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Abstract
Remote sensing has been widely employed to identify crop types and monitor crop yields on farms. Here, we combine suc-
cessive seasons of these products to identify crop rotations in each field across 20 million hectares of the Western Australian 
Wheatbelt. We used the APSIM crop model to define the starting soil water, temperature stresses, biomass, and crop yield 
to characterize the prevailing agro-environment of that field. These remote sensing data and APSIM crop modeling outputs 
were then combined, with machine learning, to predict the effect of the complex interaction between agro-environment and 
crop rotation on wheat yield. Predictions from machine learning are employed to evaluate the benefits or otherwise of crop 
rotation across Western Australia for every field in the study region. In general, if fields subjected to a wheat-cereal rotation 
were instead subjected to a wheat-canola rotation, then 68% of these fields were predicted to experience a yield increase of 
between 0 and 1850 kg  ha-1. However, only 28% of fields planted to canola were predicted to have a yield benefit of 200 kg 
 ha-1 or more on the following wheat crops. On average, annual pastures generated a slight yield penalty of 47 kg  ha-1 to the 
following wheat crop. The findings from this study, using crop models, remote sensing, and machine learning, indicate that 
the benefits of break crops and pastures to farmers is less than the 400 to 600 kg  ha-1 benefit commonly reported from field 
experiments. These management insights could underpin the development of future decision aids or agricultural digital twins 
for crop management decisions such as crop rotation planning. The approach provides farmers with tangible insights about 
their production using outputs from crop-based remote sensing and crop modeling.

Keywords Crop modeling · Remote sensing · APSIM · Crop rotation · Machine learning · Digital twin

1 Introduction

Crop rotation is widely used by farmers all around the globe. 
Break crops are grown in between main crops to break weed, 
disease, and pest cycles and provide a yield boost to the 
subsequent main crop. In the context of our study, cereals 
are considered the main crop and broadleaf crops or pas-
tures are the break crops. The additional yield benefit to a 
cereal crop following a break crop is often referred to as the 
‘break crop effect’ (Kirkegaard et al. 2008). The biological 
mechanisms that influence this break crop effect vary from 
one farming system to the next. For example, in low rainfall 

North American wheat/legume systems, break crops may 
increase wheat yields through a reduction in pests (Lens-
sen et al. 2013) or an increase in the nitrogen supply (Chen 
et al. 2012). In water-limited cropping regions, break crops 
may decrease wheat yields if the break crop uses additional 
soil moisture and reduces the amount of water available for 
the cereal crop (Chen et al. 2012). Reviews of break crop 
effects and the impact of crop rotation on cereal production 
by Kirkegaard et al. (2008) and Angus et al. (2015) reveal 
that the size of the break crop effect varies considerably and 
negative impacts can occur. In Australian conditions, break 
crop benefits to cereals can equate to 0.6 t  ha-1 yield benefit 
for cereal crops in Western Australia (Seymour et al. 2012) 
and 0.7 t  ha-1 elsewhere (Angus et al. 2015). The size of 
these benefits varies with season, soil type, and the particu-
lar break crop grown.

The decision to grow a break crop by the farmer is com-
plex and depends on the size of the break crop effect, the 
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relative yield, and profitability of the break crop (Fletcher 
2019). Information extracted from agronomic experiments 
may not reflect farmer management practices and may not 
provide farmers with the necessary insights that apply to 
their farm (Lacoste et al. 2022). Researchers may not know 
if their trials and findings are representative of farmer 
practice, while differences between survey findings about 
the benefits of break crops and experiments conducted by 
researchers have been noted in Western Australia (Harries 
et al. 2015, 2022). Therefore, insights about the agronomic 
benefit of a break crop to the following cereal crop can vary 
with the season, soil type, water availability, extent of under-
lying biotic stress, and soil nutrient status. It can be difficult 
for an individual farmer to determine what impact a break 
crop might have on the yield of a subsequent cereal crop. 
Previous surveys of farm practice about break crops found 
that farmers grew considerably fewer break crops than was 
economically optimal (Robertson et al. 2010). One possi-
ble reason for this difference is because farmers may not 
achieve the yield gains commonly reported in the agronomic 
literature about the benefits of break crops on cereal produc-
tion. However, recent developments in crop monitoring and 
crop modeling may provide farmers with the tools needed 
to quantify these benefits. Crop monitoring and crop mod-
eling have evolved to a point where it is possible to conduct 
landscape scale evaluations of crop rotations.

Crop species, or Crop ID technology, derived from satel-
lite classifications of crops, have been developed to track 
the global food supply and monitor annual plantings across 
most agricultural areas. Typically, people use Sentinel-1 and 
Sentinel-2 satellites from the European Space Agency or 
Landsat 8 and Landsat 9 satellites from NASA to monitor 
the area sown to the significant crops (Adjemian 2012; Fritz 
et al. 2019; Velde et al. 2019). Local organizations finesse 
these technologies to cope with cloud (Shendryk et al. 2019; 
Magno et al. 2021), unbalanced training data (Waldner et al. 
2019), small fields and irregular shapes (Burke and Lobell 
2017; Lebourgeois et al. 2017), or double cropping systems 
(Paludo et al. 2020).

Like Crop ID, crop yield can now be monitored at scale. 
Methods, driven by Gross Primary Productivity (GPP) and 
pioneered by Reeves et al. (2005), are now available globally 
(Jaafar and Mourad 2021) through Google Earth Engine. 
Adaptations of these approaches to estimate crop yield with 
GPP have been developed for Australia (Chen et al. 2020; 
Donohue et al. 2018), Africa (Wellington et al. 2022), and 
China (Yan et al. 2022). Each method to estimate crop yield 
via satellite incorporates the local effects of climate and ter-
rain to varying degrees. Local models may be calibrated 
with experimental data, data from farmers’ fields or from 
government surveys, and typically predict crop yields with 
a root square mean error (RMSE) in the order of 0.6 t  ha-1 
for cereal crops.

Finally, crop modeling platforms, like The Agricultural 
Production Systems sIMulator (APSIM), have been used to 
create continental scale simulations and draw on local cli-
mate grids and soil type grids to generate estimates of crop 
yield potential (Hochman et al. 2016). Often researchers 
estimate the management to drive continental scale simula-
tions. Local studies that collect farm data have been able 
to simulate farmer yields with some precision, but the data 
collection process is often time-consuming and is rarely 
repeated (Lawes et al. 2021; Lobell et al. 2005; Mourtzinis 
et al. 2018). Traditionally, process-driven crop models would 
be used to evaluate rotational components of the cropping 
system, following extensive, site-specific parameterization. 
For example, Araya et al. (2017) used the Decision Support 
System for Agrotechnology Transfer (DSSAT) to evaluate 
the benefit of rotation on long-term sorghum production in 
Kansas. Similarly, APSIM was used to model corn yield 
responses to crop rotation in Iowa (Puntel et al. 2016). How-
ever, crop rotations are not usually modeled at scale, in part 
because the permutations become intractable, and detailed 
site-specific data are not available.

Outputs from three modeling paradigms, satellite crop 
yield models, process crop models, and land use mapping 
with remote sensing may be combined to provide insight 
into the rotational benefits on cereal crops, at scale, and 
across seasons. The objective is to create crop intelligence 
and agronomic insight without exhaustive and expensive 
field surveys, the need to collect data directly from farmers, 
or conduct local and expensive small plot experiments. We 
describe how we combine multiple data products, created 
with earth observation technologies, earth observation crop 
models, process-based crop models, and big data analytics to 
evaluate the importance of crop rotations across 20 million 
hectares in Western Australia. We combine these approaches 
to test the hypothesis that farmers do achieve break crop 
benefits that are comparable to those achieved in research 
trials and research surveys. Earth observation is firstly used 
to predict the outcome of different management decision 
and then secondly to evaluate the value of crop rotations 
for every field at a regional scale. We argue that outputs 
from this suite of information products and big data analytics 
could provide the precursor to inputs for agricultural deci-
sion support systems or agricultural digital twins.

2  Methods

2.1  Study area

The study area compromises the wheatbelt region of West-
ern Australia (WA), which occupies 20 million hectares in 
the Southwest of WA (Fig. 1). Mixed crop and livestock 
systems, as well as continuous cropping systems, are widely 
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implemented across this region (Harries et al. 2022). Soils 
are old, weathered, and of light texture, while the climate 
is typically Mediterranean. That is, summers are typically 
hot and dry, and winters are cold and wet. Crops and annual 
pastures are sown in the Autumn (April/May) and har-
vested in late Spring or Summer (November/December). 
Soils are typically the lighter, sandy Tenosols, or the sandy 
loam Kandosols. Clays may also be classified as  Vertosols 
or Dermosols, although these soil types are less common 
(Isbell 2016). The plant available water holding capacity 
across Western Australia ranges from 30 mm to 150 mm 
(Oliver and Robertson 2009). Across the Western Australian 
Wheatbelt, winter dominant rainfall drives grain production 
(Ludwig et al. 2009; Turner and Asseng 2005). Growing sea-
son rainfall generally defines an upper limit to cereal grain 
production (French and Schultz 1984) and averaged 260 mm 
from 1900 to 2016 across the entire region (Fletcher et al. 
2020). The spatial distribution of growing season rainfall 
and thermal time is presented in Fig. 2.

2.2  Data description: field boundaries, crop 
identification, and crop rotation

Field polygons, to create field boundaries, were defined 
for the Western Australian Wheatbelt using a process of 
semantic segmentation and image processing of Sentinel-2 
imagery. Specific details of this process were defined by 
Waldner and Diakogiannis (2020). Field polygons for the 
entire wheatbelt, known as ePaddocks, are available at the 
following website (https:// agdat ashop. csiro. au/ epadd ock- 
austr alian- paddo ck- bound aries). In total, 301,209 fields were 

identified, equating to an arable farmed area of 13,980,729 
ha. The total area of 20 million hectares relates to the entire 
land mass and includes all land uses.

The land use relating to the crop and pasture identifica-
tion, for each field, was defined annually from 2017 to 2020. 
Each season, training data were collected across the Western 
Australian Wheatbelt, and Landsat 8 and Sentinel-1 imagery 
were used to create a crop identification (Crop ID) for every 
field in the Western Australian Wheatbelt (Table 1). Details 
about the acquisition of training data are provided in Lawes 
et al. (2022). A Random Forest Classifier (Breiman, 2001) 
was used to create the Crop ID classes that included the 
crop types of wheat, barley, oats, legume crops, or pasture. 
Classifications were generated on a per pixel basis of 25  m2. 
Each field was classified as a particular crop class, based 
on the most numerous pixel present within the field bound-
ary. Classification accuracies for each year ranged from 74% 
to 77% across all land use types. Further details about the 
crop classification processes are described by Fowler et al. 
(2020). From the CROP ID classifications, both the current 
crop and the previous crop could be defined, and a two-year 
crop rotation deduced.

2.3  Aggregating the classification and visualizing 
classification output

To assist with the visualization of the geographic spread of 
various crop choices, crop classifications were aggregated 
onto a 20 km grid to illustrate how species choice varied 
across the Western Australian Wheatbelt. For each crop, 
the percentage of crop area occupied for that grid square 

Fig. 1  a A typical Western Australian cropping landscape, with wheat in the foreground, and canola planted behind the wheat crop. b The loca-
tion of the Western Australian Wheatbelt.
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was calculated. This value was calculated in each year 
and then averaged across the four seasons. The Simpsons 
diversity index was applied to these data to illustrate where 
crop diversity was greatest and where it was least, across 
the Western Australian Wheatbelt (Eq. 1). The Simpsons 
diversity index operates between 0 and 1, and grid squares 
approaching 1 have a more diverse suite of crops than those 
where the diversity index approaches zero. A zero index 
is a monoculture, and diversity indices have been used to 
evaluate crop diversity in the USA (Larsen and Noack 2017). 
These outputs on the 20 km grid were used to highlight 
regions of the wheatbelt with high and low diversity that 

may relate to spatial variation in break crop effects. These 
aggregated data were not part of the machine learning pro-
cess. The machine learning process was conducted at the 
field level.

D is the Simpsons Diversity Index, which ranges between 
0 and 1 for a 20 km grid square. n is the total area, in hec-
tares of a particular crop or pasture enterprise for a 20 km 
grid square. N is the total area, in hectares, of all enterprises 
for a 20 km grid square.

2.4  Crop yield estimation with the C‑Crop model

Crop yield for each wheat field was estimated with the 
C-Crop model from 2017 to 2020 (Donohue et al. 2018). 
This satellite-driven crop model, which uses GPP to estimate 
carbon and then wheat yield, has been developed for Austral-
ian conditions. It estimates wheat yield at the field scale with 
an  r2 of 0.72 (Donohue et al. 2018) and provides a means of 
generating vast quantities of yield data, suitable for machine 
learning applications. Output from the C-Crop model is used 
as the dependent variable to explore the effect of crop rota-
tion on wheat yield. Actual yields from farmers’ fields were 
not available, and this remotely sensed estimate of crop yield 

(1)D = 1 −

�∑

n(n − 1)

N(N + 1)

�

Fig. 2  The spatial distribution of growing season rainfall and cumulative thermal time across the wheatbelt of Western Australia.

Table 1  Landsat 8 paths and rows and Sentinel-1 orbits for the West-
ern Australian Wheatbelt used for crop classification.

Landsat 8 pathrow 
Source: USGS 
Resolution: 25 m
Purpose: crop classification

Sentinel-1 orbit 
Source: European Space Agency 
Resolution: 10 m
Purpose: crop classification

108/83–108/84 017
109/83–108/84 046
110/82–110/84 061
111/81–111/84 090
112/80–112/84 119
113/80–113/82 163
114/79–114/80
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was the only variable that could be accessed across 20 mil-
lion hectares easily to provide an estimate of the yield for a 
particular field. However, the method employed is repeatable 
and provides consistent insight across years and locations.

2.5  Crop simulation modeling with APSIM, to define 
the agro‑environment

The APSIM crop model was used to define the agro-environ-
ment and wheat yield potential for each field. The agro-envi-
ronment relates to the plant available water holding capacity 
of the soil (PAWC), plant available water at sowing, plant 
available water at harvest, and the hot and cold extremes in 
temperature. Variables relating to climate, such as grow-
ing season rainfall (April to October), growing degree days 
(season length), soil water status, and the yield potential and 
total above ground biomass, were output from APSIM. Here, 
yield potential is defined as the water limited yield potential 
of the crop. The nitrogen supply is unlimited and is com-
parable to other definitions of water limited yield potential 
as used by Hochman et al. (2016) and Lawes et al. (2021) 
for the Australian continent. To create these variables with 
APSIM, the centroid of each field (from ePaddocks) was 
used to locate the soil type from the national ASRIS soil grid 
and the nearest climate file from the Australian Bureau of 
Meteorology available from the SILO gridded dataset on a 
0.05-degree grid. The ASRIS grid estimates soil type for the 
Australian continent at a 90 m × 90 m resolution (Grundy 
et al. 2015). An APSIM wheat simulation was generated 
for every field for every season, following the methods of 
Hochman et al. (2016).

Output from the APSIM model, crop rotation, and cli-
mate information are defined as the independent variables 

to predict wheat crop yield, derived from the C-Crop model. 
The details of each attribute are described in Table 2.

A summary of these variables and the analytical workflow 
used to determine the importance of crop rotation in the 
Western Australian Wheatbelt is provided in Fig. 3.

Wheat crop yield, from C-Crop, was then predicted from 
the variables in Table 2 using a Random Forest. A recursive 
feature elimination (RFE) was then used to optimize feature 
selection and identify the most important predictors (Kuhn 
2008). The RFE is a backward selection method where the 
predictors of any given model are ranked. The least impor-
tant predictors are sequentially eliminated as part of the RFE 
process that is applied to the base Random Forest algorithm. 
The Random Forest builds many decision trees via bag-
ging, in which each tree samples the dataset randomly with 
replacement. The algorithm’s final prediction is produced by 
averaging the estimates of each decision tree.

Two prediction models were created. The first is a sim-
ple analysis with only four variables: year, growing season 
rainfall (GSR), crop rotation, and thermal time expressed as 
growing degree days (GDD), that predict C-Crop yield. The 
objective was to discover what predictive capacity a limited 
data set could provide the industry about crop rotation and 
discover how important crop rotation was to wheat produc-
tivity across the broader Western Australian Wheatbelt.

The second analysis was again designed to assess the 
importance of crop rotation, where additional variables 
provide local and seasonal context to the prediction. The 
objective of this analysis was to improve the prediction of 
crop yield at the field level. Here, the RFE and Random 
Forest were used to build the model of crop yield, where 
additional variables that are output from the APSIM crop 
yield model were used in the prediction. In all, 11 variables 
were used and included PAW at sowing, PAW at harvest, 
long-term average growing season rainfall, heat count, soil 

Table 2  Description of variables derived from Crop ID and the APSIM model, captured from Agri-Yieldz output.

Variable label Description

Year The year when the crop wheat yield was monitored
GSR mean Growing Season Rainfall, extracted from SILO weather data, from April 1 to October 31 for the current year
Group rotation Crop rotation, which refers to the previous crop grown prior to wheat and was identified in for each field
GDD mean Thermal time calculated from April 1 to October 31 each season
AP PAW SOW Plant available water (mm), at sowing, as estimated by APSIM
AP PAW harvest Plant available water (mm) at harvest, as estimated by APSIM
AP LT in crop rain Long term mean growing season rainfall for the particular field. Extracted from SILO weather data
AP mild heat count Number of days temperatures fell between 32℃ and 34 ℃ during the heat shock window (growth stage 70 to 

growth stage 80). Extracted from the APSIM crop model
AP soil ID The soil type identification from the ASRIS soil grid
AP moderate heat count Number of days temperatures fell between 34℃ and 46℃ during the heat shock window (growth stage 70 to 

growth stage 80). Extracted from the APSIM crop model
AP yield The APSIM predicted yield for the field for the current year
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type, and long-term mean yield from APSIM. These data are 
available from the Agri-Yieldz website https:// agdat ashop. 
csiro. au/ agriy ieldz- the- wheat- crop- produ ction- estim ator. 
Variables provide an insight into the agronomic state of the 
field, as derived from the APSIM crop model.

Both analyses used a 10-fold cross validation scheme. 
For each fold, two splits were used, where 90% of the data-
set (164,175 observations) were used in training and 10% 
(18,242 observations) for testing (i.e., accuracy assessment). 
A graphical summary of the data, analytical workflow, and 
creation of output about crop rotations to underpin an agri-
cultural digital twin are presented in Fig. 3.

3  Results

The most dominant crop rotations were wheat following 
a cereal (38%), wheat following an annual pasture (30%), 
wheat following canola (15%), wheat following a legume 
crop (9%), and wheat following a long fallow (6%). The 
area available for analysis, over 4 years, ranged from 6.4 
million ha for wheat following a cereal to 1 million ha for 
wheat following fallow (Table 3). Crop rotation and the crop 
diversity varied across the Western Australian Wheatbelt, 
where crop diversity was greater in the southern regions and 
higher rainfall zones (Figs. 4 and 5).

Crop yield, as estimated by the C-Crop model also, varied 
across the Western Australian Wheatbelt with the season. 
C-Crop predicted wheat yields averaged 1.84 t  ha-1, with 
a standard deviation of 0.8 t  ha-1. Mean wheat yield also 
varied with season and ranged from an average of 1.4 t  ha-1 

in 2019 to an average of 2.4 t  ha-1 in 2018. Estimates from 
the Australian Bureau of Statistics were available for 2017, 
2018, and 2019 production seasons, and trends detected by 
C-Crop for WA wheat production are in line with govern-
ment figures (Table 4).

The first, simple Random Forest, defined as model 1, with 
just 4 variables, was able to predict C-Crop wheat yield from 
the test data with an  r2 of 0.72 (std dev 0.004) and an RMSE 
of 0.56 t  ha-1 (std dev 0.004 t  ha-1). Year was the most impor-
tant variable, followed by growing season rainfall, crop rota-
tion, and thermal time. Crop rotation was important in this 
analysis, but the effects of crop rotation with model 1 were 
not conclusive (Fig. 6), and output from this model was not 
interrogated further.

The second, more complex model, defined as model 2, 
with numerous variables that explain the complex interac-
tion between crop rotation and the agro-environment was 
able to predict C-Crop wheat yield from the test data with 
an  r2 of 0.84 (std dev 0.003) and an RMSE of 0.40 t  ha-1 (std 

Fig. 3  A graphical summary 
of the analytical approach to 
predict the effect of crop rota-
tion on wheat cereal yields in 
every field.

Table 3  Percentage of land area occupied by each land use in the 
Western Australian Wheatbelt, averaged over 4 years of the study.

Previous land 
use prior to 
wheat

Percent of wheat crops 
with that prior land use

Area (millions of ha), 
surveyed, with that land 
use over 4 years

Cereal 38% 6.4
Pasture 30% 5.2
Canola 15% 2.6
Legume crop 9% 1.5
Fallow 6% 1.0
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dev 0.003 t  ha-1). Variable importance scores changed mark-
edly from model 1 to model 2. The most important variable 
was crop rotation, followed by thermal time and then year. 
Soil water status and temperature stress events were also 
important predictors (Fig. 7).

Output from model 2 was interrogated to understand why 
crop rotation became the most important variable to predict 
wheat yield, as defined by the C-Crop model. From this suite 
of crop rotations in Table 1, partial deviance output from 
model 2 revealed a 87 kg  ha-1 yield advantage, on average, 

for wheat on legumes compared to wheat on cereal. This 
advantage increased to 97 kg  ha-1 for wheat on canola vs 
wheat on cereal. In contrast, wheat following pasture and 
wheat following fallow had small yield disadvantages com-
pared to wheat on wheat. These yield differences were −47 
kg  ha-1 and −60 kg  ha-1, respectively. These average dif-
ferences are smaller than the overall model RMSE. This is 
to be expected with a Random Forest, where crop rotation 
accounts for part of the variation explained by the model. 
Whilst useful, these partial differences do not completely 

Fig. 4  Variation in crop 
rotations across the Western 
Australian Wheatbelt for a 
cereal, b oilseed, c pasture, d 
legume crops, and e fallow, 
where the land use refers to the 
management carried out prior to 
growing a wheat crop.
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explain the value of crop rotation in this farming system. For 
wheat grown after canola and wheat grown after grain leg-
umes the median, positive skew of the distribution demon-
strate that crop rotation can occasionally deliver large yield 
benefits (Table 5, Fig. 8). The consequence of the skewed 
distribution meant that there was a wheat yield increase of 
200 kg  ha-1 or more for 27% of wheat crops grown after 
canola and 26% for crops grown after a legume relative to 
wheat grown after wheat. For pasture and fallow, the number 
of fields with a wheat yield increase of 200 kg  ha-1 or more 
declined to just 8% and 7% of fields, respectively.

Model 2 accounts for the complex agro-climatic interac-
tions with crop rotation. For the individual field, the influ-
ence of the other variables related to climate and soil type 
can either increase or decrease the impact of a crop rota-
tion choice for that particular field. Simple “rules of thumb” 
could not be extracted by directly comparing fields with 
positive break crop effects and those with negative break 
crop effects. The benefit of the rotation effect on wheat yield 
varied (Fig. 8).

The complexities of individual seasons, soil types, start-
ing soil moisture, and crop stress do complicate where 
and when particular rotation choices benefit cereal yields. 
In Fig. 9, the effect of canola on wheat yields is depicted 
spatially. In 2018 and in 2020, yield benefits to cereals are 
most evident in the north-eastern section of the Western 
Australian Wheatbelt. The benefits to cereals from canola 
were noticeably lower in 2019 and 2017. The north-eastern 
section of the Western Australian Wheatbelt is characterized 
as drier, with a shorter growing season than the southern 
regions and central regions (Figure 2).

4  Discussion

Crop rotation is an important component of most crop-
ping systems, as crop rotation can increase the yields of the 
dominant crop by reducing the extent of biotic threats and, 
in the case of legume breaks, increase the nutrient supply. 
However, the value, in terms of the actual yield benefit, that 
a break crop provides to a subsequent crop can vary. This 
variability may complicate the decision to grow a break 
crop. Therefore, in this research, we utilized remote sens-
ing information about crop identification and crop yield, 
with process-based crop modeling and machine learning to 
quantify the yield benefit of crop rotation to the yield of 
the subsequent cereal crop. We performed this assessment, 
at scale, for every field in the entire 20 million hectares of 
Western Australia over four growing seasons. While our 
study used the Western Australian Wheatbelt as a test case, 
the approach could be applied to any agricultural region in 
the world provided that appropriate methodologies to esti-
mate crop type and yield were available.

The specific questions tested in this research were 1. 
What are the rotations in WA and 2 What is the break crop 
effect on wheat production in WA? The study demonstrated 
that the most common rotation in WA was wheat following 
a cereal (Table 3 and Fig. 4). This was followed by wheat 
grown after a pasture and then wheat after canola. Broadly, 
the findings in this study relating to the relative popularity 
of particular farming practices and crop rotations agree with 
insights from conventional ground surveys (Harries et al. 
2015, 2022). This was to be expected, given that Austral-
ian crop classification approaches have been developed with 
extensive training data and predict with accuracies in the 
order of 80% (Lawes et al. 2022).

The agronomic impact of crop choice and rotation on the 
subsequent yield of the wheat crop did vary from insights 
derived from farmer surveys and from individual agronomic 
trials, conducted in Western Australia. Here, we identified 
moderate benefits and predict that in at least 70% of wheat 
fields, the break crop benefit is less than 200 kg  ha-1. This 
contrasts with field surveys, where wheat yields following 

Fig. 5  Geographic variation on crop diversity, as measured with a 
Simpsons Diversity Index across the Western Australian Wheatbelt.

Table 4  Mean C-Crop estimate of wheat yield and Australian Bureau 
of Statistics (ABS) wheat yield.

C-Crop wheat yield (t 
 ha-1)

ABS wheat yield (t  ha-1)

2017 1.81 1.89
2018 2.4 2.28
2019 1.38 1.41
2020 1.80 2.0 
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Fig. 6  Variable importance (A) and normalized root mean square error (B) of the model 1, from the 10-fold cross-validation recursive feature 
elimination with random forest.

Fig. 7  Variable importance (A) and normalized root mean square error (B) of the model 2, from the 10-fold cross-validation recursive feature 
elimination with random forest.
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canola crops generated yield gains of 220 kg  ha-1 in a 200 
mm rainfall environment and 330 kg  ha-1 in a 300 mm rain-
fall environment (Harries et al. 2022). Harries et al. (2022) 
analysis suggest break crop effects increase with increas-
ing rainfall. Furthermore, Harries et al. (2022) also identi-
fied that wheat yields after pasture would generate 400 kg 
 ha-1 more yield than wheat after wheat in a 200 mm rainfall 
environment. Harries et al. (2022) finding contrasts with the 
earlier meta-analysis of Western Australian field trials by 
Seymour et al. (2012), who identified that the break crop 
effect was not dependent on rainfall and averaged 0.6 t  ha-1 
for wheat following a lupin crop and 0.4 t  ha-1 for wheat 
following a canola crop. Therefore, farm surveys have pro-
vided different insights into crop rotation, relative to those 

Table 5  Overall differences from model 2 outputs comparing the 
effects of each crop rotation choice on wheat yields.

Yield (ton  ha−1) Mean Std Dev Median Skew Kurtosis

(A) Cereal after cereal −0.02 0.19 0.00 −0.19 5.74
(B) Cereal after fallow −0.06 0.22 −0.02 −1.04 3.42
(C) Cereal after oilseed 0.10 0.24 0.05 0.69 2.69
(D) Cereal after 

pasture
−0.05 0.21 0.00 −1.02 5.08

(E) Cereal after pulse 0.09 0.23 0.06 0.43 2.18

Fig 8  Histograms illustrating 
the number of fields that would 
have experienced either a yield 
benefit, or loss, if an alternative 
rotation choice compared to 
wheat on wheat was imple-
mented by the farmer, for each 
year of the investigation. A red 
dashed line is a negative mean 
yield effect. A blue dashed line 
is a positive mean yield effect.
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derived from a meta-analysis of numerous field trials. These 
differences complicate creating simplified rules for farmers 
to follow. The differences add weight to Lacoste et al. (2022) 
view that on farm experimentation is often required to help 
farmers evaluate a technology or management concept.

In the present study, pastures generated a net penalty to 
wheat crops, and break crops such as canola and legume 
crops offered a moderate yield improvement to wheat crops. 
Both of these findings are at odds with the agronomic litera-
ture and with insights derived from farm surveys. This raises 
important questions about the value of specific agronomic 
trials for individual farmers, where the conditions of the trial 
vary from the farm. For example, break crop experiments 
may be located on sites that have a biotic stress present. 
This stress would bias the outcome in favor of cereal crops 
grown following a break crop that mitigated the biotic stress. 

Researchers may deliberately choose sites with such a stress 
to demonstrate the management advantages of this practice 
to farmers. Such practices are normal, as researchers delib-
erately design and locate field trials to provide the insight 
required to address a problem. However, if farms experience 
lower levels of biotic stress than what is commonly seen in 
field trials, then the benefits of a break crop may be smaller 
than anticipated.

Biases, or inconsistencies between trialled data, and farm 
data may materialize for other reasons. For example, the pas-
tures commonly grown by farmers throughout Western Aus-
tralia may no longer be legume dominant. This would limit 
the amount of nitrogen fixed, and grass dominant pastures 
would not provide a break from pathogens. The benefits 
from these volunteer, weedy pastures would be consider-
ably lower than the benefits that optimally managed, legume 

Fig. 9  Geographic spread 
of the positive and negative 
benefit of canola on wheat yield 
across the Western Australian 
Wheatbelt from 2017 to 2020, 
if a wheat-canola crop rotation 
was implemented instead of the 
wheat-cereal rotation.
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dominant pastures provide to the following cereal crop. A 
recent study by Loi et al. (2022) found that cereal yields 
following a well-managed, modern legume pasture cultivar 
produced similar yields to wheat following a fallow, but 
required less applied nitrogen to achieve that yield. Again, 
though direct comparisons between wheat following wheat 
and wheat following a managed pasture was not conducted.

The variation between individual fields, particularly 
across the Western Australian Wheatbelt, will be greater 
than the variation that exists in field trials. Therefore, defin-
ing the environment of that field, in the context of start-
ing soil water, soil type, growing season rainfall, and other 
stresses become important, when those factors interact with 
a particular management strategy. Here, this study predicted 
a wheat yield response to crop rotation suggesting that break 
crop benefits were most likely in the lower rainfall, and 
shorter growing season regions of the Western Australian 
Wheatbelt. This finding also conflicts with the findings of 
the earlier studies. Therefore, the ability to provide manage-
ment insights, at scale, using local information as a com-
ponent of a machine learning model is highly novel. We 
contend that the Random Forest predictions can cope with 
high-level interactions and cope with factors such as start-
ing soil moisture and end of season temperature stress. The 
approach adopted here was able to quickly provide a predic-
tion for every field in the Western Australian Wheatbelt, and 
each prediction could be evaluated on a case-by-case basis 
by a farmer. The discrepancies between the findings in this 
study and those of Harries et al. (2022) and Seymour et al. 
(2012) suggest that field-level predictions will require con-
siderable development and engagement with farmers before 
these more abstract, machine-learned approaches could be 
deployed into an on-farm management decision support 
systems.

The analytical approach combined insights from remote 
sensing and APSIM using machine learning to estimate the 
rotational benefits for cereal crops. A necessary evolution-
ary step may involve updating or reconciling each of these 
estimates with actual data recorded on farm. Since data 
will not exist on every farm, analytical methods that allow 
the seamless integration and updating of model predictions 
for farms with data will need to be developed. This chal-
lenge is not trivial from an analytical perspective. Further 
model-based refinements may be required if farmers have 
detailed management information about fertilizer or weed 
control. Thus, in essence, the framework developed here 
provides the industry with the ability to benchmark pro-
duction and explores possible benefits of alternative rota-
tion choices. The approach here does combine multiple 
information sources, but in the future, the approach may 
need to combine even more disparate sources of infor-
mation to create a believable and actionable management 
recommendation for a farmer. That is, this approach allows 

more nuanced findings to be provided to an individual field 
and draws on a vast number of permutations relating to 
season, soil type, and climate to arrive at those predic-
tions. The approach can provide predictions for an indi-
vidual field and allow users to evaluate different scenarios 
with a prediction.

Further developments would need to actively consider 
who the user is and what the users’ needs are. Outputs from 
the modeling would be valuable for individual farmers and 
their consultants and agronomists. Researchers may ben-
efit, particularly, if machine learning approaches such as 
RFE and modeling based approaches deliver insights that 
are counter-factual to insights derived from field trials. The 
analytics and model-based information systems developed 
in this study that created insights about crop rotation at scale 
could become the precursor to the next generation of agri-
cultural decision support systems or inform an agricultural 
digital twin.

5  Conclusion

We used machine learning to combine output from 
process-based crop models, crop identification systems 
and satellite driven crop models to obtain insights into 
the benefits of crop rotation across the vast Western 
Australian Wheatbelt. The outputs identified different 
crop yield responses to those commonly reported in the 
agronomy literature. The approach identified that the 
yield responses varied spatially across the Western Aus-
tralian Wheatbelt, and climatic factors did influence the 
outcome. The machine learning approach was employed 
to produce scenarios for every field in the 20-million-
hectare farming region. Outputs from this exercise could 
form the basis behind future digital decision support sys-
tems or agricultural digital twins that farmers, consult-
ants, and researchers may use.
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