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MARG Sensor-based Attitude Estimation on
SO(3) Under Unknown External Acceleration

Ghadeer Shaaban, Hassen Fourati, Alain Kibangou, and Christophe Prieur

Abstract— In many applications, attitude estimation al-
gorithms rely mainly on magnetic and inertial measure-
ments from MARG sensors (consisting of a magnetometer,
a gyroscope, and an accelerometer). One of the main chal-
lenges facing these algorithms is that the accelerometer
measures both gravity and an unknown external accelera-
tion, while these algorithms assume that the accelerometer
measures only the gravity. In this paper, an attitude esti-
mation algorithm on the special orthogonal group SO(3) is
designed, considering the external acceleration as an un-
known input with direct feedthrough to the output, with a lo-
cal approximation approach. The proposed algorithm is val-
idated through Monte Carlo simulations and real datasets,
demonstrating better accuracy and enhanced performance
than existing solutions.

Index Terms— Attitude estimation, External acceleration,
Navigation, Unknown input, SO(3).

I. INTRODUCTION

ATTITUDE estimation of rigid bodies plays an important
role in navigation for many applications, including smart-

phones, autonomous vehicles, and virtual reality. It relies ba-
sically on measurements from a magnetometer to measure the
magnetic field, a gyroscope to measure the angular velocity,
and an accelerometer to measure the acceleration. The three
mentioned sensors form a triad called the MARG (Magnetic,
Angular Rate, and Gravity) sensor module. Among a wide
range of MARG sensor-based attitude estimation algorithms
proposed in the literature, the extended Kalman filter (EKF)
is the most used, where the attitude is represented using
quaternion [1], [2]. An improved algorithm is the invariant
extended Kalman filter (IEKF), where the attitude is expressed
using the special orthogonal group SO(3) [3]–[5]. In both EKF
and IEKF, the correction step uses the measured acceleration
and magnetic field, which are approximated by the projection
of gravity and Earth’s magnetic field in the body frames of
the accelerometer and magnetometer, respectively, to satisfy
the Wahba problem [6].

One of the main challenges facing attitude estimation algo-
rithms, employing MARG sensor in scenarios involving peri-
ods of accelerated motions, is that the accelerometer measures
both gravity and an unknown translational acceleration (also
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known as external acceleration) in the body frame, while these
algorithms assume that the accelerometer measures only the
projection of gravity. This problem has received the attention
of numerous studies in the literature. Four main approaches
were adopted: (i) discard the accelerometer measurements
momentarily [1], [2], [7], (ii) augment the state space by
including a dynamic model for the external acceleration [8],
(iii) estimate the external acceleration from additional sensors
like Global Positionning System (GPS) [9], air-data systems
or Doppler radar [10], (iv) filter out the external acceleration
by assuming it is high frequency [11]; the first approach
being the most popular. It involves computing the difference
between the measured acceleration norm and the gravita-
tional acceleration one. If the difference exceeds a predefined
threshold, the algorithm considers the measured acceleration
as unreliable. A significant performance loss is encountered
for long-duration accelerated motion as the algorithm com-
pletely ignores the measured acceleration, relying solely on
magnetometer measurements in the correction step. It is called
the threshold-based adaptive method. The second approach
is limited by the inaccuracy of the adopted dynamic models
for the external acceleration while the third approach requires
additional sensors. Finally, the high-frequency assumption in
the last approach fails for scenarios involving constant or
low-frequency external acceleration, leading to performance
loss (e.g. ships and ground vehicles during their ramp-up and
braking stages, as well as aircraft during takeoff and landing).

From this literature review, one can conclude that no so-
lution satisfies the following three conditions simultaneously:
1) ability to handle long-duration accelerated motion, 2) no
usage of extra sensors, 3) no prior information or assumptions
on the external acceleration. For this purpose, in this paper,
we consider the external acceleration as an unknown input
that directly affects the output (measurement) function. Note
that state estimation with unknown input has been the subject
of several studies in the literature [12]–[14], but none of
these works addressed the problem of considering the external
acceleration as an unknown input. The approach in [15] is
the first to address the problem of state estimation with
unknown input for systems on SO(3), with the difference
that the unknown input is affecting the state dynamic and
not the output function. Exploiting a local approximation
approach, the main contribution of this paper is the design
of an estimation algorithm for a state on SO(3) jointly with
an unknown input, with application to attitude and external
acceleration estimation using a MARG sensor.

The paper is structured as follows: Section II provides a



concise mathematical background on the SO(3) group and the
Gauss-Markov theorem. Section III explains the mathematical
model expressed on SO(3) and the problem statement. Sec-
tion IV introduces the filter equations and the algorithm steps.
Section V describes and analyzes the proposed algorithm.
Section VI presents the results from Monte Carlo simulations
and real datasets, for the evaluation purpose. A conclusion in
Section VII ends the paper.

II. BACKGROUND AND PRELIMINARIES

In this paper, matrices, vectors, and scalars are represented
with bold upper-case symbols, bold lower-case symbols and
lower-case symbols respectively. The symbols E(.), tr(.), x̂,
In and 0 stand for the Expectation operator, the trace operator,
the estimate of a given variable x, the order n identity matrix,
and the all zero matrix, respectively.

A. SO(3) group and skew-symmetric matrix

The special orthogonal group SO(3) refers to the group
of all three-dimensional rotations that can be performed in
space: SO(3) = {R ∈ R3×3 : RRT = I3 , det(R) = 1}
as explained in [4], [5]. The exponential map expm : R3 →
SO(3) maps between element ξ ∈ R3 and element from SO(3)
according to the formula [4]: expm(0) = I3 and expm(ξ) =

I3 +
sin(∥ξ∥)

∥ξ∥ (ξ)× + 2 sin(∥ξ∥/2)2
∥ξ∥2 (ξ)2×, ∀ξ ∈ R3 \ {0}, where

(ξ)× is the skew-symmetric matrix corresponding to the vector
ξ ∈ R3:

(ξ)× =

 ξ1
ξ2
ξ3


×

=

 0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0

 . (1)

The essential properties of the exponential map and the
skew-symmetric matrix are recalled hereafter. For any vectors
ξ, ξ1, ξ2 ∈ R3, and small enough vectors v1,v2 ∈ R3, we
have these properties [15]:

expm(ξ)
−1 = expm(−ξ), (2)

expm(v1) ≈ I3 + (v1)×, (3)
expm(v1 + v2) ≈ expm(v1)expm(v2), (4)

(ξ1)×ξ2 = − (ξ2)×ξ1. (5)

Given an estimate R̂ of a rotation matrix R, the estimation
error in SO(3) is computed as R̂−1R [4]. It can be mapped
to a vector ξ ∈ R3 using the inverse of the exponential map.

B. Gauss-Markov Theorem [16]

Consider a model y = Dxx + v, where v is a zero-mean
random variable with positive definite covariance matrix Rv ,
x is a deterministic vector, and Dx has full column rank.
Then the unbiased minimum-variance estimator of x is given
by x̂ =

(
DT

xR
−1
v Dx

)−1
DT

xR
−1
v y.

III. PROBLEM STATEMENT

Consider the following discrete-time state-space model [4],
[15]:

Rk+1 =Rkexpm(ωk +wk), (6)
yk =h(Rk) +Daextk + vy

k, (7)

where, for any time k, Rk ∈ SO(3) is the attitude of the rigid
body while yk =

(
ab
k

bb
k

)
∈ R6 stands for the measurement vec-

tor containing accelerometer and magnetometer measurements
abk ∈ R3 and bb

k ∈ R3 in the body frame, respectively, the

function h being defined as h(Rk) =
(

R−1
k g

R−1
k me

)
, where g ∈

R3 and me ∈ R3 are the Earth’s gravity acceleration and the
Earth’s magnetic field in the Earth’s fixed frame. The external
acceleration aextk ∈ R3 is unknown, and the matrix D is given
by D =

(
I3
0

)
∈ R6×3. The input ωk = ∆Tωmeas

k is obtained
from the measured angular velocity ωmeas

k ∈ R3 which is
considered to be constant at time step k during the sampling
time ∆T . The process noise wk and the measurement noise
vy
k are assumed to be uncorrelated zero-mean white random

signals with positive definite covariance matrices Qk and Rk

respectively.
The system is left invertible (see [17, Def. 2.5]), meaning

that the unknown input aextk can be uniquely reconstructed
given the outputs (yi)i∈0,1,...k, and the initial state R0.
Moreover, the system is observable (see [17, Def. 2.4]),
because the state Rk can be uniquely reconstructed given the
inputs (aexti )i∈0,1,...k and the outputs (yi)i∈0,1,...k. Therefore,
knowing the output sequence (yi)i∈0,1,...k and the initial
state R0 allows to uniquely reconstruct the unknown inputs
(aexti )i∈0,1,...k, and consequently the state Rk.

The objective of this paper is to design a filter that estimates
Rk in the presence of the unknown external acceleration aextk ,
based on the sequences of the known input (ωi)i∈0,1,...k−1

and measurements (yi)i∈0,1,...k, and an initial estimate R̂0,
which is assumed to be unbiased with known covariance
matrix Pξ

0. This initial unbiased estimate is possible if aext0 is
available. For this purpose, a novel recursive algorithm named
UMV-SO(3)-EA is designed. It gives unbiased minimum vari-
ance first-order approximation-based estimator of Rk based
on the unbiased estimate of Rk−1, the known input ωk−1,
and the measurements yk.

IV. FILTER DESIGN

For linear discrete-time systems with unknown input having
direct linear feedthrough to the output, the three-step Kalman
filter was introduced in [14] for both state and unknown input
estimation. The three steps are as follows: (i) predict the state
using the state dynamic model, (ii) estimate the unknown input
using the predicted state and the measurements, (iii) correct
the predicted state using the estimated unknown input and the
measurements. Based on the same principle, we propose a



filter based on the following equations:

R̂k|k−1 = R̂k−1expm(ωk−1), (8)

âextk = Mk

(
yk − h(R̂k|k−1)

)
, (9)

R̂k = R̂k|k−1expm

(
Kk

(
yk − h(R̂k|k−1)−Dâextk

))
,

(10)

where the matrices Mk ∈ R3×6 and Kk ∈ R3×6 are the
gain matrices which have to be designed. The inputs of this
filter are the estimated attitude R̂k−1 with the corresponding
covariance matrix Pξ

k−1, the angular velocity ωk−1, and the
measurements yk. The algorithm outputs are the estimated
attitude R̂k with the corresponding covariance matrix Pξ

k, and
the estimated external acceleration âextk with the corresponding
covariance matrix Pa

k. Algorithm 1 presents the detailed steps
of the proposed recursive filter UMV-SO(3)-EA.

Algorithm 1 UMV-SO(3)-EA

Require: R̂k−1, Pξ
k−1, ωk−1, yk =

(
ab
k

bb
k

)
▷ Prediction:

1: R̂k|k−1 = R̂k−1expm(ωk−1)

2: Pξ
k|k−1 = Pξ

k−1 +Qk−1

▷ External acceleration estimation:

3: Hk =

(
(R̂−1

k|k−1g)×

(R̂−1
k|k−1me)

)
, Hk is the Jacobian of the

output function with respect to the prediction error.
4: R̃k = HkP

ξ
k|k−1H

T
k +Rk

5: Mk =
(
DT R̃

−1

k D
)−1

DT R̃
−1

k

6: âextk = Mk

(
yk − h(R̂k|k−1)

)
7: Pa

k =
(
DT R̃

−1

k D
)−1

▷ Correction:
8: Kk = Pξ

k|k−1H
T
k R̃

−1

k

9: R̂k = R̂k|k−1expm

(
Kk

(
yk − h(R̂k|k−1)−Dâextk

))
10: Pξ

k = Pξ
k|k−1 −Kk (I6 −DMk)HkP

ξ
k|k−1

11: return R̂k, Pξ
k, âextk , Pa

k

In the next section, considering R̂k−1 as unbiased, we show
that the first-order approximation-based estimators of aextk and
Rk given by Algorithm 1 are unbiased minimum variance (see
Theorem 5.3 and Theorem 5.5).

V. FILTER ANALYSIS

We define the estimation error expm(ξk) = R̂−1
k Rk,

and the prediction error expm(ξk|k−1) = R̂−1
k|k−1Rk, with

the corresponding covariance matrices Pξ
k = E(ξkξ

T
k ), and

Pξ
k|k−1 = E(ξk|k−1ξ

T
k|k−1) respectively.

A. Prediction
Lemma 5.1: Let R̂k−1 be unbiased, then the first-order

approximation-based estimator (8) is unbiased.

Proof: Starting with the equation of prediction er-
ror expm(ξk|k−1) = R̂−1

k|k−1Rk, then employing the ro-
tation dynamic (6) and the filter’s first step (8) give:
expm(ξk|k−1) = expm(−ωk−1)R̂

−1
k−1Rk−1expm(ωk−1 +

wk−1) = expm(−ωk−1)expm(ξk−1)expm(ωk−1 + wk−1).
Applying first-order approximation (4) gives:

ξk|k−1 = ξk−1 +wk−1. (11)

and yields E(ξk|k−1) = E(ξk−1) + E(wk−1) = 0 since
E(ξk−1) = E(wk−1) = 0. Its covariance matrix is
Pξ

k|k−1 = E(ξk|k−1ξ
T
k|k−1) = Pξ

k−1 +Qk−1.

B. External acceleration estimation
Lemma 5.2: Let R̂k−1 be unbiased, then the difference

ỹk = yk − h(R̂k|k−1) found in the filter’s second step (9)
can be approximated by ỹk = Daextk + ek, where ek is a
random variable with zero mean and covariance matrix R̃k =

E(eke
T
k ) = HkP

ξ
k|k−1H

T
k +Rk, and Hk =

(
(R̂−1

k|k−1
g)×

(R̂−1
k|k−1

me)×

)
.

Proof: Substituting yk as written in (7) gives:

ỹk = h(Rk)− h(R̂k|k−1) +Daextk + vy
k. (12)

The difference h̃k = h(Rk)−h(R̂k|k−1) can be simplified as
following:

h̃k =

(
R−1

k g
R−1

k me

)
−

(
R̂−1

k|k−1g

R̂−1
k|k−1me

)
,

=

 (
R−1

k − R̂−1
k|k−1

)
g(

R−1
k − R̂−1

k|k−1

)
me

 .

Replacing Rk by R̂k|k−1expm(ξk|k−1) gives:

h̃k =

( (
expm(−ξk|k−1)− I3

)
R̂−1

k|k−1g(
expm(−ξk|k−1)− I3

)
R̂−1

k|k−1me

)
,

then, using the first-order approximation (3), we obtain:

h̃k =

(
−(ξk|k−1)×R̂

−1
k|k−1g

−(ξk|k−1)×R̂
−1
k|k−1me

)
.

Employing the skew-symmetric matrix property (5), gives:

h̃k =

(
(R̂−1

k|k−1g)×ξk|k−1

(R̂−1
k|k−1me)×ξk|k−1

)
= Hkξk|k−1, (13)

and substituting (13) in (12) gives: ỹk = Daextk +Hkξk|k−1+
vy
k.

We define
ek = Hkξk|k−1 + vy

k, (14)

then:
ỹk = Daextk + ek. (15)

The expected value of ek is E(ek) = 0 since E(ξk|k−1) = 0
(See Lemma 5.1) and E(vy

k) = 0 (zero mean measurement
noise). Its covariance matrix is:

R̃k = E(eke
T
k ) = HkP

ξ
k|k−1H

T
k +Rk, (16)

since the measuerent noise vy
k is independent of ξk|k−1.



Theorem 5.3: Let R̂k−1 be unbiased and the gain matrix
Mk be equal to Mk = (DT R̃

−1

k D)−1DT R̃
−1

k , then the first-
order approximation-based estimator of aextk provided by (9)
is unbiased minimum variance.

Proof: Applying Lemma 5.2 enables us to use the
approximated model (15) which satisfies Gauss Markov con-
ditions (see Subsection II-B), where the matrix D has full
column rank and R̃k is positive definite, then the estimator (9)
is unbiased and has minimum variance when the matrix gain
Mk is equal to: Mk = (DT R̃

−1

k D)−1DT R̃
−1

k . This gain
matrix satisfies MkD = I3, we utilize this property after
substituting (15) in (9): âextk = Mk

(
Daextk + ek

)
= aextk +

Mkek, and finally:

aextk − âextk = −Mkek. (17)

The corresponding covariance matrix is Pa
k =

E(Mkeke
T
kM

T
k ) = MkR̃kM

T
k = (DT R̃

−1

k D)−1DT R̃
−1

k

R̃kR̃
−1

k D(DT R̃
−1

k D)−1 = (DT R̃
−1

k D)−1.

C. Correction
Lemma 5.4: Let R̂k−1 be unbiased and the matrix

gain Mk = (DT R̃−1
k D)−1DT R̃−1

k , then the first-order
approximation-based estimator (10) is unbiased.

Proof: Lemma 5.2 and Theorem 5.3 hold, thus (15)
and (17) are satisfied. We substitute (15) in (10) and then
substitute (17):

R̂k = R̂k|k−1expm
(
Kk

(
ek +D

(
aextk − âextk

)))
,

= R̂k|k−1expm (Kk (I6 −DMk) ek) . (18)

The estimation error: expm(ξk) = R̂−1
k Rk = expm(−Kk

(I6 −DMk)ek)R̂
−1
k|k−1Rk = expm(−Kk(I6 −DMk)ek)

expm(ξk|k−1), the first-order approximation (4) gives ξk =
−Kk(I6−DMk)ek+ξk|k−1. Finally, substituting (14) gives:

ξk = (I3 −Kk(I6 −DMk)Hk)ξk|k−1 −Kk(I6 −DMk)v
y
k.

(19)
The expected value of ξk is E(ξk) = 0 since E(ξk|k−1) = 0
(See Lemma 5.1) and E(vy

k) = 0 (zero mean measurement
noise).

Theorem 5.5: Let R̂k−1 be unbiased. Given the gains
Mk = (DT R̃

−1

k D)−1DT R̃
−1

k and Kk = Pξ
k|k−1H

T
k R̃

−1

k ,
then the first-order approximation-based estimator (10) is
unbiased minimum variance.

Proof: Applying Lemma 5.4 proves that the estima-
tor (10) is unbiased. Minimizing E(∥ξk∥2) is equivalent to
minimizing the trace of the covariance matrix Pξ

k = E(ξkξ
T
k ).

Then the aim is to prove that the proposed Kk satisfies
dtr(Pξ

k)

dKk
= 0. We start by computing Pξ

k, where we replace
ξk by (19):

Pξ
k = E(ξkξ

T
k ) = (I3 −Kk(I6 −DMk)Hk)P

ξ
k|k−1(I3−

Kk(I6−DMk)Hk)
T +Kk(I6−DMk)Rk(I6−DMk)

TKT
k

= Kk(I6 −DMk)(HkP
ξ
k|k−1H

T
k +Rk)(I6 −DMk)

TKT
k

−Pξ
k|k−1H

T
k (I6 −DMk)

TKT
k −Kk(I6 −DMk)HkP

ξ
k|k−1

+Pξ
k|k−1. (20)

The term R̃
∗
k = (I6 −DMk)(HkP

ξ
k|k−1H

T
k +Rk)(I6 −

DMk)
T can be simplified, by substituting (16), which gives

R̃
∗
k = (I6 − DMk)R̃k(I6 − DMk)

T and then substi-
tuting the value of Mk, which gives R̃

∗
k = (R̃k −

D(DT R̃
−1

k D)−1DT )(I6 −D(DT R̃
−1

k D)−1DT R̃
−1

k )T .
The subterm DT (I6 − D(DT R̃

−1

k D)−1DT R̃
−1

k )T can be
simplified as (D − D(DT R̃

−1

k D)−1DT R̃
−1

k D)T = (D −
D)T = 0, thus R̃

∗
k = R̃k(I6 − DMk)

T . Substituting this
R̃

∗
k in (20) gives:

Pξ
k = KkR̃k(I6 −DMk)

TKT
k

−Pξ
k|k−1H

T
k (I6 −DMk)

TKT
k

−Kk(I6 −DMk)HkP
ξ
k|k−1

+Pξ
k|k−1, (21)

and utilizing the matrix derivatives from [18] (Propositions
10.7.2 and 10.7.4), leads to:

dtr(Pξ
k)

dKk
= 2KkR̃k(I6 −DMk)

T

−2Pξ
k|k−1H

T
k (I6 −DMk)

T ,

then direct substitution of Kk = Pξ
k|k−1H

T
k R̃

−1

k concludes

that dtr(Pξ
k)

dKk
= 0 and the estimator is minimum variance.

Finally by applying the value of Kk in (21) gives Pξ
k =

Pξ
k|k−1 −Kk(I6 −DMk)HkP

ξ
k|k−1.

VI. EVALUATION OF UMV-SO(3)-EA: SIMULATIONS
WITH THEORETICAL EXAMPLE AND REAL DATA

This section aims to validate the algorithm’s effectiveness in
different scenarios. We present results from both Monte Carlo
simulations with 100 runs for each scenario, with different
noise sequences for each run, and real datasets, ensuring the
reliability of our findings. For the purpose of evaluation of
the UMV-SO(3)-EA algorithm, we choose to compare it with
the invariant extended Kalman filter (IEKF) [3], and also with
the IEKF coupled with the threshold-based adaptive approach,
to compensate the effects of the external acceleration on the
estimation accuracy. We selected the threshold-based adaptive
approach due to its popularity in the literature, and its ability
to run without prior information, specific assumptions about
the external acceleration, or a mathematical model of external
acceleration.

In our practical scenarios, having an initial unbiased (but
slightly perturbed) rotation estimate R̂0 is possible, where
the external acceleration is known and equals to zero before
the body starts moving, and the initial rotation can be ob-
tained using other attitude estimation algorithms that depend
only on accelerometer and magnetometer measurement like
TRIAD [19]. In both simulation and evaluation with real data,
the three algorithms are initialized by a slightly perturbed
rotation estimate, given by the TRIAD algorithm. In the
following subsections, and when presenting the results, we
compute the estimation error in a way that makes it more easily
interpretable. This involves converting all rotation matrices to
Euler angles using the XYZ convention, as detailed in Section
3.3 of [6].



A. Threshold-based adaptive approach
The concept behind the threshold-based adaptive approach

involves computing the difference between the norm of the
accelerometer output and the gravity norm of 9.81 m/s2,
then comparing it to a predefined threshold value ϵa (we used
ϵa = 0.2 m/s2 [1]). If the difference exceeds the threshold
during the time interval, it implies the presence of external
acceleration. Consequently, higher values of the acceleration
measurements’ variances are employed in the IEKF consider-
ing the accelerometer measurements as unreliable.

B. Simulations setup and results
This subsection starts by explaining the simulation setup,

and then the results will be presented in two parts: the first part
includes figures that demonstrate the accuracy of the attitude
and external acceleration estimation of the UMV-SO(3)-EA
algorithm; the second part involves a comparison with the
IEKF to which we add the threshold-based adaptive approach.
Root Mean Square Error (RMSE) was calculated for each
Monte Carlo run, and finally, the average was derived from
the 100 runs.

1) Simulations setup: For every Monte Carlo run, the sys-
tem was run for a duration of 100 s, with a sampling
time ∆T = 0.01 s. The Earth’s gravity and magnetic field
were considered as g = [0, 0, 9.81]T m/s2 and me =
[0.23, 0.01, 0.41]T Gauss, respectively. The true values for
body angular velocity and external acceleration were specified
in accordance with Table I. The gyroscope, accelerometer,
and magnetometer noises were set to be zero-mean white
noise signals with standard deviations of σω = 0.01 rad/s2,
σa = 0.01 m/s2, and σm = 0.005 Gauss, respectively. In

TABLE I
THE TRUE ANGULAR VELOCITY AND EXTERNAL ACCELERATION USED IN

SIMULATION

True angular velocity True external acceleration
(rad/s) (m/s2)

ωx 2.0 cos (0.2πk∆T ) aext
x 2.0 sin (0.5πk∆T )γk

ωy 1.5 cos (0.6πk∆T ) aext
y 1.0 sin (0.2πk∆T )γk

ωz 1.0 cos (1.0πk∆T ) aext
z 0.5 sin (0.1πk∆T )γk

order to have a fair comparison, the applied external accelera-
tion shown in Table I is multiplied by a Bernoulli distributed
white sequence taking values on {0, 1} with probabilities:

Pr{γk = 1} = γ̄, P r{γk = 0} = 1− γ̄

A higher value of γ̄ (i.e. closer to 1) means the body has more
instances with the presence of external acceleration, and lower
values (i.e. closer to 0) mean more instances with rest.

2) UMV-SO(3)-EA theoretical estimation results: We present
the estimation results of the UMV-SO(3)-EA algorithm for
a single Monte Carlo run, under the considered external
acceleration for the full duration i.e. γ̄ = 1. Fig. 1 illus-
trates the estimation error. The errors for the three angles
generally remain below 0.3◦ most of the time. Although there
are instances where the error exceeds 0.3◦, the algorithm
demonstrates the ability to correct and achieve low-error esti-
mation. Moreover, the UMV-SO(3)-EA algorithm effectively

estimates the external acceleration, and the estimation error,
depicted in Fig. 2, is mostly ranging between −0.05 m/s2

and 0.05 m/s2. The RMSE (calculated for the 100 Monte-
Carlo runs) is 0.04 m/s2, aligning with the accelerometer’s
standard deviation range (4×σa). These findings indicate that
the UMV-SO(3)-EA performs well and provides good results
even when exposed to the considered external acceleration.
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Fig. 1. Attitude estimation error of UMV-SO(3)-EA represented as Euler
angles
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Fig. 2. External acceleration estimation error aext − âext of
UMV-SO(3)-EA

3) Comparison with the IEKF coupled to the threshold-based
adaptive approach: Table II shows the RMSE of UMV-SO(3)-
EA algorithm, the IEKF with and without adaptation for
several scenarios depending on the value of γ̄, where γ̄ = 1.0,
γ̄ = 0.7, γ̄ = 0.55, and γ̄ = 0.3 indicates 100%, 70%, 55%,
and 30% of taking into account the external acceleration, re-
spectively. In all scenarios, the IEKF with adaptation performs

TABLE II
RMSE (IN DEGREES) FOR UMV-SO(3)-EA, IEKF WITH ADAPTATION,

AND IEKF WITHOUT ADAPTATION IN SIMULATION

γ̄
UMV-SO(3)-EA IEKF IEKF

with adaptation without adaptation
RMSE (degrees) RMSE (degrees) RMSE (degrees)

1.0 0.43 7.64 9.90
0.7 0.42 1.92 6.17
0.55 0.42 1.19 4.53
0.3 0.42 0.72 2.24

better than the IEKF without adaptation, because the latest
relies on unreliable measurements. Across the same scenarios,



UMV-SO(3)-EA demonstrates better performance to the IEKF
with adaptation. This is because the IEKF with adaptation
ignores acceleration measurements when detecting external
acceleration. The accuracy of UMV-SO(3)-EA estimation is
not affected significantly by a full or partial presence of
external acceleration. In contrast, the accuracy of the IEKF
with adaptation decreases when increasing the presence of
external acceleration. This highlights that UMV-SO(3)-EA
provides robust performance.

C. Evaluation with real data
In this subsection, we show the comparison results using

the BROAD benchmark datasets [20]. These datasets encom-
pass various real movement scenarios, including rotation and
translation, each stored in separate files identified by a trial
ID. The datasets are thoroughly described in [20], providing
details on sensors’ noise variances and dataset characteristics.

For our comparison, we computed the RMSE over 50s
after the initiation of movement. Note that there is an initial
rest phase of approximately 30s, so each algorithm runs for
around 80s for each scenario. We conducted this analysis for
two different trials, numbered 16, and 23 with the results
presented in Table III. In trial 16, there is a significant external

TABLE III
RMSE (IN DEGREES) FOR UMV-SO(3)-EA, IEKF WITH ADAPTATION,

AND IEKF WITHOUT ADAPTATION WHEN USING REAL DATASETS

Trial ID UMV-SO(3)-EA IEKF IEKF
with adaptation without adaptation

In [20] RMSE (degrees) RMSE (degrees) RMSE (degrees)
16 7.23 10.96 40.56
23 4.42 5.50 6.65

acceleration, with the measured acceleration norm reaching up
to 10 times the Earth’s gravity, persisting at a high value for
most of the time. Trial 23, on the other hand, exhibits a lower
acceleration norm, staying below 2 times the Earth’s gravity,
and having fewer instances with high measurement accelera-
tion norms, mostly remaining close to the Earth’s gravity. Our
observations indicate that the UMV-SO(3)-EA consistently
outperforms the IEKF with threshold-based adaptation. The
improvement varies depending on the duration of external ac-
celeration, and it is particularly significant during long periods
of external acceleration. The accelerated motion duration of
trial 16 is close to the simulated scenario with γ = 0.55.
The IEKF with adaptation performs 2.8 times worse than
UMV-SO(3)-EA in simulation, and around 1.5 times in real
data. This difference could be due to several reasons, such
as unmet assumptions regarding uncorrelated measurement
noises, imprecise knowledge of covariance matrices, and sen-
sor biases.

VII. CONCLUSION AND FUTURE WORK

This paper presented a novel attitude estimation algorithm
in the presence of unknown external acceleration, using mea-
surements from MARG sensors. The proposed UMV-SO(3)-
EA was evaluated through Monte Carlo simulations and
real datasets, and it was compared to the invariant extended

Kalman filter (IEKF), with a threshold-based adaptation tech-
nique. The results, with both simulated and real data, showed
that the UMV-SO(3)-EA performed precise and robust attitude
estimation under significant external acceleration, and also
outperformed the IEKF with threshold-based adaptation. The
results showed also accurate external acceleration estimation
of UMV-SO(3)-EA. In future work, the proposed algorithm
will be extended to consider sensor biases.
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