
HAL Id: hal-04350055
https://hal.science/hal-04350055

Preprint submitted on 18 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Artemis: tight convergence guarantees for bidirectional
compression in heterogeneous settings for federated

learning
Constantin Philippenko, Aymeric Dieuleveut

To cite this version:
Constantin Philippenko, Aymeric Dieuleveut. Artemis: tight convergence guarantees for bidirectional
compression in heterogeneous settings for federated learning. 2020. �hal-04350055�

https://hal.science/hal-04350055
https://hal.archives-ouvertes.fr

Artemis: tight convergence guarantees for bidirectional compression in heterogeneous
settings for federated learning.

Constantin Philippenkoa,∗, Aymeric Dieuleveuta

aCMAP, École polytechnique, Institut Polytechnique de Paris, Rte de Saclay, 91120, Palaiseau, France

Abstract

We introduce a framework – Artemis – to tackle the problem of learning in a distributed or federated setting with
communication constraints. Several workers (randomly sampled) perform the optimization process using a central server
to aggregate their computations. To alleviate the communication cost, Artemis allows to compress the information sent
in both directions (from the workers to the server and conversely) combined with a memory mechanism. It improves
on existing algorithms that only consider unidirectional compression (to the server), or use very strong assumptions on
the compression operator. We provide fast rates of convergence (linear up to a threshold) under weak assumptions on
the stochastic gradients (noise’s variance bounded only at optimal point) in non-i.i.d. setting, highlight the impact of
memory for unidirectional and bidirectional compression, and analyze Polyak-Ruppert averaging. We use convergence in
distribution to obtain a lower bound of the asymptotic variance that highlights practical limits of compression.

Keywords: Large-scale optimization, Federated learning, Compression, Clients heterogeneity

1. Introduction

In modern large-scale machine learning applications,
optimization has to be processed in a distributed fashion,
using a potentially large number N in N of clients. In
the data-parallel framework, each client only accesses a
fraction of the data: new challenges have arisen, especially
when communication constraints between the workers are
present.

In this paper, we focus on first-order methods, espe-
cially stochastic gradient descent [5, 35] in a centralized
framework: a central machine aggregates the computation
of the N workers in a synchronized way. This applies to
both the distributed [e.g. 21] and the federated learning
[introduced in 19, 26] settings.

Formally, we consider a number of features d ∈ N∗, and
a convex cost function F : Rd → R. We want to solve the
following convex optimization problem:

min
w∈Rd

F (w) with F (w) =
1

N

N∑
i=1

Fi(w) , (1)

where (Fi)
N
i=1 is a local risk function for the model w on the

worker i. Especially, in the classical supervised machine
learning framework, we fix a loss ℓ and access, on a worker
i, ni observations (zik)1≤k≤ni

following a distribution Di.
In this framework, Fi can be either the (weighted) local
empirical risk, w 7→ (n−1

i)
∑ni

k=1 ℓ(w, z
i
k) or the expected

∗Corresponding author
Email addresses: constantin.philippenko@gmail.com

(Constantin Philippenko), aymeric.dieuleveut@gmail.com (Aymeric
Dieuleveut)

risk w 7→ Ez∼Di [ℓ(w, z)]. At each iteration of the algorithm,
each client can get an unbiased oracle on the gradient of
the function Fi (typically either by choosing uniformly an
observation in its dataset or in a streaming fashion, getting
a new observation at each step).

Our goal is to reduce the amount of information ex-
changed between workers, to accelerate the learning process,
limit the bandwidth usage, and reduce energy consumption.
Indeed, the communication cost has been identified as an
important bottleneck in the distributed settings [e.g. 40]. In
their overview of the federated learning framework, Kairouz
et al. [16] also underline in Section 3.5 two possible direc-
tions to reduce this cost: (1) compressing communication
from workers to the central server (uplink) (2) compressing
the downlink communication.

Most of the papers considering the problem of reducing
the communication cost [2, 1, 45, 17, 29, 12, 22, 13] only
focus on compressing the message sent from the workers to
the central node. This direction has the highest potential
to reduce the total runtime given that (i) the bandwidth
for upload is generally more limited than for download, and
that (ii) for some regimes with a large number of workers,
the downlink communication, that corresponds to a “one-to-
N ” communication, may not be the bottleneck compared
to the “N -to-one” uplink.

Nevertheless, there are several reasons to also consider
downlink compression. First, the difference between up-
load and download speeds is not significant enough at all
to ignore the impact of the downlink direction (see Ap-
pendix B for an analysis of bandwidth). If we consider
for instance a small number N of workers training a very

heavy model – the size of Deep Learning models generally
exceeds hundreds of MB [7, 14] –, the training speed will
be limited by the exchange time of the updates, thus using
downlink compression is key to accelerating the process.
Secondly, in a different framework in which a network of
smartphones collaborate to train a large scale model in a
federated framework, participants to the training would not
be eager to download a hundreds of MB for each update on
their phone. Here again, downlink compression appears to
be necessary. To encompass all situations, our framework
implements compression in either or both directions with
possibly different compression levels.

Bidirectional compression (i.e. compressing both uplink
and downlink) raises new challenges. In the downlink step,
if we compress the model, the quantity compressed does not
tend to zero. Consequently the compression error signifi-
cantly hinders convergence. To circumvent this problem we
compress the gradient that may asymptotically approach
zero. Prior to this work, bidirectional compression had
been considered by Tang et al. [41], Zheng et al. [48], Liu
et al. [23], Yu et al. [46]. In particular, Liu et al. [23]
developed (concomitantly and independently to our work)
an algorithm called Dore, which combines error compensa-
tion, a memory mechanism, and model compression, and
assumes a uniform bound on the gradient variance. In this
work, we provide new results on Dore-like algorithms, con-
sidering a framework without error-feedback using tighter
assumptions, and quantifying precisely the impact of data
heterogeneity on the convergence.

Indeed, we focus on a heterogeneous setting: the data
distribution depends on each worker (thus non i.i.d.). We
explicitly control the differences between distributions. In
such a setting, the local gradient at the optimal point
∇Fi(w∗) may not vanish: to get a vanishing compression
error, we introduce a “memory” process [29].

Assumptions made on the gradient oracle directly influ-
ence the convergence rate of the algorithm: in this paper, we
neither assume that the gradients are uniformly bounded
[as in 48] nor that their variance is uniformly bounded
[Assumption 3, as in 2, 29, 23, 41, 12]: instead we only
assume that the variance is bounded by a constant σ2

∗ at
the optimal point w∗, and provide linear convergence rates
up to a threshold proportional to σ2

∗ (as in [8, 10] for non
distributed optimization). This is a fundamental difference
as the variance bound at the optimal point can be orders
of magnitude smaller than the uniform bound used in pre-
vious work: this is striking when all loss functions have
the same critical point, and thus the noise at the optimal
point is null! This happens for example in the interpola-
tion regime, which has recently gained importance in the
machine learning community [4]. As the empirical risk at
the optimal point is null or very close to zero, so are all the
loss functions with respect to one example. This is often
the case in deep learning [e.g., 47] or in large dimension
regression [27].

Overall, we make the following contributions:

1. We describe a framework – Artemis – that encom-
passes 6 algorithms (with or without up/down com-
pression, with or without memory). We provide and
analyze in Theorem 1 a fast rate of convergence – expo-
nential convergence up to a threshold proportional to
σ2
∗, the noise at the optimal point –, obtaining tighter

bounds than in [2, 29].

2. We explicitly tackle heterogeneity using Assumption 4,
proving that the limit variance of Artemis with memory
is independent from the difference between distributions
(as for SGD). This is the first theoretical guarantee
for double compression that explicitly quantifies
the impact of non i.i.d. data.

3. In the non-strongly-convex case, we prove the conver-
gence using Polyak-Ruppert averaging in Theorem 2.

4. We prove convergence in distribution of the iterates,
and subsequently provide a lower bounds on the
asymptotic variance. This sheds light on the limits
of (double) compression, which results in an increase of
the algorithm’s variance, and can thus only accelerate
the learning process for early iterations and up to a
“moderate” accuracy. Interestingly, this “moderate” accu-
racy has to be understood with respect to the reduced
noise σ2

∗.

5. We provide carefully designed experiments to illustrate
our theoretical findings. We use both real datasets
and synthetic datasets to highlight each of the insights
presented in our theorems. See this repository to find
the code to reproduce our experiments,

In Table 1, we highlight the main features and assump-
tions of Artemis compared to recent algorithms using com-
pression.

The rest of the paper is organized as follows: in Section 2
we introduce the framework of Artemis. In Subsection 2.1
we describe the assumptions, and we review related work
in Subsection 2.2. We then give the theoretical results in
Section 3, we present experiments in Section 4, and finally,
we conclude in Section 5.

2. Problem statement

We consider the problem described in Equation (1).
In the convex case, we assume that there exist at least
one optimal point which we denote w∗, we also denote
hi
∗ = ∇Fi(w∗), for i in J1, NK. To solve this problem, we

rely on a stochastic gradient descent (SGD) algorithm.
A stochastic gradient gik is provided at iteration k in

N∗ to the device i in J1, NK. This function is then eval-
uated at point wk−1: to alleviate notation, we will use
gik = gik(wk−1) and gik,∗ = gik(w∗) to denote the stochastic
gradient vectors at points wk−1 and w∗ on device i. In
the classical centralized framework (without compression),
SGD corresponds to:

2

https://github.com/philipco/artemis-bidirectional-compression

Table 1: Comparison of frameworks for main algorithms handling (bidirectional) compression. By “non i.i.d.”, we mean
that the theoretical framework encompasses and explicitly quantifies the impact of data heterogeneity on convergence
(Assumption 4), e.g., Dore does not assume i.i.d. workers but does not quantify differences between distributions.
References: see [2] for QSGD, [29] for Diana, [13] for [HR20], [23] for Dore and [41] for DoubleSqueeze.

QSGD Diana [HR20] Dore Double
Squeeze

Dist
EF-SGD

Artemis
(new)

Data i.i.d. non i.i.d. non i.i.d. i.i.d. i.i.d. i.i.d. non i.i.d.

Bounded variance Uniformly Uniformly Uniformly Uniformly Uniformly Uniformly At optimal
point

Compression One-way One-way One-way Two-way Two-way Two-way Two-way
Error-feedback ✓ ✓ ✓ ✓
Memory ✓ ✓ ✓
Partial part. ✓ ✓

wk = wk−1 − γ
1

N

N∑
i=1

gik (2)

where γ is the learning rate.
However, computing such a sequence would require the

nodes to send either the gradient gik or the updated local
model to the central server (uplink communication), and
the central server to broadcast back either the averaged
gradient gk or the updated global model (downlink com-
munication). Here, in order to reduce communication cost,
we perform a bidirectional compression. More precisely,
we combine two main tools: (1) an unbiased compression
operator C : Rd → Rd that reduces the number of bits
exchanged, and (2) a memory process that reduces the
size of the signal to compress, and consequently the error
[29, 22]. That is, instead of directly compressing the gra-
dient, we first approximate it by the memory term and,
afterwards, we compress the difference. As a consequence,
the compressed term tends in expectation to zero, and
the error of compression is reduced. Following Tang et al.
[41], we always broadcast gradients and never models. To
distinguish the two compression operations we denote Cup

and C
dwn

the compression operator for uplink and downlink.
At each iteration, we thus have the following steps:

1. First, each active local node sends to the central server
a compression of gradient differences: ∆̂i

k = C
up
(gik −

hi
k−1), and updates the memory term hi

k = hi
k−1 +

αup∆̂
i
k with αup ∈ R∗. The server recovers the approxi-

mated gradients’ values by adding the received term to
the memories kept on its side.

2. Then, the central server sends back the compression of
the sum of compressed gradients: Ωk = C

dwn
(1
N

∑N
i=1 ∆̂

i
k+

hi
k−1). No memory mechanism needs to be used, as the

sum of gradients tends to zero in the absence of regular-
ization.

The update is thus given by:
∀i ∈ J1, NK , ∆̂i

k = C
up

(
gik − hi

k−1

)
Ωk = C

dwn

(
1
N
∑N

i=1(∆̂
i
k + hi

k−1)
)

wk = wk−1 − γΩk .

(3)

Constants γ, αup ∈ R∗ × R+ are learning rates for respec-
tively the iterate sequence and the memory sequence.

Partial participation.. An important setting of FL is the
partial participation (PP) of clients at each round: clients
only participate in a fraction p of the training steps. This
can be addressed theoretically by modelizing it as a com-
pression scheme CPP, which compresses a vector z as either
z/p or 0. As such, our analysis of uplink compression nat-
urally encompasses the PP scenario. In the PP setting,
the main difficulty is to keep all clients synchronized when
they return to the training process. This requires sharing
any updates they missed or the latest iterate, depending
on which option is more efficient. This step is commonly
referred to as a “catching-up” process. This approach has
also been proposed by Sattler et al. [36, see the remark pre-
ceding Equation (20) in Section VI.C] or by Tang et al. [41,
v2 on arxiv for the distributed case], who use a buffer. We
present the pseudo-code of Artemis with the catching-up
step in Algorithm 1.

As a summary, the Artemis framework encompasses,
in particular, these four algorithms: the variant with uni-
directional compression (ωdwn = 0) w.o. or with memory
(αup = 0 or αup ̸= 0) recovers QSGD defined by Alistarh
et al. [2] and DIANA proposed by [29]. The variant us-
ing bidirectional compression (ωdwn ̸= 0) w.o memory
(αup = 0) is called Bi-QSGD. The last and most effective
variant combines bidirectional compression with memory
and is the one we refer to as Artemis if no precision is
given. It corresponds to a simplified version of Dore with-
out error-feedback, but this additional mechanism did not
lead to any theoretical improvement in the case of unbiased
compressors [Remark 2 in Sec. 4.1., 23].

Remark 1 (Local steps). An obvious independent direction
to reduce communication is to increase the number of steps
performed before communication. This is the spirit of Local-
SGD [38]. It is an interesting extension to incorporate this
into our framework. We do not consider it in order to focus
on the compression insights.

In the following section, we present and discuss assump-
tions over the function F , the data distribution and the
compression operator.

3

Algorithm 1: Artemis - set α > 0 to use memory.
Input: Mini-batch size b, learning rates α, γ > 0, initial model w0 ∈ Rd, operators Cup and C

dwn
, M1 and M2 the

sizes of the full/compressed gradients.
Initialization: Local memory: ∀i ∈ J1, NK hi

0 = 0 (kept on both central server and device i). Index of last
participation: ki = 0.

Output: Model wK

for k = 0, 1, 2, . . . ,K do
Randomly sample a set of device Sk

for each device i ∈ Sk do
Catching up.
If k − ki > ⌊M1/M2⌋, send the model wk

Else send (Ω̂j)
k
j=ki+1 and update local model: ∀j ∈ Jki + 1, kK, wj = wj−1 − γΩj,Sj−1

Update index of its last participation: ki = k
Local training.
Compute stochastic gradient gik = gk+1(wk) (with mini-batch)
Set ∆i

k = gik − hi
k, compress it ∆̂i

k = Cup(∆
i
k)

Update memory term: hi
k+1 = hi

k + α∆̂i
k

Send ∆̂i
k to central server

Compute ĝk = hk + 1
pN

∑
i∈Sk

∆̂i
k

Update central memory: hk+1 = hk + α 1
N
∑

i∈Sk
∆̂i

k

Back compression: Ωk+1,Sk
= C

dwn
(ĝk)

Broadcast Ωk+1 to all workers.
Update model on central server: wk+1 = wk − γΩk+1,Sk

2.1. Assumptions
We make classical assumptions on F : Rd → R.

Assumption 1 (Strong-convexity). F is µ-strongly-convex,
that is for all vectors z, z′ in Rd: F (z′) ≥ F (w) + (z′ −
z)T∇F (z) + µ

2 ∥z′ − z∥22 .
Note that we do not need each Fi to be strongly convex,

but only F . Also remark that we only use this inequality
for z′ = w∗ in the proof of Theorems 1 and 2.

Below, we introduce cocoercivity [see 50, for more de-
tails about this hypothesis]. This assumption implies that
all (Fi)i∈J1,NK are L-smooth.

Assumption 2 (Cocoercivity of stochastic gradients in
quadratic mean). We suppose that for all k in N, stochastic
gradients functions (gik)i∈J1,NK are L-cocoercive in quadratic
mean. That is, for k in N, i in J1, NK and for all vectors
z, z′ in Rd, we have:

E[∥gik(z)− gik(z
′)∥2] ≤ L ⟨∇Fi(z)−∇Fi(z

′), z − z′⟩ .

E.g., this is true under the much stronger assumption
that stochastic gradients functions (gik)i∈J1,NK are almost
surely L-cocoercive, i.e.:

∥gik(z)− gik(z
′)∥2 ≤ L

〈
gik(z)− gik(z

′), z − z′
〉
.

Next, we present the assumption on the stochastic gra-
dient’s noise. Again, we highlight that the noise is only
controlled at the optimal point. To carefully control the

noises process (gradient oracle, uplink, and downlink com-
pression), we introduce three filtrations (Hk,Gk,Fk)k≥0,
such that wk is Hk-measurable for any k ∈ N. Detailed
definitions are given in Appendix A.

Assumption 3 (Noise over stochastic gradients compu-
tation). The noise over stochastic gradients at the global
optimal point, for a mini-batch of size b, is bounded: there
exists a constant σ∗ ∈ R, s. t. for all k in N, for all i in
J1, NK , we have a.s.: E[∥gik,∗ −∇Fi(w∗)∥2|Hk−1] ≤ σ2

∗
b .

In fact, Assumption 3 only requires that for any i ∈
J1, NK, E[∥gik,∗ − ∇Fi(w∗)∥2 | Hk−1] ≤ σ2

∗,i
b , and the re-

sults then hold for σ∗ = 1
N

∑N
i=1 σ

2
∗,i. In other words, the

bounds do not need to be uniform over workers, only the
average truly matters. The constant σ2

∗ is null, for exam-
ple, if we use deterministic (batch) gradients, or in the
interpolation regime for i.i.d. observations, as discussed
in the Introduction. As we have also incorporated here a
mini-batch parameter, this reduces the variance by a factor
b.

Unlike Diana [29, 22], Dore [23], Dist-EF-SGD [48] or
Double-Squeeze [41], we assume that the variance of the
noise is bounded only at optimal point w∗ and not at any
point w in Rd. It results that if the variance is null (σ2

∗ = 0)
at the optimal point, we obtain a linear convergence while
previous results obtain this rate solely if the variance is null
at any point (i.e. only for deterministic GD). Also remark
that Assumptions 2 and 3 both stand for the simplest

4

Least-Squares Regression (LSR) setting, while the uniform
bound on the gradient’s variance does not. Next, we give
the assumption that links the distributions on the different
machines.

Assumption 4 (Bounded gradient at w∗). There exists a
constant B ∈ R+, s.t.:

1

N

N∑
i=0

∥∇Fi(w∗)∥2 = B2 .

This assumption is used to quantify how different the
distributions are on the different clients. In the streaming
i.i.d. setting – D1 = · · · = DN and F1 = · · · = FN – the
assumption is satisfied with B = 0. Combining Assump-
tions 3 and 4 results in an upper bound on the averaged
squared norm of stochastic gradients at w∗: for all k in N,

we have a.s. 1
N

∑N
i=1 E[∥gik,∗∥2|Hk−1] ≤ σ2

∗
b

+B2.
Finally, compression operators can be classified in two

main categories: quantization [as in 31, 2, 37, 49, 44, 34, 12]
and random projection [as in 42, 32, 39, 3, 18]. Theoretical
guarantees provided in this paper do not rely on a particular
kind of compression, as we only consider the following
assumption on the compression operators Cup and Cdwn:

Assumption 5. There exist constants ωup , ωdwn ∈ R∗
+,

such that the compression operators Cup and C
dwn

verify the
two following properties for all z in Rd:{

E[Cup/dwn(z)] = z ,

E[
∥∥Cup/dwn(z)− z

∥∥2] ≤ ωup/dwn ∥z∥2 .

In other words, the compression operators are unbiased
and their variances are relatively bounded. Assumption 5
requires in fact to access a sequence of i.i.d. compression
operators C

up/dwn,k for k ∈ N – but for simplicity, we gen-
erally omit the k index. Note that Horváth & Richtárik
[13] have shown that using an unbiased operator leads to
better performances. Unlike us, Tang et al. [41] assume
uniformly bounded compression error, which is a much
more restrictive assumption. Also note that ωup/dwn can
be considered as parameters of the algorithm, as the com-
pression levels can be chosen. We now provide additional
details on related papers dealing with compression.

2.2. Related work on compression
Quantization is a common method for compression and

is used in various algorithms. For instance, Seide et al. [37]
are one of the first to propose to quantize each gradient
component by either −1 or 1. This approach has been ex-
tended in Karimireddy et al. [17]. Alistarh et al. [2] define
a new algorithm – QSGD – which instead of sending gra-
dients, broadcasts their quantized version, getting robust
results with this approach. On top of gradient compression,
Wu et al. [45] add an error-compensation mechanism that
accumulates quantization errors and corrects the gradient
computation at each iteration. Diana [introduced in 29]
introduces a “memory” term in the place of accumulating

Table 2: Details on constants C and E defined in Theorem 1.
C = 0 for αup = 0, see Th. S5 for αup ̸= 0.

αup E

0 (ωdwn + 1)

(
(ωup + 1)

σ2
∗
b

+ ωupB
2

)
̸= 0

σ2
∗
b

(
(2ωup + 1)(ωdwn + 1) + 4α2

upC(ωup + 1)− 2αupC
)

errors. Li et al. [22] extend this algorithm and improve
its convergence by using an accelerated gradient descent.
Reisizadeh et al. [34] combine unidirectional quantization
with device sampling, leading to a framework closer to
federated learning settings where devices can easily be
switched off. In the same perspective, Horváth & Richtárik
[13] detail results that also consider PP. Tang et al. [41]
are the first to suggest a bidirectional compression scheme
for a decentralized network. For both uplink and downlink,
the method consists in sending a compression of gradients
combined with an error compensation. Later, Yu et al. [46]
choose to compress models instead of compressing gradi-
ents. This approach is enhanced by Liu et al. [23] who
combine model compression with a memory mechanism
and an error compensation drawing from [29]. Both Tang
et al. [41] and Zheng et al. [48] compress gradients without
using a memory mechanism. However, as proved in the
following section, memory is key to reducing the asymp-
totic variance in the heterogeneous case. We now provide
theoretical results about the convergence of bidirectional
compression.

3. Theoretical results

In this Section, we present our main theoretical results
on the convergence of Artemis and its variants. To ensure
clarity, the most complete and tightest versions of theorems
are given in Appendices, while offering simplified versions
here.

The main linear convergence rates are given in Theo-
rem 1, and in Theorem 2 we show that Artemis combined
with Polyak-Ruppert averaging reaches a sub-linear con-
vergence rate. We denote δ20 = ∥w0 − w∗∥2.
Theorem 1 (Convergence of Artemis). Under Assump-
tions 1 to 5, for a step-size γ satisfying the conditions in
Table 3, for a learning rate αup and for any k in N, the
mean squared distance to w∗ decreases at a linear rate up
to a constant of the order of E:

E
[
∥wk − w∗∥2

]
≤ (1− γµ)k

(
δ20 + 2Cγ2B2

)
+

2γE

µN
,

for constants C and E depending on the variant (indepen-
dent of k) given in Table 2 or in the appendix. Variants
with αup ̸= 0 require αup ∈ [1/2(ωup + 1), αmax], the upper
bound αmax is given in Theorem S5.

This theorem is derived from Theorems S4 and S5 which
are respectively proved in Appendices E.1 and E.2.

We can make the following remarks:

5

1. Linear convergence. The convergence rate given in
Theorem 1 can be decomposed into two terms: a bias
term, forgotten at linear speed (1−γµ)k, and a variance
residual term which corresponds to the saturation level
of the algorithm. The rate of convergence (1− γµ) does
not depend on the variant of the algorithm. However,
the variance and initial bias do vary.

2. Bias term. The initial bias always depends on ∥w0 −
w∗∥2, and when using memory (i.e. αup ̸= 0) it also de-
pends on the difference between distributions (constant
B2).

3. Variance term and memory. On the other hand, the
variance depends (1) on both σ2

∗/b, and the distributions’
difference B2 without memory (2) only on the gradients’
variance at the optimum σ2

∗/b with memory. Similar
theorems in related literature [23, 2, 29, 46, 41, 48]
systematically had a worse bound for the variance term
depending on a uniform bound of the noise variance
or under much stronger conditions on the compression
operator. This work and [23] are also the first to give
a linear convergence up to a threshold for bidirectional
compression.

4. Impact of memory. To the best of our knowledge, this
is the first work on double compression that explicitly
tackles the non i.i.d. case. We prove that memory makes
the saturation threshold independent of B2 for Artemis.

5. Variance term. The variance term increases with a
factor proportional to ωup for the unidirectional compres-
sion, and proportional to ωup × ωdwn for bidirectional.
This is the counterpart of compression, each compres-
sion resulting in a multiplicative factor on the noise. A
similar increase in the variance appears in [29] and [23].
The noise level is attenuated by the number of devices
N , to which it is inversely proportional.

6. Link with classical SGD. For variant of Artemis with
αup = 0, if ωup/dwn = 0 (i.e. no compression) we recover
SGD results: convergence does not depend on B2, but
only on the noise’s variance.

Conclusion: Overall, it appears that Artemis is able
to efficiently accelerate the learning during first iterations,
enjoying the same linear rate as SGD with lower com-
munication complexity, but it saturates at a higher level,
proportional to σ2

∗ and independent of B2.
The range of acceptable learning rates is an important

feature for first order algorithms. In Table 3, we summa-
rize the upper bound γmax on γ, to guarantee a (1− γµ)
convergence of Artemis. These bounds are derived from
Theorems S4 and S5, in three main asymptotic regimes:
N ≫ ωup , N ≈ ωup and ωup ≫ N . Using bidirectional
compression impacts γmax by a factor ωdwn + 1 in com-
parison to unidirectional compression. For unidirectional
compression, if the number of machines is at least of the

Table 3: Upper bound on γmax to guarantee convergence.
For unidirectional compression (resp. no compr.), ωdwn = 0
(resp. ωup/dwn = 0, recovering classical rates for SGD).

Memory αup = 0 αup ̸= 0

N ≫ ωup

1
(ωdwn + 1)L

1
2(ωdwn + 1)L

N ≈ ωup

1
3(ωdwn + 1)L

1
5(ωdwn + 1)L

ωup ≫ N
N

2ωup(ωdwn + 1)L
N

4ωup(ωdwn + 1)L

order of ωup, then γmax nearly corresponds to γmax for
vanilla (serial) SGD.

We now provide a convergence guarantee for the aver-
aged iterate without strong-convexity.

Theorem 2 (Convergence of Artemis with Polyak-Rup-
pert averaging). Under Assumptions 2 to 5 (convex case)
with constants C and E as in Theorem 1 (see Table 2 for
precision), after running K in N∗ iterations, for a learning

rate γ = min

(√
Nδ20
2EK ; γmax

)
, with γmax as in Table 3, we

have a sublinear convergence rate for the Polyak-Ruppert
averaged iterate wK−1 = 1

K

∑K−1
k=0 wk:

E [F (wK−1)− F (w∗)] ≤ 2max

(√
2δ20E

NK
;

δ20
γmaxK

)

+
2γmaxCB2

K
.

This theorem is proved in Appendix E.3. Several com-
ments can be made on this theorem:

1. Importance of averaging This is the first theorem
given for averaging for double compression. In the con-
text of convex optimization, averaging has been shown
to be optimal [33].

2. Speed of convergence, if σ∗ = 0, B ̸= 0, K → ∞.
For αup ̸= 0, E = 0, while for αup = 0, E ∝ B2.
Memory thus accelerates the convergence from a rate
O(K−1/2) to O(K−1).

3. Speed of convergence, general case. More gener-
ally, we always get a K−1/2 sublinear speed of conver-
gence, and a faster rate K−1 when using memory and if
E ≤ δ20N/(2Kγ2

max) – i.e. in the context of a low noise
σ2
∗, as E ∝ σ2

∗. Again, it appears that bi-compression
is mostly useful in low-σ2

∗ regimes or during the first
iterations: intuitively, for a fixed communication budget,
while bi-compression allows to perform min{ωup, ωdwn}-
times more iterations, this is no longer beneficial if the
convergence rate is dominated by

√
2δ20E/NK, as E

increases by a factor ωup × ωdwn.

4. Memoryless case, impact of minibatch. In the
variant of Artemis without memory, the asymptotic
convergence rate is

√
2δ20E/NK with the constant E ∝

6

σ2
∗/b + B2: interestingly, it appears that in the case

of non i.i.d. data (B2 > 0), the convergence rate satu-
rates when the size of the mini-batch increases: large
mini-batches do not help. On the contrary, with mem-
ory, the variance is, as classically, reduced by a factor
proportional to the size of the batch, without saturation.

The increase in the variance (in Item 3) is not an artifact
of the proof: indeed we provide a corresponding (algorithm-
specific) lower bound based on proving the existence of a
limit distribution for the iterates of Artemis, and analyzing
its variance, see Theorem 3 in next Subsection.

3.1. Convergence in distribution and lower bound
The increase in the variance (in Item 3) is not an artifact

of the proof: we prove the existence of a limit distribu-
tion for the iterates of Artemis, and analyze its variance.
More precisely, we show a linear rate of convergence for the
distribution Θk of wk (launched from w0), w.r.t. the Wasser-
stein distance W2 [43]: this gives us a lower bound on the
asymptotic variance. Here, we further assume that the com-
pression operator is linear (e.g., sparsification, sketching,
rand-h, PP).

Theorem 3 (Convergence in distribution and lower bound
on the variance). Under Assumptions 1 to 5, for γ, αup, E
given in Theorem 1 and Table 3:
1. There exists a limit distribution πγ,v depending on the

variant v of the algorithm, s.t. for any k ≥ 1, we have
W2(Θk, πγ,v) ≤ (1− γµ)kC0, with C0 a constant.

2. When k goes to infinity, the second order moment E[∥wk−
w∗∥2] converges to Ew∼πγ,v [∥w − w∗∥2], which is lower
bounded by Ω(γE/µN) as in Theorem 1 as γ → 0, with
E depending on the variant.

Interpretation. The second point (2.) means that
the upper bound on the saturation level provided in Theo-
rem 1 is tight w.r.t. σ2

∗, ωup, ωdwn, B
2, N and γ. Especially,

it proves that there is indeed a quadratic increase in the
variance w.r.t. ωup and ωdwn when using bidirectional com-
pression (which is itself rather intuitive). Altogether, these
three theorems prove that bidirectional compression can be-
come strictly worse than usual stochastic gradient descent
in high precision regimes, a fact of major importance in
practice and barely (if ever) even mentioned in previous lit-
erature. To the best of our knowledge, only [25] are giving
a lower bound on the asymptotic variance for algorithms
using compression. Their result is more general, i.e., valid
for any algorithm using unidirectional compression, but
weaker (worst case on the oracle does not highlight the im-
portance of noise at the optimal point and is incompatible
with linear rates).

Proof and assumptions. This theorem also naturally
requires, for the second point, Assumptions 3 to 5 to be
“tight”: that is, e.g., Var(gik,∗) ≥ Ω(σ2

∗/b); more details and
the proof are given in Appendix E.4. Extension to other
types of compression reveals to be surprisingly non-simple,
and is thus out of the scope of this paper and a promising
direction.

4. Experiments

In this Section, we illustrate our theoretical guarantees
on both synthetic and real datasets, confirm the theoretical
findings in Theorems 1 to 3, and underline the impact of
the memory. Therefore, we focus on five of the algorithms
covered by our framework: Artemis with bidirectional com-
pression (simply denoted Artemis), QSGD, Diana, Bi-QSGD,
and usual SGD without any compression. In Appendix C,
we provide additional details and more illustrative exper-
iments. In particular, we compare Artemis with other
existing benchmarks (Figure S17): Double-Squeeze, Dore,
FedSGD and FedPAQ [see 34]. We also perform experiments
with optimized learning rates (Figure S16).

In all experiments, we display the logarithm excess loss
log10(F (wk−1)− F (w∗)) w.r.t. the number of iterations k
or the number of communicated bits. Curves are averaged
over 5 runs, and we plot error bars on all figures. These
errors bars correspond to ± the standard deviation of
the logarithm excess loss over the five runs. We use a
quantization scheme with s = 20.

Definition 1 (s-quantization operator). Given z ∈ Rd, the
s-quantization operator Cs is defined by Cs(z) := sign(z)×
∥z∥2 × χ

s . χ ∈ Rd is a random vector with j-th element de-

fined as: χ :=

{
l + 1 with probability s

|zj |
∥z∥2

− l ,

l otherwise
where

the level l is such that s|zj |
∥z∥2

∈ [l, l + 1[.

The s-quantization scheme verifies Assumption 5 with
ω = min(d/s2,

√
d/s) [the proof can be found in 2, see

Appendix A.1].
We first consider two simple synthetic datasets: one for

least-squares regression (with the same distribution over
each machine), and one for logistic regression (with varying
distributions across clients).

4.1. Synthetic datasets
The aim of using synthetic datasets is to underline the

properties resulting from Theorems 1 to 3. We build two dif-
ferent synthetic datasets for i.i.d. or non-i.i.d. cases. We use
linear regression to tackle the i.i.d case and logistic regres-
sion to handle the non-i.i.d. settings. Each worker i holds
ni observations (zij)1≤j≤ni = (xi

j , y
i
j)1≤j≤ni = (Xi, Y i) fol-

lowing a distribution Di.
We use N = 20 devices, each holding 200 points of

dimension d = 20 for least-square regression and d = 2 for
logistic regression. We ran algorithms over 100 epochs.

Choice of the step-size for the synthetic datasets.
For stochastic descent, we use a decreasing step-size γk =

1
L
√
k

with k in N, and for the full gradient descent we choose
γ = 1

L .
For i.i.d. setting, we use a linear regression model

without bias. For each worker i, data points are generated
from a normal distribution (xi

j)1≤j≤ni
∼ N (0,Σ). And

7

−2 0 2
x2
i

−2

−1

0

1

2

3
Logistic regression simulation

yi = 1

yi = −1

(a) Dataset 1

−2 0 2
x2
i

−2

−1

0

1

2

3
Logistic regression simulation

yi = 1

yi = −1

(b) Dataset 2

Figure 1: Data distribution for logistic regression to simulate
non-i.i.d. data. Half of the device holds the first dataset, and
the other half the second one.

then, for all j in J1, niK, we have: yij =
〈
w, xi

j

〉
+ ei with

ei ∼ N (0, λ2) and w the true model.
To obtain σ∗ = 0, it is enough to remove the noise

ei by setting the variance λ2 of the dataset distribution
to 0. Indeed, using a least-square regression, for all i in
J1, NK, the cost function evaluated at point w is Fi(w) =
1
2∥XiTw − Y i∥2. Thus the stochastic gradient j in J1, niK
on device i in J1, NK is gij(w) = (Xi

j
T
w − Y i

j)X
i
j . On the

other hand, the true gradient is ∇Fi(w) = EXiXiT (w −
w∗). Computing the difference, we have for all device i in
J1, NK and all j in J1, niK:

gij(w)− Fi(w) = (Xi
jX

i
j

T − EXiXiT)(w − w∗)︸ ︷︷ ︸
multiplicative noise equal to 0 in w∗

+ (Xi
j

T
w∗ − Y i

j)︸ ︷︷ ︸
∼N (0,λ2)

Xi
j

(4)

This is why, if we set λ = 0 and evaluate Equation (4)
at w∗, we get back Assumption 3 with σ∗ = 0, and as
a consequence, the stochastic noise at the optimum is
removed. Remark that it remains a stochastic gradient
descent, and the uniform bound on the gradients noise is
not 0. We set λ2 = 0(⇔ σ2

∗ = 0) in Figure S6. Otherwise,
we set λ2 = 0.4.

For non-i.i.d. setting, we generate two different
datasets based on a logistic model with two different pa-
rameters: w1 = (10, 10) and w2 = (10,−10). Thus the
model is expected to converge to w∗ = (10, 0). We have
two different data distributions x1 ∼ N (0,Σ1) and x2 ∼
N (0,Σ2), and for all i in J1, NK, for all k in J1, niK , yik =

R
(
Sigm

(〈
w(i mod 2)+1, x

k
(i mod 2)+1

〉))
∈ {−1,+1}. That

is, half the machines use the first distribution N (0,Σ1) for
inputs and model w1 and the other half the second distribu-
tion for inputs and model w2. Here, R is the Rademacher
distribution and Sigm is the sigmoid function defined as
Sigm: x 7→ ex

1 + ex
. These two distributions are presented

on Figure 1.

−50 0 50

−60

−40

−20

0

20

40

60

(a) Quantum dataset.

−100 −50 0 50 100
−100

−50

0

50

100

(b) Superconduct dataset.

Figure 2: TSNE representations.

0 25 50 75 100
Number of passes on data

−4

−2

0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) LSR (i.i.d.): σ2
∗ ̸= 0

0 100 200 300 400
Number of passes on data

−15

−10

−5

0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) LR (non-i.i.d.): σ∗ = 0.

Figure 3: Left: illustration of the saturation when σ∗ ̸= 0
and data is i.i.d., right: illustration of the memory benefits
when σ∗ = 0 but with non-i.i.d. data.

4.2. Real dataset
To illustrate theorems on real data and higher dimen-

sion, we then consider two real-world dataset: superconduct
[see 11, with 21 263 points and 81 features] and quantum
[see 6, with 50 000 points and 65 features] with N = 20
workers. To simulate non-i.i.d. and unbalanced workers, we
split the dataset in heterogeneous groups, using a Gaussian
mixture clustering on the TSNE representations (defined
by Maaten & Hinton [24]). Thus, the data are highly non-
i.i.d. and unbalanced over devices. We plot on Figure 2
the TSNE representation of the two real datasets. For
superconduct, there are between 250 and 3900 points by
worker, with a median at 750 ; and for quantum, there are
between 900 and 10500 points, with a median at 2300.

4.3. Analysis of convergence
Convergence. Figure 3a presents the convergence of

each algorithm w.r.t. the number of iterations k. During
first iterations all algorithms make fast progress. How-
ever, because σ2

∗ ̸= 0, all algorithms saturate; and the
saturation level is higher for double compression (Artemis,
Bi-QSGD), than for simple compression (Diana, QSGD), or
than for SGD. This corroborates findings in Theorem 1
and Theorem 3.

Complexity. On Figure 4, the loss is plotted w.r.t. the
theoretical number of bits exchanged after k iterations
for the quantum and superconduct dataset. This confirms
that double compression should be the method of choice
to achieve a reasonable precision (w.r.t. σ∗), whereas for

8

105 107

Communicated bits

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) Quantum

105 107

Communicated bits

−1.5

−1.0

−0.5

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) Superconduct

Figure 4: Real dataset (non-i.i.d.): σ∗ ̸= 0, N = 20 workers,
p = 1, b > 1 (150 iter.). X-axis in # bits.

high precision, a simple method like SGD results in a lower
complexity.

Linear convergence under null variance at the
optimum. To highlight the significance of our new con-
dition on the noise, we compare σ2

∗ ≠ 0 and σ2
∗ = 0 on

Figure 3. Saturation is observed in Figure 3a, but if we con-
sider a situation in which σ2

∗ = 0, and where the uniform
bound on the gradient’s variance is not null (as opposed to
experiments in Liu et al. [23] who consider batch gradient
descent), a linear convergence rate is observed. This illus-
trates that our new condition is sufficient to reach a linear
convergence. Comparing Figure 3a with Figure S6a sheds
light on the fact that the saturation level (before which dou-
ble compression is indeed beneficial) is truly proportional
to the noise variance at optimal point i.e. σ2

∗. And when
σ2
∗ = 0, bidirectional compression is much more effective

than the other methods (see Figure S6 in Appendix C.1).
Heterogeneity and real datasets. While in Fig-

ure 3a, data is i.i.d. on machines, and Artemis is thus not
expected to outperform Bi-QSGD (the difference between
the two being the memory), in Figures 3b and 4 we use
non-i.i.d. data. None of the previous papers on com-
pression directly illustrated the impact of heterogeneity on
simple examples, neither compared it with i.i.d. situations.

5. Conclusion

We propose Artemis, a framework using bidirectional
compression to reduce the number of bits needed to perform
distributed or federated learning. On top of compression,
Artemis includes a memory mechanism which improves
convergence over non-i.i.d. data. We provide three tight
theorems giving guarantees of a fast convergence (linear up
to a threshold), highlighting the impact of memory, analyz-
ing Polyak-Ruppert averaging and obtaining lowers bound
by studying convergence in distribution of our algorithm.
Altogether, this improves the understanding of compression
combined with a memory mechanism and sheds light on
challenges ahead.

Acknowledgments

We would like to thank Richard Vidal, Laeticia Kameni
from Accenture Labs (Sophia Antipolis, France) and Eric
Moulines from École Polytechnique for interesting discus-
sions. This research was supported by the SCAI: Statistics
and Computation for AI ANR Chair of research and teach-
ing in artificial intelligence and by Accenture Labs (Sophia
Antipolis, France).

Bibliography
[1] Agarwal, N., Suresh, A. T., Yu, F. X. X., Kumar, S., and McMa-

han, B. cpSGD: Communication-efficient and differentially-
private distributed SGD. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 31, pp.
7564–7575. Curran Associates, Inc., 2018.

[2] Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic, M.
QSGD: Communication-Efficient SGD via Gradient Quantiza-
tion and Encoding. Advances in Neural Information Processing
Systems, 30:1709–1720, 2017.

[3] Alistarh, D., Hoefler, T., Johansson, M., Konstantinov, N.,
Khirirat, S., and Renggli, C. The Convergence of Sparsified
Gradient Methods. Advances in Neural Information Processing
Systems, 31:5973–5983, 2018.

[4] Belkin, M., Hsu, D., Ma, S., and Mandal, S. Reconciling modern
machine-learning practice and the classical bias–variance trade-
off. Proceedings of the National Academy of Sciences, 116(32):
15849–15854, 2019. Publisher: National Acad Sciences.

[5] Bottou, L. Online learning and stochastic approximations. 1999.
doi: 10.1017/CBO9780511569920.003.

[6] Caruana, R., Joachims, T., and Backstrom, L. KDD-Cup 2004:
results and analysis. ACM SIGKDD Explorations Newsletter,
6(2):95–108, December 2004. ISSN 1931-0145. doi: 10.1145/
1046456.1046470.

[7] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao,
M., Ranzato, M., Senior, A., Tucker, P., Yang, K., Le, Q., and
Ng, A. Large Scale Distributed Deep Networks. Advances in
Neural Information Processing Systems, 25, 2012.

[8] Dieuleveut, A., Durmus, A., and Bach, F. Bridging the gap be-
tween constant step size stochastic gradient descent and markov
chains. Ann. Statist., 48(3):1348–1382, 06 2020. doi: 10.1214/
19-AOS1850. URL https://doi.org/10.1214/19-AOS1850.

[9] Elias, P. Universal codeword sets and representations of the
integers, September 1975.

[10] Gower, R. M., Loizou, N., Qian, X., Sailanbayev, A., Shulgin,
E., and Richtárik, P. SGD: General Analysis and Improved
Rates. In International Conference on Machine Learning, pp.
5200–5209. PMLR, May 2019. ISSN: 2640-3498.

[11] Hamidieh, K. A data-driven statistical model for predicting
the critical temperature of a superconductor. Computational
Materials Science, 154:346–354, November 2018. ISSN 0927-0256.
doi: 10.1016/j.commatsci.2018.07.052.

[12] Horváth, S., Kovalev, D., Mishchenko, K., Richtárik, P., and
Stich, S. Stochastic distributed learning with gradient quantiza-
tion and double-variance reduction. Optimization Methods and
Software, pp. 1–16, 2022.

[13] Horváth, S. and Richtárik, P. A Better Alternative to Er-
ror Feedback for Communication-Efficient Distributed Learning.
arXiv:2006.11077 [cs, stat], June 2020. arXiv: 2006.11077.

[14] Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., and Chen, z. GPipe:

9

https://doi.org/10.1214/19-AOS1850

Efficient Training of Giant Neural Networks using Pipeline Par-
allelism. In Wallach, H., Larochelle, H., Beygelzimer, A., Alché-
Buc, F. d., Fox, E., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran Associates,
Inc., 2019.

[15] Index, S. G. Speedtest Global Index – Monthly comparisons of
internet speeds from around the world, 2020.

[16] Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G.,
Cummings, R., D’Oliveira, R. G. L., Rouayheb, S. E., Evans, D.,
Gardner, J., Garrett, Z., Gascón, A., Ghazi, B., Gibbons, P. B.,
Gruteser, M., Harchaoui, Z., He, C., He, L., Huo, Z., Hutchin-
son, B., Hsu, J., Jaggi, M., Javidi, T., Joshi, G., Khodak, M.,
Konečný, J., Korolova, A., Koushanfar, F., Koyejo, S., Lepoint,
T., Liu, Y., Mittal, P., Mohri, M., Nock, R., Özgür, A., Pagh, R.,
Raykova, M., Qi, H., Ramage, D., Raskar, R., Song, D., Song,
W., Stich, S. U., Sun, Z., Suresh, A. T., Tramèr, F., Vepakomma,
P., Wang, J., Xiong, L., Xu, Z., Yang, Q., Yu, F. X., Yu, H., and
Zhao, S. Advances and Open Problems in Federated Learning.
arXiv:1912.04977 [cs, stat], December 2019. arXiv: 1912.04977.

[17] Karimireddy, S. P., Rebjock, Q., Stich, S., and Jaggi, M. Er-
ror Feedback Fixes SignSGD and other Gradient Compression
Schemes. In International Conference on Machine Learning, pp.
3252–3261. PMLR, May 2019. ISSN: 2640-3498.

[18] Khirirat, S., Magnússon, S., Aytekin, A., and Johansson, M.
Communication Efficient Sparsification for Large Scale Machine
Learning. arXiv:2003.06377 [math, stat], March 2020. arXiv:
2003.06377.

[19] Konečný, J., McMahan, H. B., Yu, F. X., Richtarik, P., Suresh,
A. T., and Bacon, D. Federated Learning: Strategies for Improv-
ing Communication Efficiency. In NIPS Workshop on Private
Multi-Party Machine Learning, 2016.

[20] Lannelongue, L., Grealey, J., and Inouye, M. Green algorithms:
Quantifying the carbon footprint of computation. Advanced
Science, pp. 2100707, 2021. Publisher: Wiley Online Library.

[21] Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y. Scal-
ing distributed machine learning with the parameter server. In
Proceedings of the 11th USENIX conference on Operating Sys-
tems Design and Implementation, OSDI’14, pp. 583–598, USA,
October 2014. USENIX Association. ISBN 978-1-931971-16-4.

[22] Li, Z., Kovalev, D., Qian, X., and Richtarik, P. Acceleration
for Compressed Gradient Descent in Distributed and Federated
Optimization. In International Conference on Machine Learning,
pp. 5895–5904. PMLR, November 2020. ISSN: 2640-3498.

[23] Liu, X., Li, Y., Tang, J., and Yan, M. A Double Residual
Compression Algorithm for Efficient Distributed Learning. In
International Conference on Artificial Intelligence and Statistics,
pp. 133–143, June 2020. ISSN: 1938-7228 Section: Machine
Learning.

[24] Maaten, L. v. d. and Hinton, G. Visualizing Data using t-SNE.
Journal of Machine Learning Research, 9(Nov):2579–2605, 2008.
ISSN ISSN 1533-7928.

[25] Mayekar, P. and Tyagi, H. RATQ: A Universal Fixed-Length
Quantizer for Stochastic Optimization. In International Con-
ference on Artificial Intelligence and Statistics, pp. 1399–1409.
PMLR, June 2020. ISSN: 2640-3498.

[26] McMahan, B., Moore, E., Ramage, D., Hampson, S., and Arcas,
B. A. y. Communication-Efficient Learning of Deep Networks
from Decentralized Data. In Artificial Intelligence and Statistics,
pp. 1273–1282. PMLR, April 2017. ISSN: 2640-3498.

[27] Mei, S. and Montanari, A. The generalization error of random
features regression: Precise asymptotics and double descent

curve. arXiv:1908.05355 [math, stat], October 2019. arXiv:
1908.05355.

[28] Meyn, S. and Tweedie, R. Markov chains and stochastic stability.
Cambridge University Press, New York, NY, USA, 2 edition,
2009. ISBN 0-521-73182-8 978-0-521-73182-9.

[29] Mishchenko, K., Gorbunov, E., Takáč, M., and Richtárik, P.
Distributed Learning with Compressed Gradient Differences.
arXiv:1901.09269 [cs, math, stat], June 2019. arXiv: 1901.09269.

[30] Nesterov, Y. Introductory Lectures on Convex Optimization: A
Basic Course. Applied Optimization. Springer US, 2004. ISBN
978-1-4020-7553-7. doi: 10.1007/978-1-4419-8853-9.

[31] Rabbat, M. G. and Nowak, R. D. Quantized incremental algo-
rithms for distributed optimization. IEEE Journal on Selected
Areas in Communications, 23(4):798–808, 2005.

[32] Rahimi, A. and Recht, B. Random Features for Large-Scale
Kernel Machines. In Advances in Neural Information Processing
Systems, volume 20. Curran Associates, Inc., 2008.

[33] Rakhlin, A., Shamir, O., and Sridharan, K. Making gradient
descent optimal for strongly convex stochastic optimization.
ICML, 2012.

[34] Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A., and
Pedarsani, R. FedPAQ: A Communication-Efficient Federated
Learning Method with Periodic Averaging and Quantization. In
International Conference on Artificial Intelligence and Statistics,
pp. 2021–2031. PMLR, June 2020. ISSN: 2640-3498.

[35] Robbins, H. and Monro, S. A Stochastic Approximation
Method. Annals of Mathematical Statistics, 22(3):400–407,
September 1951. ISSN 0003-4851, 2168-8990. doi: 10.1214/
aoms/1177729586. Number: 3 Publisher: Institute of Mathe-
matical Statistics.

[36] Sattler, F., Wiedemann, S., Müller, K.-R., and Samek, W. Ro-
bust and Communication-Efficient Federated Learning From
Non-i.i.d. Data. IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–14, 2019. ISSN 2162-2388. doi:
10.1109/TNNLS.2019.2944481. Conference Name: IEEE Trans-
actions on Neural Networks and Learning Systems.

[37] Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. 1-bit stochastic
gradient descent and its application to data-parallel distributed
training of speech dnns. In Fifteenth Annual Conference of
the International Speech Communication Association. Citeseer,
2014.

[38] Stich, S. U. Local SGD Converges Fast and Communicates Little.
arXiv:1805.09767 [cs, math], May 2019. arXiv: 1805.09767.

[39] Stich, S. U., Cordonnier, J.-B., and Jaggi, M. Sparsified SGD
with Memory. In Bengio, S., Wallach, H., Larochelle, H., Grau-
man, K., Cesa-Bianchi, N., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems 31, pp. 4447–4458.
Curran Associates, Inc., 2018.

[40] Strom, N. Scalable distributed DNN training using commodity
GPU cloud computing. In Sixteenth Annual Conference of the
International Speech Communication Association, 2015.

[41] Tang, H., Yu, C., Lian, X., Zhang, T., and Liu, J. DoubleSqueeze:
Parallel Stochastic Gradient Descent with Double-pass Error-
Compensated Compression. In International Conference on
Machine Learning, pp. 6155–6165. PMLR, May 2019. ISSN:
2640-3498.

[42] Vempala, S. S. The random projection method, volume 65.
American Mathematical Soc., 2005.

[43] Villani, C. Optimal transport : old and new. Grundlehren der
mathematischen wissenschaften. Springer, Berlin, 2009. ISBN
978-3-540-71049-3.

[44] Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., and

10

Li, H. TernGrad: Ternary Gradients to Reduce Communication
in Distributed Deep Learning. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and
Garnett, R. (eds.), Advances in Neural Information Processing
Systems 30, pp. 1509–1519. Curran Associates, Inc., 2017.

[45] Wu, J., Huang, W., Huang, J., and Zhang, T. Error Compen-
sated Quantized SGD and its Applications to Large-scale Dis-
tributed Optimization. In International Conference on Machine
Learning, pp. 5325–5333. PMLR, July 2018. ISSN: 2640-3498.

[46] Yu, Y., Wu, J., and Huang, L. Double Quantization for
Communication-Efficient Distributed Optimization. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F. d., Fox,
E., and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 32, pp. 4438–4449. Curran Associates, Inc.,
2019.

[47] Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking generalization.
In 5th international conference on learning representations,
ICLR 2017, toulon, france, april 24-26, 2017, conference track
proceedings. OpenReview.net, 2017.

[48] Zheng, S., Huang, Z., and Kwok, J. Communication-Efficient
Distributed Blockwise Momentum SGD with Error-Feedback. In
Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[49] Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., and Zou, Y. DoReFa-
Net: Training Low Bitwidth Convolutional Neural Networks with
Low Bitwidth Gradients. arXiv:1606.06160 [cs], February 2018.
arXiv: 1606.06160.

[50] Zhu, D. L. and Marcotte, P. Co-Coercivity and Its Role In
the Convergence of Iterative Schemes For Solving Variational
Inequalities, March 1996.

11

Bidirectional compression in heterogeneous settings for distributed or
federated learning: tight convergence guarantees.

Supplementary material
In this appendix, we provide additional details to our work. In Appendix A, we define the filtrations used in our

demonstrations. Secondly, in Appendix B, we analyze at a finer level the bandwidth speeds across the world to get a
better intuition of the state of the worldwide internet usage. Thirdly, in Appendix C, we present the detailed framework
of our experiments and give further illustrations to our theorems. In Appendix D, we gather a few technical results and
introduce the lemmas required in the proofs of the main results. Those proofs are finally given in Appendix E. More
precisely, Theorem 1 follows from Theorems S4 and S5, which are proved in Appendices E.1 and E.2, while Theorems 2
and 3 are respectively proved in Appendices E.3 and E.4.

Contents
A Filtrations 12

B Bandwidth speed 14

C Experiments 15
C.1 Least-squares regression . 16
C.2 Logistic regression . 16
C.3 Real datasets: Quantum and Superconduct . 18
C.4 CPU usage and carbon footprint . 21

D Technical results 21
D.1 Useful identities and inequalities . 22
D.2 Lemmas for proof of convergence . 22
D.3 Lemmas for the case without memory . 24
D.4 Lemmas for the case with memory . 25

E Proofs of Theorems 28
E.1 Proof of main Theorem for Artemis - variant without memory 28
E.2 Proof of main Theorem for Artemis - variant with memory 30
E.3 Proof of Theorem 2 - Polyak-Ruppert averaging . 33
E.4 Proof of Theorem 3 - convergence in distribution . 35

Appendix A. Filtrations

In this section, we provide some explanations about filtrations - especially a rigorous definition - and how it is used in
the proofs of Theorems 1 to 3.

Let a probability space (Ω,A,P) with Ω a sample space, A a σ-algebra, and P a probability measure. We recall that
the σ-algebra generated by a random variable X : Ω → Rm is

σ(X) = {X−1(A) : A ∈ B(Rm)} ,

where B(Rm) is the Borel set of Rm.
Furthermore, we recall that a filtration of (Ω,A,P) is defined as an increasing sequence (Fn)n∈N of σ-algebras:

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F .

Randomness in our algorithm comes from three sources, therefore, we define three sequences of i.i.d. zero-centered
random fields (ξik)k∈N,i∈{1,...,N}, (ϵik)k∈N,i∈{1,...,N}, (ϵk)k∈N.

1. Stochastic gradients. It corresponds to the noise associated with the computation of the stochastic gradient on
device i at epoch k. We have:

∀k ∈ N∗ , ∀i ∈ J0, ..., NK, gik = ∇Fi(wk−1) + ξik(wk−1) .

wk−1

ξik−−−−−→ gik
ϵik−−−−−→ ĝik −−−→ ĝk =

N∑
i=1

ĝik
ϵk−−−−−→ Ωk = C (ĝk)

Figure S1: The sequence of successive noises in the algorithm.

2. Uplink compression: this noise corresponds to the uplink compression when local gradients are compressed. Let
k ∈ N and i ∈ J0, ..., NK, suppose, we want to compress ∆i

k ∈ Rd, then:

∀k ∈ N∗, ∀i ∈ J0, ..., NK, ∆̂i
k = ∆i

k + ϵik(∆
i
k) ⇐⇒ ĝik = gik + ϵik(∆

i
k) .

3. Downlink compression. This noise corresponds to the downlink compression when the global model parameter is
compressed. Let k ∈ N, suppose we want to compress ĝk ∈ Rd, then:

∀k ∈ N∗, Ωk = Cs(ĝk) = ĝk + ϵk(ĝk) .

This “succession of noises” in the algorithm is illustrated in Figure S1. In order to handle these three sources of
randomness, we define three sequences of nested σ-algebras.

Definition 2. We note (Fk)k∈N the filtration associated to the stochastic gradient computation noise, (Gk)k∈N the
filtration associated to the uplink compression noise and (Hk)k∈N the filtration associated to the downlink compression
noise. For k ∈ N∗, we define:

Fk = σ
(
Γk−1, (ξ

i
k)

N
i=1

)
Gk = σ

(
Γk−1, (ξ

i
k)

N
i=1, (ϵ

i
k)

N
i=1

)
Hk = σ

(
Γk−1, (ξ

i
k)

N
i=1, (ϵ

i
k)

N
i=1, ϵk

)
with Γk = {(ξit)i∈J1,NK, (ϵ

i
t)i∈J1,NK, ϵt}t∈J1,kK and Γ0 = {∅}.

We can make the following observations for all k ≥ 1:
• From these three definitions, it follows that our sequences are nested.

F1 ⊂ G1 ⊂ H1 ⊂ F2 ⊂ · · · ⊂ Hk .

• wk−1 is Hk−1-measurable.

• gk is Fk-measurable.

• ĝk is Gk-measurable.
As a consequence, we have Propositions S1 to S5. Below Proposition S1 gives the expectation over stochastic gradients

conditionally to σ-algebras Hk−1 and Fk.

Proposition S1 (Stochastic Expectation). Let k ∈ N∗ and i ∈ J1, NK. Then on each local device i ∈ J1, NK we have
almost surely (a.s.) E[gik | Fk] = gik and E[gik | Hk−1] = ∇Fi(wk−1).

Proposition S2 gives expectation of uplink compression (information sent from remote devices to central server)
conditionally to σ-algebras Fk and Gk.

Proposition S2 (Uplink Compression Expectation). Let k ∈ N∗ and i ∈ J1, NK. Recall that ĝik = gik + ϵik, then on each
local device i ∈ J1, NK, we have a.s. E[ĝik | Gk] = ĝik and E[ĝik | Fk] = gik.

From Assumption 5, it follows that variance over uplink compression can be bounded as expressed in Proposition S3.

Proposition S3 (Uplink Compression Variance). Let k ∈ N∗ and i ∈ J1, NK. Recall that ∆i
k = gik + hi

k−1, using
Assumption 5 following hold a.s.:

E
[
∥∆̂i

k −∆i
k∥2

∣∣∣ Fk

]
≤ ωup∥∆i

k∥2 (S1)

(⇐⇒ E
[
∥ĝik − gik∥2

∣∣ Fk

]
≤ ωup∥gik∥2 when no memory) . (S2)

13

Afric
a

S
th Americ

a

N
th Americ

a
Ocea

nia Asia
Europe

Continents

10

20

30

40

50

60

70

80

90

sp
ee

d
(M

b
p

s)

Download - Fixed

Upload - Fixed

Download - Mobile

Upload - Mobile

Ratio - Fixed

Ratio - Mobile

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ra
ti

o
d

ow
n

lo
ad

/u
p

lo
ad

Figure S2: Left axis: upload and download speed for mobile and fixed broadband. Left axis: speeds (in Mbps), right axis:
ratio (green bars). The dataset is gathered from Speedtest.net , see [15].

Concerning downlink compression (information sent from central server to each node), Proposition S4 gives its
expectation w.r.t σ-algebras Gk and Hk.

Proposition S4 (Downlink Compression Expectation). Let k ∈ N∗, recall that Ωk = Cdwn(ĝk) = ĝk + ϵk, then a.s.
E[Ωk | Hk] = Ωk and E[Ωk | Gk] = ĝk.

The next proposition states that downlink compression can be bounded as for Proposition S3.

Proposition S5 (Downlink Compression Variance). Let k ∈ N, using Assumption 5, we have a.s. E
[
∥Ωk − ĝk∥2

∣∣ Gk

]
≤

ωdwn∥ĝk∥2.

Appendix B. Bandwidth speed

In a network configuration where download would be much faster than upload, bidirectional compression would
present no benefit over unidirectional, as downlink communications would have a negligible cost. However, this is not the
case in practice: to assess this point, we gathered broadband speeds, for both download and upload communications, for
fixed broadband (cable, T1, DSL ...) or mobile (cellphones, smartphones, tablets, laptops ...) from studies carried out in
2020 over the 6 continents by Speedtest.net [see 15]. Results are provided in Figure S2, comparing download and upload
speeds. The ratios (averaged by continents) between upload and download speeds stand between 1 (in Asia, for fixed
broadband) and 3.5 (in Europe, for mobile broadband): there is thus no apparent reason to simply disregard the downlink
communication, and bi-directionnal compression is unavoidable to achieve substantial speedup. More precisely, if we
denote vd and vu the speed of download and upload (in Mbits per second), we typically have vd = ρvu, with 1 < ρ < 3.5.
Using quantization with s = 1 (Definition 1), for unidirectional compression, each iteration takes O

(
Nd
ρvu

)
seconds, while

for a bidirectional one it takes only O
(

N
√
d log(d)
vu

)
seconds.

The dataset is pickled from a study carried out by Speedtest.net [see 15]. This study has measured the bandwidth
speeds in 2020 accross the six continents. In order to get a better understanding of this dataset, we illustrate the speeds
distribution on Figures S2, S3a, S3b and S4.

In Figures S3a, S3b and S4, unlike Figure S2, we do not aggregate data by countries of a same continents. This
allows to analyse the speeds ratio between upload and download with the proper value of each countries. Looking at
Figures S3a, S3b and S4, it is noticeable that in the world, the ratio between upload and download speed is between 1
and 5, and not between 1 and 3.5 as Figure S2 was suggesting since we were aggregating data by continents. There are
only nine countries in the world having a ratio higher than 5. In Europe : Malta, Belgium and Montenegro. In Asia
: South Korea. In North America : Canada, Saint Vincent and the Grenadines, Panama and Costa Rica. In Africa :
Western Sahara. The highest ratio is 7.7 observed in Malta.

14

https://www.speedtest.net/global-index
https://www.speedtest.net/global-index
https://www.speedtest.net/global-index

Africa
South America

North America Oceania Asia Europe

Continents

0

20

40

60

80

100

S
p

ee
d

s(
M

b
p

s)

Download

Upload

(a) Mobile broadband.

Africa
South America

North America Oceania Asia Europe

Continents

0

50

100

150

200

S
p

ee
d

s(
M

b
p

s)

Download

Upload

(b) Fixed broadband.

Figure S3: Upload/download speed (in Mbps). Best seen incolors.

Africa
South America

North America Oceania Asia Europe

Continents

1

2

3

4

5

6

7

R
at

io
d

ow
n

lo
ad

/u
p

lo
ad

Fixed

Mobile

Figure S4: Distribution of the download/upload speeds ratio by continents. Best seen in colors.

Communication cost: an example using the quantization scheme. Using quantization (Definition 1), for any vector v ∈ Rd,
we are in possession of the tuple (∥v∥2, ϕ, χ), where ϕ is the vector of signs of (vj)dj=1, and χ is the vector of integer
values (χj)j=1. To broadcast the quantized value, we use the Elias encoding [9]. Using this encoding scheme, it can be
shown (Theorem 3.2 of [2]) that:

Proposition S6. For any vector v, the number of bits needed to communicate Cs(v) is upper bounded by:(
3 +

(
3

2
+ o(1)

)
log2

(
2(s2 + d)

s(s+
√
d)

))
s(s+

√
d) + 32 .

With s = 1, it means that we will employ O(
√
d log2 d) bits per iteration instead of 32d, which reduces by a factor√

d
log2 d the number of bits used by iteration. Now, in a FL settings, at each iteration we have a double communication
(device to the main server, main server to the device) for each of the N clients. It means that at each iteration, we
need to communicate 2 ×N × 32d bits if compression is not used. Obviously, unidirectional compression can at best
result in a factor 2 reduction in term of total number of bits, while for bidirectional compression, we need to broadcast
O(N

√
d log2 d) bits using the Elias encoding [defined in 9]. Denoting vd and vu the speed of download and upload (in

bits per second), we typically have vd = ρvu, 3.5 > ρ > 1. Then for unidirectional compression, each iteration takes
O
(

Nd
vd

+ N
√
d log2(d)
vu

)
= O

(
Nd
ρvu

)
seconds, while for a bidirectional one, it takes only O

(
N

√
d log2(d)
vu

)
seconds.

In other words, unless ρ is really large (which is not the case in practice as stressed by Figure S2), double compres-
sion reduces by several orders of magnitude the global time complexity, and bidirectional compression is superior to
unidirectional.

Appendix C. Experiments

In this section we provide additional details about our experiments. We recall that we use two kind of datasets: 1)
toy-ish synthetic datasets and 2) real datasets: superconduct [11, 21263 points, 81 features] and quantum [6, 50,000 points,
65 features]. The aim of using synthetic datasets is mainly to underline the properties resulting from Theorems 1 to 3.

We use the same 1-quantization scheme (see Definition 1, s = 1 is the most drastic compression) for both uplink and
downlink, and thus, we consider that ωup = ωdwn. In addition, we choose αup = 1

2(1 + ωup)
. All the figures can be found

in the notebooks provided on our GitHub repository.
For each figure, we plot the convergence w.r.t. the number of iteration k or w.r.t. the theoretical number of bits

exchanged after k iterations. On the Y-axis we display log10(F (wk−1)− F (w∗)), with k in N. All experiments have been

15

0 25 50 75 100
Number of passes on data

−4

−2

0
lo

g 1
0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) LSR: σ2
∗ ̸= 0

104 105 106

Communicated bits

−4

−2

0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) X-axis in # bits.

Figure S5: Synthetic dataset, Least-Square Regression with noise (σ∗ ̸= 0). In a situation where data is i.i.d., the
memory does not present much interest and has no impact on the convergence. Because σ2

∗ ̸= 0, all algorithms saturate;
and saturation level is higher for double compression (Artemis, Bi-QSGD), than for simple compression (Diana, QSGD) or
than for SGD. This corroborates findings in Theorem 1 and Theorem 3.

0 25 50 75 100
Number of passes on data

−10.0

−7.5

−5.0

−2.5

0.0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) LSR: σ2
∗ = 0

104 105 106

Communicated bits

−10.0

−7.5

−5.0

−2.5

0.0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) X-axis in # bits.

Figure S6: Synthetic dataset, Least-Square Regression without noise (σ∗ = 0). Without surprise, with i.i.d data
and σ∗ = 0, the convergence of each algorithm is linear. Thus, in i.i.d. settings, the impact of the memory is negligible,
but this will not be the case in the non-i.i.d. settings as underlined by Figure S7.

run 5 times and averaged before displaying the curves. We plot error bars on all figures. To compute error bars we take
the standard deviation of log10(F (wk−1)− F (w∗)), we then plot the curve ± this standard deviation.

Appendix C.1. Least-squares regression
In this Subsection, we present all figures generated using Least-squares regression. Note that Figure S5 corresponds to

Figure 3a. As explained in the main body of the paper, in the case of σ∗ ̸= 0 (Figure S5), algorithms using memory
(i.e Diana and Artemis) are not expected to outperform those without (i.e QSQGD and Bi-QSGD). On the contrary, they
saturate at a higher level. However, as soon as the noise at the optimum is 0 (Figure S6), all algorithms (regardless of
memory), converge at a linear rate exactly as classical SGD.

Appendix C.2. Logistic regression
In this Subsection, we present all figures generated using a logistic regression model. Note that Figure S7 corresponds

to Figure 3b. Data is non-i.i.d. and we use a full batch gradient descent to get σ∗ = 0 to shed light on the impact of
memory on convergence. Figure S8 use the same setting than Figure S7 except that it adds a Polyak-Ruppert averaging.
Note that in the absence of memory the variance increases compared to algorithms using memory. To generate these
figures, we didn’t take the optimal step-size. But if we took it, the trade-off between variance and bias would be worse
and algorithms using memory would outperform those without.

16

0 100 200 300 400
Number of passes on data

−15

−10

−5

0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) LR: σ2
∗ = 0

104 106

Communicated bits

−15

−10

−5

0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) X-axis in # bits.

Figure S7: Synthetic dataset, Logistic Regression on non-i.i.d. data using a full batch gradient descent (to get
σ∗ = 0). The benefit of memory is obvious, it makes the algorithm converge linearly, while algorithms without are
saturating at a higher level. This stresses the importance of using the memory in non-i.i.d. settings.

0 100 200 300 400
Number of passes on data (Avg)

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) LR: σ2
∗ = 0

104 106

Communicated bits (Avg)

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) X-axis in # bits.

Figure S8: Polyak-Ruppert averaging, synthetic dataset. Logistic regression on non-i.i.d. data using a full batch
gradient descent (to get σ∗ = 0) and a Polyak-Ruppert averaging. The convergence is sublinear as predicted by Theorem 2
because σ∗ = 0.

17

0 50 100 150 200
Number of passes on data

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) X-axis in # epoch

105 107

Communicated bits

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) X-axis in # bit

Figure S10: Quantum . Least-squares regression, σ∗ ̸= 0, γ = 1/L, b = 256, non-i.i.d..

Appendix C.3. Real datasets: Quantum and Superconduct
In this Subsection, we present details about experiments conducted on real-life datasets: superconduct (from Caruana

et al. [6]) where we use least-squares regression, and quantum (from Hamidieh [11]) with logistic regression.
In the following, we present results on superconduct and quantum in the setting of full device participation. Next, we

address in Appendix C.3.1 the issue of the optimal step-size. In Appendix C.3.2 we compare Artemis to other existing
algorithms doing compression in a distributed learning framework. Finally, we estimate in Appendix C.4 the carbon
footprint of the experiments presented in this article.

Convex settings are given in Figure S9. Experiments have been performed with 200 epochs in the stochastic regime,
and 400 epochs in the full batch regime. We use quantization (Definition 1) with s = 20 for all experiments.

Figure S9: Settings of experiments.

Settings quantum superconduct
references [6] [11]
model LR LSR
dimension d 66 82
training dataset size 50, 000 21, 200
batch size b 256 64
compression rate s 20 (i.e. two levels)
norm quantization ∥ · ∥2
momentum m no momentum
step-size γ 1/L

Figures S10 to S13 underline the benefit of using mem-
ory in the stochastic and full batch regime for non-i.i.d.
datasets. Figures S10 and S12 correspond to Figure 4.
We observe on these figures the benefit of the memory.
The level of saturation of algorithms using memory is
much lower than those without memory. Additionally,
Theorem 1 highlights that the level of saturation (see
constant E of Table 2) is proportional to the level of com-
pression ωup/dwn. This is indeed observed on Figures S10
to S13.

In the case of the quantum dataset (see Figure S10),
Artemis is not only better than Bi-QSGD, but in fact, as
good as QSGD. That is to say, we achieve to make an
algorithm doing bidirectional compression, as good as an
algorithm doing unidirectional compression.

On Figures S11 and S13, we run the five algorithms with full gradient descent, resulting in σ∗ = 0. In this case, as the
dependency on B2 is removed, Theorem 1 predicts that we must have a linear convergence for algorithms using memory.
This is experimentally observed.

Memory trade-off: batch size, noise at the optimum, and heterogeneity. Because the variance of the
algorithm (see constant E of Table 2) is divided by the batch size b, the choice of this hyperparameter is not without
importance. Indeed, reducing the batch size will increase the impact of σ∗ on the convergence’s rate, while the impact of
B2 will remain constant. Thus, there is a trade-off : if the batch-size is too small, the quantity σ∗/b will become larger
than B2, and the impact of the memory will be hidden by the second term depending on the dataset heterogeneity. This
will lead Artemis-like algorithms to fail: the memory term is canceled by the high heterogeneity. On the other hand, if
the dataset does not present enough heterogeneity, the constant B2, will be negligible making memory useless, or even
penalizing.

Appendix C.3.1. Optimized step-size
In this section, we want to address the issue of the optimal step-size. On Figure S14 we plot the minimal loss after

250 iterations for each of the 5 algorithms. We can see that algorithms with memory clearly outperform those without.

18

0 100 200 300 400
Number of passes on data

−3

−2

−1
lo

g 1
0(
F

(w
k
)
−
F

(w
∗)

)
SGD

QSGD

Diana

BiQSGD

Artemis

(a) X-axis in # epoch

105 107

Communicated bits

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) X-axis in # bit

Figure S11: Quantum . Least-squares regression, σ∗ = 0, γ = 1/L, full gradient descent, non-i.i.d..

0 50 100 150 200
Number of passes on data

−1.5

−1.0

−0.5

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) X-axis in # epochs

105 107

Communicated bits

−1.5

−1.0

−0.5

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) X-axis in # bit

Figure S12: Superconduct . Least-squares regression, σ∗ ̸= 0, γ = 1/L, b = 64, non-i.i.d..

0 100 200 300 400
Number of passes on data

−1.0

−0.5

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) X-axis in # epochs

105 107

Communicated bits

−1.0

−0.5

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) X-axis in # bit

Figure S13: Superconduct . Least-squares regression, σ∗ = 0, γ = 1/L, full batch gradiend descent, non-i.i.d..

19

N/L
N/2

L
5/

L
2/

L
L
−1

2L
−1

4L
−1

8L
−1

16
L
−1

32
L
−1

Step size

−4

−3

−2

−1
lo

g 1
0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) Quantum

N/L
N/2

L
5/

L
2/

L
L
−1

2L
−1

4L
−1

8L
−1

16
L
−1

32
L
−1

Step size

−2.0

−1.5

−1.0

−0.5

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

) SGD

QSGD

Diana

BiQSGD

Artemis

(b) Superconduct

Figure S14: Searching for the optimal step-size γopt for each algorithm. X-axis - value on step-size, Y-axis -
minimal loss after running 250 iterations

0 60 120 180 240
Number of passes on data

−3

−2

−1

0

1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

N/L

N/2L

5/L

2/L

L−1

2L−1

4L−1

(a) Quantum

0 60 120 180 240
Number of passes on data

−2

−1

0

1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

N/L

N/2L

5/L

2/L

L−1

2L−1

4L−1

(b) Superconduct

Figure S15: Loss w.r.t. step-size γ.

105 107

Communicated bits

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) Quantum

105 107

Communicated bits

−2.0

−1.5

−1.0

−0.5

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) Superconduct
Figure S16: Optimal step-size for each of the algorithms. X-axis in # bits.

20

0 50 100 150 200
Number of passes on data

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

FedAvg

FedPAQ

Diana

Artemis

Dore

DblSqz

(a) Quantum

105 107

Communicated bits

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

FedAvg

FedPAQ

Diana

Artemis

Dore

DblSqz

(b) Quantum

0 50 100 150 200
Number of passes on data

−1.5

−1.0

−0.5

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

FedAvg

FedPAQ

Diana

Artemis

Dore

DblSqz

(c) Superconduct

105 107

Communicated bits

−1.5

−1.0

−0.5

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

FedAvg

FedPAQ

Diana

Artemis

Dore

DblSqz

(d) Superconduct

Figure S17: Artemis compared to other existing algorithms. γ = 1/(2L), X-axis in # epoch or in # bits.

Then, on Figure S15 we present the loss of Artemis after 250 iterations for various step-size: N=20
2L , 5

L , 2
L , 1

L , 1
2L , 1

4L ,
1
8L and 1

16L . This helps to understand which step-size should be taken to obtain the best accuracy after k in J1, 150K
iterations. Finally, on Figure S16, we plot the loss obtained with the optimal step-size γopt of each algorithms (found
with Figure S14) w.r.t the number of communicated bits.

On Figure S14, it is interesting to note that the memory allows to increase the maximal step-size. So, the optimal
step-size is γopt =

1
L for Artemis , but is γopt =

1
2L for BiQSGD.

We plot the loss of Artemis after 250 iterations for different step-size on Figure S15. As stressed by Figure S14, after
250 iterations, the best accuracy for both datasets is indeed obtained with γopt =

1
L . And we observe that (as for Vanilla

SGD), the optimal step-size of Artemis decreases with the number of iterations (e.g., for quantum, it is 1/L before 50
iterations and 1/2L after). This is consistent with Theorem 1.

Figure S16 plots the loss of each algorithm obtained with its optimal step-size γ i.e. the step-size that attains the
lowest error after 150 iterations. For instance γ = 1

L for Artemis, but γ = 2
L for SGD. For both superconduct and quantum

datasets, taking the optimal step-size leads Artemis to superior performance than other variants w.r.t. both accuracy
and number of bits.

In conclusion of this subsection, Figures S14 to S16 allow to conclude on the significant impact of memory in a
non-i.i.d. settings, and to claim that bidirectional compression with memory is by far superior (up to a threshold) to the
four other algorithm: SGD, QSGD, Diana and BiQSGD.

Appendix C.3.2. Comparing Artemis with other existing algorithms
On Figure S17 we compare Artemis with other existing algorithms: FedSGD, FedPAQ, Diana, Dore and Double-Squeeze.

We take γ = 1/(2L) because otherwise FedSGD and FedPAQ diverge. These two algorithms present worse performance
because they have not been designed for non-i.i.d. datasets.

We can observe that Double-Squeeze (which only uses error-feedback) is outperformed by Artemis. Besides, we
observe that Dore (which combines this mechanism with memory) has identical rate of convergence than Artemis. It
underlines that for unbiased operators of compression, the enhancement comes from the memory and not from
the error-feedback.

FedPAQ (unidirectional compression) has a very fast convergence during first iterations, but then saturates at a level
higher than for Artemis-like algorithms. FedSGD (no compression) presents a convergence’s rate worse that vanilla SGD
because it does not correctly handle heterogeneous datasets.

Appendix C.4. CPU usage and carbon footprint
As part as a community effort to report the amount of experiments that were performed, we estimated that overall

our experiments ran for 220 to 270 hours end to end. We used an Intel(R) Xeon(R) CPU E5-2667 processor with 16 cores.
The carbon emissions caused by this work were subsequently evaluated with Green Algorithm built by Lannelongue

et al. [20]. It estimates our computations to generate 30 to 35 kg of CO2, requiring 100 to 125 kWh. To compare,
it corresponds to about 160 to 200km by car. This is a relatively moderate impact, matching the goal to keep the
experiments for an illustrative purpose.

Appendix D. Technical results

In this section, we introduce a few technical lemmas that will be used in the proofs of Theorems S4 to S6. In
Appendix D.1, we provide some classical results that are used throughout this article, in Appendix D.2 we present lemmas
common to the proofs with/without memory and which are needed to prove the contraction of the Lyapunov function.
Then, in respectively Appendices D.3 and D.4, we give lemmas adapted to the cases without and with memory.

21

Appendix D.1. Useful identities and inequalities
Lemma S1. Let N ∈ N and d ∈ N. For any sequence of vector (ai)

N
i=1 ∈ Rd, we have the following inequalities:∥∥∥∥∥

N∑
i=1

ai

∥∥∥∥∥
2

≤
(

N∑
i=1

∥ai∥
)2

≤ N

N∑
i=1

∥ai∥2 .

The first part of the inequality corresponds to the triangular inequality, while the second part is Cauchy’s inequality.

Lemma S2. Let α ∈ [0, 1] and x, y ∈ (Rd)2, then:

∥αx+ (1− α)y∥2 = α ∥x∥2 + (1− α) ∥y∥2 − α(1− α) ∥x− y∥2 .

This is a norm’s decomposition of a convex combination.

Lemma S3. Let X be a random vector of Rd, then for any vector x ∈ Rd:

E ∥X − EX∥2 = E ∥X − x∥2 − ∥EX − x∥2 .

This equality is a generalization of the well know decomposition of the variance (with x = 0).

Lemma S4. If F : X ⊂ Rd → R is strongly convex, then the following inequality holds:

∀(x, y) ∈ Rd, ⟨∇F (x)−∇F (y), x− y⟩ ≥ µ ∥x− y∥2 .

This inequality is a consequence of strong convexity and can be found in [30, equation 2.1.22].

Appendix D.2. Lemmas for proof of convergence
Below are presented technical lemmas needed to prove the contraction of the Lyapunov function for Theorems S4

and S5. In this section we assume that Assumptions 1 to 5 are verified. In Appendices D.3 and D.4 we separate lemmas
that required only for the case with memory or without.

The first lemma is very simple and straightforward from the definition of ∆i
k. We remind that ∆i

k is the difference
between the computed gradient and the memory hold on device i. It corresponds to the information which will be
compressed and sent from device i to the central server.

Lemma S5 (Bounding the compressed term). The squared norm of (∆i
k)k∈N∗,i∈{1,...,N}, the term sent by each node to

the central server, can be bounded as follows:

∀k ∈ N∗ , ∀i ∈ J1, NK ,
∥∥∆i

k

∥∥2 ≤ 2
(∥∥gik − hi

∗
∥∥2 + ∥∥hi

k−1 − hi
∗
∥∥2) .

Proof
Let k ∈ N and i ∈ {1, . . . , N}, we have by definition:∥∥∆i

k

∥∥2 =
∥∥gik − hi

k−1

∥∥2 =
∥∥(gik − hi

∗) + (hi
∗ − hi

k−1)
∥∥2 .

Applying Lemma S1 gives the expected result.

Below, we show up a recursion over the memory term hi
k−1 involving the stochastic gradients. This recursion will be

used in Lemma S12. This recursion has been first shed into light by Mishchenko et al. [29].

Lemma S6 (Expectation of memory term). The memory term hi
k can be expressed using a recursion involving the

stochastic gradient gik:

∀k ∈ N∗ , ∀i ∈ J1, NK , E
[
hi
k

∣∣ Fk

]
= (1− αup)h

i
k−1 + αupg

i
k .

Proof Let k ∈ N and i ∈ {1, . . . , N}. We just need to decompose hi
k using its definition:

hi
k = hi

k−1 + αup∆̂
i
k = hi

k−1 + αup(ĝ
i
k − hi

k−1) = (1− αup)h
i
k−1 + αupĝ

i
k ,

and considering that E
[
ĝik
∣∣ Fk

]
= gik (Proposition S2), the proof is completed.

In Lemma S7, we rewrite ∥gk∥2 and
∥∥gk − hi

∗
∥∥2 to make appears:

22

1. the noise over stochasticity,

2. ∥gk − gk,∗∥2 which is the term on which will later be applied cocoercivity (see Assumption 2).
Lemma S7 is required to correctly apply cocoercivity in Lemma S13.

Lemma S7 (Before using co-coercivity). Let k ∈ J0,KK and i ∈ J1, NK. The noise on the stochastic gradients as defined
in Assumptions 3 and 4 can be controlled as following:

1

N

N∑
i=1

E
[∥∥gik∥∥2 ∣∣∣ Hk−1

]
≤ 2

N

N∑
i=1

(
E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
+ (

σ2
∗
b

+B2)

)
, (S1)

1

N

N∑
i=1

E
[∥∥gik − hi

∗
∥∥2 ∣∣∣ Hk−1

]
≤ 2

N

N∑
i=1

(
E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
+

σ2
∗
b

)
. (S2)

Proof Let k ∈ N and i in {1, . . . , N}. We obtain Equation (S1) using Lemma S1:∥∥gik∥∥2 =
∥∥gik − gik,∗ + gik,∗

∥∥2 ≤ 2
(∥∥gik − gik,∗

∥∥2 + ∥∥gik,∗∥∥2) .

Taking expectation with regards to filtration Hk−1 and using Assumptions 3 and 4 gives the first result.
For Equation (S2), we use again Lemma S1 and we write (by definition, hi

∗ = ∇Fi(w∗)):∥∥gik − hi
∗
∥∥2 =

∥∥(gik − gik,∗
)
+
(
gik,∗ −∇Fi(w∗)

)∥∥2 ≤ 2(
∥∥gik − gik,∗

∥∥2 + ∥∥gik,∗ −∇Fi(w∗)
∥∥2) .

Taking expectation, we have:

E
[∥∥gik − hi

∗
∥∥2 ∣∣∣ Hk−1

]
≤ 2

(
E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
+ E

[∥∥gik,∗ −∇Fi(w∗)
∥∥2 ∣∣∣ Hk−1

])
≤ 2

(
E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
+

σ2
∗
b

)
using Assumption 3.

Demonstrating that the Lyapunov function is a contraction requires to bound ∥gk∥2 which needs to control each term
(∥gik∥2)Ni=1 of the sum. This leads to invoke smoothness of F (consequence of Assumption 2).

Lemma S8. Regardless if we use memory, we have the following bound on the squared norm of the gradient, for all k in
N∗:

E
[
∥gk∥2

∣∣∣ Hk−1

]
≤ 1

N2

N∑
i=1

E
[∥∥gik − hi

∗
∥∥2 ∣∣∣ Hk−1

]
+ L ⟨∇F (wk−1), wk−1 − w∗⟩ .

Proof
Let k ∈ N∗, taking expectation w.r.t the σ-algebra Hk−1:

E
[
∥gk∥2

∣∣∣ Hk−1

]
= E

∥∥∥∥∥ 1

N

N∑
i=1

gik −∇Fi(wk−1) +
1

N

N∑
i=1

∇Fi(wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ Hk−1

 .

Decomposing the squared norm:

E
[
∥gk∥2

∣∣∣ Hk−1

]
= E

∥∥∥∥∥ 1

N

N∑
i=1

gik −∇Fi(wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ Hk−1

+ 2E

[〈
1

N

N∑
i=1

gik −∇Fi(wk−1),
1

N

N∑
i=1

∇Fj(wk−1)

〉 ∣∣∣∣∣ Hk−1

]

+ E

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ Hk−1

 .

23

Moreover, ∀i, j ∈ {1, . . . , N}2,E
[〈
gik −∇Fi(wk−1),∇Fj(wk−1)

〉 ∣∣ Hk−1

]
= 0 and ∇F (wk−1) is Hk−1-measurable, hence:

E
[
∥gk∥2

∣∣∣ Hk−1

]
≤ E

∥∥∥∥∥ 1

N

N∑
i=1

gik −∇Fi(wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ Hk−1

+ ∥∇F (wk−1)∥2 . (S3)

To compute ∥∇F (wk−1)∥2, we apply cocoercivity (Assumption 2):

∥∇F (wk−1)∥2 ≤ L ⟨∇F (wk−1), wk−1 − w∗⟩ .

We note □k =
∥∥∥ 1
N

∑N
i=1 g

i
k −∇Fi(wk−1)

∥∥∥2, then expending the squared norm:

E [□k | Hk−1] =
1

N2

N∑
i=1

E
[∥∥gik −∇Fi(wk−1)

∥∥2 ∣∣∣ Hk−1

]
+

1

N2

∑
i,j∈{1,...,N}/i ̸=j

E
[〈

gik −∇Fi(wk−1), g
j
k −∇Fj(wk−1)

〉 ∣∣∣ Hk−1

]
︸ ︷︷ ︸

=0 by independence of (gi
k)

N
i=0

=
1

N2

N∑
i=1

E
[∥∥(gik −∇Fi(w∗)) + (∇Fi(w∗)−∇Fi(wk−1))

∥∥2 ∣∣∣ Hk−1

]
.

Developing the squared norm a second time:

E [□k | Hk−1] =
1

N2

N∑
i=1

E
[∥∥gik −∇Fi(w∗)

∥∥2 ∣∣∣ Hk−1

]
+

2

N2

N∑
i=1

E
[〈
gik −∇Fi(w∗),∇Fi(w∗)−∇Fi(wk−1)

〉 ∣∣ Hk−1

]
+

1

N2

N∑
i=1

∥∇Fi(wk−1)−∇Fi(w∗)∥2

=
1

N2

N∑
i=1

E
[∥∥gik −∇Fi(w∗)

∥∥2 ∣∣∣ Hk−1

]
− 1

N2

N∑
i=1

∥∇Fi(wk−1)−∇Fi(w∗)∥2

≤ 1

N2

N∑
i=1

E
[∥∥gik −∇Fi(w∗)

∥∥2 ∣∣∣ Hk−1

]
.

Recall that we note hi
∗ = ∇Fi(w∗), returning to Equation (S3), we have:

E
[
∥gk∥2

∣∣∣ Hk−1

]
≤ 1

N2

N∑
i=1

E
[∥∥gik − hi

∗
∥∥2 ∣∣∣ Hk−1

]
+ L ⟨∇F (wk−1), wk−1 − w∗⟩ ,

which allows to conclude.

Appendix D.3. Lemmas for the case without memory
In this subsection, we give lemmas that are used only to demonstrate Theorem S4 (i.e. without memory). Lemma S9

is used to remove the uplink compression noise.

Lemma S9 (Expectation of the squared norm of the compressed gradient when no memory). In the case without memory,
we have the following bound on the squared norm of the compressed gradient, for all k in N∗:

E
[
∥ĝk∥2

∣∣∣ Hk−1

]
≤ ωup

N2

N∑
i=0

E
[∥∥gik∥∥2 ∣∣∣ Hk−1

]
+

1

N2

N∑
i=0

E
[∥∥gik − hi

∗
∥∥2 ∣∣∣ Hk−1

]
+ L ⟨∇F (wk−1), wk−1 − w∗⟩ .

24

Proof Let k in N∗, first, we write as following:

∥ĝk∥2 = ∥ĝk − gk∥2 + 2 ⟨ĝk − gk, gk⟩+ ∥gk∥2 .

Taking stochastic expectation (recall that gk is Fk-measurable and that Hk−1 ⊂ Fk):

E
[
E
[
∥ĝk∥2

∣∣∣ Fk

] ∣∣∣ Hk−1

]
= E

[
E
[
∥ĝk − gk∥2

∣∣∣ Fk

] ∣∣∣ Hk−1

]
+ 2× E [E [⟨ĝk − gk, gk⟩ | Fk] | Hk−1]

+ E
[
∥gk∥2

∣∣∣ Hk−1

]
.

(S4)

We need to find a bound for each of the terms of above Equation (S4). The second term is zero in expectation and
the last term is handled in Lemma S8. It follows that we just need to bound ∥ĝk − gk∥2:

E
[
∥ĝk − gk∥2

∣∣∣ Fk

]
= E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik − gik

∥∥∥∥∥
2
∣∣∣∣∣∣ Fk

=

1

N2

N∑
i=0

E
[∥∥ĝik − gik

∥∥2 ∣∣∣ Fk

]
+

1

N

∑
i̸=j

E
[〈

ĝik − gik, ĝ
j
k − gjk

〉 ∣∣∣ Fk

]
︸ ︷︷ ︸

=0 because (ĝi
k)

N
i=1 are independents

=
1

N2

N∑
i=1

E
[∥∥ĝik − gik

∥∥2 ∣∣∣ Fk

]
.

Combining with Proposition S3, we hold that E
[
∥ĝk − gk∥2

∣∣∣ Fk

]
≤ ωup

N2

∑N
i=1

∥∥gik∥∥2. Furthermore, we have that:
• E [⟨ĝk − gk, gk⟩ | Fk] = 0 (Proposition S2)

• E
[
∥gk∥2

∣∣∣ Hk−1

]
≤ 1

N2

∑N
i=0 E

[∥∥gik − hi
∗
∥∥2 ∣∣∣ Hk−1

]
+ L ⟨∇F (wk−1), wk−1 − w∗⟩ (Lemma S8).

Thus, we obtain from Equation (S4):

E
[
∥ĝk∥2

∣∣∣ Hk−1

]
≤ ωup

N2

N∑
i=1

E
[∥∥gik∥∥2 ∣∣∣ Hk−1

]
+

1

N2

N∑
i=1

E
[∥∥gik − hi

∗
∥∥2 ∣∣∣ Hk−1

]
+ L ⟨∇F (wk−1), wk−1 − w∗⟩ .

Lemma S10. In the case without memory, we have the following bound on the squared norm of the local compressed
gradient, for all k in N∗, for all i in J1, NK: E[∥ĝik∥2 | Fk] ≤ (ωup + 1)∥gik∥2

Proof Let k in N∗ and i in J1, NK:

E
[∥∥ĝik∥∥2 ∣∣∣ Fk

]
= E

[∥∥ĝik − gik + gik
∥∥2 ∣∣∣ Fk

]
= E

[∥∥ĝik − gik
∥∥2 ∣∣∣ Fk

]
+ 2E

[〈
ĝik − gik, g

i
k

〉 ∣∣ Fk

]︸ ︷︷ ︸
=0

+E
[∥∥gik∥∥2 ∣∣∣ Fk

]

We obtain the result because
∥∥gik∥∥2 is Fk+1-measurable and using Proposition S5.

Appendix D.4. Lemmas for the case with memory
In this Subsection, we give lemmas that are used only to demonstrate Theorems S5 and S6 (i.e. with memory). In

order to derive an upper bound on the squared norm of ∥wk − w∗∥2, for k in N∗, we need to control ∥ĝk∥2. This term is
decomposed as a sum of three terms depending on:

1. the recursion over the memory term (hi
k−1)

25

2. the difference between the stochastic gradient at the current point and at the optimal point (later controlled by
co-coercivity)

3. the noise over stochasticity.

Lemma S11. In the case with memory, we have the following upper bound on the squared norm of the compressed
gradient, for all k in N∗:

E
[
∥ĝk∥2

∣∣∣ Hk−1

]
≤ 2(2ωup + 1)

N2

N∑
i=1

E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
+

2ωup

N2

N∑
i=1

E
[∥∥hi

k−1 − hi
∗
∥∥2 ∣∣∣ Hk−1

]
+ L ⟨∇F (wk−1), wk−1 − w∗⟩+

2(2ωup + 1)σ∗

Nb
.

Proof
Let k in N∗. We take the expectation w.r.t. the σ-algebra Hk−1, with a bias-variance decomposition and we obtain

E[∥ĝk∥2 | Hk−1] = E[∥gk∥2 | Hk−1] + E[∥ĝk − gk∥2 | Hk−1]. The first term is handled with Lemma S8:

E
[
∥gk∥2

∣∣∣ Hk−1

]
≤ 1

N2

N∑
i=1

E
[∥∥gik − hi

∗
∥∥2 ∣∣∣ Hk−1

]
+ L ⟨∇F (wk−1), wk−1 − w∗⟩ .

Furthermore, by the independence of the “N” compressions:

E
[
∥ĝk − gk∥2

∣∣∣ Hk−1

]
=

1

N2

N∑
i=1

E
[∥∥∥∆̂i

k −∆i
k

∥∥∥2 ∣∣∣∣ Hk−1

]
,

because Hk−1 ⊂ Fk, we can use Proposition S3 to obtain E
[
∥ĝk − gk∥2

∣∣∣ Hk−1

]
≤ ωup

N2

∑N
i=1

∥∥∆i
k

∥∥2 and next with
Lemma S5, we have:

E
[
∥ĝk − gk∥2

∣∣∣ Hk−1

]
≤ 2ωup

N2

N∑
i=1

E
[∥∥gik − hi

∗
∥∥2 ∣∣∣ Hk−1

]
+ E

[∥∥hi
k−1 − hi

∗
∥∥2 ∣∣∣ Hk−1

]
.

At the end:

E
[
∥ĝk∥2

∣∣∣ Hk−1

]
=

2ωup + 1

N2

N∑
i=1

E
[∥∥gik − hi

∗
∥∥2 ∣∣∣ Hk−1

]
+

2ωup

N2

N∑
i=1

E
[∥∥hi

k−1 − hi
∗
∥∥2 ∣∣∣ Hk−1

]
+ L ⟨∇F (wk−1), wk−1 − w∗⟩ .

We can now apply Lemma S7 to conclude the proof:

E
[
∥ĝk∥2

∣∣∣ Hk−1

]
≤ 2(2ωup + 1)

N2

N∑
i=1

E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
+

2ωup

N2

N∑
i=1

E
[∥∥hi

k−1 − hi
∗
∥∥2 ∣∣∣ Hk−1

]
+ L ⟨∇F (wk−1), wk−1 − w∗⟩+

2(2ωup + 1)σ∗

Nb
.

To show that the Lyapunov function is a contraction, we need to find a bound for each terms. Bounding ∥wk − w∗∥2,
for k in N, flows from update schema (see Equation (3)) decomposition. However the memory term

∥∥hi
k − hi

∗
∥∥2 involved

in the Lyapunov function doesn’t show up naturally. The aim of Lemma S12 is precisely to provide a recursive bound over
the memory term to highlight the contraction. Like Lemma S6, the following lemma comes from Mishchenko et al. [29].

26

Lemma S12 (Recursive inequalities over memory term). Let k ∈ N∗ and let i ∈ J1, NK. The memory term used in the
uplink broadcasting can be bounded using a recursion:

E
[∥∥hi

k − hi
∗
∥∥2 ∣∣∣ Hk−1

]
≤
(
1 + 2α2

upωup + 2α2
up − 3αup

) ∥∥hi
k−1 − hi

∗
∥∥2

+ 2(2α2
upωup + 2α2

up − αup)E
[
∥gk − gk,∗∥2

∣∣∣ Hk−1

]
+

2σ2
∗

b

(
2α2

up(ωup + 1)− αup

)
.

Proof
Let k ∈ N∗ and let i ∈ J1, NK, using Lemma S3 we have:

E
[∥∥hi

k − hi
∗
∥∥2 ∣∣∣ Fk

]
=
∥∥E [hi

k

∣∣ Fk

]
− hi

∗
∥∥2 + E

[∥∥hi
k − E

[
hi
k

∣∣ Fk

]∥∥2 ∣∣∣ Fk

]
,

and now with Lemma S6:

E
[∥∥hi

k − hi
∗
∥∥2 ∣∣∣ Fk

]
=
∥∥(1− αup)h

i
k−1 + αupg

i
k − hi

∗
∥∥2 + E

[∥∥hi
k − E

[
hi
k

∣∣ Fk

]∥∥2 ∣∣∣ Fk

]
.

Now recall that hi
k = hi

k−1 + αup∆̂
i
k, with E[∆̂i

k | Fk] = ∆i
k and hi

k−1 being Fk-measurable:

E
[∥∥hi

k − hi
∗
∥∥2 ∣∣∣ Fk

]
=
∥∥(1− αup)(h

i
k−1 − hi

∗) + αup(g
i
k − hi

∗)
∥∥2 + α2

upE
[∥∥∥∆̂i

k −∆i
k

∥∥∥2 ∣∣∣∣ Fk

]
.

Using Lemma S2 of Appendix D.1 and Proposition S3:

E
[∥∥hi

k − hi
∗
∥∥2 ∣∣∣ Fk

]
≤ (1− αup)

∥∥hi
k−1 − hi

∗
∥∥2 + αup

∥∥gik − hi
∗
∥∥2

− αup(1− αup)
∥∥hi

k−1 − gik
∥∥2 + α2

upωup

∥∥∆i
k

∥∥2 .
Because hi

k−1 − gik = ∆i
k:

E
[∥∥hi

k − hi
∗
∥∥2 ∣∣∣ Fk

]
≤ (1− αup)

∥∥hi
k−1 − hi

∗
∥∥2 + αup

∥∥gik − hi
∗
∥∥2 + αup (αup(ωup + 1)− 1)

∥∥∆i
k

∥∥2 ,

and using Lemma S5:

E
[∥∥hi

k − hi
∗
∥∥2 ∣∣∣ Fk

]
≤ (1− αup)

∥∥hi
k−1 − hi

∗
∥∥2 + αup

∥∥gik − hi
∗
∥∥2

+ 2αup (αup(ωup + 1)− 1)
(∥∥hi

k−1 − hi
∗
∥∥2 + ∥∥gk − hi

∗
∥∥2)

≤
(
1 + 2α2

upωup + 2α2
up − 3αup

) ∥∥hi
k−1 − hi

∗
∥∥2

+ αup(2αupωup + 2αup − 1)
∥∥gk − hi

∗
∥∥2 .

Finally taking expectation w.r.t. the σ-algebra Hk−1 (Hk−1 ⊂ Fk) and using Equation (S2) of Lemma S7, we have:

E
[∥∥hi

k − hi
∗
∥∥2 ∣∣∣ Hk−1

]
≤ (1 + 2α2

upωup + 2α2
up − 3αup)

∥∥hi
k−1 − hi

∗
∥∥2

+ 2(2α2
upωup + 2α2

up − αup)E
[
∥gk − gk,∗∥2

∣∣∣ Hk−1

]
+

2σ2
∗

b

(
2α2

up(ωup + 1)− αup

)
,

which concludes the proof.

After successfully invoking all previous lemmas, we will finally be able to use co-coercivity. Lemma S13 shows how
Assumption 2 is used to do it. After this stage, proof will be continued by applying strong-convexity of F .

Lemma S13 (Applying co-coercivity). This lemma shows how to apply co-coercivity on stochastic gradients. For all k in
N∗, we have 1

N

∑N
i=1 E

[∥∥gik − gk,∗
∥∥2 ∣∣∣ Hk−1

]
≤ L ⟨∇F (wk−1), wk−1 − w∗⟩.

27

Proof Let k ∈ N∗, using Assumption 2, we have:

1

N

N∑
i=1

E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
≤ 1

N

N∑
i=1

L
〈
E
[
gik − gik,∗

∣∣ Hk−1

]
, wk−1 − w∗

〉
≤ L

〈
1

N

N∑
i=1

∇Fi(wk−1)−∇Fi(w∗), wk−1 − w∗

〉
.

Appendix E. Proofs of Theorems

In this Section, we give demonstrations of all our theorems, that is to say, first the proofs of Theorems S4 and S5 from
which flow Theorem 1. Their demonstration sketch is drawn from Mishchenko et al. [29]. And in a second time, we give a
complete demonstration of Theorems 2 and 3. For the sake of demonstration, we define a Lyapunov function Vk [as in
29, 23], for k in N:

Vk = ∥wk − w∗∥2 + 2γ2C
1

N

N∑
i=1

∥∥hi
k − hi

∗
∥∥2 ,

with C in R∗
+. The Lyapunov function is defined by combining two terms.

1. The distance from parameter wk to optimal parameter w∗.

2. The memory term, the distance between the next element prediction hi
k and the true gradient hi

∗ = ∇Fi(w∗).
The aim is to proof that this function is a (1 − γµ) contraction for each variant of Artemis. To show that it’s a

contraction, we need three stages:
1. we develop the update schema defined in Equation (3) to get a first bound on ∥wk − w∗∥2,
2. we find a recurrence over the memory term

∥∥hi
k − hi

∗
∥∥2,

3. and finally we combines the two equations to obtain the expected contraction using co-coercivity and strong-
convexity.

Appendix E.1. Proof of main Theorem for Artemis - variant without memory

Theorem S4 (Unidirectional or bidirectional compression without memory). Considering that Assumptions 1
to 5 hold. Taking γ such that

γ ≤ N

L(ωdwn + 1) (N + 2(ωup + 1))
,

then running Artemis with αup = 0 (i.e without memory), we have for all k in N∗:

E ∥wk − w∗∥2 ≤ (1− γµ)k ∥w0 − w∗∥2 + 2γ
E

µN
,

with E = (ωdwn + 1)

(
(ωup + 1)σ2

∗
b

+ ωupB
2

)
. In the case of unidirectional compression (resp. no compression),

we have ωdwn = 0 (resp. ωup/dwn = 0).
Proof

In the case of the variant of Artemis with αup = 0, we don’t have any memory term, thus C = 0 and we don’t need
to use the Lyapunov function.

Let k in N∗, we start by writing that by definition of Equation (3):

∥wk − w∗∥2 = ∥wk−1 − γΩk − w∗∥2

= ∥wk−1 − w∗∥2 − 2γ ⟨Ωk, wk−1 − w∗⟩+ γ2 ∥Ωk∥2 ,

with Ωk = C
dwn

(ĝk) and ĝk = 1
N
∑N

i=1 ĝ
i
k. First, we have E [Ωk | Gk−1] = ĝk (Proposition S4) secondly considering that

E[∥Ωk∥2 | Gk−1] = V(Ωk) + ∥E [Ωk | Gk−1]∥2 = (ωdwn + 1) ∥ĝk∥2 leads to:

E
[
∥wk − w∗∥2

∣∣∣ Gk−1

]
= E

[
∥wk−1 − w∗∥2

∣∣∣ Gk−1

]
− 2γ ⟨ĝk, wk−1 − w∗⟩+ γ2(ωdwn + 1) ∥ĝk∥2 .

28

Now, we take expectation w.r.t σ-algebra Hk−1 ⊂ Gk−1, (with use of Propositions S1 and S2, we obtain :

E
[
∥wk − w∗∥2

∣∣∣ Hk−1

]
= E

[
∥wk−1 − w∗∥2

∣∣∣ Hk−1

]
− 2γ ⟨∇F (wk−1), wk−1 − w∗⟩ (S1)

+ γ2(ωdwn + 1)E
[
∥ĝk∥2

∣∣∣ Hk−1

]
.

Lemma S9 gives:

E[∥ĝk∥2 | Hk−1] ≤
ωup

N2

N∑
i=0

E[
∥∥gik∥∥2 | Hk−1] +

1

N

N∑
i=0

E[
∥∥gik − hi

∗
∥∥2 | Hk−1]

+ L ⟨∇F (wk−1), wk−1 − w∗⟩ .
Lets introducing the noise at optimal point w∗ with the two equations of Lemma S7:

E
[
∥ĝk∥2

∣∣∣ Hk−1

]
≤ ωup

N2

N∑
i=1

2

(
E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
+ (

σ2
∗
b

+B2)

)

+
1

N2

N∑
i=1

2

(
E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
+

σ2
∗
b

)
+ L ⟨∇F (wk−1), wk−1 − w∗⟩ .

Invoking cocoercivity (Assumption 2):

E
[
∥ĝk∥2

∣∣∣ Hk−1

]
≤ 2(ωup + 1)

N2

N∑
i=1

E
[
L
〈
gik − gik,∗, wk−1 − w∗

〉 ∣∣ Hk−1

]
+ L ⟨∇F (wk−1), wk−1 − w∗⟩+

2

N

(
(ωup + 1)σ2

∗
b

+ ωupB
2

)
≤ 2(ωup + 1)L

N
⟨∇F (wk−1), wk−1 − w∗⟩ (S2)

+ L ⟨∇F (wk−1), wk−1 − w∗⟩+
2

N

(
(ωup + 1)σ2

∗
b

+ ωupB
2

)
.

Finally, we can inject Equation (S2) in Equation (S1) to obtain:

E
[
∥wk − w∗∥2

∣∣∣ Hk−1

]
≤ ∥wk−1 − w∗∥2

− 2γ

(
1− γL(ωdwn + 1)(ωup + 1)

N
− γL(ωdwn + 1)

2

)
⟨∇F (wk−1), wk−1 − w∗⟩

+

2γ2(ωdwn + 1)

(
(ωup + 1)σ2

∗
b

+ ωupB
2

)
N

. (S3)

We note:
1. □ = 1− γL(ωdwn+1)(ωup+1)

N − γL(ωdwn+1)
2

2. E = (ωdwn + 1)

(
(ωup + 1)σ2

∗
b

+ ωupB
2

)
.

We need □ ≥ 0 in order to further apply strong-convexity. However, in order to later obtain a convergence in (1− γµ),
we will use a stronger condition and, instead, state that we need □ ≥ 1/2, which is equivalent to:

1

2
≥ γL(ωdwn + 1)(ωup + 1)

N
+

γL(ωdwn + 1)

2
⇐⇒ γ ≤ N

L(ωdwn + 1) (N + 2(ωup + 1))
,

Using strong-convexity of F (Assumption 1), we rewrite Equation (S3) as follows:

E
[
∥wk − w∗∥2

∣∣∣ Hk−1

]
≤ ∥wk−1 − w∗∥2 − 2γµ□ ∥wk−1 − w∗∥2 + 2γ2 E

N
, equivalent to:

≤ (1− 2γµ□) ∥wk−1 − w∗∥2 + 2γ2 E

N
.

29

To guarantee a (1− γµ) convergence, we need □ ≥ 1/2, which is already verified, hence taking full expectation, we
are allowed to write:

E[∥wk − w∗∥2] ≤ (1− γµ)E[∥wk−1 − w∗∥2] + 2γ2 E

N

⇐⇒ E[∥wk − w∗∥2] ≤ (1− γµ)k ∥w0 − w∗∥2 + 2γ2 E

N
× 1− (1− γµ)k

γµ

⇐⇒ E[∥wk − w∗∥2] ≤ (1− γµ)k ∥w0 − w∗∥2 + 2γ
E

µN
,

and the proof is complete.

Appendix E.2. Proof of main Theorem for Artemis - variant with memory
Theorem S5 (Unidirectional or bidirectional compression with memory). Considering that Assumptions 1 to 5 hold. We
use w∗ to indicate the optimal parameter such that ∇F (w∗) = 0, and we note hi

∗ = ∇Fi(w∗). We define the Lyapunov
function for any k in N:

Vk = ∥wk − w∗∥2 + 2γ2C
1

N

N∑
i=1

∥∥hi
k − hi

∗
∥∥2 .

We defined C ∈ R∗
+, such that:

ωup(ωdwn + 1)

αup (3− 2αup(ωup + 1))
≤ C ≤ N − γL(ωdwn + 1) (N + 2(2ωup + 1))

4γLαup (2αup(ωup + 1)− 1)
. (S4)

Then, using Artemis with a memory mechanism (αup ̸= 0), the convergence of the algorithm is guaranteed if:

1. 1
2(ωup + 1)

≤ αup < min

(
3

2(ωup + 1)
,

3N − γL(ωdwn + 1) (3N + 8ωup + 6)
2(ωup + 1)(N − γL(ωdwn + 1)(N + 2))

)
2.

γ < min

1

(ωdwn + 1)

(
1 +

2

N

)
L

, 3

(ωdwn + 1)

(
3 +

8ωup + 6

N

)
L

,

N
(ωdwn + 1) (N + 2(2ωup + 1))L

 .

And we have a bound for the Lyapunov function:

EVk ≤ (1− γµ)k
(
∥w0 − w∗∥2 + 2Cγ2B2

)
+ 2γ

E

µN
,

with E =
σ2
∗
b

(
(2ωup + 1)(ωdwn + 1) + 2C

(
2α2

up(ωup + 1)− αup

))
. In the case of unidirectional compression (resp.

no compression), we have ωdwn = 0 (resp. ωup/dwn = 0).

Proof Let k ∈ N∗, by definition of the update schema (Algorithm 1), we have: wk = wk−1 − γΩk, with Ωk = C
dwn

(ĝk)

and ĝk = hk−1 +
1
N
∑N

i=1 ∆̂
i
k, thus ∥wk − w∗∥2 = ∥wk−1 − w∗ + γΩk∥2 = ∥wk−1 − w∗∥− 2γ ⟨Ωk, wk−1 − w∗⟩+ γ2 ∥Ωk∥2.

Taking expectation w.r.t. the σ-algebra Gk−1:

E
[
∥wk − w∗∥2

∣∣∣ Gk−1

]
= E

[
∥wk−1 − w∗∥2

∣∣∣ Gk−1

]
− 2γ ⟨ĝk, wk−1 − w∗⟩+ γ2(ωdwn + 1) ∥ĝk∥2 .

30

We take expectation w.r.t σ-algebra Hk−1 ⊂ Gk−1 and invoke Lemma S11:

E
[
∥wk − w∗∥2

∣∣∣ Hk−1

]
≤ ∥wk−1 − w∗∥2 − 2γE [⟨ĝk, wk−1 − w∗⟩ | Hk−1]

+
2(2ωup + 1)(ωdwn + 1)γ2

N2

N∑
i=1

E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
+

2ωup(ωdwn + 1)γ2

N2

N∑
i=1

E
[∥∥hi

k−1 − hi
∗
∥∥2 ∣∣∣ Hk−1

]
+ γ2(ωdwn + 1)L ⟨∇F (wk−1), wk−1 − w∗⟩

+
2(2ωup + 1)(ωdwn + 1)γ2σ∗

Nb
. (S5)

Note that in the case of unidirectional compression, we have Ωk = ĝk, and the steps above are more straightforward.
Recall that according to Lemma S12 (and taking the sum), we have:

1

N2

N∑
i=1

E
[∥∥hi

k − hi
∗
∥∥2 ∣∣∣ Hk−1

]
≤
(
1 + 2α2

upωup + 2α2
up − 3αup

) 1

N2

N∑
i=1

∥∥hi
k−1 − hi

∗
∥∥2

+ 2(2α2
upωup + 2α2

up − αup)
1

N2

N∑
i=1

E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
+

2σ2
∗

Nb

(
2α2

up(ωup + 1)− αup

)
.

(S6)

With a linear combination (S5) + 2γ2C (S6):

E
[
∥wk − w∗∥2

∣∣∣ Hk−1

]
+ 2γ2C

1

N2

N∑
i=1

E
[∥∥hi

k − hi
∗
∥∥2 ∣∣∣ Hk−1

]
≤ ∥wk−1 − w∗∥2 − 2γE [⟨ĝk, wk−1 − w∗⟩ | Hk−1]

+ 2γ2
(2ωup + 1)(ωdwn + 1) + 2C(2α2

upωup + 2α2
up − αup)

N2

N∑
i=1

E
[∥∥gik − gik,∗

∥∥ ∣∣ Hk−1

]
+ 2γ2C

(
ωup(ωdwn + 1)

C
+ 1 + 2α2

upωup + 2α2
up − 3αup

)
× 1

N2

N∑
i=1

∥∥hi
k−1 − hi

∗
∥∥2

+ γ2(ωdwn + 1)L ⟨∇F (wk−1), wk−1 − w∗⟩

+
2γ2

N

(
σ2
∗
b

(
(2ωup + 1)(ωdwn + 1) + 2C

(
2α2

up(ωup + 1)− αup

)))
.

We transform ∥gik − gik,∗∥2 applying co-coercivity (Lemma S13) and note:

• □ = 1− γL(ωdwn + 1)/2− γL
(
(2ωup + 1)(ωdwn + 1) + 2C(2α2

upωup + 2α2
up − αup)

)
/N

• ♢ =
ωup(ωdwn + 1)

C + 1 + 2α2
upωup + 2α2

up − 3αup

• E =
σ2
∗
b

(
(2ωup + 1)(ωdwn + 1) + 2C

(
2α2

up(ωup + 1)− αup

))
.

Now, because E [ĝk | Hk−1] = E
[
hk−1 +

1
N
∑N

i=1 ∆̂
i
k

∣∣∣ Hk−1

]
= ∇F (wk−1), we have:

E [Vk | Hk−1] ≤ ∥wk−1 − w∗∥2 − 2γ□ ⟨∇F (wk−1), wk−1 − w∗⟩

+
2γ2♢
N2

N∑
i=1

∥∥hi
k−1 − hi

∗
∥∥2 + 2γ2E

N
.

(S7)

31

Now, the goal is to apply strong-convexity of F (Assumption 1) using the inequality presented in Lemma S4. But then
we must have □ ≥ 0. However, in order to later obtain a convergence in (1− γµ), we will use a stronger condition and,
instead, state that we need □ ≥ 1/2, which is equivalent to:

ωdwn + 1

2
+

1

N

(
(2ωup + 1)(ωdwn + 1) + 2C(2α2

upωup + 2α2
up − αup)

)
≤ 1

2γL

⇐⇒ (2ωup + 1)(ωdwn + 1) + 2C(2α2
upωup + 2α2

up − αup) ≤
(1− γL(ωdwn + 1))N

2γL

⇐⇒ C ≤ N − γL(ωdwn + 1) (N + 2(2ωup + 1))

4γLαup (2αup(ωup + 1)− 1)
.

This holds only if the numerator and the denominator are positive: N − γL(ωdwn + 1) (N + 2(2ωup + 1)) > 0 ⇐⇒ γ < N
(ωdwn + 1) (N + 2(2ωup + 1))L

2αup(ωup + 1)− 1 ≤ 0 ⇐⇒ αup ≥ 1
2(ωup + 1)

.

strong-convexity is applied, and we obtain:

E [Vk | Hk−1] ≤ (1− 2γµ□) ∥wk−1 − w∗∥2 +
2γ2C♢

N

N∑
i=1

∥∥hi
k−1 − hi

∗
∥∥2 + 2γ2E

N
. (S8)

To guarantee a (1− γµ) convergence, constants must verify: (1) □ ≥ 1/2 and (2) ♢ ≤ 1− γµ. The first condition is
already verified, and the second one leads to:

♢ ≤ 1− γµ ⇐⇒ ωdwn + 1

C
ωup ≤ 3αup − 2α2

upωup − 2αup − γµ

⇐⇒ C ≥ ωup(ωdwn + 1)

αup (3− 2αup(ωup + 1))− γµ
.

In the following we will consider that γµ
αup

= o
µ→0

(1) which is possible because αup is independent of µ (it depends

only of ωup and ωdwn) and it result to:

αup (3− 2αup(ωup + 1))− γµ ∼
µ→0

αup (3− 2αup(ωup + 1))

Thus, the condition on C becomes ωup(ωdwn + 1)
αup (3− 2αup(ωup + 1))

≤ C, which is correct only if αup ≤ 3
2(ωup + 1)

. And we

obtain the following conditions on C:

ωup(ωdwn + 1)

αup (3− 2αup(ωup + 1))
≤ C ≤ N − γL(ωdwn + 1) (N + 2(2ωup + 1))

4γLαup (2αup(ωup + 1)− 1)
.

It follows, that the above interval is not empty if:

ωup(ωdwn + 1)

αup (3− 2αup(ωup + 1))
≤ N − γL(ωdwn + 1) (N + 2(2ωup + 1))

4γLαup (2αup(ωup + 1)− 1)
.

For sake of clarity we denote momentarily γ̃ = (ωdwn + 1)γL, hence the above condition becomes:

8αupωup(ωup + 1)γ̃ − 4ωupγ̃ ≤ 3N − 3γ̃ (N + 2 + 2(2ωup + 1)))

− 2αup(ωup + 1)N + 2αupγ̃(ωup + 1) (N + 2(2ωup + 1))

⇐⇒ 2αup(ωup + 1)(N − γ̃(N + 2)) ≤ 3N − γ̃ (3N + 8ωup + 6) .

And at the end, we obtain:

αup ≤ 3N − γL(ωdwn + 1) (3N + 8(ωup + 6))

2(ωup + 1)(N − γL(ωdwn + 1)(N + 2))
.

32

Again, this implies two conditions on γ:
3N − γL(ωdwn + 1) (3N + 8ωup + 6) > 0 ⇐⇒ γ < 3

(ωdwn + 1)

(
3 +

8ωup + 6

N

)
L

N − γL(ωdwn + 1)(N + 2) > 0 ⇐⇒ γ < 1

(ωdwn + 1)

(
1 +

2

N

)
L

.

The constant C exists, and from Equation (S8), taking full expectation, we are allowed to write E[Vk] ≤ (1 −
γµ)E[Vk−1] + 2γ2 E

N . Unrolling the inequality we obtain:

E[Vk] ≤ (1− γµ)kEV0 + 2γ2 E

N
× 1− (1− γµ)k

γµ

=⇒ E[Vk] ≤ (1− γµ)kV0 + 2γ
E

µN
.

Because V0 = E ∥w0 − w∗∥2 + 2γ2C 1
N

∑N
i=0

∥∥hi
∗
∥∥2 ≤ ∥w0 − w∗∥2 + 2Cγ2B2 (Assumption 4), we can write:

E[Vk] = (1− γµ)k
(
∥w0 − w∗∥2 + 2Cγ2B2

)
+ 2γ

E

µN
.

Thus, we highlighted that the Lyapunov function Vk is a (1− γµ) contraction if C is taken in a given interval, with γ
and αup satisfying some conditions. This guarantees the convergence of the Artemis using version 1 or 2 with αup ̸= 0
(algorithm with uni-compression or bi-compression combined with a memory mechanism).

Appendix E.3. Proof of Theorem 2 - Polyak-Ruppert averaging
Theorem S6 (Unidirectional or bidirectional compression using memory and averaging). Considering now that F is
convex, thus µ = 0 and considering that Assumptions 2 to 5 hold. We use w∗ to indicate the optimal parameter such that
∇F (w∗) = 0, and we note hi

∗ = ∇Fi(w∗). A Lyapunov function is defined for any k in N:

Vk = ∥wk − w∗∥2 + 2γ2C
1

N

N∑
i=1

∥∥hi
k − hi

∗
∥∥2 .

We defined C ∈ R∗
+, such that:

ωup(ωdwn + 1)

αup (3− 2αup(ωup + 1))
≤ C ≤ N − γL(ωdwn + 1) (N + 2(2ωup + 1))

4γLαup (2αup(ωup + 1)− 1)
.

Then running the variant of Artemis with αup ̸= 0, hence with a memory mechanism, and using Polyak-Ruppert
averaging, the convergence of the algorithm is guaranteed if:

1. 1
2(ωup + 1)

≤ αup < min

(
3

2(ωup + 1)
,

3N − γL(ωdwn + 1) (3N + 8ωup + 6)
2(ωup + 1)(N − γL(ωdwn + 1)(N + 2))

)
2.

γ < min

1

(ωdwn + 1)

(
1 +

2

N

)
L

, 3

(ωdwn + 1)

(
3 +

8ωup + 6

N

)
L

,

N
(ωdwn + 1) (N + 2(2ωup + 1))L

 . (S9)

33

And we have the following bound for the Polyak-Ruppert averaged iterate wK−1 = 1
K

∑K−1
k=0 wk:

E [F (wK−1)− F (w∗)] ≤
∥w0 − w∗∥2 + 2Cγ2B2

γK
+ 2γ

E

N
, (S10)

with E =
σ2
∗
b

(
(2ωup + 1)(ωdwn + 1) + 2C

(
2α2

up(ωup + 1)− αup

))
. Equation (S10) can be written as in Theorem 2

if we take γ = min

(√
Nδ20
2EK ; γmax

)
, where γmax is the maximal possible value of γ as precised by Equation (S9):

E [F (wK−1)− F (w∗)] ≤ 2max

(√
2δ20E

NK
;

δ20
γmaxK

)
+

2γmaxCB2

K

Proof
Let k in N∗, starting from Equation (S7) from the proof of Theorem S5, we have:

E [Vk | Hk−1] ≤ ∥wk−1 − w∗∥2 − 2γ□ ⟨∇F (wk−1), wk−1 − w∗⟩+
2γ2♢
N2

N∑
i=1

∥∥hi
k−1 − hi

∗
∥∥2 + 2γ2E

N
.

But this time, instead of applying strong-convexity of F , we apply convexity (Assumption 1 but with µ = 0):

EVk ≤ ∥wk−1 − w∗∥2 − 2γ□ (F (wk−1)− F (w∗)) +
2γ2C♢
N2

N∑
i=1

∥∥hi
k−1 − hi

∗
∥∥2 + 2γ2

N
E (S11)

As in Theorem S5, we want □ ≥ 1/2, which is equivalent to:

ωdwn + 1

2
+

1

N

(
(2ωup + 1)(ωdwn + 1) + 2C(2α2

upωup + 2α2
up − αup)

)
≤ 1

2γL

⇐⇒ C ≤ N − γL(ωdwn + 1) (N + 8ωup + 6)

4γLαup (2αup(ωup + 1)− 1)
. (S12)

It holds only if the numerator and the denominator are positive: N − γL(ωdwn + 1) (N + 8ωup + 6) > 0 ⇐⇒ γ < N
(ωdwn + 1) (N + 8ωup + 6)L

2αup(ωup + 1)− 1 ≤ 0 ⇐⇒ αup ≥ 1
2(ωup + 1)

.

Returning to Equation (S11), taking benefit of Equation (S12) and passing F (wk−1)− F (w∗) on the left side gives:

γ(F (wk−1)− F (w∗)) ≤ ∥wk−1 − w∗∥2 +
2γ2C♢
N2

N∑
i=1

∥∥hi
k−1 − hi

∗
∥∥2 − EVk +

2γ2

N
E .

If ♢ ≤ 1, we have γE [F (wk−1)− F (w∗)] ≤ EVk−1 − EVk + 2γ2E/N , and summing over all K in N∗ iterations gives:

γ

(
1

K

K∑
k=1

E [F (wk−1)− F (w∗)]

)
≤ 1

K

K∑
k=1

(
EVk−1 − EVk + 2γ2 E

N

)
≤ EV0 − EVK

K
+ 2γ2 E

N
because E is independent of K.

Thus, by convexity:

E

[
F

(
1

K

K∑
k=1

wk−1

)
− F (w∗)

]
≤ 1

K

K∑
k=1

E [F (wk−1)− F (w∗)] ≤
V0

γK
+ 2γ

E

N
.

Last step is to extract conditions over γ and αup from requirement ♢ ≤ 1:

♢ < 1 ⇐⇒ 2ωup(ωdwn + 1)

2C
< 3αup − 2α2

upωup − 2αup ⇐⇒ C >
ωup(ωdwn + 1)

αup (3− 2αup(ωup + 1))
,

34

and the second inequality is correct only if αup ≤ 3
2(ωup + 1)

. From this development follows the following conditions

on C, which are equivalent to those obtain in Theorem S5

ωup(ωdwn + 1)

αup (3− 2αup(ωup + 1))
≤ C ≤ N − γL(ωdwn + 1) (N + 2(2ωup + 1))

4γLαup (2αup(ωup + 1)− 1)
.

This interval is not empty:

ωup(ωdwn + 1)

αup (3− 2αup(ωup + 1))
≤ N − γL(ωdwn + 1) (N + 2(2ωup + 1))

4γLαup (2αup(ωup + 1)− 1)

⇐⇒ αup ≤ 3N − γL(ωdwn + 1) (3N + 8ωup + 6)

2(ωup + 1)(N − γL(ωdwn + 1)(N + 2))
.

Again, this implies two conditions on γ:
3N − γL(ωdwn + 1) (3N + 8ωup + 6) > 0 ⇐⇒ γ < 3

(ωdwn + 1)

(
3 +

8ωup + 6

N

)
L

N − γL(ωdwn + 1)(N + 2) > 0 ⇐⇒ γ < 1

(ωdwn + 1)

(
1 +

2

N

)
L

.

which guarantees the existence of C and thus the validity of the above development. In conclusion:

E [F (wK−1)− F (w∗)] ≤
V0

γK
+ 2γ

E

N
≤ ∥w0 − w∗∥2 + 2Cγ2B2

γK
+ 2γ

E

N

≤ ∥w0 − w∗∥2
γK

+ 2γ

(
E

N
+

CB2

K

)
.

Next, our goal is to define the optimal step-size γopt. With this aim, we bound 2γCB2

K by 2γmax
CB2

K . This leads to
ignore this term when optimizing the step-size and thus to obtain a simpler expression of γopt. This approximation is
relevant, because B2/K is “small”. And we obtain:

E [F (wK−1)− F (w∗)] ≤
∥w0 − w∗∥2

γK
+ 2γ

E

N
+ 2γmax

CB2

K
.

This is valid for all variants of Artemis, with step-size in Table 3 and E in Theorem 1. Subsequently, the “optimal”
step-size (at least the one minimizing the upper bound) is

γopt =

√
∥w0 − w∗∥2 N

2EK
,

resulting in a convergence rate as 2

√
2∥w0−w∗∥2E

NK + 2γmaxCB2

K , if this step-size is allowed. If
√

∥w0−w∗∥2N
2EK ≥ γmax(

=⇒ 2γmaxE
N ≤ ∥w0−w∗∥2

γmaxK

)
, then the bias term dominates and the upper bound is 2∥w0−w∗∥2

γmaxK
+ 2γmaxCB2

K . Overall, the
convergence rate is given by:

E [F (wK−1)− F (w∗)] ≤ 2max

√2 ∥w0 − w∗∥2 E
NK

;
∥w0 − w∗∥2

γmaxK

+
2γmaxCB2

K
.

Appendix E.4. Proof of Theorem 3 - convergence in distribution
In this Section, we give the proof of Theorem 3. The theorem is decomposed into two main points, that are respectively

derived from Propositions S7 and S8, given in Appendices E.4.2 and E.4.3. Throughout this Section, we consider a linear
compression operator C, for instance sparsification, then for any z, z′ ∈ Rd, we have that C(z)− C(z′) = C(z − z′). We
first introduce a few notations in Appendix E.4.1.

35

Appendix E.4.1. Background on distributions and Markov chains
We consider Artemis iterates (wk−1, (h

i
k−1)i∈J1,NK)k∈N ∈ Rd(1+N) with the following update equation:{

wk = wk−1 − γCdwn

(
1
N
∑N

i=1 Cup
(
gik − hi

k−1

)
+ hi

k−1

)
∀i ∈ J1, NK, hi

k = hi
k−1 + αupCup

(
gik − hi

k−1

) (S13)

We see the iterates, for a constant step-size γ, as a homogeneous Markov chain, and denote Rγ,v the Markov kernel,
which is the equivalent for continuous spaces of the transition matrix in finite state spaces. Let Rγ,v be the Markov kernel
on (Rd(1+N),B(Rd(1+N))) associated with the SGD iterates (wk−1, τ(h

i
k−1)i∈J1,NK)k≥0 for a variant v of Artemis, as

defined in Algorithm 1 and with τ a constant specified afterwards, where B(Rd(1+N)) is the Borel σ-field of Rd(1+N). Meyn
& Tweedie [28] provide an introduction to Markov chain theory. For readability, we now denote (hi

k−1)i for (hi
k−1)i∈J1,NK.

Definition 3. For any initial distribution ν0 on B(Rd(1+N)) and k ∈ N∗, ν0Rk
γ,v denotes the distribution of (wk−1, τ(h

i
k−1)i)

starting at (w0, τ(h
i
0)i) distributed according to ν0.

We can make the following comments:

1. Initial distribution. We consider deterministic initial points, i.e., (w0, τ(h
i
0)i) follows a Dirac at point (w0, τ(h

i
0)i).

We denote this Dirac δw0
⊗⊗N

i=1δτhi
0

not.
= δw0

⊗ δτh1
0
⊗ · · · ⊗ δτhN

0
.

2. Notation in the main text: In the main text, for simplicity, we used Θk to denote the distribution of wk−1

when launched from (w0, τ(h
i
0)i). Thus Θk corresponds to the distribution of the projection on first d coordinates

of ((δw0 ⊗⊗N
i=1δτhi

0
)Rk

γ).

3. Case without memory: In the memory-less case, we have (hi
k−1)k∈N ≡ 0, and could restrict ourselves to a

Markov kernel on (Rd,B(Rd)).

For any variant v of Artemis, we prove that (wk−1, (h
i
k−1)i)k≥0 admits a limit stationary distribution

Πγ,v = πγ,v,w ⊗ πγ,v,(h) (S14)

and quantify the convergence of ((δw0
⊗⊗N

i=1δτhi
0
)Rk

γ)k≥0 to Πγ,v, in terms of Wasserstein metric W2.

Definition 4. For all probability measures ν and λ on B(Rd), such that
∫
Rd ∥w∥2 dν(w) < +∞ and

∫
Rd ∥w∥2 dλ(w) ≤ +∞,

define the squared Wasserstein distance of order 2 between λ and ν by

W2
2 (λ, ν) := inf

ζ∈Γ(λ,ν)

∫
∥x− y∥2ζ(dx, dy), (S15)

where Γ(λ, ν) is the set of probability measures ζ on B(Rd × Rd) satisfying for all A ∈ B(Rd), ζ(A × Rd) = ν(A),
ζ(Rd × A) = λ(A).

Appendix E.4.2. Proof of the first point in Theorem 3
We prove the following proposition:
Proposition S7. Under Assumptions 1 to 5, for any linear compression operator C, for any variant v of the
algorithm, there exists a limit distribution Πγ,v, which is stationary, such that for any k in N, for any γ satisfying
conditions given in Theorems S4 and S5:

W2
2 ((δw0

⊗⊗N
i=1δτhi

0
)Rk

γ ,Πγ,v) ≤

(1− γµ)k
∫
(w′,h′)∈Rd(1+N)

∥∥(w0, τ(h
i
0)i)− (w′, τ(hi)′i)

∥∥2 dΠγ,v(w
′, (hi)′i).

Point 1 in Theorem 3 is derived from the proposition above using πγ,v = πγ,v,w, with πγ,v,w as in Equation (S14), the
limit distribution of the main iterates (wk−1)k∈N and the observation that:

W2
2 (Θk, πγ,v) ≤ W2

2 ((δw0
⊗⊗N

i=1δτhi
0
)Rk

γ,v,Πγ,v)

≤ (1− γµ)k
∫
(w′,h′)∈Rd(1+N)

∥∥(w0, τ(h
i
0)i)− (w′, τ(hi)′i)

∥∥2 dΠγ,v(w
′, (hi)′i)

= (1− γµ)kC0.

The sketch of the proof is simple:

36

• We introduce a coupling of random variables following respectively νa0R
k
γ,v and νb0R

k
γ,v, and show that under the

assumptions given in the proposition:

W2
2 (ν

a
0R

k
γ,v, ν

b
0R

k
γ,v) ≤ (1− γµ)W2

2 (ν
a
0R

k−1
γ,v , νb0R

k−1
γ,v).

This proof follows the same line as the proof of Theorems S4 and S5.

• We deduce that ((δw0
⊗⊗N

i=1δτhi
0
))Rk

γ,v) is a Cauchy sequence in a Polish space, thus the existence and stability of
the limit, we show that this limit is independent from (δw0 ⊗⊗N

i=1δτhi
0
)) and conclude.

Proof We consider two initial distributions νa0 and νb0 for (w0, τ(h
i
0)i) with finite second moment and γ > 0.

Let (wa
0 , τ(h

i,a
0)i) and (wb

0, τ(h
i,b
0)i) be respectively distributed according to νa0 and νb0. Let (wa

k , τ(h
i,a
k)i)k≥0 and

(wb
k, τ(h

i,b
k)i)k≥0 the Artemis iterates, respectively starting from (wa

0 , τ(h
i,a
0)i) and (wb

0, τ(h
i,b
0)i), and sharing the same

sequence of noises, i.e.,

• built with the same gradient oracles gi,ak = gi,bk for all k ∈ N, i ∈ J1, NK.

• the compression operator used for both recursions is almost surely the same, for any iteration k, and both uplink
and downlink compression. We denote these operators C

dwn,k and Cup,k the compression operators at iteration k for
respectively the uplink compression and downlink compression.

We thus have the following updates, for any u ∈ {a, b}: wu
k = wu

k−1 − γC
dwn,k

(
1
N
∑N

i=1 Cup,k

(
gik − hi,u

k−1

)
+ hi,u

k−1

)
∀i ∈ J1;nK hi,u

k = hi,u
k−1 + αupCup,k

(
gik − hi,u

k−1

)
.

(S16)

The proof is obtained by induction. For a k in N, let
(
(wa

k , τ(h
i,a
k)i), (w

b
k, τ(h

i,b
k)i)

)
be a coupling of random variable

in Γ(νa0R
k
γ,v, ν

b
0R

k
γ,v) – as in Definition 4 –, that achieve the equality in the definition, i.e.,

W2
2 (ν

a
0R

k
γ,v, ν

b
0R

k
γ,v) = E

[∥∥∥(wa
k , τ(h

i,a
k)i)− (wb

k, τ(h
i,b
k)i)

∥∥∥2] . (S17)

Existence of such a couple is given by [43, theorem 4.1]. Then
(
(wa

k , τ(h
i,a
k)i), (w

b
k, τ(h

i,b
k)i)

)
obtained after one update

from Equation (S16) belongs to Γ(νa0R
k
γ,v, ν

b
0R

k
γ,v), and as a consequence:

W2
2 (ν

a
0R

k
γ,v, ν

b
0R

k
γ,v) ≤ E

[∥∥∥(wa
k , τ(h

i,a
k)i)− (wb

k, τ(h
i,b
k)i))

∥∥∥2]
= E

[∥∥wa
k − wb

k

∥∥2]+ τ2
N∑
i=1

E
[∥∥∥hi,a

k − hi,b
k

∥∥∥2]

= E
[∥∥wa

k − wb
k

∥∥2]+ 2γ2 C

N

N∑
i=1

E
[∥∥∥hi,a

k − hi,b
k

∥∥∥2] ,
with τ2 = 2γ2 C

N , where C depends on the variant as in Theorem 1. We now follow the proof of the previous theorems
to control respectively E[∥wa

k − wb
k∥2] and E[∥hi,a

k − hi,b
k ∥2]. First, following the proof of Equation (S5), we get, using the

fact that the compression operator is linear, thus that C(x)− C(y) = C(x− y):

E
[∥∥wa

k − wb
k

∥∥2 |Hk−1

]
≤
∥∥wa

k − wb
k

∥∥2 − 2γ
〈
∇F (wa

k−1)−∇F (wb
k−1), w

a
k − wb

k

〉
+

2(2ωup + 1)(ωdwn + 1)γ2

N2

N∑
i=1

E
[∥∥gik(wa

k−1)− gik(w
b
k−1)

∥∥2 ∣∣∣ Hk−1

]
+

2ωup(ωdwn + 1)γ2

N2

N∑
i=1

E
[∥∥∥hi,a

k−1 − hi,b
k−1

∥∥∥2 ∣∣∣∣ Hk−1

]
+ γ2(ωdwn + 1)L

〈
∇F (wa

k−1)−∇F (wb
k−1), w

a
k − wb

k

〉
.

37

This expression is nearly the same as in Equation (S5), apart from the constant term depending on σ2
∗ that disappears.

Note that with a more general compression operator, for example for quantization, it is not possible to derive such a
result. Similarly, we control E[∥hi,a

k − hi,b
k ∥2] using the same line of proof as for Equation (S6), resulting in:

1

N2

N∑
i=0

E
[∥∥∥ha,i

k − hb,i
k

∥∥∥2 ∣∣∣∣ Hk−1

]
≤ (1 + p

(
2α2

upωup + 2α2
up − 3αup)

) 1

N2

N∑
i=0

E
[∥∥∥ha,i

k − hb,i
k

∥∥∥2 ∣∣∣∣ Hk−1

]

+ 2(2α2
upωup + 2α2

up − αup)
1

N2

N∑
i=0

E
[∥∥gik(wa

k−1)− gik(w
b
k−1)

∥∥2 ∣∣∣ Hk−1

]
.

Combining both equations, and using Assumptions 1 and 2 and Equation (S17) we get, under conditions on the
learning rates αup, γ similar to the ones in Theorems S4 and S5, that

W2
2 (ν

a
0R

k
γ,v, ν

b
0R

k
γ,v) ≤ (1− γµ)W2

2 (ν
a
0R

k−1
γ,v , νb0R

k−1
γ,v).

And by induction:
W2

2 (ν
a
0R

k
γ,v, ν

b
0R

k
γ,v) ≤ (1− γµ)kW2

2 (ν
a
0 , ν

b
0).

From the contraction above, it is easy to derive the existence of a unique stationnary limit distribution: we use Picard
fixed point theorem, as in [8]. This concludes the proof of Proposition S7.

Appendix E.4.3. Proof of the second point of Theorem 3
To prove the second point, we first detail the complementary assumptions mentioned in the text, then show the

convergence to the mean squared distance under the limit distribution, and finally give a lower bound on this quantity.

Complementary assumptions.
To prove the lower bound given by the second point, we need to assume that the constants given in the assumptions are
tight, in other words, that corresponding lower bounds exist in Assumptions 3 to 5.

Assumption 6 (Lower bound on noise over stochastic gradients computation). The noise over stochastic gradients at
optimal global point for a mini-batch of size b is lower bounded. In other words, there exists a constant σ∗ ∈ R, such that
for all k in N, for all i in J1, NK , we have a.s:

E
[
∥gik,∗ −∇Fi(w∗)∥2

∣∣ Hk−1

]
≥ σ2

∗
b
.

Assumption 7 (Lower bound on local gradient at w∗). There exists a constant B ∈ R, s.t.:

1

N

N∑
i=1

∥∇Fi(w∗)∥2 ≥ B2.

Assumption 8 (Lower bound on the compression operator’s variance). There exists a constant ω ∈ R∗ such that the
compression operators Cup and C

dwn
verify the following property:

∀∆ ∈ Rd ,E[
∥∥Cup/dwn(∆)−∆

∥∥2] = ωup/dwn ∥∆∥2 .

This last assumption is valid for sparsification, sketching, rand-h, PP.
Moreover, we also assume some extra regularity on the function. This restricts the regularity of the function beyond

Assumption 2 and is a purely technical assumption in order to conduct the detailed asymptotic analysis. It is valid in
practice for least-squares or logistic regression.

Assumption 9 (Regularity of the functions). The function F is also times continuously differentiable with second to
fifth uniformly bounded derivatives: for all k ∈ {2, . . . , 5}, supw∈Rd ∥F (k)(w)∥ < ∞.

38

Convergence of moments.
We first prove that E[∥wk−1 − w∗∥2] converges to Ew∼πγ,v

[∥w − w∗∥2] as k increases to ∞.
We have that the difference satisfies, for random variables wk−1 and w following distributions δw0

Rk
γ,v and πγ,v, and

coupled such that they achieve the equality in Equation (S15):

∆E,k−1 : = E[∥wk−1 − w∗∥2]− Ew∼πγ,v
[∥w − w∗∥2]

= Ewk−1,w∼πγ,v

[
∥wk−1 − w∗∥2 − ∥w − w∗∥2

]
= Ewk−1,w∼πγ,v

[(∥wk−1 − w∗∥ − ∥w − w∗∥)(∥wk−1 − w∗∥+ ∥w − w∗∥)]
C.S
≤
(
Ewk−1,w∼πγ,v

[
(∥wk−1 − w∗∥ − ∥w − w∗∥)2

]
Ewk−1,w

[
(∥wk−1 − w∗∥+ ∥w − w∗∥)2

])1/2
T.I.
≤
(
Ewk−1,w∼πγ,v

[
(∥wk−1 − w∥)2

]
Ewk−1,w∼πγ,v

[
(∥wk−1 − w∗∥+ ∥w − w∗∥)2

])1/2
(i)
≤
(
Ewk−1,w∼πγ,v

[
(∥wk−1 − w∥)2

]
2L
)1/2

(ii)
≤
(
W2

2 (δw0
Rk−1

γ,v , πγ,v)2L
)1/2

(iii)→ 0.

Where we have used Cauchy-Schwarz inequality at line C.S., triangular inequality at line T.I., the fact that the moments
are bounded by a constant L at line (i), the fact that the distributions are coupled such that they achieve the equality in
Equation (S15) at line (ii), and finally Proposition S7 for the conclusion at line (iii).

Overall, this shows that the mean squared distance (i.e., saturation level) converges to the mean squared distance
under the limit distribution.

Evaluation of Ew∼πγ,v∥w − w∗∥2.
In this section, we denote ξ(wk−1, hk−1) the global noise, defined by

ξ(wk−1, hk−1) = ∇F (wk−1)− Cdwn

(
1

N

N∑
i=1

Cup(gik(wk−1)− hi
k−1) + hi

k−1

)
,

such that wk = wk−1 − γ∇F (wk−1) + γξ(wk−1, hk−1). In fact, (ξ)k∈N∗ is a zero-centered random field characterizing the
stochastic oracle on ∇F (·).

In the following, we denote a⊗2 := aaT the second order moment of a. We define Tr the trace operator and Cov the
covariance operator such that Cov(ξ(w, h)) = E

[
(ξ(w, h))⊗2

]
, where the expectation is taken on the randomness of both

compressions and the gradient oracle. We make a final technical assumption on the regularity of the covariance matrix.

Assumption 10. We assume that:

1. Cov(ξ(w, h)) is continuously differentiable, and there exists constants C and C ′ such that for all w, h ∈ Rd(1+N),
maxo=1,2,3 Cov

(o)(w, h) ≤ C + C ′||(w, h)− (w∗, h∗)||2.

2. (ξ(w∗, h∗)) has finite order moments up to order 8.

Remark: with the linear operators, this assumption can directly be translated into an assumption on the moments
and regularity of gik. Note that Point 2 in Assumption 10 is an extension of Assumption 3 to higher order moments, but
still at the optimal point. Under this assumption, we have the following lemma:

Lemma S14. Under Assumptions 1 to 5, 9 and 10, we have that

Eπγ,v

[
∥w − w∗∥2

]
=

γ→0
γTr (A Cov(ξ(w∗, h∗))) +O(γ2), (S18)

with A := (F ′′(w∗)⊗ I + I ⊗ F ′′(w∗))
−1.

The intuition of the proof is natural: using the stability of the limit distribution, we have that if we start from the
stationary distribution, i.e., (w0, h0) ∼ Πγ,v, then (w1, h1) ∼ Πγ,v.

We can thus write:

Eπγ,v

[
(w − w∗)

⊗2
]
= E

[
(w1 − w∗)

⊗2
]

= E
[
(w0 − w∗ − γ∇F (w0) + γξ(w0, h0))

⊗2
]
.

39

Then, expanding the right hand side and using the fact that E[ξ(w0, h0)|H0] = 0, then the fact that E
[
(w1 − w∗)

⊗2
]
=

E
[
(w0 − w∗)

⊗2
]
, and expanding the derivative of F around w∗ (this is where we require the regularity assumption

Assumption 9), we get that:

γ (F ′′(w∗)⊗ I + I ⊗ F ′′(w∗) +O(γ))Eπγ,v

[
(w − w∗)

⊗2
]

=
γ→0

γ2E(w,h)∼Πγ,v

[
ξ(w, h)⊗2

]
.

Thus:

Eπγ,v

[
(w − w∗)

⊗2
]

=
γ→0

γAE(w,h)∼Πγ,v

[
ξ(w, h)⊗2

]
+O(γ2).

⇒ Eπγ,v

[
∥(w − w∗)∥2

]
=

γ→0
γTr

(
AE(w,h)∼Πγ,v

[
ξ(w, h)⊗2

])
+O(γ2).

Finally, we use that E(w,h)∼Πγ,v
[Cov(ξ(w, h))] =

γ→0
Cov(ξ(w∗, h∗)) + O(γ) (which is derived from Assumption 10) to

get Lemma S14. More formally, we can rely on Theorem 4 in Dieuleveut et al. [8]: under Assumptions 1 to 5 and
Assumptions 9 and 10, all assumptions required for the application of the theorem are verified and the result follows.

To conclude the proof, it only remains to control Cov(ξ(w∗, h∗)). We have the following Lemma:

Lemma S15. Under Assumptions 6 to 8, we have that, for any variant v of the algorithm, with the constant E given in
Theorem 1 depending on the variant:

Tr (Cov(ξ(w∗, h∗))) = Ω

(
γE

µN

)
. (S19)

Combining Lemmas S14 and S15 and using the observation that A is lower bounded by 1
2L independently of γ,N, σ∗, B,

we have proved the following proposition:
Proposition S8. Under Assumptions 1 to 5 and 6 to 10, we have that

E[∥wk−1 − w∗∥2] →
k→∞

Eπγ,v

[
∥w − w∗∥2

]
=

γ→0
Ω

(
γE

µN

)
+O(γ2), (S20)

where the constant in the Ω is independent of N, σ∗, γ, B (it depends only on the regularity of the operator A).
Before giving the proof, we make a couple of observations:

1. This shows that the upper bound on the limit mean squared error given in Theorem 1 is tight with respect to
N, σ∗, γ, B. This underlines that the conditions on the problem that we have used are the correct ones to understand
convergence.

2. The upper bound is possibly not tight with respect to µ, as is clear from the proof: the tight bound is actually
Tr (ACov(ξ(w∗, h∗))). Getting a tight upper bound involving the eigenvalue decomposition of A instead of only µ is
an open direction.

3. In the memory-less case, h ≡ 0 and all the proof can be carried out analyzing only the distribution of the iterates
(wk−1)k and not necessarily the couple (wk−1, (h

i
k−1)i)k.

We now give the proof of Lemma S15.
Proof With memory, we have the following:

Tr (Cov(ξ(w∗, h∗))) = E

∥∥∥∥∥Cdwn

(
1

N

N∑
i=1

Cup(gi1(w∗)− hi
∗) + hi

∗

)∥∥∥∥∥
2

(i)
= (1 + ωdwn)E

∥∥∥∥∥ 1

N

N∑
i=1

Cup(gi1(w∗)− hi
∗) + hi

∗

∥∥∥∥∥
2

(ii)
=

(1 + ωdwn)

N2

N∑
i=1

E
[∥∥Cup(gi1(w∗)− hi

∗)
∥∥2]

(iii)
=

(1 + ωdwn)

N2

N∑
i=1

(1 + ωup)E
[∥∥gi1(w∗)− hi

∗
∥∥2]

(iv)
≥ (1 + ωdwn)

N
(1 + ωup)

σ2
∗
b
.

40

At line (i) we use Assumption 8 for the downlink compression operator with constant ωdwn. At line (ii) we use the fact
that

∑N
i=1 h

i
∗ = ∇F (w∗) = 0, the independence of the random variables Cup(gi1(w∗)− hi

∗), Cup(gj1(w∗)− hj
∗) for i ̸= j and

the fact that they have 0 mean. We use Assumption 8 for the uplink compression operator with constant ωup in line (iii);
and finally Assumption 6 at line (iv) to lower bound the variance of the gradients at the optimum. This proof applies to
both simple and double compression with ωdwn = 0 or not.

Remark that for the variant 2 of Artemis, the constant E given in Theorem 1 has a factor α2
upC(ω + 1): combining

with the value of C, this term is indeed of the order of (1 + ωdwn)(1 + ωup).
Without memory, we have the following computation:

Tr (Cov(ξ(w∗, 0))) = E

∥∥∥∥∥Cdwn

(
1

N

N∑
i=1

Cup(gi1(w∗))

)∥∥∥∥∥
2

(i)
= (1 + ωdwn)E

∥∥∥∥∥ 1

N

N∑
i=1

Cup(gi1(w∗))− hi
∗

∥∥∥∥∥
2

(ii)
=

(1 + ωdwn)

N2

N∑
i=1

E
[∥∥Cup(gi1(w∗))− hi

∗
∥∥2]

(iii)
=

(1 + ωdwn)

N2

N∑
i=1

E
[∥∥Cup(gi1(w∗))− gi1(w∗)

∥∥2 + ∥∥gi1(w∗)− hi
∗
∥∥2]

At line (i) we use Assumption 8 for the downlink compression operator with constant ωdwn and the fact that∑N
i=1 h

i
∗ = ∇F (w∗) = 0, then at line (ii) the independence of the random variables Cup(gi1(w∗))− hi

∗ with mean 0, then a
Bias Variance decomposition at line (iii).

Tr (Cov(ξ(w∗, 0)))
(iv)
=

(1 + ωdwn)

N2

N∑
i=1

E
[
ωup

∥∥(gi1(w∗))
∥∥2 + ∥∥gi1(w∗)− hi

∗
∥∥2]

(v)
=

(1 + ωdwn)

N2

N∑
i=1

E
[
ωup

(∥∥gi1(w∗)− h∗
i

∥∥2 + ∥h∗
i ∥2
)
+
∥∥gi1(w∗)− hi

∗
∥∥2]

(vi)
=

(1 + ωdwn)

N

(
(ωup + 1)

σ2
∗
b

+ ωupB
2

)
.

Next we use Assumption 8 for the uplink compression operator with constant ωup at line (iv). Line (v) is another
Bias-Variance decomposition and we finally conclude by using Assumptions 6 and 7 at line (vi) and reorganizing terms.

We have showed the lower bound both with or without memory, which concludes the proof.

41

	Introduction
	Problem statement
	Assumptions
	Related work on compression

	Theoretical results
	Convergence in distribution and lower bound

	Experiments
	Synthetic datasets
	Real dataset
	Analysis of convergence

	Conclusion
	Filtrations
	Bandwidth speed
	Experiments
	Least-squares regression
	Logistic regression
	Real datasets: Quantum and Superconduct
	CPU usage and carbon footprint

	Technical results
	Useful identities and inequalities
	Lemmas for proof of convergence
	Lemmas for the case without memory
	Lemmas for the case with memory

	Proofs of Theorems
	Proof of main Theorem for Artemis - variant without memory
	Proof of main Theorem for Artemis - variant with memory
	Proof of Theorem 2 - Polyak-Ruppert averaging
	Proof of Theorem 3 - convergence in distribution

