effect size is smaller in the data 506

collected second. It allows, however, for a moderate recognition of the retinotopic 507

organization. In addition to this, the results are overall consistent along the dorsal 508

pathway: The blue (resp., red) color in the right (resp., left) hemifield projects to the 509

left (resp., right) visual cortex. 510

The spatial smoothing at the preprocessing stage boosted the effect size and allowed 511

us to retrieve more spatially extended phase maps, both for 3D-SPARKLING and 512

3D-EPI encoding schemes. Clearly, spatial smoothing was more beneficial to 3D-EPI 513

than 3D-SPARKLING fMRI data : Smoothing has a greater impact on 3D-EPI data 514

than on 3D-SPARKLING data in V#4. Nonetheless, this additional preprocessing step 515

alters the intrinsic statistical sensitivity and specificity and is not entirely justified when 516

only conducting within-subject statistical analyses. 517

Discussion 518

This study seeks to evaluate the feasibility of 3D-SPARKLING as a non-Cartesian 519

encoding scheme for high-resolution fMRI, specifically its sensitivity to the BOLD effect 520

as well as its spatial specificity. The performance of 3D-SPARKLING was assessed on 6 521

volunteers and compared to the state-of-the-art Cartesian 3D-EPI encoding pattern at 522

the same spatio-temporal resolution (1mm isotropic, 2.4s) at 7T. Image quality and 523

tSNR metrics computed from resting-state data as well as outcomes from within-subject 524
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Fig 9. Projection of the BOLD phase maps on the pial surface visualized on
the inflated surface for participants V#3 (3D-SPARKLING run first) and
V#4 (3D-EPI run first). 3D-SPARKLING yields improved projected BOLD phase
maps for V#3 in comparison with 3D-EPI both on raw and spatially smoothed data.
Opposite results were found in favor of 3D-EPI in V#4, notably on spatially smoothed
data.

statistical analysis performed on retinotopic data were compared in each volunteer 525

across the two acquisition methods. 526

Main findings 527

First, regarding the resting-state fMRI data we show that 3D-EPI produces an improved 528

image quality as compared to 3D-SPARKLING. On the other hand, 3D-SPARKLING 529

yields higher tSNR in all participants over the whole brain but notably in the occipital 530

lobe. On task-related fMRI data, across participants, we checked the validity of the 531

retinotopic experiment, i.e. its ability to elicit evoked brain activity in the visual cortex 532

at 7T for the set of acquisition parameters we considered, notably the spatio-temporal 533

resolution and the two encoding schemes (qCons1 and QCons1). Despite the moderate 534

quality of the BOLD phase maps yielded by the collected data, it is possible to retrieve 535

a moderately reliable mapping of the visual areas on the cortical surface (qAccu1). 536

Second, according to the criterion QSens2, we demonstrated that 3D-SPARKLING has 537

an increased sensitivity to the BOLD effect in gray matter. Third, based on criteria 538

QSpe1 and QSpe2, we proved that 3D-SPARKLING has an improved spatial specificity. 539
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How sensitivity to ∆B0 inhomogeneities in non-Cartesian fMRI 540

impacts image quality and spatial specificity of detecting the 541

BOLD effect? 542

The lower image quality observed on 3D-SPARKLING data in Fig 3 results from a 543

higher sensitivity to static and dynamic B0 inhomogeneities due to the random nature 544

of the trajectories which led to the accumulation of differently oriented ∆B0 artifacts 545

whereas, for 3D-EPI, the same readout is repeated across the k-space planes. 546

Consequently, B0 inhomogeneities in 3D-SPARKLING acquisitions yield severe blurring 547

and signal loss, in contrast to the main geometric distortions in 3D-EPI images due to 548

off-resonance effects. More generally, this sensitivity to B0 imperfections is more 549

prominent for some non-Cartesian encoding schemes. In regards to the dynamic 550

fluctuations of the B0 field, [80] showed on a T-Hex spiral-out encoding scheme that 551

image quality was admissible in spiral imaging only when a full signal model was used 552

for image reconstruction, i.e. when distortions related to both static and dynamic B0 553

inhomogeneities were corrected. In this work, even though we tried to minimize the 554

impact of static B0 inhomogeneities on 3D-SPARKLING data by correcting them 555

retrospectively during image reconstruction, this correction was imperfect as a 556

separately acquired ∆B0 field map was used for this purpose. Hence, any inconsistency 557

between 3D-SPARKLING fMRI data and ∆B0 field map acquisitions (due to significant 558

subject’s motion for instance as in V#6) may significantly lower the impact of this 559

correction. Moreover, we did not correct 3D-SPARKLING data from dynamic B0 560

fluctuations, whereas a zeroth order correction was applied to 3D-EPI data. 561

As explained in Section ”Image Quality and temporal SNR”, this high sensitivity to 562

B0 imperfections affects the PSF of the acquisition and in turn can degrade the effective 563

spatial resolution of 3D-SPARKLING data and consequently their spatial specificity. 564

Nevertheless, this needs to be balanced with the PSF of the BOLD effect itself. In this 565

respect, we noted that neither 3D-EPI nor 3D-SPARKLING have an actual spatial 566

resolution of 1mm3 B0 fluctuations. Beyond the sensitivity to other sources of 567

degradation, the partial Fourier acceleration technique used in 3D-EPI or the strength 568

of wavelet-based regularization implemented in the 3D-SPARKLING image 569

reconstruction pipeline may play a significant role. Confronting 3D-SPARKLING’s poor 570

image quality observed in Fig 3 with its relatively good spatial specificity (64%-87% of 571

activated voxels localized in gray matter), suggests that the PSF of the detected BOLD 572

effect was not strongly affected. This could be partly explained by the fact that the 573

spatial resolution we chose is slightly higher or very close to the theoretical BOLD PSF: 574

In [81], using fMRI data collected at a 1× 1× 3mm3 resolution, the authors showed that 575

the BOLD PSF is less than 2mm in the primary visual cortex of the human brain. Later 576

on, [82] used 0.9× 0.9× 1.0mm3 fMRI data to estimate the BOLD PSF in the secondary 577

visual cortex (V2) in the human brain. These authors reported that the BOLD PSF 578

ranges between 0.83mm at the level of the WM/GM interface and 1.78mm at the border 579

between the GM and CSF. As shown in Table 5, the relative percentage of activations 580

retrieved in gray matter was higher in 3D-SPARKLING compared to 3D-EPI, and lower 581

in the CSF and other tissues. This reflects a stronger spatial specificity or fewer false 582

positives in 3D SPARKLING data. Concomitantly, the significant KS tests reported in 583

Table 4 brought evidence that higher z-scores were obtained when using 584

3D-SPARKLING as encoding scheme suggesting a larger number of true positives. 585

Taken together, these results prove that despite lower image quality 586

3D-SPARKLING better preserves the temporal properties of the BOLD signal compared 587

to 3D-EPI and may become even more competitive in the future with a full signal 588

model including correction for dynamic B0 inhomogeneities for image reconstruction. 589
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Challenges of high spatial resolution whole brain retinotopic 590

mapping fMRI 591

In this work, we compared the activation and retinotopic maps derived from 3D-EPI 592

and 3D-SPARKLING data: Our findings suggest that 3D-SPARKLING data has an 593

improved sensitivity to the BOLD effect compared to 3D-EPI. This is likely due to the 594

higher tSNR observed in such data which could be explained by the expected larger 595

PSF and hence effective voxel size of 3D-SPARKLING data compared to 3D-EPI. A 596

larger voxel size helps in aggregating more signals and therefore enhances the sensitivity 597

at the cost of spatial specificity. We have demonstrated, however, that the spatial 598

specificity of the data collected with 3D-SPARKLING is not severely impacted. 599

Furthermore, it is worth noticing that the reported unsmoothed retinotopic maps, 600

whether obtained from 3D-EPI or 3D-SPARKLING data, are not as reliable as those 601

usually reported in the literature. This is a direct consequence of the high resolution 602

employed. In fact, the existing literature on retinotopic mapping is scarce concerning 603

high resolution fMRI experiments as most studies are performed at a resolution around 604

3mm3 [83, 84]. 605

Interestingly, in [85], the authors collected 1.1mm isotropic retinotopic fMRI data 606

over 25 slices at 3T and 7T in a volumetric TR of 2s. Although this spatial resolution is 607

close to ours, the retinotopic maps they obtained at 7T were more accurate and 608

consistent with the state of the art than ours. It is a challenge to adequately explain 609

this discrepancy as they used a significantly different experimental setup: 1) a different 610

coil geometry, 2) a 2D imaging protocol with differing parameters and 3) a lower 611

acceleration factor in parallel imaging. It is however interesting to note that they 612

smoothed the projected phase maps using a Gaussian filter with a FWHM of 4mm. 613

Applying the same strategy in Fig 9 but with a smaller FWHM of 2mm we recovered 614

consistent and improved phase values. We marginally used this smoothing strategy as it 615

is detrimental to the native spatial resolution. The mediocre quality of the retinotopic 616

maps retrieved from unsmoothed data tells us that this isotropic millimetric resolution 617

remains challenging for a 10-minute high resolution whole brain fMRI retinotopy at 7T. 618

However, given the variations of cortical thickness across lobes, choosing this resolution 619

is a decent target to carefully analyse the spatial specificity of activation in gray matter. 620

Recent trends in high-resolution fMRI based either on 3D spiral encoding 621

schemes [43] or on hybrid radial-EPI (TURBINE) k-space coverage [86] report enhanced 622

evoked brain activity in the visual cortex as compared to ours obtained with both 623

3D-SPARKLING and 3D-EPI. Again, analyzing these differences is challenging as the 624

authors employ a different set of parameters. Furthermore, we note that they rarely 625

performed a direct comparison with the standard state-of-the-art (2D-SMS EPI or 626

3D-EPI) and/ or did not fully cover the brain. It is actually worth mentioning that 627

when a high isotropic resolution is targeted, the 3D FOV very rarely covers the whole 628

brain as otherwise higher acceleration factors are required which translates into a lower 629

tSNR in 3D. Our results prove, however, that despite being challenging, our 630

experimental setup is interesting and informative. 631

Challenges related to comparing competing acquisition strategies 632

in a few volunteers 633

In this study, we compared fMRI activation patterns from two data sets that were 634

acquired using concurrent encoding schemes and image reconstruction strategies. 635

Although we tried with due diligence to harmonize the experimental setup between both 636

acquisition techniques by keeping very similar readout times, the same echo and 637

repetition times, the same number of shots and very close fMRI preprocessing pipeline 638

(except for B0 distortion correction), we still encountered the limitations of comparing 639
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data sets that were acquired at different time points, notably due to the presence of 640

confounding factors such as between-run subject’s motion. Additionally, the different 641

image reconstruction strategies used for 3D-EPI and 3D-SPARKLING data are entirely 642

justified by the different acquisition techniques. On one hand, 2D CAIPIRINHA [36] 643

was implemented within the 8-fold accelerated 3D-EPI sequence together with 6/8-fold 644

partial Fourier. On the other hand, compressed sensing reconstruction with sparsity 645

promoting prior in the wavelet domain [64] was used on 3D-SPARKLING data. 646

Following a linear reconstruction and in the thermal noise regime, the Gaussianity of 647

the residual noise is generally judged as a realistic assumption. Such a claim may not be 648

as straightforward following a nonlinear CS reconstruction. As the GLM framework 649

supposes the Gaussianity of the residuals, it is then essential that both reconstructions 650

do not bias the noise distribution. The Gaussianity assumption remains realistic in our 651

case as well as illustrated by the experiment presented in the Appendix. 652

With that in mind, Table 2 demonstrates that the shapes of the activation patterns 653

elicited by the two encoding schemes are close to each other. Additionally, we paid 654

attention to balancing the number of participants scanned first with 3D-EPI and 655

3D-SPARKLING acquisition strategy to mitigate any potential loss in effect size due to 656

the well know repetition suppression effect. We, therefore, think that despite some 657

noticeable differences this comparative study remains valid and insightful. 658

That being said, we believe that the readout time, the unitary repetition time as 659

well as the number of shots were mostly optimal for 3D-EPI and not for 660

3D-SPARKLING: Using either more shots by reducing the unitary TR or a longer 661

readout time allowing us to collect more k-space data points can be implemented in 662

3D-SPARKLING and would be beneficial as it could improve image quality, higher 663

tSNR and provides increased sensitivity and accuracy for retinotopic mapping. We 664

however, decided not to implement such suggested changes either by using a shorter 665

unitary TR with a larger number of shots or a longer readout time (which implies 666

slightly mismatched TE values) for 3D-SPARKLING in order to avoid different T ∗
2 667

contrasts between 3D-SPARKLING and 3D-EPI. 668

Hence for the sake of a fair comparison, we gave the priority to choosing the same 669

acquisition parameters for the two encoding schemes over using the most efficient 670

parameters for 3D-SPARKLING. 671

Perspectives on how to further improve 3D-SPARKLING 672

It is worth noticing that similarly to 3D-EPI, both [43] and [86] perform dynamic field 673

fluctuation corrections in non-Cartesian imaging during image reconstruction. To do so, 674

they used either external estimates from a field camera or their sequence in a 675

self-navigating manner. Our next goal will be to investigate how this type of correction 676

positively affects 3D-SPARKLING fMRI data. We have started to look at this aspect 677

on dynamically monitored fMRI 3D-SPARKLING data based on a field camera. Our 678

preliminary results showed consistent results with [43,86], namely an improved image 679

quality and higher tSNR maps. We also demonstrated an increased sensitivity to the 680

BOLD contrast [87]. Moreover, similarly to TURBINE [86], 3D-SPARKLING is 681

crossing the center of k-space at the center of each readout. This means that this 682

encoding pattern can also be used in a self-navigating manner. Furthermore, this 683

feature could be exploited to retrospectively reduce the volumetric TR and enhance the 684

effective temporal resolution without sacrificing neither the spatial resolution nor the 685

tSNR by implementing for instance a sliding window image reconstruction approach. In 686

addition to this, analogously to TURBINE which implements temporal incoherence by 687

using a golden angle increment between consecutive shots, 3D-SPARKLING could be 688

extended to a 4D sampling pattern instead of being used in a simple scan-and-repeat 689

mode. In that case, “low rank plus sparse” image reconstruction methods or local 690
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low-rank denoising techniques [88] could also be instrumental in obtaining high quality 691

fMRI images at the native spatio-temporal resolution. 692

Conclusion 693

In this work, 3D-SPARKLING was used for the first time to conduct whole brain fMRI 694

acquisitions at 1mm3 and for a temporal resolution of 2.4s. We also conducted an 695

exhaustive comparison between 3D-SPARKLING and state-of-the-art 3D-EPI based on 696

image quality, tSNR, sensitivity to the BOLD effect as well as spatial specificity 697

following both qualitative and quantitative criteria. The results revealed that 698

3D-SPARKLING yields a higher tSNR, an improved sensitivity to the BOLD contrast 699

and better spatial specificity than 3D-EPI. In addition to this, 3D-SPARKLING can be 700

further enhanced by performing dynamic B0 field fluctuations correction or exploiting 701

the fact that each shot crosses the center of the k-space to expand it into 4D by 702

implementing some incoherence in time between the shots. 703
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Appendix 750

Nonlinear CS-based reconstructions can induce bias, and depending on the level of 751

regularization, they may not guarantee the Gaussianity of the noise, which is an 752

essential hypothesis as the GLM analysis is grounded on the Gaussianity of the 753

residuals. In this work, the same regularization parameter (and, therefore, the same 754

reconstruction algorithm) was used for all consecutive volumes. This means that any 755

potential bias caused by nonlinear regularized reconstruction would be constant across 756

all fMRI scans. Such a tendency would be captured by the baseline regressor in the 757

design matrix, and the residual error distribution would remain centered. Additionally, 758

as we used a moderate amount of ℓ1 regularization, we showcase in the following that 759

this does not strongly affect the Gaussianity hypothesis on the residuals of the GLM. 760

First, we compared the impact of three different reconstruction strategies on the 761

statistical analysis, namely, the effect (β coefficients) captured by the baseline regressor 762

(Figure 10) and residual errors (Figure 11) of the GLM-fitted 3D-SPARKLING fMRI 763

time series collected in V#3. These three different strategies were chosen in order to 764

disentangle the effect of nonlinear reconstruction due to sparse regularization from that 765

of the regularization itself on top of the 3D SPARKLING encoding scheme: 766

a: The nonlinear regularized reconstruction using a ℓ1-norm regularization in the 767

wavelet domain (λ = 10−8). 768

b: The linear regularized reconstruction using a squared ℓ2-norm regularization in 769

the wavelet domain (the regularization parameter λ = 10−8). The wavelet basis 770

chosen is Sym8 which is an orthogonal basis, therefore even though the squared 771

ℓ2-norm is applied to the wavelet coefficients, the reconstruction remains linear. 772

c: The zero-filled adjoint Fourier reconstruction (no regularization, i.e. λ = 0). 773
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Fig 10. (A): Maps of the voxel-wise difference between the β coefficients
derived from the baseline regressor in GLM analysis and associated with
3D-SPARKLING data reconstructed using (a) to (c) in V#3. (B):
Histograms of these maps.

Second, and specifically regarding the distributions of the residuals, we compared 774

the results associated with 3D-SPARKLING to those associated with 3D-EPI and 775

corresponding to the same volunteer (V#3). 776

Figure 10(A) shows the maps of the voxel-wise difference of the β coefficients 777

derived from the baseline regressor in the GLM and associated with 3D-SPARKLING 778

data reconstructed using (a) to (c): After computing the β coefficient maps associated 779

with the baseline regressor and each reconstruction strategy ((a) to (c)), the voxel-wise 780

differences between these maps were computed, namely, βℓ1 − βℓ2 , βℓ1 − βnoregu and 781

βℓ2 − βnoregu. There are visible differences between the 3 maps. As we assume that 782

reconstruction strategy (c) yields no bias as it’s not regularized, these results suggest 783

that the bias induced by the nonlinearity (βℓ1 − βℓ2) is actually lower than that induced 784

by the regularization (βℓ1 − βnoregu or βℓ2 − βnoregu). In Figure 10(B), the histograms 785

of these voxel-wise differences in β coefficients are plotted and confirm the above 786

observations: As the distribution of these differences is narrower or tighter between the 787

two regularized (linear versus nonlinear) reconstruction strategies as compared to the 788

differences between the regularized and unregularized strategies, most of the bias is due 789

to the regularization itself and not to its nonlinear aspect. 790

Figure 11(A) shows the residual error maps associated with 3D-SPARKLING 791

(reconstructed using (a)-(c) strategies) and 3D-EPI fMRI volumes. These maps were 792

produced by averaging the temporal residual errors over the time dimension to obtain a 793

global summary. The residual error seems centered around zero for the four datasets. 794
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Fig 11. (A) Maps and (B) temporal histograms of the residual error of the
GLM-fitted retinotopic fMRI data associated with 3D-SPARKLING
(reconstructed with strategies (a)-(c)) and 3D-EPI and collected in V#3.

Additionally, reconstruction strategy (c) results in more lost signal than (a) and (b) as 795

the residuals reach higher values. Figure 11(B) shows the histograms of the temporal 796

residual error of the GLM-fitted fMRI volumes: Firstly, we spatially averaged the 797

residual errors over the brain mask, then computed the temporal histograms1. The 798

results associated with the four scenarios, namely the data acquired with 799

3D-SPARKLING and reconstructed using strategies (a)-(c) and those acquired with 800

3D-EPI, are reasonably similar. Despite small differences between the histograms 801

associated with the reconstruction strategies (a)-(c), the distributions are centered 802

around zero. Furthermore, the histograms associated with 3D-SPARKLING and 803

reconstruction strategy (a) and that associated with 3D-EPI are quite similar and are 804

spread alike around zero. Additionally, to obtain an objective measure of the similarity 805

between these histograms and evaluate how tenable the hypothesis of the Gaussianity of 806

the residuals is, a Kolmogorov-Smirnov (KS) test was performed between: 807

1The number of samples in the histograms is given by the number of scans.
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(i) The histograms associated with 3D-SPARKLING data and reconstruction 808

strategies (a) and (b), respectively. 809

(ii) The histograms associated with 3D-SPARKLING data and reconstruction 810

strategies (a) and (c), respectively. 811

(iii) The histograms associated with 3D-SPARKLING data and reconstructed using (a) 812

and those associated with 3D-EPI. 813

The null hypothesis (H0) used is that the two distributions are identical and the 814

p-values were, 0.18, 0.1, and 0.9 for (i), (ii), and (iii), respectively. This means that H0 815

cannot be rejected and therefore that the distributions are significantly similar. We 816

conclude that the hypothesis of Gaussianity remains tenable for 3D-SPARKLING data 817

reconstructed with a CS-based reconstruction. This could be explained by the fact that 818

the level of regularization performed was set to a reasonably good but low value. 819
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Mauconduit, F., Mirkes, C., Ciuciu, P. & Vignaud, A. Impact of ∆B0

imperfections correction on BOLD sensitivity in 3D-SPARKING fMRI data.
Proc. Int. Soc. Mag. Reson. Med.. 31 (2023)

88. Comby, P., Amor, Z., Vignaud, A. & Ciuciu, P. Denoising of fMRI volumes
using local low rank methods. (CEA/NeuroSpin, Inria-CEA MIND,2022,11),
https://hal.archives-ouvertes.fr/hal-03895194

October 5, 2023 35/35


