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Abstract: Sustainable manufacturing technologies are the new challenge faced by enterprises, indus-
tries, and researchers. The development of a sustainability-based assessment method considering the
environmental and economic impacts is crucial to realize viable manufacturing. However, few studies
have addressed environmental economics and social flows using a common perspective. Mechanical
machining is one of the most-used manufacturing techniques. The overall ecological, economic,
and social footprint requires accurate and effective estimation and optimization. Several studies
have addressed this issue by examining the entire process of machining, but sustainability flows for
machining parameters and toolpaths have remained relatively unexplored. The lack of systematic
assistance tools bridging the gap between decision-maker preferences and the three sustainability
pillars—economic, social, and environmental—has impeded the widespread adoption of sustainable
machining practices. To this end, this paper proposes an integrated approach to the decision-making
problem that combines the Analytical Hierarchy Process (AHP) with the Preference Ranking Orga-
nization Method for Enrichment Evaluations (PROMETHEE) for selecting a sustainable machining
strategy. The sustainability criteria are driven by manufacturing process parameters commonly
employed and regulated during the manufacturing phase. This includes toolpath strategies as a
qualitative input factor and manufacturing parameters such as cutting speed, feed rate, depth of
cut, and stepover as quantitative input factors, affirming the practical applicability of the method
in industrial contexts. New fundamental methods are also presented for selecting the most efficient
machining parameters and toolpaths according to the weights assigned to each ecological, social, and
economic footprint by the decision-maker (the manufacturer or production manager). In this way,
sustainable machining strategies in the manufacturing industry will be strengthened in integrity. In a
case study of part-end milling, both manufacturing parameters and toolpath strategies are considered
to establish sustainable feature-based machining decisions.

Keywords: sustainable machining; toolpath strategies; machining parameters; environmental impact;
machining cost; AHP; PROMETHEE

1. Introduction

Manufacturing remains dominated by machinery, accounting for 60–80% of production
and 15% of the total costs in developed countries [1]. Optimum production has been the goal
for decades. As a result of sustainable development thinking [2], sustainability intersects
economic, ecological, and social issues. Sustainable manufacturing processes, also known
as green manufacturing, are therefore essential for the manufacturing industry [3]. Green
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processing economics have been problematic due to higher manufacturing costs [4]. Global
energy consumption is projected to rise from 575 quadrillion British thermal units (Btus)
in 2015 to 736 quadrillion Btus by 2040 based on data from the US Energy Information
Administration. Additionally, world carbon dioxide emissions (CO2) are experiencing
an annual growth of 0.6% [5]. A substantial amount of carbon dioxide is emitted by
manufacturing activities, which account for 40% of global energy consumption [6,7]. To
promote sustainable manufacturing, a growing number of studies have been conducted to
develop systems and manufacturing strategies with a minimal environmental impact [8,9].

In manufacturing industries, machining (material removal processes, such as turning
and milling) represents 99% of the environmental impacts [10–13]. The topic of green
machining has recently received a great deal of research attention, and many publications
have been published on the subject [14,15]. In this regard, cutting parameters and toolpaths
are two major research areas that are usually optimized separately.

Pangestu et al. developed a multi-objective optimization model to determine the opti-
mal cutting parameters for a multi-pass turning process, including the spindle speed, feed
rate, cutting depth, and roughing passes [16]. To achieve sustainable manufacturing, the
optimization model examines several key indicators such as energy consumption, carbon
emissions, production time, and production costs. Xu et al. developed a smart reasoning
system to estimate energy consumption during milling processes and optimize the cutting
parameters [17]. Under a variety of wear conditions, this system is capable of accurately pre-
dicting the amount of energy consumed. Moreover, it can optimize the cutting parameters
to reduce energy consumption, improve machine tool stability, and improve the overall ma-
chining efficiency. Tian et al. presented a study that focuses on integrated optimization that
is both environmentally conscious and economically conscious [18]. They addressed the
issue of process routes and cutting parameters in low-carbon manufacturing environments.
To solve this optimization problem and determine the optimal processing sequences and
cutting parameters for each feature, they proposed the multi-objective NSGA-II algorithm.
Zhang et al. developed a new analytical energy consumption model and optimized the
cutting parameters to reduce the energy consumption of the micro-milling process [19].
For the reduction in the energy footprint and production time associated with face milling,
Chen et al. proposed a comprehensive approach that involves optimizing the cutting
tools and cutting parameters simultaneously [20]. In their study, it was demonstrated that
optimizing the cutting parameters and the cutting tool can save more energy than either
optimizing the parameters or optimizing the tool alone. A similar study was investigated
by Shi et al. to assess the impact of the spindle rotation speed and cutting power on energy
consumption in the end milling process [21]. Yin et al. proposed a method for selecting
cutting parameters that consider both the cost and carbon emissions [22]. Optimization
variables include the spindle speed, feed rate, and cutting depth, while constraints include
the carbon emissions and processing costs. Tin et al. quantified relationships among the
cutting parameters, tool wear, and production indexes, including the cost, CO2 emissions,
and time. A multi-objective optimization model was developed and then solved using a
modified non-dominated sorting genetic algorithm (NSGA-II) [23].

A robust toolpath strategies optimization method remains a research gap to be ad-
dressed. The toolpath has always been the weak link in a machining process chain, although
toolpath optimization can improve the performance by three times. Typically, toolpath
optimization studies have been aimed at improving machined surfaces and machining
efficiency [24–27]. For the last few decades, the impact of toolpaths on energy consump-
tion has increasingly become the focus of researchers. Vila et al. conducted experimental
investigations on the influence of cutting strategies and conditions during face milling
operations on power consumption [28]. The manufacturing parameters were evaluated
concerning the CO2 emissions and surface roughness factors. Uzun et al. investigated the
influence of toolpath strategies on the machining time, tool wear, and surface roughness
during milling [27]. Pavanaskar and McMains conducted controlled machining exper-
iments to analyze the impact of toolpath parameters on energy consumption [29]. An
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analytical energy consumption model for CNC machining was established, integrating
geometric toolpath parameters and machine construction effects into energy estimates.
Altıntaş et al. developed a predictive model for the energy consumption of prismatic parts
during milling considering the effects of different toolpaths [7]. Edem et al. [30] proposed
a novel approach to determine the most energy-efficient toolpath strategy in mechanical
machining using hyperMILL CAM software. They found that the feed axis energy demand
in the y-axis direction was higher than the x-axis by 29, 19, and 11% for the zag, zigzag,
and rectangular contour toolpaths, respectively. Edem and Mativenga [31] developed a
scientific base and logic to calculate the energy consumption of a CNC toolpath taking
the NC code as the input. In another study, Edem and Balogun presented an approach to
analytically determine the most energy-efficient toolpath strategy in mechanical machining
by evaluating the electrical energy requirement of the NC codes generated for the zag,
zigzag, and rectangular contour toolpath strategies. Gao et al. [32] addressed the issue of
considerable high electrical energy consumption associated with multi-axis end milling,
which is frequently used for the machining of free-form surfaces. The discrete energy
consumption path model is used to determine the shortest toolpath to find the optimal
solution to the global energy consumption model.

In several research studies presented previously, energy reduction has been achieved
by either optimizing the machining parameters or the tool trajectory. This limitation stems
from the inability of conventional optimization methods to seamlessly integrate quantitative
and qualitative variables simultaneously. Achieving a sustainable feature-based machining
process necessitates the concurrent optimization of these two factors. Additionally, the
extensive input data within CAM software present a challenge for process planners, leaving
them undecided amid numerous choices. A decision support system (DSS) is needed for
seamless integration into the digital mock-up (DMU), facilitating a data exchange with
Life Cycle Assessment (LCA) tools and CAM software. The essential question is how to
select the optimal combination of machining parameters and strategies to provide the
most sustainable solution. A shift towards a multi-criteria perspective in sustainable
development is a significant development, not only in industrial terms but also from a
scientific perspective. This transition involves moving away from single-goal optimization
towards considering multiple goals and criteria. Multi-criteria decision-making, which
incorporates qualitative criteria alongside quantitative goals, offers versatile applications
in this context [33,34].

In this paper, two multi-criteria decision-making methods are appropriately employed.
Also, the concept of a DSS is adopted to facilitate sustainable decisions in machining. The
main DSS components are data, a model base, and a user interface for interaction with
humans [35]. As regards the existing DSSs for machining applications, most researchers
focus on the selection of the machining process, machine tools, or machining parameters.
Temuçin et al. proposed a DSS for selecting the suitable non-traditional machining process
option for cutting operations on a specific material [36]. Taha and Rostam developed a fuzzy
Analytical Hierarchy Process (AHP) integrated with a Preference Ranking Organization
Method for Enrichment Evaluations (PROMETHEE) for a hybrid DSS [37]. The DSS enables
the selection of the most suitable CNC machine among commercialized alternatives [34].
Niamat et al. [38] and Ming et al. [39] used multi-objective optimization to optimize
electro-discharge machining process parameters. Shin et al. [40] and Khan et al. [41] both
consider the sustainability criteria for the optimization of energy resources used during the
machining process.

The crucial aspect is determining the optimal method for a specific issue, in light
of the wide variety of techniques available, such as AHP [42,43], ÉLimination Et Choix
Traduisant la RÉalité (ELECTRE) [44], the Technique for Order Preference by Similarity
to Ideal Solution (TOPSIS) [44,45], and PROMETHEE [46]. In the exploration of the crite-
ria for assigning weights to computational methods, the AHP stands out as the primary
technique for establishing these weights through pairwise comparisons. This is one of
the strengths of our proposed methodology. Indeed, the decision-maker has the ability
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to customize their preferences, assigning more value to one criterion over another. For
instance, if they choose to prioritize the economic aspect over the social one, it will be
reflected in the ranking of the machining strategy scenarios. Furthermore, the objectives of
the study and the intricacies of the decision-making process influence the AHP’s assess-
ment of different criteria by dissecting them into a hierarchical framework. This, in turn,
minimizes cognitive errors and potentially validates the decision-maker’s consistency in
establishing priorities. The well-acknowledged methods of multi-criteria decision-making
(MCDM), when integrated with the AHP, encompass various methodologies, including
AHP-TOSIS [47,48], AHP-VIKOR [49], AHP-Fuzzy Complex proportional assessment (CO-
PRAS) [50], AHP-Criteria importance through inter-criteria correlation (CRITIC) [51], and
Fuzzy AHP-PROMETHEE [37]. However, the PROMETHEE approach is considered rela-
tively uncomplicated in both computation and conceptualization in contrast to alternative
MCDM techniques. Despite being a versatile and efficient method capable of handling
both quantitative and qualitative data, including group-level decisions, PROMETHEE
possesses the potential to address complex problems with enhanced accuracy [33]. Cru-
cially, the integrated approach of the AHP and PROMETHEE methodologies effectively
addresses the complex decision-making processes and challenges related to the priori-
tization of alternatives. However, the prior literature highlights a distinct lack of uti-
lization of the hybrid AHP-PROMETHEE modeling approach in assessing and ranking
machining strategy scenarios concerning environmental performance, economic costs, and
social considerations.

This study is motivated by the goal of devising a comprehensive assessment and
ranking methodology that encompasses the diverse dimensions of sustainability perfor-
mance within machining strategies. While the fusion of the AHP and PROMETHEE
has been applied in diverse fields, this study contributes to the existing literature in the
following ways:

(1) Introducing an innovative application of the hybrid AHP-PROMETHEE approach
specifically tailored for the assessment of machining strategy performance.

(2) Providing a systematic methodology for integrating expert preferences to enhance the
suitability of solutions.

(3) Addressing the data requirement challenge by directly generating various combina-
tions of machining parameters and strategies (i.e., alternatives for analysis) through
the application of the Taguchi method. Additionally, the evaluation outcomes are
derived from the integration of CAD/CAM/LCA systems.

The rest of this paper follows this structure: Section 2 delineates the methodologies ap-
plied in this study. Section 3 elucidates the findings and initiates a discussion. Conclusions
are derived in Section 4.

2. Proposed Methodology
2.1. AHP-PROMETHEE Method-Based DSS

The proposed DSS includes three main components: (1) the data collected from a
CAD/CAM/LCA system such as machining parameters, toolpath strategies, etc., (2) the
user interface including the PROMETHEE Visual software (version 1.4.0.0, 2011–2013,
Academic Edition) combined with the criteria weights provided by the decision-maker,
and (3) the model consisting of the combined AHP-PROMETHEE approach (Figure 1).

AHP serves as a straightforward method for formulating and examining decisions [52].
Originated by Saaty [53], the AHP proves effective in addressing problems related to pri-
oritizing alternative solutions. Apart from its broad applicability, the AHP facilitates the
modeling and organization of intricate decision problems, assisting in the assignment
of weights to criteria. The hierarchical decision tree is pivotal, breaking down complex
problems into manageable subproblems, and providing decision-makers with a profound
understanding of intricate relationships within the decision problem and the decision-
making process. Furthermore, the eigenvector method is employed to calculate the criteria
weights, ensuring higher levels of coherence, consistency, correlation, and accuracy com-
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pared to intuition or domain knowledge-based weights [54]. Despite these advantages, the
AHP does pose drawbacks in real-world decision problems, demanding a considerable
number of pairwise comparisons, especially when dealing with a large number of criteria
and/or alternatives. Consequently, this requirement transforms the preference elicitation
stage into a cumbersome and time-consuming process. For these reasons, the AHP has been
supplemented with PROMETHEE, offering decision-makers a more reliable evaluation
and analysis.
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Figure 1. Overview of the proposed decision support system.

A major advantage of the PROMETHEE method is that it eliminates trade-offs between
criteria scores and performs a direct synthesis, requiring evaluations of each alternative
on each criterion. However, PROMETHEE has some limitations, namely a lack of guiding
principles for structuring decision problems and determining criterion weights. Decision-
makers may not always be able to judiciously evaluate criteria, which may not always be
guaranteed in practice, making it difficult to understand complex decision problems that
involve multiple levels of criteria and numerous alternative solutions.

The drawbacks outlined for PROMETHEE align with the strengths of the AHP method.
Thus, these limitations of PROMETHEE can be circumvented by incorporating it with the
AHP method, a concept we will elaborate on in the ensuing section.

2.2. Integrated AHP-PROMETHEE Approach

The combined AHP-PROMETHEE approach consists of three steps (Figure 2):
(A) data collection, (B) application of the AHP, and (C) application of PROMETHEE.



Sustainability 2023, 15, 16861 6 of 20

Sustainability 2023, 15, x FOR PEER REVIEW 6 of 21 
 

2.2. Integrated AHP-PROMETHEE Approach 
The combined AHP-PROMETHEE approach consists of three steps (Figure 2): (A) 

data collection, (B) application of the AHP, and (C) application of PROMETHEE. 

Alternatives Criteria
Sc1…Sci…Scn

c1…ci…cn
Data Collection

A
AHP

B

PROMETHEE
C

Decision Weights

Evaluation

c1…ci…cn

w1…wi…wn

Objectivec1 … ci … cna1 … ai … anDecision Tree

1 2 3 4

5 Ranking6 Sensitivity analyses Recommandation87
Cn(.)…Ci(.)…C1(.)

Cn(a1)…Ci(a1)…C1(a1)a1

………………

Cn(ai)…Ci(ai)…C1(ai)ai

………………

Cn(an)…Ci(an)…C1(an)an

ФK(.)

Ф1(.)

Ф2(.)

a1

A1

ak

Ak
Ck

ek

a2

A2C1

e1

V

U

Environnement

Economy

Social
Alternative 1

Alternative 2

Alternative 3

Best alternative

 
Figure 2. The combined AHP-PROMETHEE approach. 

2.2.1. Data Collection 
The initial stage involves identifying the alternatives for evaluation and the primary 

objectives outlined by decision-makers, which must subsequently be translated into criteria. 
Firstly, the alternatives subject to evaluation are identified as the machining scenarios 

for a given feature (step 1 in Figure 2). Using the Taguchi method, we will create a digital 
experimental plan based on the data and machining strategies that CAM software can 
provide to the manufacturer. Following this, for step 2, the primary objectives of decision-
makers are defined and translated into criteria against which the alternative solutions will 
be assessed. In our case, the criteria for evaluation are the three pillars of sustainability: 
the environmental, social, and economic aspects. For the environmental aspect, we assess 
seven environmental impacts. These include energy consumption, resource consumption, 
greenhouse gas emissions contributing to the greenhouse effect (carbon emissions), 
acidification, eutrophication affecting air, water, and soil, photochemical pollution, and 
aquatic ecotoxicity. Regarding the social aspect, our methodology allows for the 
estimation of human health as an impact on society, which refers to the potential harm or 
adverse effects that certain substances or chemicals can have on human health. It 
encompasses a wide range of impacts, including acute and chronic effects. Finally, we 
consider machining costs as an economic criterion to be evaluated. 

2.2.2. AHP 
The application of the AHP involves initially gathering the information from steps 1 

and 2, which will be used to construct a hierarchical decision tree (step 3). The hierarchical 
tree in analytics helps to visually represent the various criteria and alternatives in a 
structured and organized manner. It helps in breaking down a complex decision problem 
into a hierarchy of criteria and sub-criteria, making it easier to evaluate and compare 

Figure 2. The combined AHP-PROMETHEE approach.

2.2.1. Data Collection

The initial stage involves identifying the alternatives for evaluation and the primary
objectives outlined by decision-makers, which must subsequently be translated into criteria.

Firstly, the alternatives subject to evaluation are identified as the machining scenarios
for a given feature (step 1 in Figure 2). Using the Taguchi method, we will create a digital
experimental plan based on the data and machining strategies that CAM software can
provide to the manufacturer. Following this, for step 2, the primary objectives of decision-
makers are defined and translated into criteria against which the alternative solutions will
be assessed. In our case, the criteria for evaluation are the three pillars of sustainability:
the environmental, social, and economic aspects. For the environmental aspect, we assess
seven environmental impacts. These include energy consumption, resource consumption,
greenhouse gas emissions contributing to the greenhouse effect (carbon emissions), acidifi-
cation, eutrophication affecting air, water, and soil, photochemical pollution, and aquatic
ecotoxicity. Regarding the social aspect, our methodology allows for the estimation of
human health as an impact on society, which refers to the potential harm or adverse effects
that certain substances or chemicals can have on human health. It encompasses a wide
range of impacts, including acute and chronic effects. Finally, we consider machining costs
as an economic criterion to be evaluated.

2.2.2. AHP

The application of the AHP involves initially gathering the information from steps 1
and 2, which will be used to construct a hierarchical decision tree (step 3). The hierarchical
tree in analytics helps to visually represent the various criteria and alternatives in a struc-
tured and organized manner. It helps in breaking down a complex decision problem into a
hierarchy of criteria and sub-criteria, making it easier to evaluate and compare different
options. The hierarchical tree provides a clear framework for decision-makers to assess
the relative importance of criteria and their corresponding alternatives, ultimately leading
to a more informed and rational decision-making process. To express a preference for the
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different criteria, weights are assigned in step 4 (Figure 3). To facilitate the input of the
weight data, a graphical user interface is developed through Visual Basic for Applications
programming. A comparison of elements in pairs will be made based on a standardized
comparison scale of nine levels, reflecting the preferences of decision-makers between
different options to determine the relative weighting for each criterion. The sub-criteria of
the environmental, economic, and social criteria are compared two by two based on the
desired objective to establish their respective importance, expressed in the form of a matrix
called a judgment matrix (Equation (1)). n represents the total number of sub-criteria.

A =


1 . . . a1j a1n

. . . 1 a2j . . .
ai1 ai2 . . . ain
an1 . . . anj 1

(i, j = 1, 2, . . . , n) (1)
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According to Equation (2), the right eigenvector w and the greatest eigenvector λmax
determine the relative priority Aw.

Aw = λmax (2)

Pairwise comparisons are simple, intuitive, and practical means of extracting sub-
jective information from the decision-maker. However, they can lead to inconsistencies
in judgments. Therefore, to ensure consistent judgments in terms of proportionality and
reliability, a consistency check is performed to assess the degree of coherence of the decision-
maker judgments, which have been provided in the form of pairwise comparisons. This
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is achieved by calculating the consistency ratio (Cr) (Equation (3)). RI represents the ran-
dom index and is calculated for matrices of different sizes, as shown in Table 1. CI is the
consistency index. The Cr should not exceed 10%; otherwise, a review of judgments will
be conducted to avoid or at least reduce inconsistencies. If the Cr is less than 10%, the
judgment is considered acceptable, and the study can proceed.

Cr =
CI
RI

, such as CI =
λmax − n

n − 1
(3)

Table 1. Consistency indices for a randomly generated matrix.

n 3 4 5 6 7 8 9 10

RI 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

2.2.3. PROMETHEE

Moving on to PROMETHEE, the evaluation table is constructed in step 5. To imple-
ment the PROMETHEE method, we will use the “Visual PROMETHEE” software, which
requires the initialization of certain parameters: the alternatives to be ranked, the type of
optimization (max/min), and the weights of the decision elements. Of course, the alter-
natives to be ranked are the machining scenarios, which are the combinations of different
possible machining strategies and parameters determined from the Taguchi method in
the first step. The input data consist of the environmental, economic, and social impacts
resulting from each of the possible scenarios. The environmental and social assessment
will be carried out using the integrations of the CAD/CAM/LCA integration systems.
Subsequently, the weights of the decision elements are the priority of the criteria calculated
by applying the AHP method. Finally, the software also asks us to determine the type
of optimization, i.e., whether the criterion will be maximized or minimized during the
evaluation. In our case, the goal is to minimize the generated impacts, which is why we
will choose the “min” type for all assigned criteria. Figure 4 represents the modeling of our
decision-making problem and the various assigned input data. Then, the alternatives are
evaluated and ranked using a partial ranking with PROMETHEE I and a complete ranking
with PROMETHEE II (step 6). PROMETHEE I is a multi-criteria decision analysis method
used to rank and prioritize alternatives based on their performance against various criteria.
It employs a pairwise comparison approach where decision-makers assess the relative
importance or preference for one alternative over another concerning each criterion. The
PROMETHEE I computes a preference index for each alternative, which reflects its overall
desirability in comparison to the others. The higher the preference index, the better the
alternative’s ranking. PROMETHEE II, on the other hand, is an extension of PROMETHEE
I, introducing a preference function that quantifies the difference in performance between
alternatives. This method not only considers the relative preferences for each criterion but
also incorporates an aggregation function that accounts for interactions between criteria.
PROMETHEE II offers a more sophisticated approach to decision-making, considering the
interdependencies and synergies among criteria when ranking alternatives. In Section 4,
these two methods were used to evaluate and rank the alternatives or options under con-
sideration. PROMETHEE I provided a ranking based on the relative preferences for each
criterion, while PROMETHEE II delved deeper into the interactions and dependencies
among criteria to derive a more comprehensive ranking. These rankings can help in identi-
fying the most suitable alternatives or options based on the specified criteria and contribute
to the decision-making process. Step 7 involves conducting sensitivity analyses to confirm
the robustness of the results obtained. Based on the information from PROMETHEE I, II,
GAIA, and the sensitivity analyses, recommendations towards the best compromise can be
formulated (step 8).
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3. Case Study

Since more than 80% of all mechanical parts can be cut by pocket machining [55], tool-
path optimization methods are more significant in pocket milling. Thus, a pocket operation
is selected as a case study. In our experimental setup, we employed ASTM A36 Steel, a type
of low-carbon steel, as the workpiece material. The illustrated part can be seen in Figure 5.
Initially, the block possesses dimensions of 200 mm × 120 mm × 20 mm and features
a straightforward geometric pocket: a rectangle measuring 150 mm × 70 mm × 10 mm,
adorned with four fillets each with a radius of 20 mm, and a cut width of 1 mm. For
this operation, we assumed that the pocket would be machined using a cylindrical tool
with a diameter of 10 mm, equipped with two flutes, and engaged at 75%. The selected
tool material for this operation was carbide. Subsequently, Solidworks® was employed to
generate a variety of toolpaths [56].
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To estimate the machining cost, these values have been sourced from the literature [56].
The labor rate for the operator is set at 28.320 Dinars (TND) per hour, while the machine
rate for the machining center is assumed to be 14.160 Dinars per hour. Additionally, it is
estimated that low-carbon steel is priced at approximately 5.390 Dinars per kilogram, and
there is a factory expense of 2.270 Dinars for each part. The anticipated setup time per part
is 1.2 min.

3.1. Step A: Data Collection

The PROMETHEE methodology necessitates a decision matrix that incorporates op-
tions along with their corresponding criterion evaluations. In the context of the presented
scenario, the alternatives comprise four quantitative input parameters: cutting speed, feed
rate, depth of cut, and stepover, alongside one qualitative parameter, which is the tool
strategy. Consequently, the experimental setup was established based on five variable
factors and four levels for each factor (as shown in Table 2). To streamline experiments yet
maintain the ability to evaluate variable impact, a Taguchi fractional experimental design
with 16 trials was employed, given the presence of 5 variables, each with 4 levels. The
Taguchi method’s experimental design is employed to systematically arrange the factors
that influence the process, utilizing orthogonal arrays, which ensure a balanced design
where factor levels carry equal weight. Table 2 represents the factors and levels of pocket
milling [56].

Table 2. The values for the low, medium, and high levels for each parameter.

Factors
Levels

1 2 3 4

Quantitative
input factors

Cutting speed (m/min) 17 19 21 23

Feed rate (mm/min) 120 180 240 300

Depth of cut (mm) 0.2 0.4 0.6 0.8

Stepover (mm) 2 3 4 5

Qualitative
input factors Toolpath strategy Contour

(C)
Zigzag

(ZZ)
Zig
(Z)

Spiral
(S)

According to Taguchi’s orthogonal array, a set of 16 experiments is a minimal set for
this design of experiments (Table 3). Four levels were used since four toolpath strategies
were studied: contour, zigzag, zig, and spiral.

Table 3. Experiments’ factors (input) and results for 16 experiments defined by the Taguchi method.

Exp.
No

Machining
Strategy

Level

Responses

Environmental Impacts
Cost

(TND)
Human
HealthEI1 (MJ

eq)
EI2 (kg
Sb eq)

EI3 (kg
CO2)

EI4 (kg
SO2)

EI5 (kg
PO4)

EI6 (kg
1.4-DB)

EI7 (kg
1.4-DB)

1 C 1111 0.37000 0.00017 0.02576 0.00008 0.00005 0.00001 0.02628 30.9390 0.05852

2 ZZ1222 1.06201 0.00051 0.07396 0.00025 0.00015 0.00002 0.07545 29.7736 0.16802

3 Z1333 1.38662 0.00067 0.09657 0.00033 0.00020 0.00003 0.09851 20.7664 0.21938

4 S1444 2.12054 0.00102 0.14769 0.00050 0.00031 0.00004 0.15066 19.3702 0.33549

5 S2123 1.28148 0.00062 0.08925 0.00030 0.00019 0.00003 0.09104 50.7885 0.20274

6 Z2214 0.18901 0.00009 0.01316 0.00004 0.00003 0.00000 0.01343 13.0641 0.02990

7 ZZ2341 3.00000 0.00145 0.20892 0.00071 0.00044 0.00006 0.21312 31.3092 0.47458

8 C2432 1.81401 0.00087 0.12634 0.00043 0.00026 0.00004 0.12888 19.1302 0.28699
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Table 3. Cont.

Exp.
No

Machining
Strategy

Level

Responses

Environmental Impacts
Cost

(TND)
Human
HealthEI1 (MJ

eq)
EI2 (kg
Sb eq)

EI3 (kg
CO2)

EI4 (kg
SO2)

EI5 (kg
PO4)

EI6 (kg
1.4-DB)

EI7 (kg
1.4-DB)

9 ZZ3134 1.05951 0.00051 0.07380 0.00025 0.00015 0.00002 0.07527 29.7127 0.16762

10 C3243 1.6996 0.00082 0.11838 0.00040 0.00025 0.00003 0.12075 24.5896 0.26889

11 S3312 0.42136 0.00020 0.02934 0.00010 0.00006 0.00001 0.02993 19.2697 0.06666

12 Z3421 1.70022 0.00082 0.11842 0.00040 0.00025 0.00003 0.12080 28.7505 0.26900

13 Z4142 2.2230 0.00107 0.15483 0.00053 0.00033 0.00005 0.15794 44.5595 0.35170

14 S4231 3.71351 0.00180 0.25864 0.00088 0.00055 0.00008 0.26384 64.3091 0.58752

15 C4324 0.69202 0.00033 0.04820 0.00016 0.00010 0.00001 0.04916 16.5085 0.10948

16 ZZ4413 0.21095 0.00010 0.01470 0.00005 0.00003 0.00000 0.01500 10.0133 0.03337

3.2. Step B: AHP

Based on the information collected previously, the hierarchical decision tree is con-
structed (Figure 6). In Figure 6, the illustration is limited to the scenarios of the energy
sub-criteria. It highlights the different elements of our applied method: the objective,
criteria (sustainability pillars), and sub-criteria on which the machining parameters and
toolpaths will be evaluated in the next step. The proposed methodology offers the op-
portunity to the decision-maker to indicate their preference intensity for specific criteria.
The process involves systematically evaluating and assigning preferences to individual
criteria, specifically at a sub-criterial level of the sustainability criteria, through pairwise
comparisons. This means that each criterion is compared with every other criterion, and
a score is allocated to express the decision-maker’s preference for one criterion over the
other. The scoring is performed on a scale ranging from 1 to 9, where a score of 1 indicates
equal importance, and a score of 9 signifies an extremely strong preference. This process
enables a systematic assessment of the relative significance of each criterion within the
decision-making framework, ultimately aiding in the determination of their respective
weights or priorities. Equation (4) demonstrates the judgment matrix that is established
according to the decision-maker’s selected preferences. The resulting sub-criteria weights
are 15.5% for energy consumption, 5.3% for resource utilization, 11.7% for greenhouse
gas emissions, 2.2% for acidification, 2.2% for eutrophication, 2.2% for photochemical
pollution, 2.2% for aquatic ecotoxicity, 34.1% for human health, and 24.6% for machining
cost. The detailed result of the weight distribution is indicated in Figure 6. Environmental
effectiveness emerged as the top priority, accounting for 41.3% of the overall preference. It
was followed by social sustainability, which held a preference weight of 34.1%. Finally, the
economic aspect was assigned a preference weight of 24.6%.

A =



1 5 3 7 7 7 7 0.33 0.2
0.2 1 0.33 3 3 3 3 0.14 0.14
0.33 3 1 7 7 7 7 0.2 0.2
0.14 0.33 0.14 1 1 1 1 0.11 0.11
0.14 0.33 0.14 1 1 1 1 0.11 0.11
0.14 0.33 0.14 1 1 1 1 0.11 0.11
0.14 0.33 0.14 1 1 1 1 0.11 0.11

3 7 5 9 9 9 9 1 7
5 7 5 9 9 9 9 0.14 1


(4)
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To assess the consistency of the assessment, the consistency ratio (Cr) is calculated
using Equation (3). The Cr is equal to 7.38%. The analysis reveals that the consistency ratios
of our case study are below 10%, affirming the consistency of our judgment matrix, and
allowing us to proceed with our localized decision support. Ultimately, we will enhance
the ranking scheme by employing the PROMETHEE method, utilizing the chosen standard
judgment matrix and the priorities established through the AHP method.

3.3. Step C: PROMETHEE

After determining the weights of each impact index, an environmental, social, and
economic assessment was progressively developed. Furthermore, the three sustainability
pillars are measured based on an LCA software “Bilan Produit” (version 2011), developed
by ADEME [57]. The database utilized was created in partnership with the EcoInvent
Center and the Swiss Center for Life Cycle Inventories [58]. It was implemented us-
ing the Commitment Modeling Language (CML) method [59], and seven environmental
impact indicators are determined: EI1 = energy consumption (MJ eq), EI2 = resource con-
sumption (kg Sb eq), EI3 = greenhouse effect GWP 100 mod (carbon emission) (kg CO2
eq), EI4 = acidification (kg SO2 eq), EI5 = eutrophication (air water soil) (kg PO4—eq),
EI6 = photochemical pollution (kg C2H4), and EI7 = aquatic ecotoxicity (kg 1,4-DB eq).
For social sustainability, human health (kg 1.4-DB eq) is calculated, and we consider the
machining costs as an economic criterion for assessment. All these data constitute the
input for the PROMETHEE method. Based on decisions made by the decision-maker, this
method will enable us to rank the various machining scenarios.

4. Results

Based on the CAD/CAM/LCA integrations, an assessment of the environmental,
social, and economic impacts was conducted. Table 3 represents the results generated from
the various proposed machining scenarios. The machining strategy level is encoded as
follows: toolpath type (C/ZZ/Z/S), cutting speed level, feed rate level, depth of cut level,
and width of cut level. For instance, the ZZ1222 machining strategy, corresponding to
the experience no. 2), represents the cutting speed = 17 m/min, feed rate = 180 mm/min,
depth of cut = 0.4 mm, stepover = 3 mm, and the toolpath is the zigzag type. These
outcomes (Table 3) may be perplexing for a designer who is not an expert in sustainable
development. Figure 7 provides a visual representation of the environmental, social, and
economic performance distribution for each of the proposed machining strategies. Notably,
the Z2214 and ZZ4413 strategies emerge as the top-performing options (highlighted by
red circles in Figure 7). However, it is important to note that this assessment remains valid
when the sustainability criteria carry equal weights, but its effectiveness diminishes when
the criteria are assigned differing weights. This means that the comparison holds when all
sustainability pillars have equal importance, but its applicability becomes limited when
certain pillars are considered more significant than others in the decision-making process.
Therefore, we turned to the PROMETHEE method to rank the machining scenarios.

At this stage, the PROMETHEE method is deployed to address the challenge of identi-
fying the optimal combination of machining parameters that aligns most effectively with
the weight distribution suggested by the decision-maker. So, the problem is constructed
by 16 alternatives and 9 quantitative criteria. To implement the PROMETHEE method, we
used the “Visual PROMETHEE” software, which necessitates the initialization of specific
parameters. These parameters encompass the alternatives that need to be ranked, the
optimization type (max/min), and the decision element weights. Figure 8 provides a visual
representation of our decision problem modeling and the various input data associated
with it. The alternatives to be ranked are the machining strategies generated through the
Taguchi fractional design, which encompasses the combinations of the machining parame-
ters. The input data include information about the environmental impacts, human health,
and machining costs, all of which have been meticulously calculated and are provided
in Table 3. Additionally, the decision element weights are derived from the priorities as-
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signed to the criteria, which were determined using the AHP method. Lastly, the software
prompts us to specify the type of optimization, that is, whether a given criterion should be
maximized or minimized during the evaluation process. In our specific case, our objective
is to maximize the sustainability performance. Therefore, we will opt for the “min” type
for all the assigned criteria.
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The partial ranking by PROMETHEE I is presented in Figure 9a. Figure 9a showcases
the performance of two alternatives, ZZ4413 and Z2214, which appear to be very closely
ranked concerning the assessed criteria. This proximity in their rankings suggests a state
of “indifference”, signifying the significant challenge faced by the decision-maker in es-
tablishing a clear and unequivocal preference between these two alternatives. Indeed, in
simple scenarios, partial ranking by PROMETHEE I is often sufficient to address decision
problems. However, in certain circumstances, partial ranking falls short due to challenges
related to indifference or incommensurability. For instance, the overlapped and overlayed
scenario ranking is highlighted by the red dashed circle in Figure 9a. It is for this reason that
PROMETHEE II provides a comprehensive ranking, from the best alternative to the worst.
Figure 9b illustrates a PROMETHEE II final ranking. The red dashed circle in Figure 9b
illustrates the ranking improvement. As shown in Figure 9b, a specific alternative, ZZ4413,
distinctly emerges as the optimal choice based on the assigned weights of the criteria. This
scenario is defined by the cutting speed = 23 m/min, feed rate = 300 mm/min, depth
of cut = 0.2 mm, stepover = 4 mm, and a zigzag toolpath. This machining strategy has
outperformed the others across the various criteria, resulting in its superior ranking.
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In Figure 10, we gain valuable insights into the dynamics of the ranking results because
of altering the assigned weights. The purpose is to identify the impacts of decision-maker
preferences on the scenario ranking order. Figure 10a–c shows the resulting scenario
ranking for different assigned weights. The significance of the environmental dimension is
clearly exemplified when its weight is adjusted from 41% (Figure 10a) to 90% (Figure 10b).
This notable shift in preference places greater emphasis on environmental considerations,
and as a result, we witness a distinct transformation in the ranking of the different scenarios.
Indeed, this weight modification yields Z2214 taking the lead, surpassing ZZ4413, which
was previously the favored option.

These shifts underscore the responsiveness of the decision-making process to adjust-
ments in the weight distribution, showcasing the ability of the PROMETHEE II method to
adapt to evolving priorities. It serves as a compelling demonstration of the methodology’s
utility in assisting decision-makers in fine-tuning their choices to align with their evolving
criteria and objectives. The case study demonstrates the effectiveness of the proposed ap-
proach, which introduces an innovative and reliable DSS-based hybrid AHP-PROMETHEE
approach for assessing and ensuring the sustainability performance of machining strategies.
This study systematically integrates expert preferences and overcomes data challenges by
generating various machining parameters and strategy combinations, aiming for seamless
integration into the digital mock-up.
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5. Conclusions

The main aim of this study is to introduce a novel application of a hybrid multi-criteria
decision-making (MCDM) model, specifically designed for evaluating machining strategies
and parameters with a strong emphasis on sustainability considerations. This study is
geared towards assisting manufacturers in selecting the most suitable scenario according to
their preferences. To achieve this objective, this study effectively combines the strengths
of both the AHP and PROMETHEE to establish a robust and all-encompassing MCDM
methodology. Acknowledging that each of these methods has its unique advantages and
limitations, this study strategically utilizes the AHP for structuring the decision-making
problem and determining the weights of various criteria. The evaluation of the machining
strategy scenarios, generated through the Taguchi method, revolves around three primary
criteria groups: environmental, social, and economic factors. These criteria are further bro-
ken down into a total of nine sub-criteria, addressing aspects such as energy consumption,
resource utilization, greenhouse gas emissions (specifically carbon emissions) contributing
to the greenhouse effect, acidification, eutrophication affecting the air, water, and soil,
photochemical pollution, and aquatic ecotoxicity, all of which are under the umbrella of
environmental impacts. The social dimension is captured through human health, while
economic considerations are evaluated through machining costs. Undoubtedly, the criteria
weights are assigned based on the preferences of the decision-maker through the appli-
cation of the AHP method. Subsequently, PROMETHEE is enlisted to aggregate these
criteria, ranking different machining strategy scenarios, and conducting sensitivity analyses.
In certain instances, the partial ranking of alternatives may remain inconclusive due to
complexities arising from indifference or incomparability among the options. To address
these intricacies, PROMETHEE II emerges as the solution, offering a comprehensive rank-
ing of the alternatives. This ensures that every alternative is ranked from best to worst,
eliminating any ambiguities in the decision-making process.

The case study involves the assessment of various machining strategy scenarios, which
are determined by five input parameters. These parameters encompass four quantitative
factors: cutting speed, feed rate, depth of cut, and stepover, along with one qualitative
factor, which is the tool strategy. The experimental design is structured around 5 variables,
each with 4 distinct levels, resulting in a total of 16 different alternatives. When applying
the AHP, the preferences of the manufacturer were taken into account. Based on these
preferences, the assessment criteria were prioritized. This hierarchy of preferences was
instrumental in guiding the decision-making process within the case study. Utilizing the
integration of CAD/CAM/LCA, an extensive evaluation was carried out to assess the
environmental, social, and economic impacts associated with each machining strategy
scenario. Subsequently, the PROMETHEE I and II methods were employed to tackle the
challenge of identifying the most optimal combination of machining parameters, aligning
with the weight distribution suggested by the decision-maker.

While this study employs a combined AHP-PROMETHEE approach to rank the
machining strategy scenarios from a sustainability perspective, certain limitations have
come to light. The primary limitation revolves around the subjective selection of the criteria.
Consequently, future research endeavors should place special emphasis on addressing this
concern, aiming to enhance the objectivity and robustness of the methodology. Furthermore,
future research efforts should be directed towards the development of a dynamic meta-
model that encompasses all the parameters involved in a machining operation. These
parameters should include the choice of workpiece material, cutting fluid, cutting tool, and
the machine tool utilized.
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