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Exotic aromatic B-series were originally introduced for the calculation of order conditions for the high order numerical integration of ergodic stochastic differential equations in R d and on manifolds. We prove in this paper that exotic aromatic B-series satisfy a universal geometric property, namely that they are characterised by locality and orthogonal-equivariance. This characterisation confirms that exotic aromatic B-series are a fundamental geometric object that naturally generalises aromatic B-series and B-series, as they share similar equivariance properties. In addition, we classify with stronger equivariance properties the main subsets of the exotic aromatic B-series, in particular the exotic B-series. Along the analysis, we present a generalised definition of exotic aromatic trees, dual vector fields, and we explore the impact of degeneracies on the classification.

Introduction

Consider the ordinary differential equation y I ptq f pyptqq, yp0q y 0 , (1.1) where f : R d Ñ R d is a Lipschitz vector field and y 0 R d , and a one-step integrator for solving (1.1) of the form y n 1 Φpy n , hq, (1.2) where h is the timestep of the method. Following the backward error analysis idea [START_REF] Hairer | Geometric numerical integration[END_REF], in order to study the properties of the integrator (preservation of invariants or measures, order, behaviour in long-time,. . . ), it proves convenient to rewrite the scheme as the exact solution of a modified ODE ỹI ptq f pỹptqq.

For large classes of integrators, such as Runge-Kutta methods, the modified vector field f can be expressed as a formal Taylor series in f and its partial derivatives, called a B-series [START_REF] Chartier | Algebraic structures of B-series[END_REF]. The paper [START_REF] Munthe-Kaas | Aromatic Butcher series[END_REF] presents universal geometric conditions on f to show that it can be written as a B-series. More precisely, any smooth local map that is invariant under affine change of coordinates can formally be written as a B-series.

Originally introduced in [START_REF] Butcher | An algebraic theory of integration methods[END_REF][START_REF] Hairer | On the Butcher group and general multi-value methods[END_REF], Butcher series proved to be a powerful tool for the construction of numerical integrators for solving ODEs with a high order of accuracy and preserving geometric properties (see the textbooks [START_REF] Hairer | Geometric numerical integration[END_REF][START_REF] Butcher | Numerical methods for ordinary differential equations[END_REF][START_REF] Butcher | B-series: algebraic analysis of numerical methods[END_REF] and the review [START_REF] Mclachlan | Butcher series: a story of rooted trees and numerical methods for evolution equations[END_REF]). The papers [START_REF] Chartier | Preserving first integrals and volume forms of additively split systems[END_REF][START_REF] Iserles | B-series methods cannot be volumepreserving[END_REF] introduced simultaneously an extension of B-series called aromatic B-series for the study of volume preserving integrators (see also the recent works [START_REF] Bogfjellmo | Algebraic structure of aromatic B-series[END_REF][START_REF] Bogfjellmo | Using aromas to search for preserved measures and integrals in Kahan's method[END_REF][START_REF] Lejay | Constructing general rough differential equations through flow approximations[END_REF][START_REF] Laurent | The aromatic bicomplex for the description of divergence-free aromatic forms and volume-preserving integrators[END_REF][START_REF] Bronasco | The Hopf algebra structures of composition and substitution of exotic clumped S-series[END_REF]). In this context, one is interested in finding methods (1.2) satisfying divp f q 0. The aromatic B-series proves to be a crucial tool as the standard operations on vector fields, the divergence operator, and Taylor expansions rewrite conveniently in aromatic B-series. One then wonders whether Bseries and aromatic B-series are merely tools for manipulating tedious Taylor expansions or natural far-reaching algebraic objects. This question is answered in [START_REF] Mclachlan | B-series methods are exactly the affine equivariant methods[END_REF][START_REF] Munthe-Kaas | Aromatic Butcher series[END_REF] where universal geometric characterisations of B-series and aromatic B-series are given (see also [START_REF] Markl | GL n -invariant tensors and graphs[END_REF][START_REF] Mclachlan | Butcher series: a story of rooted trees and numerical methods for evolution equations[END_REF]).

In the context of stochastic differential equations (SDEs), it is known that there is no backward error analysis in the strong sense in general [START_REF] Shardlow | Modified equations for stochastic differential equations[END_REF]. However, there exists a similar idea for ergodic SDEs. Consider overdamped Langevin dynamics with Stratonovich noise of the form dY ptq Π M pY ptqqfpY ptqqdt Π M pY ptqq ¥ dW ptq, Y p0q Y 0 , (1.3) where f : R d Ñ R d is a Lipschitz vector field, Y 0 R d , Π M pxq is the orthogonal projection on the tangent bundle of M at the point x M (note that Π M pxq I d if M R d ), and W is a standard d-dimensional Brownian motion in R d on a probability space equipped with a filtration and fulfilling the usual assumptions. Under a growth assumption on f , the solution of (1.3) is ergodic, that is, it follows a deterministic distribution, called the invariant measure, in long time [START_REF] Faou | Conservative stochastic differential equations: mathematical and numerical analysis[END_REF][START_REF] Debussche | Weak backward error analysis for SDEs[END_REF][START_REF] Abdulle | High order numerical approximation of the invariant measure of ergodic SDEs[END_REF]. In [START_REF] Laurent | Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs[END_REF][START_REF] Laurent | Order conditions for sampling the invariant measure of ergodic stochastic differential equations on manifolds[END_REF][START_REF] Laurent | Algebraic Tools and Multiscale Methods for the Numerical Integration of Stochastic Evolutionary Problems[END_REF], an extension of the aromatic B-series, called exotic aromatic B-series, is introduced to write conveniently Taylor expansions (called Talay-Tubaro expansions [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF] in this context) of the solutions of (1.3) and to build high-order approximations of the invariant measure of (1.3), with applications in molecular dynamics [START_REF] Lelièvre | Free energy computations[END_REF]. The main idea is to introduce two new types of edges to represent the Laplacian and the scalar product. Ergodic integrators for solving (1.3) have an invariant measure that can be written as the invariant measure of an exact problem of the form (1.3) with a modified vector field f that typically has the form (1.4) where f i is the vector basis of R d , the c n are real constants, and each term is summed on all involved indices. Note that the expansion (1.4) is a linear combination of monomials in the components f i and their partial derivatives, where we use pairs of indices. Note also that the power of h associated to a monomial is not given by the number of occurrences of f , in opposition to the deterministic context. For the integrators presented in [START_REF] Laurent | Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs[END_REF][START_REF] Laurent | Order conditions for sampling the invariant measure of ergodic stochastic differential equations on manifolds[END_REF] for solving (1.3), the modified vector field can be expressed as an exotic B-series [START_REF] Bronasco | The Hopf algebra structures of composition and substitution of exotic clumped S-series[END_REF] in R d (see examples in [START_REF] Laurent | Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs[END_REF]Sec. 5.1]) and as a partitioned exotic aromatic B-series on manifolds at least for the first orders [START_REF] Laurent | Order conditions for sampling the invariant measure of ergodic stochastic differential equations on manifolds[END_REF][START_REF] Bronasco | The Hopf algebra structures of composition and substitution of exotic clumped S-series[END_REF]. Moreover, the Talay-Tubaro expansions presented in [START_REF] Laurent | Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs[END_REF][START_REF] Laurent | Order conditions for sampling the invariant measure of ergodic stochastic differential equations on manifolds[END_REF] are exotic aromatic S-series [START_REF] Bronasco | Exotic B-series and S-series: algebraic structures and order conditions for invariant measure sampling[END_REF].
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For the high-order approximation of (1.3), the number of terms in the Taylor expansions explodes quickly, which makes the exotic aromatic B-series a crucial tool for the study of integrators for solving SDEs (see, for instance, the order two expansion in [24, App. D]). A natural question is the following: are exotic aromatic B-series just a technical tool used for carrying out tedious calculations? Or are they fundamental objects satisfying similar geometric properties as B-series and aromatic B-series? In this paper, we show that the exotic aromatic B-series satisfy a universal equivariance property, which justifies that the exotic aromatic B-series formalism is a natural extension of B-series and aromatic B-series. We extend this result to characterise subsets of the exotic aromatic B-series, such as the exotic B-series. This work also allows us to give a more general definition of exotic aromatic B-series, free of the degeneracies introduced in the numerical context.

The article is organized as follows. We present in Section 2 the definition of the geometric properties used in the characterisation, the general definition of the exotic aromatic B-series, and the main results of the paper. The characterisation of exotic aromatic B-series is proven in Section 3, while we derive the strong classification of exotic aromatic B-series in Section 4. We give outlooks on future works in Section 5.

Preliminaries and main results

This section is devoted to the definition of locality, equivariance and decoupling. We then give a new general definition of exotic aromatic trees and their associated elementary differential. The main results of the paper are presented in Subsection 2.3.

Locality, equivariance, and partitions

We define the geometric properties used in the characterisation of exotic aromatic B-series. A natural property of modified vector fields is locality.

Definition 2.1. Let d ¥ 0, a map φ d : XpR d q Ñ XpR d q is local if supppφ d pfqq supppf q, supppf q tx R d , f pxq $ 0u.
In [START_REF] Munthe-Kaas | Aromatic Butcher series[END_REF], the aromatic B-series are characterised by locality and a property of equivariance.

Let XpR d q be the set of smooth vector fields on R d and G be a finite dimensional Lie subgroup of the set of diffeomorphisms DiffpR d q on R d . The group G has the form H R d , where H is a subgroup of GL d pRq called the isotropy group. An element g pA, bq G acts on a vector field f XpR d q by pg ¤ f qpxq Af pA ¡1 px ¡ bqq.

The G-equivariance is the compatibility with the action of G on vector fields.

Definition 2.2. A map φ

d : XpR d q Ñ XpR d q is G-equivariant if φ d pg ¤ f q g ¤ φ d pfq, g G, f XpR d q.
In this work, we consider G H R d , where H is a matrix group called the isotropy group. If H GL d pRq, the G-equivariance is written for simplicity GL-equivariance, while we write orthogonal-equivariance if H O d pRq. The first main result of this paper is the characterization of exotic aromatic B-series with orthogonal-equivariance and locality.

The second goal of this work is to characterize the subsets of exotic aromatic B-series, in particular the exotic B-series. In this context, the dimension d ¥ 0 of the problem plays an important role, so that we rely on sequences of maps φ pφ d :

XpR d q Ñ XpR d qq d indexed by the dimension d. Such a sequence is local (respectively G-equivariant) if φ d is local (respec- tively G-equivariant) for all d.
To observe the interactions between the dimensions, the notion of equivariance is extended to affine transformations [START_REF] Mclachlan | B-series methods are exactly the affine equivariant methods[END_REF], and we refer to such a property as strong equivariance in the following.

Definition 2.3. Let the set of affine transformations

AffpR d 1 , R d 2 q ta: R d 1 Ñ R d 2 , apxq Ax b, pA, bq R d 2 ¢d 1 ¢ R d 2 u
, and HpR d 1 , R d 2 q be a subset defined for all dimensions d 1 and d 2 . A sequence of smooth maps φ pφ d :

XpR d q Ñ XpR d qq d is equivariant with respect to H if for all d 1 , d 2 , for all apxq Ax b HpR d 1 , R d 2 q and x R d 1 , φ satisfies f 2 papxqq Af 1 pxq ñ φ d 2 pf 2 qpapxqq Aφ d 1 pf 1 qpxq, f 1 XpR d 1 q, f 2 XpR d 2 q. A sequence of smooth maps φ pφ d q d is affine-equivariant if it is equivariant with respect to all affine transformations in Aff.
The different subsets of AffpR d 1 , R d 2 q that we consider are associated to the classical homogeneous spaces corresponding to the Lie-group H O d pRq:

SpR d 1 , R d 2 q tapxq Ax b AffpR d 1 , R d 2 q, A T A I d 1 u, (2.1) 
GpR d 1 , R d 2 q tapxq Ax b AffpR d 1 , R d 2 q, AA T I d 2 u. (2.2)
The transformations in (2.1) are the left-orthogonal transformations and correspond to the Stiefel manifold, while the right-orthogonal transformations in (2.2) correspond to the Grassmann manifold. The associated equivariance properties are called Stiefel-equivariance and Grassmann-equivariance. A sequence φ is said to be semi-orthogonal-equivariant if it is both Stiefel-equivariant and Grassmann-equivariant. The elementary differentials associated to standard B-series keep decoupled systems decoupled. Some exotic aromatic B-series also satisfy this property, which motivates the following definition. Similarly to [START_REF] Mclachlan | B-series methods are exactly the affine equivariant methods[END_REF], for f 1 XpR d 1 q and f 2 XpR d 2 q, we use the notation

h f 1 f 2 XpR d 1 d 2 q, hpx, yq pf 1 pxq, f 2 pyqq. Definition 2.4. A sequence φ pφ d : XpR d q Ñ XpR d qq d is decoupling if for all f 1 XpR d 1 q and f 2 XpR d 2 q, φ satisfies φ d 1 d 2 pf 1 f 2 q φ d 1 pf 1 q φ d 2 pf 2 q, that is, for all x R d 1 , y R d 2 , φ d 1 d 2 ppf 1 pxq, f 2 pyqqq pφ d 1 pf 1 qpxq, φ d 2 pf 2 qpyqq. A sequence φ is trivially decoupling if for all f XpR d 1 q, φ satisfies φ d 1 d 2 pf 0q φ d 1 pfq 0.
The Stiefel-equivariance and Grassmann-equivariance properties are stronger than the orthogonal-equivariance in the following sense. The proof is omitted as it is nearly identical to [START_REF] Mclachlan | B-series methods are exactly the affine equivariant methods[END_REF]Lem. 4 

Exotic aromatic trees

Introduced originally in [START_REF] Laurent | Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs[END_REF][START_REF] Laurent | Order conditions for sampling the invariant measure of ergodic stochastic differential equations on manifolds[END_REF] for the calculation of the order conditions for the approximation of ergodic stochastic differential equations, the exotic aromatic trees are an extension of aromatic trees that involve two new kind of edges: lianas and stolons. The definition we give in the present paper is a generalization of the one originally presented in [START_REF] Laurent | Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs[END_REF][START_REF] Laurent | Order conditions for sampling the invariant measure of ergodic stochastic differential equations on manifolds[END_REF] (see also [START_REF] Bronasco | Exotic B-series and S-series: algebraic structures and order conditions for invariant measure sampling[END_REF][START_REF] Bronasco | The Hopf algebra structures of composition and substitution of exotic clumped S-series[END_REF]). It reduces to the same definition under a regularity assumption discussed in Section 4.3. We choose an approach based on permutations as in [START_REF] Munthe-Kaas | Aromatic Butcher series[END_REF] (see also [START_REF] Bogfjellmo | Algebraic structure of aromatic B-series[END_REF][START_REF] Laurent | The aromatic bicomplex for the description of divergence-free aromatic forms and volume-preserving integrators[END_REF]).

Definition 2.6. We consider graphs of the form pV, A 0 , σ, τ q with V a finite set of vertices and A 0 a finite set of arrows. The vertices are indexed from 1 to |V |, and the arrows from 0 to |A|, where A A 0 zt0u. The map τ : A Ñ V is the target map. The source map is a permutation σ : V A 0 Ñ V A 0 that has no fixed points and satisfies σ ¥ σ id. Two such graphs are equivalent if there exists a bijection between their sets of nodes and arrows that are compatible with the source and target maps. An exotic aromatic tree is an equivalence class of such graphs. We denote Γ the set of exotic aromatic trees. Definition 2.6 differs from standard definitions of directed graphs as the source map usually sends arrows to nodes. The extension presented here allows arrows to be sources of arrows and vertices to be sources of vertices. If σpa 1 q a 2 , we say that the unordered tuple pa 1 , a 2 q is a liana and we represent it with a dashed edge between the two nodes τ pa 1 q and τ pa 2 q, that can be identical. If σpv 1 q v 2 , we call the unordered tuple pv 1 , v 2 q a stolon and we draw it with a double edge between v 1 and v 2 . The set of lianas is denoted L and the set of stolons is S. An exotic aromatic tree without lianas and stolons is called an aromatic tree, an extension of standard trees allowing for loops. A loop is a list of nodes pv 1 , . . . , v K q such that there is a standard edge linking v 1 to v 2 , . . . , v K to v 1 (also called K-loop in [START_REF] Iserles | B-series methods cannot be volumepreserving[END_REF]). Note that an exotic aromatic tree is an aromatic tree if and only if σpV q A 0 . In this case, Definition 2.6 reduces to an equivalent definition of the one in [START_REF] Munthe-Kaas | Aromatic Butcher series[END_REF]. We refer to Table 1 for examples.

Example. Let the exotic aromatic tree γ pV, A 0 , σ, τ q with the nodes V t1, 2, 3, 4u, the arrows A 0 t0, 1, 2, 3u, and the following source and target maps σ p0, 1qp1, 2qp2, 3qp3, 4q, τ p2, 3, 4q, where we use the notation τ pτp1q, . . . , τ p|A|qq. The tree γ has one loop p4q, one liana p1, 2q, and one stolon p2, 3q. The associated graph is the following, where we detail the vertices and arrows for clarity.

1 0 2 3 
1 2 4 3
An exotic aromatic tree has a unique root r defined the following way. If σp0q V , r σp0q is the root and 0 is called a ghost arrow. If σp0q A, the liana r p0, σp0qq L is the root and is called a ghost liana. We draw the ghost arrow (respectively ghost liana) on the graphical representations of exotic aromatic trees as an edge (respectively dashed edge) with one end left unattached. In the aromatic context, the ghost arrow is usually omitted on the graphical representation, hence the name.

We say that two elements x, y V A 0 are neighbours if σpxq y or τ pxq y or τ pyq x.

This defines a notion of connectedness on exotic aromatic trees. The connected components without the root are called aromas and a finite unordered collection of aromas is a multi-aroma. The connected component with the root is a connected exotic aromatic tree. We denote Γ c the set of connected exotic aromatic trees and Γ 0 the set of multi-aromas, also represented as equivalence classes of graphs pV, A, σ, τ q without the arrow 0. The aromas are gathered in Γ 0

c . An exotic aromatic tree decomposes into a number of aromas and one connected exotic aromatic tree. This notion of connectedness is a strong motivation to understand the exotic aromatic trees as graphs and not as trees as done beforehand in the literature. If there are no lianas and no stolons, we find the standard definition of aromas and rooted trees in the context of aromatic trees.

We define an exotic tree as an exotic aromatic tree that reduces to a standard Butcher tree when removing all the lianas. Note that there is a difference between the notions of exotic trees and connected exotic aromatic trees. A connected exotic aromatic tree does not reduce to a tree in general when removing the lianas.

Example. Let the following exotic aromatic trees

γ 1 , γ 2 , γ 3 .
The exotic aromatic tree γ 1 is a disconnected aromatic tree with one aroma. The graph γ 2 is connected, but is not an exotic tree as removing the lianas of γ 2 yields γ 1 , which is not a tree. On the other hand, γ 3 is an exotic tree.

We denote the set of nodes that are the target of j arrows by V j . For a given aromatic tree γ, we define its composition κ : N Ñ N by κpjq |V j |, and its derived composition by κ I pjq jκpjq. A straightforward observation yields that the cardinals of V and A satisfy |V | |κ| and |A| |κ I |, where |κ| κp0q κp1q . . . We write Γ κ the set of exotic aromatic trees with composition κ and Γ m the set of exotic aromatic trees such that |κ| m.

Note that Γ κ is finite while Γ m is infinite for all m. Contrary to the case of Butcher trees and aromatic trees, the order of an exotic aromatic tree is not given by the number of its nodes |κ|. Then the following identity holds

|κ| |κ I | 1 2|γ|. (2.3)
We mention that in the aromatic context, the order of an aromatic tree coincides with the number of nodes and (2. (2.4) If an exotic aromatic tree satisfies (2.4), it does not imply that γ is aromatic. In fact, there exists an infinite number of exotic aromatic trees satisfying (2.4) that do not reduce to aromatic trees: the exotic aromatic trees with the same number of stolons and lianas. In the context of branched rough paths, a similar identity to (2.4) on multi-indices is used in [28, eq. ( 6.3)], and the composition κ is called the fertility in this context.

Proof of Lemma 2.7. The arrows are either part of a liana or are standard arrows whose source are nodes. We denote A 0 the latter set. Similarly, the nodes of γ Γ κ can be decomposed in two sets: the nodes that are the source of an arrow in A 0 , gathered in V , and the ones that are the source of no arrows (the stolons). We observe that

|V | |V | 2|S|, |A 0 | |A 0 | 2|L|. Each node in V is the source of a unique arrow in A 0 , so that |V | |A 0 |. Thus, we deduce |κ| |κ I | 1 |V | |A 0 | 2p|V | |L| ¡ |S|q 2|γ|,
which gives the desired identity (2.3).

In Table 1, we present the list of the exotic aromatic trees of order one and two (see also Appendix A for the order three). On the contrary of the aromatic case, there exists an infinite number of exotic aromatic trees for a given number of nodes |κ| ¡ 0. Indeed, adding any number of lianas to an exotic aromatic tree does not modify the value of |κ|, but gives a different tree.

|γ| |κ| κ κ I τ σ γ Fpγqpf q 1 1 p1q p0q p0, 1q f i f i 2 1 p0, 0, 1q p0, 0, 2q p1, 1q p0, 1qp1, 2q f i jj f i p0, 1qp2, 1q f j ij f i 2 2 p1, 1q p0, 1q p1q p0, 1qp1, 2q f i j f j f i p0, 2qp1, 1q f j j f i f i p0, 1qp1, 2q f j f j i f i 2 3 p3q p0q p0, 1qp2, 3q f i f j f j f i
Table 1: List of the exotic aromatic trees of order one and two, with their associated composition, derived composition, target map, source map, and elementary differential (see Definition 2.8). We use the notation τ pτp1q, . . . , τ p|κ 1 |qq.

Characterisation of exotic aromatic B-series

Butcher trees are used to represent elementary differentials, in order to represent conveniently Taylor expansions in numerical analysis [START_REF] Hairer | Geometric numerical integration[END_REF]. We associate an elementary differential to each exotic aromatic tree. We use the standard notation f i for the vector basis of R d .

Definition 2.8. Given a smooth vector field f XpR d q and γ pV, A 0 , σ, τ q Γ an exotic aromatic tree, the elementary differential F d pγq associated to γ is the following vector field

F d pγqpfq i1 ,...,i |κ| i 0 ,...,i |κ I | ¹ vV f iv i τ ¡1 ptvuq δ iσ f i 0 ,
where i τ ¡1 ptvuq i l 1 . . . i lm for τ ¡1 ptvuq tl 1 , . . . , l m u and δ iσ ± |γ| j1 δ ip j ,iq j for the source map σ ± |γ| j1 pp j , q j q with δ i,j 1 if i j and 0 else. The elementary differential map of an exotic aromatic tree γ is the following sequence of maps indexed by the dimension of the problem Fpγq pF d pγq:

XpR d q Ñ XpR d qq d .
The maps F d are extended by linearity to SpanpΓq.

Note that for a fixed dimension d, the elementary differential map F d is not injective in general. There can be multiple ways to write a given elementary differential with exotic aromatic trees if the dimension d is too low. For instance, in dimension d 1, all the trees with composition κ represent the same elementary differential

F 1 pγqpfq V ¹ j0 pf pjq q κpjq .
This is a strong motivation for considering sequences of maps Fpγq pF d pγqq d indexed by the dimension of the problem.

Remark 2.9. The elementary differential extends to multi-aromas γ pV, A, σ, τ q Γ 0 by

F d pγqpfq i1 ,...,i |κ| i 1 ,...,i |κ I | ¹ vV f iv i τ ¡1 ptvuq δ iσ .
Example. Consider the following exotic aromatic tree γ and its associated elementary differential

γ , Fpγq i v ,ia f i 1 f i 2 f i 3 i 1 i 2 δ i 0 ,i 1 δ i 1 ,i 2 δ i 2 ,i 3 f i 0 i ,j,k f i f k f k jj f i pf, ∆f qf.
Further examples are presented in Table 1. Note that in the elementary differentials, every index appears twice. For aromatic trees, every index appears both at the top and at the bottom, while this is not the case in general for exotic aromatic trees.

An exotic aromatic B-series is a formal series indexed over exotic aromatic trees. As we consider Taylor expansions and thus use the grading by the number of nodes, we consider series with a finite number of trees with m nodes for all m. This assumption is not required in the numerical applications [START_REF] Laurent | Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs[END_REF][START_REF] Laurent | Order conditions for sampling the invariant measure of ergodic stochastic differential equations on manifolds[END_REF] as the expansions are graded naturally by the order of the trees and not by the number of nodes. Theorem 2.11 provides a simple geometric criterion for checking whether a modified vector field corresponds to an exotic aromatic B-series. In addition, it confirms that the exotic aromatic B-series are a natural extension of the aromatic B-series as they both satisfy similar universal geometric properties [START_REF] Munthe-Kaas | Aromatic Butcher series[END_REF].

We are then interested in characterising the different subsets of exotic aromatic B-series and in particular the exotic B-series, as they play an important role in stochastic numerical analysis [START_REF] Laurent | Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs[END_REF]. We propose the following characterisation. Theorem 2.12. Let φ pφ d : XpR d q Ñ XpR d qq d be a local sequence of smooth maps. Then, the Taylor expansion of φ around the trivial vector field 0 is:

• a connected exotic aromatic B-series if and only if φ is orthogonal-equivariant and decoupling,

• a B-series with stolons if and only if φ is Stiefel-equivariant,

• an exotic B-series if and only if φ is Grassmann-equivariant,

• a B-series if and only if φ is semi-orthogonal-equivariant.

In particular, affine equivariance and semi-orthogonal-equivariance are equivalent notions as they both characterise B-series.

Remark 2.13. The decoupling property exactly corresponds to the connectedness of the graphs involved in the expansion. This link was first observed in [START_REF] Mclachlan | B-series methods are exactly the affine equivariant methods[END_REF] in the context of aromatic Bseries, where a decoupling aromatic B-series is showed to be a connected aromatic B-series, i.e., a standard B-series. Observe also that the elementary differential of an exotic aromatic tree can be factored through its connected components: let µ 1 , . . . , µ m Γ 0 c , τ Γ c and the exotic aromatic tree γ µ 1 . . . µ m τ , then

F d pγqpfqpxq F d pµ 1 qpfqpxq . . . F d pµ m qpfqpxqF d pτqpfqpxq.
(2.5)

The classification of exotic aromatic B-series is summarised in Table 2. To the best of our knowledge, the equivalence of affine-equivariance and semi-orthogonal-equivariance is a new non-trivial result. We derive in Subsection 4.3 a simplified characterisation related to the numerical analysis literature under a regularity assumption on the vector fields.

Geometric characterisation of exotic aromatic B-series

This section is devoted to the proof of Theorem 2.11. Following [START_REF] Munthe-Kaas | Aromatic Butcher series[END_REF], we first restrict our study to symmetric multilinear local equivariant maps defined on the infinite jet bundle at one point in Section 3.1. We then decompose our space into invariant tensor spaces using the invariant tensor theorem. In Section 3.2, we draw a one-to-one correspondence between tensors in the invariant spaces and exotic aromatic trees. Section 

Invariant tensor spaces and transfer of geometric properties

Let φ d : XpR d q Ñ XpR d q be a smooth local G-equivariant map with G H R d . The Taylor expansion of φ d around the vector field 0 is

m¥1 1 m! D m φ d p0qpf, . . . , f q, ( 3.1) 
where φ d p0q 0 by locality [START_REF] Mclachlan | B-series methods are exactly the affine equivariant methods[END_REF]Lem. 6.1]. Following the transfer argument [32, Thm. 3.9], the m-th Taylor term D m φ d p0q inherits the locality and orthogonal-equivariance properties.

Moreover, the Peetre theorem [18, § 19.9] and the equivariance [32, Thm. 5.6] allow us to assume without loss of generality that the m-th Taylor term is in the space of multilinear symmetric local H-equivariant maps:

D m φ d p0q L H pS m pM SM ¦ q, M q, where M T 0 R d R d
, the action of H on S m pM SM ¦ q is the natural action induced on tensor spaces, and for a vector space V , SV : À V j0 S j V is the symmetric algebra. This result works for any isotropy group H.

Given a composition κ : N Ñ N, we define the tensor space T κ and its symmetric counterpart S κ by

T κ M V â j0 T κpjq pM ¦ T j M q, S κ M V â j0 S κpjq pM ¦ S j M q,
and their H-invariant subspaces T H κ and S H κ . Then, [START_REF] Munthe-Kaas | Aromatic Butcher series[END_REF]Thm. 5.6] gives the isomorphism

L H pS m pM SM ¦ q, M q à |κ|m S H κ .
In the affine case H GL d pRq, it is shown in [32, Thm. 6.3] with the description of Hinvariant tensors [18, § 24.3] that L H pS m pM SM ¦ q, M q is a finite dimensional space. In the orthogonal case H O d pRq, this property does not hold in general, and we get the following instead. We write ∆ m φ d : XpR d q Ñ XpR d q the term of order m ¥ 1 in the expansion of φ d around the vector field 0, that is, 

∆ m φ d pfq D m φ d p0qpf, . . . , f q.
∆ m φ d pfq f t 1 ...tm φ d ppt 1 . . . t m qfq § § § t 1 ¤¤¤tm0
. Thus, we find

∆ m φ d pf 1 f 2 q f t 1 ...tm φ d ppt 1 . . . t m qf 1 pt 1 . . . t m qf 2 q § § § t 1 ¤¤¤tm0 f t 1 ...tm φ d ppt 1 . . . t m qf 1 q φ d ppt 1 . . . t m qf 2 q % § § § t 1 ¤¤¤tm0 ∆ m φ d pf 1 q ∆ m φ d pf 2 q.
Hence the result.

Thus, we restrict our study for the rest of the paper to the ∆ m φ p∆ m φ d q d that can be expressed as finite sums of tensors in S O d pRq κ . We show in Subsection 3.2 that the expansion (3.2) corresponds to the order m term of an exotic aromatic B-series.

Correspondence between exotic aromatic trees and invariant tensors

Let us now draw a correspondence between exotic aromatic trees and tensors in S 

d : SpanpΓ κ q Ñ S O d pRq κ . The map r F d is a bijection if and only if 2d ¥ |κ| |κ I | 1. Moreover, the elementary differential map F d is injective on SpanpΓ κ q if 2d ¥ |κ| |κ I | 1.
Proof. Decomposition of T κ . Following Theorem 3.1, we assume without loss of generality that |κ| |κ I | 1 2d 0 is even. We rewrite T κ as

T κ M V â j0 κpjq â i1 T j i , T j i M ¦ T j M.
We number the 2d 0 components of T κ in the following way. The copies of M ¦ in T κ are numbered in an arbitrary manner from 1 to |κ| and the copies of M from 0 to |κ I | so that

T κ M 0 V â j0 κpjq â i1 T j i .
If the numbering is given by

T j i M ¦ n M n 1 ¤ ¤ ¤ M n j ,
then we write τ pn k q n, k 1, . . . , j. This defines the target map τ : A Ñ V , the arrows A t1, . . . , |κ I |u, A 0 t0u A, and the vertices V t1, . . . , |κ|u.

Definition of ω. We denote Σ κ the set of permutations σ of the set V A 0 that have no fixed point and that satisfy σ ¥ σ id. Given σ Σ κ and the target map τ , there exists a unique exotic aromatic tree pV, A 0 , σ, τ q Γ κ according to Definition 2.6. This yields a map ω : Σ κ Ñ Γ κ . We extend this map by linearity to obtain ω : SpanpΣ κ q Ñ SpanpΓ κ q.

Definition of π. The projection map π : T κ Ñ S κ is compatible with the action of O d pRq.

Thus, it induces a surjective linear map (still denoted π for simplicity) from

T O d pRq κ to S O d pRq κ .

Definition of δ. Using the isomorphism T κ Lp Â

nV A 0 M n , Rq, we define δpσq for a permutation σ Σ κ by δpσqpvq

¹ i,jV A 0 jσpiq,i j pv i , v j q, v â nV A 0 v n â nV A 0 M n ,
where p., .q is the standard scalar product in R d and where we fixed an arbitrary total order on V A 0 . We extend δ by linearity on SpanpΣ κ q. 

Intermediate diagram.

We defined the linear maps π, ω and δ. We obtain the following diagram.

T O d pRq κ S O d pRq κ SpanpΣ κ q SpanpΓ κ q π ω δ
Action of G κ . The target function τ : A Ñ V is an element of V A . We denote Σ A the set of permutations of the arrows in A, respectively Σ V the set of permutations of the nodes in V , and Σ A ¢ Σ V the permutations of V A 0 that leave 0 fixed, permute the elements in V , and the elements of A without mixing them. The action of an element of g

Σ A ¢ Σ V on ξ V A is g ¤ ξ g ¥ ξ ¥ g ¡1 .
We denote G κ the stabilizer of the target function τ , that is,

G κ tg Σ A ¢ Σ V , g ¤ τ τ u.
The permutations in G κ represent the permutations of arrows and nodes that are compatible with the target map τ .

Definition of K Σ . An element g Σ A ¢Σ V acts naturally on σ Σ κ by g ¤σ g ¥σ¥g ¡1 . We observe that ωpσ 1 q ωpσ 2 q if and only if there exists g G κ such that σ 1 g ¤ σ 2 . We define K Σ as the vector subspace of SpanpΣ κ q spanned by the g 1 ¤ σ ¡ g 2 ¤ σ for g 1 , g 2 G κ and σ Σ κ . By definition, K Σ is the kernel of ω, so that the following sequence is exact.

0 K Σ SpanpΣ κ q SpanpΓ κ q 0 ω Definition of K . Using the identification T κ Lp  nV A 0 M n , Rq, the action of an element of Σ A ¢ Σ V on T κ is pg ¤ φqpvq φp â nV A 0 v gpnq q, φ Lp â nV A 0 M n , Rq, v â nV A 0 v n .
We observe that by definition of τ , πpφ 1 q πpφ 2 q if and only if φ 1 g ¤ φ 2 with g G κ .

We define K as the vector space spanned by the

g 1 ¤ φ ¡ g 2 ¤ φ for g 1 , g 2 G κ , φ T κ .
By definition, K is the kernel of π, and is also the kernel of the restriction π :

T O d pRq κ Ñ S O d pRq κ .
We have the following exact sequence.

0 K T O d pRq κ S O d pRq κ 0 π Definition of r F d .
The action of G κ commutes with δ, that is, δpg ¤ σq g ¤ δpσq. Thus, δ induces a linear map from K Σ to K . By the fundamental theorem on homomorphisms, there exists a surjective map r δ from SpanpΣ κ q{K Σ to T O d pRq κ {K . We obtain the following diagram, where r

F d π ¥ r δ ¥ ω ¡1 is surjective. T O d pRq κ {K S O d pRq κ SpanpΣ κ q{K Σ SpanpΓ κ q π ω r δ r F d
The map r , . . . q, f XpR d q.

Thus, if r F d is bijective on SpanpΓ κ q, then F d is injective on SpanpΓ κ q.

Remark 3.4. There exists a finite number of exotic aromatic trees of composition κ, so that S

O d pRq κ is finite-dimensional. However, on the contrary of the GL-equivariance setting, there is an infinite number of exotic aromatic trees with a given number of nodes |κ|, so that L O d pRq pS m pM SM ¦ q, M q is infinite-dimensional.

Characterisation of exotic aromatic B-series

As first mentioned in [START_REF] Laurent | Algebraic Tools and Multiscale Methods for the Numerical Integration of Stochastic Evolutionary Problems[END_REF]Sec. 3.2.4], the exotic aromatic B-series satisfy geometric properties.

Proposition 3.5. The exotic aromatic B-series are local, orthogonal-equivariant, and trivially decoupling.

Proof. The locality and trivially decoupling properties are straightforward from Definition 2.8.

Let g pA, bq O d pRq R d and γ Γ, then

F d pγqpg ¤ f qpxq i v ,ia vV,aA 0 ¹ vV ķv,ka 0 vV,a 0 A a iv,kv a i τ ¡1 ptvuq ,k τ ¡1 ptvuq f kv k τ ¡1 ptvuq pA ¡1 x ¡ bqδ iσ f i 0 i0 ,kv,ka vV,aA a i 0 ,k σp0q ¹ vV f kv k τ ¡1 ptvuq pA ¡1 x ¡ bqδ kσ f i 0 pg ¤ F d pγqpfqqpxq,
where a i J ,k J ± jJ a i j ,k j and we used that A T A I d . By linearity, exotic aromatic B-series are orthogonal-equivariant.

The trivially decoupling property characterises the sequences of elementary differentials associated to exotic aromatic trees independently of the dimension d. Proposition 3.6. Let φ pF d pγ d qq d be trivially decoupling, with γ d SpanpΓ κ q, then there exists a unique γ SpanpΓ κ q such that φ Fpγq.

Proof. Let d 1 ¤ d 2 , then we have F d 2 pγ d 2 qpf 1 0q F d 1 pγ d 1 qpf 1 q 0 for f 1 XpR d 1 q
as φ is trivially decoupling. On the other hand, a close inspection of Definition 2.8 yields that F d 2 pγ d 2 qpf 1 0q F d 1 pγ d 2 qpf 1 q 0, and we deduce

F d 1 pγ d 1 q F d 1 pγ d 2 q, d 1 ¤ d 2 .
(3.3)

Let d 0 p|κ| |κ I | 1q{2. For d ¥ d 0 , equation (3.3) gives F d pγ d q F d pγ d 0 q. For d ¤ d 0 , equation (3.3) gives F d 0 pγ d 0 q F d 0 pγ d q.
As F d 0 is injective on SpanpΓ κ q, γ d γ d 0 . Thus, we obtain φ Fpγ d 0 q. The uniqueness of γ d 0 is a consequence of the injectivity of F d 0 on SpanpΓ κ q (see Theorem 3.3).

Let us now prove the characterisation of exotic aromatic B-series.

Proof of Theorem 2.11. Let φ d : XpR d q Ñ XpR d q be a local, and orthogonal-equivariant map.

Thanks to Theorem 3.1, the term of order m in the Taylor expansion (3.1) of φ d around the 0 vector field has the form (3.2). Theorem 3.3 gives the existence of γ κ,d SpanpΓ κ q such that ψ κ,d r F d pγ κ,d q. The Taylor expansion of φ d around the 0 vector field thus is the exotic aromatic B-series:

m¥1 1 m! |κ|m |κ| |κ I | 12Z F d pγ κ,d qpfqpxq.
If, in addition, φ is trivially decoupling, Proposition 3.6 gives the existence of the coefficient map b : Γ Ñ R such that φ Bpbq.

Example. Let us illustrate the tensor spaces and the different maps from the proof of Theorem 3.3 for κ p2, 0, 1q (in the spirit of the examples in [START_REF] Markl | GL n -invariant tensors and graphs[END_REF][START_REF] Munthe-Kaas | Aromatic Butcher series[END_REF]). The tensor space has the form

T κ M 0 M ¦ 1 M ¦ 2 pM ¦ 3 M 1 M 2 q.
The associated set of nodes and arrows are V t1, 2, 3u and A 0 t0, 1, 2u. The target map τ : A Ñ V is given by τ p1q τ p2q 3. The stabilizer of τ is G κ tid, p1, 2q, p1, 2q, p1, 2qp1, 2qu.

We present the output of ω, r δ and r

F for the different σ Σ κ in Table 3, where we gather together the G κ -orbits. We write r δpσq as an element of

T κ {K LpT 2 M LpT 2 M, M q, M
q{K , that is, for v, w M and a bilinear map ζ LpT 2 M, M q, we have r δpσqpv, w, ζq M . For r F, we use the identification

S κ LpS 2 M LpS 2 M, M q, M q.
Replacing v w f pxq and ζ f P pxq yields the elementary differential Fpγqpf qpxq of Definition 2.8. Note that the first two lines of Table 3 are aromatic trees, and also appear in [32, Table 2]. It can be seen directly on the associated permutations σ, as each arrow is paired with a node and vice versa.

σ Σ κ γ ωpσq r δpσqpv, w, ζq r Fpγqpv, w, ζq p0, 3qp1, 1qp2, 2q ζ i pv, wqf i p0, 3qp1, 2qp2, 1q ζ i pw, vqf i ζ i pv, wqf i p0, 1qp1, 2qp2, 3q ζ j pw, f j qv i f i p0, 1qp1, 3qp2, 2q ζ j pf j , wqv i f i p0, 2qp1, 1qp2, 3q ζ j pv, f j qw i f i p0, 2qp1, 3qp2, 1q ζ j pf j , vqw i f i 1 2 pζ j pw, f j qv i ζ j pv, f j qw i qf i p0, 3qp1, 2qp1, 2q pv, wqζ i pf j , f j qf i pv, wqζ i pf j , f j qf i p0, 1qp1, 2qp2, 3q pw, ζpf j , f j qqv i f i p0, 2qp1, 2qp1, 3q pv, ζpf j , f j qqw i f i 1 2 ppw, ζpf j , f j qqv i pv, ζpf j , f j qqw i qf i p0, 1qp2, 1qp2, 3q pw, ζpf i , vqqf i p0, 1qp2, 2qp1, 3q pv, ζpf i , wqqf i p0, 2qp1, 1qp2, 3q pw, ζpv, f i qqf i p0, 2qp1, 2qp1, 3q pv, ζpw, f i qqf i 1 2 ppw, ζpf i , vqq pv, ζpf i , wqqqf i p0, 1qp2, 3qp1, 2q pv, wqζ j pf i , f j qf i p0, 2qp1, 3qp1, 2q
pv, wqζ j pf j , f i qf i pv, wqζ j pf j , f i qf i Table 3: Outputs of the functions ω, δ and r F appearing in the proof of Theorem 3.3 for the composition κ p2, 0, 1q and target map τ p1q τ p2q 3. The bilinear map ζ is assumed symmetric in the last column. The sums on all involved indices are omitted for simplicity.

Classification of exotic aromatic B-series

This section is devoted to the proof of the stronger classification of Theorem 2.12. The proof, presented in Subsection 4.2, relies heavily on the use of new dual vector fields, that we introduce in Subsection 4.1. We present the impact of degeneracies on the classification in Subsection 4.3.

Dual vector fields

The exotic aromatic trees given in Definition 2.6 produce independent elementary differentials.

The standard method for proving this property is to consider dual vector fields, as presented in [START_REF] Hairer | Geometric numerical integration[END_REF][START_REF] Iserles | B-series methods cannot be volumepreserving[END_REF][START_REF] Mclachlan | B-series methods are exactly the affine equivariant methods[END_REF][START_REF] Laurent | Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs[END_REF]. In the proof of Theorem 2.12, we use the following new dual vector fields.

Proposition 4.1. Given an exotic aromatic tree or multi-aroma γ Γ 0 Γ, index the coordinates of R |γ| by the uplets in pV A 0 q{σ (respectively in pV Aq{σ if γ Γ 0 ), where v and σpvq are identified. This corresponds to the nodes pv, aq V that are not part of stolons, the stolons s pv 1 , v 2 q S, and the lianas l pa 1 , a 2 q L. Let θ γ be the following parameter indexed by the standard nodes, the nodes in stolons, and the arrows in lianas,

θ γ pθ V , θ S , θ L q pθ V 1 , . . . , θ V |V | , θ S 1 , . . . , θ S 2|S| , θ L 1 , . . . , θ L 2|L| q.
Define the associated vector field f pθ γ q γ XpR |γ| q by

f pθ γ q,v γ pxq θ V v ¹ τ paqv θ L a x a , f pθ γ q,s γ pxq θ S v 1 ¹ τ paqv 1 θ L a x a θ S v 2 ¹ τ paqv 2 θ L a x a , s pv 1 , v 2 q S, f pθ γ q,l γ pxq 0,
where an empty product equals 1 and θ L a 1 if a L. By convention, if γ has a root, the coordinate of the root is the first one. Let γ, γ Γ 0 Γ, then pF |γ| pγqpf pθ γ q γ qq 1

θ γ § § § θ0 p0q 0 if γ $ µγ, µ Γ 0 .
In particular, the elementary differential map F is injective on SpanpΓq. Moreover, for con-

nected graphs γ, γ Γ 0 c Γ c , we find pF |γ| pγqpf pθ γ q γ qq 1 θ γ § § § θ0 p0q σpγq $ 0 if and only if γ γ.
In the latter case, the constant σpγq is the symmetry coefficient of γ, that is, the number of bijections of the vertices and arrows of γ that preserve the graph structure.

Remark 4.2. Given an exotic aromatic tree γ µ m . . . µ 1 τ , we enforce an order on the aromas, so that µ

1 µ 2 is now different from µ 2 µ 1 if µ 1 $ µ 2 .
Consider the additional parameter θ γ pθ τ , θ µ 1 , . . . , θ µm q, where the numbering of the nodes, lianas and stolons starts with τ , and continues in order with the µ i . With this order on the aromas and the numbering of θ, the first statement of Proposition 4.1 is then replaced by

pF |γ| pγqpf pθ γ q γ qq 1 θ γ § § § θ0 p0q $ 0 if and only if γ µγ, µ Γ 0 .
Proof. Let γ pV, A, σ, τ q, γ p V , Â, σ, τ q Γ 0 Γ. Definition 2.8 rewrites as F |γ| pγqpf pθ γ q γ qpxq i:

pV Aq{σÑp V Âq{σ ¹ vV pf γ q iv i τ ¡1 ptvuq f ir i: pV Aq{σÑp V Âq{σ ¹ vV ¡ θ V iv θ L τ ¡1 pivq x τ ¡1 pivq 1 iv V0 pθ S v1 θ L τ ¡1 pv 1 q x τ ¡1 pv 1 q θ S v2 θ L τ ¡1 pv 2 q x τ ¡1 pv 2 q q1 ivpv 1 ,v 2 q Ŝ © i τ ¡1 ptvuq f ir .
where we fix f ir f 1 if γ Γ 0 . By definition of the map i, if σpxq y, σpi x q i y . Moreover, it is necessary that τ ¡1 pi v q i τ ¡1 ptvuq for v V (and analogously for v S) so that pf pθ γ q γ q iv i τ ¡1 ptvuq p0q $ 0. Thus, the map i is compatible with the source and target maps.

In particular, i sends predecessors of v to predecessors of i v .

On the other hand, the θ parameter enforces the injectivity of i and it forces i to send stolons to stolons, lianas to lianas, nodes in V to nodes in V . Thus i sends γ to a subgraph of γ. If γ $ µγ, then at least an edge is missing and F |γ| pγqpf pθ γ q γ qpxq is a non-constant polynomial in x, so that it vanishes at x 0.

If γ, γ Γ 0 c Γ c , the only maps i such that pF |γ| pγqpf pθ γ q γ qq 1 θ γ § § § θ0 p0q $ 0 are the graph isomorphisms between γ and γ. The number of such maps i is σpγq.

Example. Consider the following exotic aromatic tree with its associated vector field and elementary differential

γ , f pθ γ q γ ¤ ¥ x 1 x 2 x 3 ¤ ¥ 0 θ S 1 θ L 2 θ L 3 x 2 3 θ S 2 θ L 1 x 1 0 , pF 3 pγqpf pθ γ q γ qq 1 θ γ § § § θ0 p0q 2,
where the coordinates represent in descending order the root, the stolon, and the liana. Consider now the aroma

γ , f pθ γ q γ ¢ x 1 x 2 ¢ θ S 1 θ L 1 x 2 θ S 2 θ L 2 x 2 0 , θ γ pθ S 1 , θ S 2 , θ L 1 , θ L 2 q,
and the tree

γ , f pθ γ q γ ¢ x 1 x 2 £ θ V 1 x 2 θ V 2 , θ γ pθ V 1 , θ V 2 q.
A calculation yields

pF 2 pγqpf pθ γ q γ qq 1 pxq pθ V 1 q 2 , pF 2 pγqpf pθ γ q γ qq 1 θ γ § § § θ0 p0q 0. Note that fixing θ 1 yields pF 2 pγqpf p1q
γ qq 1 p0q 1, so that the dual vector field without the θ parameter fails to identify the difference between γ and γ. The main use of the θ parameter in the proof of Proposition 4.1 is to enforce the map i to be injective and to preserve the nature of each pair pv, σpvqq. The dual vector field without the θ parameter is not sufficient, even in the aromatic context:

γ , γ , F |γ| pγqpf p1q γ qp0q 1.
This reveals a typographical error in [START_REF] Laurent | Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs[END_REF]Rk. 4.8] where the remark only applies to exotic trees, and a minor error in [START_REF] Mclachlan | B-series methods are exactly the affine equivariant methods[END_REF]Sec. 4.2]. The further proofs of this paper can be adapted straightforwardly to fix the proofs in [START_REF] Mclachlan | B-series methods are exactly the affine equivariant methods[END_REF].

Strong characterisations

This section is devoted to the proof of Theorem 2.12. Following Subsection 3.1, as the regularity assumptions of Theorem 2.12 imply the locality, orthogonal-equivariance, and trivially decoupling properties, we work directly with φ Fpγq and γ SpanpΓq. Proof. The decoupling property is straightforward from Definition 2.8. Let γ be an exotic aromatic tree without lianas and loops, f XpR

d 1 q, f XpR d 2 q, apxq Ax b SpR d 1 , R d 2 q with d 1 ¤ d 2 .
Differentiating the identity f papxqq Af pxq gives a K,J f i K papxqq a i,k f k J pxq.

We call leaves the vertices in V that are not the target of any arrow. We say a node v has depth p if the shortest path of v to a leaf passes through p different nodes (not including the start and end points). The nodes of depth at most p are gathered in the set V ppq . As γ does not have lianas or loops, V p|γ|q V . An induction on the depth yields

F d 2 pγqp f qpapxqq i,k ¹ vV p0q a iv,kv f kv pxq ¹ vV p0q f iv i τ ¡1 ptvuq papxqqδ iσ f i 0 i,k ¹ vV p1q a p1q iv,kv a p1q k τ ¡1 ptvuq ,i τ ¡1 ptvuq f kv k τ ¡1 ptvuq pxq ¹ vV p1q f iv i τ ¡1 ptvuq papxqqδ p1q iσ δ p1q kσ f i 0 ¤ ¤ ¤ i,k ¹ vV p|γ|q a p|γ|q iv,kv a p|γ|q k τ ¡1 ptvuq ,i τ ¡1 ptvuq f kv k τ ¡1 ptvuq pxqδ p|γ|q iσ δ p|γ|q kσ f i 0 i,k ¹ vV a i 0 ,k σp0q f kv k τ ¡1 ptvuq pxqδ kσ f i 0 AF d 1 pγqpfqpxq,
where a ppq iv,kv a iv,kv if σpvq τ ¡1 pwq with w V ppq and a ppq iv,kv 1 else, δ ppq iσ , δ ppq kσ contain the indices involved in the expression at step p, and the sums are on all involved indices.

On the other hand, let the exotic tree γ, the vector fields f XpR d 1 q, f XpR d 2 q, and the affine transformation apxq Ax b GpR d 1 , R d 2 q with d 1 ¥ d 2 . We find

F d 2 pγqpgqpapxqq i,k ¹ vV f iv i τ ¡1 ptvuq papxqqδ iσ f i 0 i,k ¹ vV a i τ ¡1 ptvuqL ,k τ ¡1 ptvuqL f iv i τ ¡1 ptvuq papxqqδ iσ δ pLq kσ f i 0 ,
where we used that AA T I d 2 to add the coefficients associated to lianas and δ pLq kσ identifies the coefficients k associated to lianas. The rest of the calculation is analogous to the Stiefelequivariance case: we define the depth function on the tree without the lianas and we perform the calculation with an induction on the depth of the tree. Proposition 4.4. Assume φ Fpγq is decoupling, then γ SpanpΓ c q. Proof. Let γ SpanpΓq and γ Γ be one of its exotic aromatic trees of maximal order among the ones that have at least one aroma, so that γ cγ R, γ µ m . . . µ 1 τ, c R, R SpanpΓq. 

f pθ γ q γ f pθ τ q τ f pθ µ 1 q µ 1 ¤ ¤ ¤ f pθ µm q µm XpR d q,
where the first entry of f pθ γ q γ corresponds to the root of τ . Using (2.5) and Proposition 4.1, we obtain

pF d pγqpf pθ γ q γ qq 1 θ γ § § § θ0 p0q pF d pγqpf pθ γ q γ qq 1 θ γ § § § θ0 p0q $ 0.
On the other hand, as Fpγq is decoupling, we find

pF d pγqpf pθ γ q γ qq 1 θ γ § § § θ0 p0q pF |τ| pγqpf pθ τ q τ qq 1 θ γ § § §
θ0 p0q 0, as θ γ holds more parameters than θ τ . We obtain a contradiction and γ SpanpΓ c q.

We now prove our second main result.

Proof of Theorem 2.12. Assume φ Fpγq is decoupling, then Proposition 4.4 yields the connectedness of γ. Assume in addition that φ is local and Grassmann-equivariant and that at least one of the connected exotic aromatic trees τ in γ has a stolon or a loop. Consider d 1 |τ|, index the coordinates of R d 1 by pV A 0 q{σ as in Proposition 4.1. We split the coordinates of R d 1 into x y z, where y R d 2 contains the coordinates that are not stolons or nodes in a loop and z the others. Let A R d 2 ¢d 1 be the projection matrix on R d 2 , that is, Apy zq y. Define f 1 f pθ τ q τ and f 2 pAxq Af 1 pxq. The Grassmann-equivariance property and Proposition 4.1 yield

pφ d 2 pf 2 qq 1 θ τ § § § θ0 p0q pφ |τ| pf pθ τ q τ qq 1 θ τ § § § θ0 p0q pF |τ| pτqpf pθ τ q τ qq 1 θ τ § § § θ0 p0q σpτ q $ 0. As d 1 ¡ d 2 , there is at least one θ V v or θ S v that does not appear in f 2 , but appears in θ τ .
Thus pφ d 2 pf 2 qq 1 θ τ § § § θ0 p0q 0, which brings a contradiction. Assume now that φ F pγq is Stiefel-equivariant and that at least one of the exotic aromatic trees in γ has a liana or a loop. Consider the decomposition (4.1) of γ where γ is the term of maximal order among the ones that have a liana or a loop. For d 2 |γ|, we split the coordinates of R d 2 into x y z (or x z y if the root is a ghost liana, so that the root is still in first position), where y R d 1 contains the coordinates that are not lianas or nodes in a loop and z the others. Let A R d 2 ¢d 1 be such that A T is the projection matrix on R d 1 , that is, A T py zq y. Define f 2 f pθ γ q γ and f 1 pyq A T f 2 py 0q. Proposition 4.1 and the Stiefel-equivariance give

pφ d 1 pf 1 qq 1 θ γ § § § θ0 p0q pφ d 2 pf 2 qq 1 θ γ § § § θ0 p0q $ 0.
As d 1 d 2 , there is at least a node or a liana of γ that does not appear in f 1 , but appears in θ γ . We deduce pφ d 1 pf 1 qq 1 θ γ § § § θ0 p0q 0, which brings a contradiction.

If φ is semi-orthogonal-equivariant, then γ is a linear combination of connected exotic aromatic trees without lianas, loops, and stolons, that is, a combination of standard Butcher trees.

Impact of degeneracies on the classification

In a variety of contexts, the vector field f satisfies additional regularity properties. For instance, if f is a polynomial map of order p, then all exotic aromatic trees where at least a node is the target of more than p arrows have a trivial elementary differential. We mention in particular the work [START_REF] Bogfjellmo | Using aromas to search for preserved measures and integrals in Kahan's method[END_REF] on aromatic trees for quadratic differential equations that relies on such degeneracies. In the original numerical application of the exotic aromatic B-series in molecular dynamics [START_REF] Laurent | Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs[END_REF][START_REF] Laurent | Order conditions for sampling the invariant measure of ergodic stochastic differential equations on manifolds[END_REF] (see also [START_REF] Lelièvre | Free energy computations[END_REF]), the vector fields f of interest are gradients, that is, f ∇V for a smooth function V : R d Ñ R. In [START_REF] Lelièvre | Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion[END_REF][START_REF] Duncan | Variance reduction using nonreversible Langevin samplers[END_REF][START_REF] Abdulle | Accelerated convergence to equilibrium and reduced asymptotic variance for Langevin dynamics using Stratonovich perturbations[END_REF], vector fields of the form f J∇V with J the symplectic matrix are used as perturbations to reduce the variance and accelerate the speed of convergence to equilibrium in the numerical integration of Langevin dynamics. In this section, we update the classification of Theorem 2.12 for gradient vector fields f ∇V , gathered in the set X ∇ pR d q. As discussed in [START_REF] Laurent | Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs[END_REF]Remark 4.8], the gradient property of f translates into degeneracies. Proposition 4.5 ([23, 21]). We say that two exotic aromatic trees γ 1 and γ 2 are equivalent on X ∇ pR d q, written γ 1 γ 2 , if by performing the following operations, it is possible to transform γ 1 into γ 2 :

• inversion edge-liana: A The equivalence relation preserves the composition κ of the graph. Two equivalent exotic aromatic trees represent the same elementary differential F d pγ 1 q F d pγ 2 q on X ∇ pR d q. Moreover, for any connected exotic aromatic tree, there exists a unique exotic tree in its equivalence class.

Proof. This is a direct consequence of the Schwarz theorem f i j 1 ...jq f jp j 1 ...j p¡1 ij p 1 ...jq .

Example.

The following connected exotic aromatic trees are equivalent to exotic trees: , , .

For further examples, the list of exotic aromatic trees of order 3 presented in Section A gathers the equivalent exotic aromatic trees in adjacent lines.

On X ∇ pR d q, Theorem 2.11 and Theorem 2.12 simplify into the following simpler classification, which exactly characterises the exotic trees used in numerical analysis [START_REF] Laurent | Exotic aromatic B-series for the study of long time integrators for a class of ergodic SDEs[END_REF].

Theorem 4.6. Let φ pφ d : X ∇ pR d q Ñ XpR d qq d be a sequence of smooth maps. The Taylor expansion of φ around the trivial vector field 0 is an exotic B-series on X ∇ pR d q if and only if φ is local, orthogonal-equivariant, and decoupling.

Conclusion and future works

In this work, we showed that smooth local orthogonal-equivariant maps and exotic aromatic B-series represent the same object. This universal property shows that exotic aromatic Bseries are not just a tool for calculations in numerical analysis, but a natural algebraic object that is interesting in itself. The analysis relies on the invariant tensor theorem for orthogonalequivariant tensors and the Peetre theorem, but also on a new generalised construction of exotic aromatic trees. In addition, we classified the intermediate subsets of exotic aromatic B-series, and in particular the exotic B-series, with respect to strong equivariance properties. We also defined new dual vector fields and identified the effect of the degeneracies appearing in numerical analysis on the classification. A variety of theoretical and applied questions arise from the present work. There exists different extensions of B-series such as partitioned B-series or Lie-Butcher series, and a variety of equivariance properties in R d but also on manifolds. We mention in particular the equivariance with respect to symplectic tranformations. It would be interesting to link the different equivariance properties with the various B-series. This could allow us to create new extensions of B-series and to find corresponding applications in numerical analysis. For the B-series presented in this paper for instance, the B-series with stolons could be used in the study of projection methods for the approximation of ODEs on manifolds and modifications of the exotic aromatic formalism could be applied to the study of stochastic differential equations with multiplicative noise or to the creation of stochastic Lie-group methods of high weak order. This is matter for future work. Fpγqpf q 1 p0, 0, 0, 0, 1q p0, 0, 0, 0, 4q p1, 1, 1, 1q p0, 1qp1, 2qp3, 4q
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Lemma 2 . 7 .

 27 Define the order 1 |γ| of an exotic aromatic tree γ Γ κ by |γ| |V | |L| ¡ |S|.

  3) becomes |γ| |κ| |κ I | 1.

Definition 2 . 10 .

 210 Given a coefficient map b : Γ Ñ R that has finite support on Γ m for m ¡ 0, the associated exotic aromatic B-series in dimension d is the following formal series B d pbq m¡0 γ Γm bpγqF d pγq. An exotic aromatic B-series is a sequence Bpbq pB d pbqq d indexed by the dimension. The first main result of this paper is the characterization of exotic aromatic B-series with orthogonal-equivariance and locality. Theorem 2.11. Let φ pφ d : XpR d q Ñ XpR d qq d be a sequence of smooth maps. Then, the Taylor expansion of φ d around the trivial vector field 0 in dimension d is an exotic aromatic B-series φ d B d pb d q if and only if φ d is local and orthogonal-equivariant. If, in addition, φ is trivially decoupling, then there exists a coefficient map b : Γ Ñ R such that φ Bpbq.

Lemma 3 . 2 .

 32 Thanks to Theorem 3.1, ∆ m φ d has the following form, ∆ m φ d pfq |κ|m |κ| |κ I | 12Z ψ κ,d pf κ q, f κ pf, . . . , f looomooon κp0q , f I , . . . , f I loooomoooon κp1q , . . . q, (3.2) where only a finite number of the ψ κ,d S O d pRq κ are non-zero. Let φ be a local orthogonal-equivariant sequence of smooth maps. The strong equivariance, decoupling, or trivially decoupling properties of φ are transferred to the Taylor terms ∆ m φ in (3.2).Proof. The proof for the transfer of equivariance properties is the same as in[START_REF] Mclachlan | B-series methods are exactly the affine equivariant methods[END_REF] Prop. 6.2]. Let us prove the transfer of the decoupling property. The transfer of the trivially decoupling property uses the same arguments. The Taylor terms of φ satisfy[20, § 5.11] 

O d pRq κ .Theorem 3 . 3 .

 κ33 For a given κ, there exists a surjective linear map r

F

  

Proposition 4 . 3 .

 43 Connected exotic aromatic B-series are decoupling. B-series with stolons are Stiefel-equivariant and exotic B-series are Grassmann-equivariant.

(4. 1 )

 1 Without loss of generality, we assume c 1. Define f pθ γ q γ as in Proposition 4.1 and following the numbering of Remark 4.2,

  Part 1/2): List of the exotic aromatic trees of order three, with their associated composition, derived composition, target map, source map, and elementary differential (see Definition 2.8).

  .2 and 6.1]. If φ pφ d : XpR d q Ñ XpR d qq d is Grassmann-equivariant, then φ is orthogonal-equivariant, trivially decoupling, and decoupling.

	Proposition 2.5 ([30]). If φ is Stiefel-equivariant, then φ is local, orthogonal-equivariant, for clarity. semi-orthogonal-equivariance Stiefel-equivariance locality decoupling orthogonal-equivariance and trivially decoupling. We summarise the links between the different geometric properties in the following graph Grassmann-equivariance trivially decoupling

Table 2 :

 2 3.3 contains the proof of Theorem 2.11 and a clarifying example. Classification of B-series with respect to their equivariance properties (see Theorems 2.11 and 2.12).

	geometric property	associated Butcher series
	orthogonal-equivariance	exotic aromatic B-series
	GL-equivariance	aromatic B-series
	Stiefel-equivariance	B-series with stolons
	Grassmann-equivariance	exotic B-series
	affine/semi-orthogonal-equivariance	B-series

  Theorem 3.1. Let H O d pRq and m a positive integer, the following isomorphism holds L H pS m pM SM ¦ q, M q Proof. Following the description of O d pRq-invariant tensors [18, § 33.2], we deduce that T H κ is trivial when |κ| |κ I | 1 is odd. As S H κ is naturally injected into T H κ , we obtain the desired result.

	à |κ| |κ I | 12Z |κ|m	S H κ .

Table 3 (

 3 Part 2/2): List of the exotic aromatic trees of order three, with their associated composition, derived composition, target map, source map, and elementary differential (see Definition 2.8).
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A similar definition of the order of an exotic aromatic tree is given in the works[23, 

[START_REF] Laurent | Order conditions for sampling the invariant measure of ergodic stochastic differential equations on manifolds[END_REF]. Note that the order of an exotic aromatic tree is not the number of nodes in general.
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