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Abstract

In this note, we establish a qualitative total variation version of Breuer–Major
Central Limit Theorem for a sequence of the type 1√

n

∑

1≤k≤n f(Xk), where (Xk)k≥1

is a centered stationary Gaussian process, under the hypothesis that the function
f has Hermite rank d ≥ 1 and belongs to the Malliavin space D

1,2. This result
in particular extends the recent works of [NNP21], where a quantitative version
of this result was obtained under the assumption that the function f has Hermite
rank d = 2 and belongs to the Malliavin space D

1,4. We thus weaken the D
1,4

integrability assumption to D
1,2 and remove the restriction on the Hermite rank of

the base function. While our method is still based on Malliavin calculus, we exploit
a particular instance of Malliavin gradient called the sharp operator, which reduces
the desired convergence in total variation to the convergence in distribution of a
bidimensional Breuer–Major type sequence.

1 Framework and main result

Let us consider X = (Xn)n≥1 a real-valued centered stationary Gaussian sequence with
unit variance, defined on an abstract probability space (Ω,F ,P). Let ρ : N → R be the
associated correlation function, in other words ρ(|k − ℓ|) = E[XkXℓ], for all k, ℓ ≥ 1.
We will also classically denote by N (0, σ2) the law of a centered normal variable with
variance σ2. Set γ(dx) := (2π)−1/2e−x2/2dx the standard Gaussian measure on the real
line and γd = ⊗d

k=1γ its analogue in R
d. We then denote by (Hm)m≥0 the family of

Hermite polynomials which are orthogonal with respect to γ, namely H0 ≡ 1 and

Hm(x) := (−1)me
x2

2

dm

dxm
e−

x2

2 , m ≥ 1.

We denote by L2(R, γ) the space of square integrable real functions with respect to the
Gaussian measure. Recall that a real function f ∈ L2(R, γ) is said to have Hermite rank
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d ≥ 0 if it can be decomposed as a sum of the form

f(x) =
+∞∑

m=d

cmHm(x), cd 6= 0.

For integers k, p ≥ 1, we further denote by D
k,p(R, γ) the Malliavin–Sobolev space con-

sisting of the completion of the family of polynomial functions q : R → R with respect
to the norm

||q||k,p :=
∣
∣
∣
∣
∣

∫

R

(

|q(x)|p +
k∑

ℓ=1

|q(ℓ)(x)|p
)

γ(dx)

∣
∣
∣
∣
∣

1/p

,

where q(ℓ) is the ℓ-th derivative of q. Given a real function f , let us finally set

Sn(f) :=
1√
n

n∑

k=1

f(Xk).

In this framework, the celebrated Central Limit Theorem (CLT) by Breuer and Major
gives sufficient conditions on ρ and f so that the sequence Sn(f) satisfies a CLT.

Theorem 1 (Theorem 1 in [BM83]). If the function f belongs to L2(R, γ) with Hermite

rank d ≥ 1 and if ρ ∈ ℓd(N), i.e.
∑

N
|ρ(k)|d < +∞, then the sequence (Sn(f))n≥1

converges in distribution as n goes to infinity to a normal distribution N (0, σ2), where
the limit variance is given by

σ2 :=

∞∑

m=d

m!c2m
∑

k∈Z

ρ(k)m,

with cm being the coefficients appearing in the Hermite expansion of f .

Recently, under mild additional assumptions, a series of articles has reinforced the
above convergence in distribution into a convergence in total variation, with polynomial
quantitative bounds, see e.g. [KN19, NPY19, NZ21, NNP21]. Recall that the total
variation distance between the distributions of two real random variables X and Y is
given by

dTV(X,Y ) := sup
A∈B(R)

|P(X ∈ A)− P(Y ∈ A)|,

where the supremum runs over B(R), the Borel sigma field on the real line. To the best
of our knowledge, the best statement so far in this direction is the following

Theorem 2 (Theorem 1.2 in [NNP21]). Assume that f ∈ L2(R, γ) has Hermite rank

d = 2 and that it belongs to D
1,4(R, γ). Suppose that ρ ∈ ℓd(N) and that the variance

σ2 of Theorem 1 is positive. Then, there exists a constant C > 0 independent of n such

that

dTV

(

Sn(f)
√

var(Sn(f))
,N (0, 1)

)

≤ C√
n









∑

|k|≤n

|ρ(k)|





1

2

+




∑

|k|≤n

|ρ(k)| 43




3

2




 .
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The goal of this note is to establish that the convergence in total variation in fact
holds as soon as the function f is in the Malliavin–Sobolev space D

1,2(R, γ) and has
Hermite rank d ≥ 1.

Theorem 3. Suppose that f ∈ D
1,2(R, γ) has Hermite rank d ≥ 1. Suppose moreover

that ρ ∈ ℓd(N) and that the variance σ2 of Theorem 1 is positive. Then, as n goes to

infinity

dTV

(

Sn(f)
√

var(Sn(f))
,N (0, 1)

)

−−−−−→
n→+∞

0.

Note that, for the sake of simplicity, we only consider here a real Gaussian sequence
(Xn)n≥1 and a real function f but our method is robust and would yield, under similar
covariance and rank assumptions, a convergence in total variation for a properly renoma-
lized sequence of the type

∑n
k=1 f(X

1
k , . . . ,X

d
k ) associated with a sequence of Gaussian

vectors (Xn)n≥1 with values in R
d and a function f in the corresponding Malliavin–

Sobolev space D
1,2(Rd, γd).

The detailed proof of Theorem 3 is the object of the next section and the rest of
the paper. Unsurprisingly, we use the Malliavin–Stein approach to establish the CLT in
total variation. However, our approach differs from the other works mentioned above in
that we make use of the so called “sharp gradient”, whose definition and main properties
are recalled in Section 2.2. With this tool at hand and in view of using Malliavin–Stein
equation to characterize the proximity to the normal distribution, we shall see that the
convergence in total variation in fact reduces to two rather simple steps
i) a two-dimensional version of the classical Breuer–Major CLT (i.e. in distribution not
in total variation), see Section 2.3 ;
ii) some elementary uniform integrability estimates, allowing to pass from a convergence
in probability to a convergence in L1, see Section 2.4.

2 Proof of the main result

As mentioned just above, the setting of the proof of Theorem 3 is the one of Malliavin–
Stein calculus. Note that for each fixed n ≥ 1, the quantity of interest Sn(f) involves only
a finite number of Gaussian coefficients. So let us sketch the framework of Malliavin–
Stein method in the finite dimensional setting, and we refer to [Nua09] or [NP12] for a
more general introduction.

2.1 A glimpse of Malliavin calculus

Let us fix an integer n ≥ 1 and let us place ourselves in the product probability space
(Rn,B(Rn), γn) with γn := ⊗n

k=1γ, the n-dimensional standard Gaussian distribution
on R

n. Consider the classical Ornstein–Ulhenbeck operator Ln := ∆ − ~x · ∇ which is

3



symmetric with respect to γn. We have then the standard decomposition of the L2−space
in Wiener chaoses, namely

L2(γn) =

∞⊕

k=0

Ker (Ln + kI) , with

Ker (Ln + kI) = Vect

(
n∏

i=0

Hki(xi)
∣
∣
∣

n∑

i=0

ki = n

)

:= Wk.
︸︷︷︸

k-th Wiener chaos

The square field or “carré du champ” operator Γn is then defined as the bilinear operator
Γn := [·, ·] = ∇ · ∇. As a glimpse of the power of Malliavin–Stein approach in view
of establishing total variation estimates, recall that if F ∈ Ker (Ln + kI) is such that
E[F 2] = 1, then for some constant Ck only depending on k, the total variation distance
between the variable F and a standard Gaussian can be upper bounded by

dTV (F,N (0, 1)) ≤ Ck

√

var (Γ [F,F ]).

Via the notion of isonormal Gaussian process, the finite dimensional framework for
Malliavin–Stein method sketched above can in fact be extended to the infinite dimen-
sional setting giving rise to an Ornstein–Uhlenbeck operator L and an associated “carré
du champ” Γ, see e.g. Chapter 2 in [NP12].

2.2 The sharp gradient

A detailed introduction to the sharp gradient can be found in Section 4.1 of the reference
[AP20]. We only recall here the basics which will be useful to our purpose. Let us
assume that (Nk)k≥1 is an i.i.d. sequence of standard Gaussian variables on (Ω,F ,P)
which generate the first Wiener chaos. Without loss of generality, we shall assume that
F = σ(Nk, k ≥ 1). We will also need a copy (Ω̂, F̂ , P̂) of this probability space as
well as (N̂i)i≥1 a corresponding i.i.d. sequence of standard Gaussian variables such that
F̂ = σ(N̂k, k ≥ 1). We will denote by Ê the expectation with respect to the measure
P̂. For any integer m ≥ 1 and any function Φ in the space C1

b (R
m,R) of continuously

differentiable functions with a bounded gradient, we then set

♯Φ(N1, · · · , Nm) :=

m∑

i=1

∂iΦ(N1, · · · , Nm)N̂i. (1)

In Sections 4.1.1 and 4.1.2 of [AP20], it is shown that this gradient is closable and
extends to the Malliavin space D

1,2, where

D
1,2 :=

{

F ∈ L
2(Ω,F ,P), E[F 2] + E

[

(♯F )2
]

< +∞
}

.

The last space D1,2 is naturally the infinite dimensional version of the Malliavin–Sobolev
space D

1,2(R, γ) introduced in Section 1 in the one-dimensional setting. In particular,
Proposition 8 in the latter reference shows that

∀F ∈ D
1,2, ∀φ ∈ C1

b (R,R) : ♯φ(F ) = φ′(F )♯F.

4



Given F ∈ D
1,2, taking first the expectation Ê with respect P̂ and using Fubini inversion

of sums yields the following key relation, for all ξ ∈ R

E

(

exp

(

−ξ2

2
Γ[F,F ]

))

= ÊE

(

exp
(

iξ♯F
))

. (2)

By essence, via their Laplace/Fourier transforms, this key equation allows to relate the
asymptotic behavior in distribution (or in probability if the limit is constant) of the carré
du champ Γ[F,F ] with the one of the sharp gradient ♯F .

Finally, let us remark that by definition, the image (♯Xk)k≥1 of our initial stationary
sequence (Xk)k≥1 by the sharp gradient is an independent copy of (Xk)k≥1. We will
write (♯Xk)k≥1 = (X̂k)k≥1 in the sequel.

2.3 Convergence in probability via a two dimensional CLT

Let us suppose that f satisfies the assumptions of Theorem 3, namely f ∈ D
1,2(R, γ)

with Hermite rank d ≥ 1, so that it can be decomposed as f =
∑∞

m=d cmHm in L2(R, γ).
Let L−1 denote the pseudo-inverse of the Ornstein–Uhlenbeck operator and consider the
pre-image

g(x) := −L−1[f ](x) =

∞∑

m=d

cm

m
Hm(x).

To simplify the expressions in the sequel, we set

Fn := Sn(f) =
1√
n

n∑

k=1

f(Xk), and Gn := Sn(g) = −L−1Fn =
1√
n

n∑

k=1

g(Xk).

Now, take (s, t, ξ) ∈ R
3 and let us apply the above key relation (2) with the random

variable tFn + sGn, we get

E

[

exp

(

−ξ2

2
Γ[tFn + sGn, tFn + sGn]

)]

= ÊE

[

exp
(

iξ
(

t ♯Fn + s ♯Gn

))]

. (3)

On the one hand, by bilinearity of the carré du champ operator, we have

Γ[tFn + sGn, tFn + sGn] = t2Γ[Fn, Fn] + s2Γ[Gn, Gn] + 2tsΓ[Fn,−L−1Fn]. (4)

On the other hand, the right hand side of Equation (3) is simply the characteristic
function under P⊗ P̂ of the couple (♯Fn,

♯Gn) where

(
♯Fn,

♯Gn

)

=
1√
n

n∑

k=1

(

f ′(Xk)X̂k, g
′(Xk)X̂k

)

,

is a “Breuer–Major type” sequence with respect to the R
2−valued centered stationary

Gaussian process (X̂k,Xk)k≥1 and the R
2−valued functional

(x, y) 7→ Ψ(x, y) := (f ′(x)y, g′(x)y).
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Since f is in D
1,2(R, γ), its derivative f ′ is in L2(R, γ) and (X̂k)k≥1 and (Xk)k≥1 are

independent, therefore the functional Ψ is in L2(R2, γ2) and the multivariate counterpart
of the classical Breuer–Major Theorem applies, see Theorem 4 of [Arc94].

As a result, the bidimensional sequence (♯Fn,
♯Gn) converges in distribution, under

P⊗ P̂, towards a bidimensional centered Gaussian vector with a symmetric semi-positive
covariance matrix Σ. Therefore, from Equations (3) and (4) and via the characterization
of convergence in distribution in terms of Fourier transform, there exists real numbers
λ, µ, ν (depending on the limit covariance matrix Σ) such that for any (s, t, ξ) ∈ R

3, as
n goes to infinity, we have

E

[

e−
ξ2t2

2
Γ[Fn,Fn]−

ξ2s2

2
Γ[Gn,Gn]−ξ2tsΓ[Fn,−L−1Fn]

]

−−−→
n→∞

e−
ξ2

2
(λt2+µs2+2νts).

Since the above convergence is valid for any ξ ∈ R, this shows in particular that for any
fixed (s, t) ∈ R

2, the sequence Γ[tFn+sGn, tFn+sGn] converges in distribution (and thus
in probability) towards the constant variable

(
λt2 + µs2 + 2νts

)
. Choosing s = t = 1,

we thus get that Γ[Fn + Gn, Fn + Gn] converges in probability towards (λ + µ + 2ν).
Choosing s = 0 and t = 1, then t = 0 and s = 1, one deduce in the same manner
that Γ[Fn, Fn] and Γ[Gn, Gn] both converge in probability towards λ and µ respectively.
Finally, by Equation (4), one can conclude that the cross term

Γ[Fn, Gn] = Γ(Fn,−L−1Fn) = Ê

[
♯Fn

♯Gn

]

also converges in probability towards the constant limit variable ν.

2.4 Gaining some uniform integrability

Since our goal is to derive convergence in total variation of Fn = Sn(f), the convergence
in probability of the term Γ[Fn,−L−1Fn] is not sufficient. Indeed, with Stein’s Equation
in mind, the lack of uniform integrability is a problem to deduce the following required
asymptotic behavior for any φ ∈ C1

b (R), as n goes to infinity

E
[
φ′(Fn)Γ[Fn,−L−1Fn]

]
≈ ν E

[
φ′(Fn)

]
.

In order to bypass this problem, let us go back to the two-dimensional classical Breuer–
Major theorem associated with the functional Ψ used in the last section. For any integer
p ≥ 1, let us denote by Ψp the projection of Ψ on the first p − th chaoses. Applying
Theorem 4 and Equation (2.43) of [Arc94], we get that there exists a constant C > 0
(which depends only on the covariance structure of the underlying Gaussian process)
such that

sup
n≥1

EÊ





∣
∣
∣
∣
∣

1√
n

n∑

k=1

(Ψ−Ψp)(Xk, X̂k)

]2


 ≤ C ×
∫

R2

|(Ψ −Ψp)(x)|2γ2(dx).

6



Since Ψ belongs to L2(R2, γ2), the last term on the right hand side goes to zero as p goes
to infinity. As a result, uniformly in n ≥ 1, the two-dimensional process

(
♯Fn,

♯Gn

)

=
1√
n

n∑

k=1

Ψ(Xk, X̂k)

can be approximated arbitrarily closely in L2(P ⊗ P̂) by the following process which is
finitely expanded on the Wiener chaoses

Zp
n := (Zp,1

n , Zp,2
n ) :=

1√
n

n∑

k=1

Ψp(Xk, X̂k).

Therefore, choosing p ≥ 1 large enough, uniformly in n ≥ 1, the product ♯Fn × ♯Gn can
be approximated arbitrarily closely in L1(P⊗ P̂) by ∆p

n := Z
p,1
n × Z

p,2
n . In other words,

for any ε > 0 and p ≥ 1 large enough, we have

sup
n

E

[∣
∣
∣Ê

(
♯Fn × ♯Gn

)

− Ê (∆p
n)
∣
∣
∣

]

≤ sup
n

EÊ

[∣
∣
∣
♯Fn × ♯Gn −∆p

n

∣
∣
∣

]

< ε.

But mimicking the proof detailed in the previous Section 2.3 for the convergence in
probability of Γ[Fn, Gn] towards the constant variable ν, one would then similarly get
here that Ê[∆p

n] converges in probability under P towards a constant random variable
νp ∈ R, and by construction limp→+∞ νp = ν. The crucial point here is that both random

variables ∆p
n and Ê[∆p

n] are now finitely expanded on the Wiener chaoses under P ⊗ P̂

and P respectively. Therefore, by hypercontractivity, the convergence in probability can
be freely upgraded to the convergence in Lq for every q ≥ 1. In particular, as n goes to
infinity, the sequence Ê[∆p

n] converges in L1 to the constant variable νp.

2.5 Conclusion

We go back to Stein’s Equation. Let φ ∈ C1
b (R) and ε > 0. Integrating by parts, for

p ≥ 1 large enough and by the results of the last section, we have
∣
∣E [Fnφ(Fn)]− ν E

[
φ′(Fn)

]∣
∣ =

∣
∣E
[
φ′(Fn)Γ[Fn,−L−1Fn]

]
− ν E

[
φ′(Fn)

]∣
∣

=
∣
∣E
[
φ′(Fn)Γ[Fn, Gn]

]
− ν E

[
φ′(Fn)

]∣
∣

=
∣
∣
∣E

[

φ′(Fn)
(

Γ[Fn, Gn]− Ê[∆p
n]
)]

+ E

[

φ′(Fn)
(

Ê[∆p
n]− νp

)]

+ (νp − ν)E
[
φ′(Fn)

]
∣
∣
∣

≤ ||φ′||∞ε+ ||φ′||∞E

[∣
∣
∣Ê[∆p

n]− νp

∣
∣
∣

]

+ ||φ′||∞|νp − ν|.

As a result, letting first n and then p go to infinity, we get that uniformly in φ such that
||φ′||∞ ≤ C

lim sup
n→+∞

∣
∣E [Fnφ(Fn)]− ν E

[
φ′(Fn)

]∣
∣ = 0.

One can then classically conclude using Stein’s approach for the convergence in total
variation.
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