The universal equivariance properties of exotic aromatic B-series - Archive ouverte HAL
Article Dans Une Revue Foundations of Computational Mathematics Année : 2023

The universal equivariance properties of exotic aromatic B-series

Résumé

Exotic aromatic B-series were originally introduced for the calculation of order conditions for the high order numerical integration of ergodic stochastic differential equations in $\mathbb{R}^d$ and on manifolds. We prove in this paper that exotic aromatic B-series satisfy a universal geometric property, namely that they are characterised by locality and orthogonal-equivariance. This characterisation confirms that exotic aromatic B-series are a fundamental geometric object that naturally generalises aromatic B-series and B-series, as they share similar equivariance properties. In addition, we classify with stronger equivariance properties the main subsets of the exotic aromatic B-series, in particular the exotic B-series. Along the analysis, we present a generalised definition of exotic aromatic trees, dual vector fields, and we explore the impact of degeneracies on the classification.
Fichier principal
Vignette du fichier
Paper_isometric_equivariance_2023.pdf (652.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04349836 , version 1 (18-12-2023)

Licence

Identifiants

Citer

Adrien Laurent, Hans Munthe-Kaas. The universal equivariance properties of exotic aromatic B-series. Foundations of Computational Mathematics, 2023, ⟨10.1007/s10208-024-09668-5⟩. ⟨hal-04349836⟩
37 Consultations
35 Téléchargements

Altmetric

Partager

More