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Abstract. Current proposals for quantum compilers involve the synthe-
sis and optimization of linear reversible circuits and among them CNOT
circuits. This class of circuits represents a significant part of the cost of
running an entire quantum circuit and therefore we aim at reducing the
size of CNOT circuits. In this paper we present a new algorithm for the
synthesis of CNOT circuits based on the solution of the syndrome de-
coding problem. Our method addresses the case of ideal hardware with
an all-to-all qubit connectivity and the case of near-term quantum de-
vices with restricted connectivity. Benchmarks show that our algorithm
outperforms existing algorithms in both cases of partial and full connec-
tivity.

Keywords: Quantum Circuit Synthesis · CNOT Circuits · Syndrome Decod-
ing · Reversible Computation · Noisy Intermediate Scaled Quantum Computers
(NISQ).

1 Introduction

Quantum compilers transform a quantum algorithm into an optimized sequence
of instructions (elementary gates) directly executable by the hardware. The most
common universal set of gates for this task is the Clifford+T gate set, used
in many quantum architectures [7]. With this setup two resources have to be
optimized in priority: the T gate and the CNOT gate. The T gate is considered
to be the most costly gate to implement and many efforts have been made to
reduce their number in quantum circuits [1, 13, 18]. Yet, when implementing
complex quantum algorithms, e.g, reversible functions, it is estimated that the
total number of CNOT gates increases much more rapidly with the number of
qubits than the number of T gates, and it is likely that the CNOT cost will not
be negligible on medium sized registers [13,21].



Circuits consisting solely of CNOT gates, also called linear reversible circuits,
represent a class of quantum circuits playing a fundamental role in quantum
compilation. They are part of the so-called Clifford circuits and the CNOT+T
circuits, two classes of circuits that have shown crucial utility in the design of effi-
cient quantum compilers [1,13] and error correcting codes [6,12]. For instance the
Tpar optimizer [1] takes a Clifford+T circuit as input and decomposes it into a
series of CNOT+T circuits separated by Hadamard gates. Then each CNOT+T
circuit is optimized and re-synthesized by successive syntheses of CNOT circuits
and applications of T gates.

Hence the synthesis of CNOT circuits naturally occurs in general quantum
compilers and giving efficient algorithms for optimizing CNOT circuits will then
be of uttermost importance.

With the current near term quantum devices, also called Noisy Intermediate
Scaled Quantum Computers (NISQ) [26], the synthesis of circuits is subject to
constraints on the elementary operations available. In this situation, a physi-
cal qubit on the hardware can only interact with its neighbors, restricting the
2-qubit gates —such as CNOT— one can apply. Taking into account these con-
straints is a crucial and difficult task for the design of quantum algorithms and
the optimization of the corresponding quantum circuits. In particular, in the
literature several works present post-processing techniques to convert with min-
imum overhead a circuit designed for an ideal hardware to a circuit designed for
a specific architecture [8].

Contribution and outline of the paper. In this paper we focus on the
size optimization of linear reversible circuits. We present a new method for the
synthesis of CNOT circuits relying on solving a well-known cryptographic prob-
lem: the syndrome decoding problem. Our algorithm transforms the synthesis
problem into a series of syndrome decoding problems and we propose several
methods to solve this particular subproblem. This method, initially designed for
a full qubit connectivity, is robust enough to be extended to partial connectivity.

The outline of the paper is the following: in Section 2 we present the basic
notions and the state of the art in the synthesis of linear reversible circuits. We
first present our algorithm in the case of an all-to-all connectivity in Section 3.
Then we extend it to the case of restricted connectivity in Section 4. Benchmarks
are given at the end of Sections 3 and 4.

2 Background and state of the art

Synthesis of a linear reversible function. Let F2 be the Galois field of two
elements. A linear reversible function f on n qubits applies a linear Boolean
function on the inputs to each qubit. Given x ∈ Fn2 as inputs, the output of
qubit i is

fi(x) = αi · x = αi1x1 ⊕ αi2x2 ⊕ ...⊕ αinxn
where ⊕ is the bitwise XOR operation and the αi’s are Boolean vectors also
called parities. The action of f can be represented as an n× n binary matrix A



with A[i, :] = αi (using Matlab notation for row selection) and f(x) = Ax. In
other words each row of A corresponds to the parity held by the corresponding
qubit after application of A. By reversibility of f , A is also invertible in F2. The
application of two successive operators A and B is equivalent to the application
of the operator product BA.

We are interested in synthesizing general linear reversible Boolean functions
into reversible circuits i.e series of elementary reversible gates that can be exe-
cuted on a suitable hardware. To that end we use the CNOT gate, it performs
the following 2-qubit operation:

CNOT(x1, x2) = (x1, x1 ⊕ x2).

where x1, resp. x2, is the parity held by the control qubit, resp. the target qubit.
If applied after an operator A, the total operator (A + CNOT) is given from A
by adding the row of the control qubit to the row of the target qubit. Such row
operations are enough to reduce any invertible Boolean matrix to the identity
matrix, so the CNOT gate can be solely used to implement any linear reversible
operator. Overall, a CNOT-based circuit can be simulated polynomially: starting
from A = I the identity operator, we read sequentially the gates in the circuit
and apply the corresponding row operation to A.

We use the size of the circuit, i.e, the number of CNOT gates in it, to eval-
uate the quality of our synthesis. The size of the circuit gives the total number
of instructions the hardware has to perform during its execution. Due to the
presence of noise when executing every logical gate, it is of interest to have the
shortest circuit possible.

Connectivity constraints. At the current time, for superconducting technolo-
gies, full connectivity between the qubits cannot be achieved. The connections
between the qubits are given by a connectivity graph, i.e, an undirected, un-
weighted graph where 2-qubit operations, such as the CNOT gate, can be per-
formed only between neighbors in the graph. Examples of connectivity graphs
from current physical architectures are given on Fig. 1.

LU decomposition. Given the matrix representation A of a generic linear re-
versible operator, we can always perform an LU decomposition [11] such that
there exists an upper (resp. lower) triangular matrix U (resp. L) and a permu-
tation matrix P such that A = PLU . The invertibility of A ensures that the
diagonal elements of L and U are all equal to 1. In the remainder of this paper,
the term “triangular operator” stands for an operator whose corresponding ma-
trix is either upper or lower triangular. The LU decomposition is at the core of
our synthesis of general linear reversible Boolean operators: synthesizing U , L,
P and concatenating the circuits gives an implementation of A.

State of the art. In the unrestricted case the best algorithm reaching an asymp-
totic optimum is [23, Algo. 1] and produces circuits of size O(n2/ log2(n)). This
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Fig. 1: Example of qubit connectivity graphs from existing architectures

algorithm is for instance used in the Tpar and Gray-Synth algorithms [1, 2] so
any improvement over [23, Algo. 1] will also improve any quantum compiler
that relies on it. In the restricted case the first proposed approach has been
to transform the circuits given by an unrestricted algorithm with swap inser-
tion algorithms to match the connectivity constraints [20, 24, 28]. To produce
more efficient circuits, two concomitant papers proposed a modification of the
Gaussian elimination algorithm [17, 22]. They synthesize the operator column
by column similarly to the Gaussian Elimination algorithm but they use Steiner
trees to compute the shortest sequence of CNOT gates for the synthesis of one
column. In [17] the authors compare their method based on Steiner trees against
two compilers: Rigetti Computing’s QuilC and Cambridge Quantum Comput-
ing’s t|ket〉 that both produced state of the art results on benchmarks published
by IBM [9]. The benchmarks show a consequent savings in the total number of
CNOT gates in favor of the Steiner tree method, so we consider that the work
in [17] is state-of-the-art and we will compare solely to their algorithm.

3 Algorithm for an all-to-all connectivity

In this section we present our algorithm in the case of a complete connectivity
between the qubits. We focus on the synthesis of a lower triangular operator
L ∈ Fn×n2 . What follows can be straightforwardly extended to the case of upper
triangular operators and to general operators using the LU decomposition. With
an all-to-all connectivity one can avoid to apply the permutation P by doing a
post-processing of the circuit that would transfer the permutation operation
directly at the end of the total circuit. This can be done without any overhead
in the number of gates.



A circuit implementing L can solely consist of “oriented” CNOTs, whose
controlled qubit i and target qubit j satisfy i < j. The circuit given by the
Gaussian elimination algorithm is an example. For this particular kind of circuits,
a CNOT applied to a qubit k does not have any influence on the operations
performed on the first k− 1 qubits: removing such a CNOT will not modify the
result of the synthesis of the first k − 1 parities. We use this property to design
a new algorithm where we synthesize L parity by parity and where we reuse all
the information acquired during the synthesis of the first k parities to synthesize
parity k + 1.

Given Ln−1 = L[1:n− 1, 1:n− 1] (again using Matlab notation), a circuit C
implementing the operator

(
Ln−1 0

0 1

)
and considering that we want to synthesize

the operator L =
(
Ln−1 0
s 1

)
the core of our algorithm consists in adding a sequence

of CNOTs to C such that we also synthesize the parity s of the n-th qubit. During
the execution of C, applying a CNOT i→ n will add the parity currently held by
qubit i to the parity of qubit n without impacting the synthesis of the first n−1
parities. In other words, if we store in memory all the parities that appeared on
all n−1 qubits during the execution of the circuit C, we want to find the smallest
subset of parities such that their sum is equal to s. Then when a parity belonging
to this subset appears during the execution of C, on qubit i for instance, we insert
in C a CNOT i→ n. We ultimately have a new circuit C ′ that implements L.

The problem of finding the smallest subset of parities whose sum equals s
can be recast as a classical cryptographic problem. Assuming that H ∈ Fn−1×m2

is a Boolean matrix whose columns correspond to the m available parities, any
Boolean vector x satisfying Hx = sT gives a solution to our problem and the
Hamming weight of x, wt(x), gives the number of parities to add, i.e, the number
of CNOTs to add to C. We are therefore interested in an optimal solution of the
problem

minimize
x∈Fm

2

wt(x)

such that Hx = sT .
(1)

Problem 1 is an instance of the syndrome decoding problem, a well-known
problem in cryptography. The link between CNOT circuit synthesis and the
syndrome decoding problem has already been established in [2], yet it was used in
a different problem for proving complexity results (under the name of Maximum
Likelihood Decoding problem) and the authors did not pursue the optimization.
The syndrome decoding problem is presented in more details in Section 3.1.

To summarize, we propose the following algorithm to synthesize a triangular
operator L. Starting from an empty circuit C, for i from 1 to n perform the
three following steps:

1. scan circuit C to compute all the parities available on a single matrix H,
2. solve the syndrome decoding problem Hx = s with s the parity of qubit i,
3. add the relevant CNOT gates to C depending on the solution obtained.

Provided that the size of C remains polynomial in n, which will be the case, then
steps 1 and 3 can be performed in polynomial time and in practice in a very



short amount of time. The core of the algorithm, both in terms of computational
complexity and final circuit complexity, lies in Step 2.

3.1 Syndrome decoding problem

In its general form, the syndrome decoding problem is known to be NP-Hard [4]
and cannot be approximated by a constant factor [3]. A good overview of how
difficult the problem is can be found in [27].

We give two methods for solving the syndrome decoding problem. The first
one is an optimal one and uses integer programming solvers. The second one is
a greedy heuristic for providing sub-optimal results in a short amount of time.

Integer programming formulation. The equalityHx = s is a Boolean equal-
ity of n lines. For instance the first line corresponds to

H1,1x1 ⊕H1,2x2 ⊕ . . .⊕H1,mxm = s1.

We transform it into an “integer-like” equality constraint. A standard way to do
it is to add an integer variable t and to create the constraint

H1,1x1 +H1,2x2 + . . .+H1,mxm − 2t = s1.

If we write c = (1, ..., 1, 0, ..., 0)T ∈ Nm+n and A = [H|−2In] then the syndrome
decoding problem is equivalent to the integer linear programming problem

min
x∈Fm

2 ,t∈Nn
cT · [x; t]

such that A[x; t] = s.
(2)

A cost minimization heuristic. Although the integer programming approach
gives optimal results, it is very unlikely that it will scale up to a large number
of qubits. Moreover, to our knowledge the other existing algorithms proposed in
the literature give exact results, they are complex to implement and their time
complexity remains exponential with the size of the problem. We therefore have
to consider heuristics to compute an approximate solution in a much shorter
amount of time.

We use a simple cost minimization approach: starting with the parity s we
choose at each iteration the parity v in H that minimizes the Hamming weight
of v⊕ s and we pursue the algorithm with the new parity v⊕ s. The presence of
the canonical vectors in H (as we start with the identity operator) is essential
because they ensure that this method will ultimately converge to a solution.

A simple way to improve our heuristic is to mimic path finding algorithms
like Real-Time A* [19]. Instead of directly choosing the parity that minimizes
the Hamming weight, we look up to a certain horizon and we make one step in
the direction of the most promising path. To control the combinatorial explosion
of the number of paths to browse, we only expand the most promising parities



at each level. We set the maximum width to m and the depth to k so that it
represents at most mk paths to explore. With suitable values of m and k we
can control the total complexity of the algorithm. A limitation of such a simple
approach is that we can store the same path but with different parities order:
we decided to ignore this limitation in order to keep a simple implementation.

Lastly, we introduce some randomness by change of basis and we solve the
problem PHx = Ps for several change of basis matrices P . Repeating this
several times for one syndrome decoding problem increases the chance to find
an efficient solution. This technique has been proven to be efficient for a class of
cryptographic algorithms called Information Set Decoding [25], even though the
complexity of these algorithms remains exponential.

3.2 Benchmarks

All the code is written in Julia and executed on the QLM (Quantum Learning
Machine) located at ATOS/BULL. We generate random operators by generat-
ing random circuits with randomly placed CNOT gates. When the number of
input gates is sufficiently large we empirically note that the operators generated
represent the worst case scenario.

We first generate an average complexity for different problem sizes: for n =
1..200 we generated 20 random operators on n qubits with more than n2 gates
to reach with high probability the worst cases. We run our algorithms on this
set of operators in the following cases:

– with the integer programming solver (Coin-or branch and cut solver),
– with the cost minimization heuristic with unlimited width and depth 1,
– with the cost minimization heuristic with width 60 and depth 2,
– with the cost minimization heuristic with width 15 and depth 3,
– with the cost minimization heuristic (width=Inf, depth=1) and 50 random

changes of basis, the “ISD” case.

In the case of the ISD experiment, due to its probabilistic nature, one can
hope that repeating the complete synthesis several times and keeping the shortest
circuit would improve the results. Yet the experiments show that it has a minor
influence on the final result.

The results are given on Fig. 2. For clarity, instead of plotting the size of the
circuits we plot the ratio between the size of the circuits given by our algorithms
and the state of the art algorithm [23, Algo. 1]. We stopped the calculations
when the running time was too large for producing benchmarks in several hours.

Overall, for the considered range of qubits and for all versions of our algorithm
we outperform [23, Algo. 1]. The integer programming solver gives the best
results with with a maximum gain of more than 40% but its scalability is limited:
beyond 50 qubits it requires too much computational time. Using commercial
softwares for reaching larger problem sizes would be interesting to confirm the
tendency toward an increasing gain.

Concerning the cost minimization heuristic, it seems better to increase the
depth of search than the width. With depth 3 and width 15 we have the best



results for the range 70-125 with 30% of gain. Surprisingly the ISD based method
with 50 random changes of basis works well until 60/70 qubits with more than
35% of gain. Then it seems that the number of random changes is not enough to
search efficiently an optimal solution and ultimately after 150 qubits the random
changes have no effect at all compared to the simpler heuristic with one try. It is
possible to increase this number of random changes but this comes at the price
of a longer computational time and the ISD method cannot compete with the
other versions of the cost minimization heuristic.

As the number of qubits increases our method performs worse. We ran a
few computations for much larger problems and the results are that [23, Algo. 1]
produces shorter circuits whenever n goes approximately beyond 400. This raises
the question of whether it is due to the method in itself or to the solution of
the syndrome decoding that becomes less and less optimal as the problem size
increases. We leave this question as future work.

We now look at the performance of the algorithms on a specific number of
qubits, here n = 60, but for different input circuit sizes. This experiment reveals
how close to optimal our algorithm is when we synthesize an operator for which
we expect a small output circuit. The results are given on Fig. 3. As the ISD
method produces the best results for this size of problem we only plot the results
for this method. We also plot the line y = x that shows how far we still are from
the optimal solution. Again we outperform the best algorithm in the literature
even for small input circuits with more than 50% of savings when the input
circuit is of size 100-300 gates, with a maximum saving of 60% for 200 gates.

Fig. 2: Average performance of the Syndrome Decoding based algorithms versus
the state of the art [23, Algo. 1].



Fig. 3: Performance of Syndrome Decoding based algorithms versus [23, Algo. 1]
on 60 qubits for different input circuit sizes.

4 Extension to an arbitrary connectivity

In this section we extend the algorithm to the case where the connectivity is
not complete. First we present how to adapt our algorithm based on syndrome
decoding for the synthesis of triangular operators, then we extend our method
to the synthesis of any general operator.

4.1 Synthesis of a triangular operator

Let G be a qubit connectivity graph and L the lower triangular operator to
synthesize. We require an ordering on the nodes of G such that the subgraphs
containing only the first k nodes, for k = 1..n, are connected. As we need to
synthesize both L and U we need in fact this property to be true for an ordering
of the qubits and the reverse ordering. An Hamiltonian path in G is enough
to have this property so for simplicity we assume that the ordering follows an
Hamiltonian path in G.

Even though the native CNOTs in the hardware are CNOTs between neighbor
qubits in the connectivity graph, it is possible to perform an arbitrary CNOT
gate but this requires more local CNOT gates. Given a target qubit qt and
a qubit control qc and assuming we have a path (qc, q1, ..., qk, qt) in the graph
connecting the two nodes (such path always exists with the assumption we made
above), it is possible to perform the CNOT qc → qt with max(1, 4k) CNOTs. An
example for 4 qubits (with k = 2) is given Fig 4.
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Fig. 4: CNOT in LNN architecture

Hence, it is still possible to perform the synthesis parity by parity but we
have to be more careful in the setting and in the solution of the syndrome
decoding problem. Not all parities have the same cost, depending on the qubit
holding the parity and its position on the hardware. Therefore we have to solve
a weighted version of the syndrome decoding problem. Namely once we have a
set of parities in a matrix H and a cost vector c ∈ Nm, we look for the solution
of the optimization problem

minimize
x∈Fm

2

cT · x

such that Hx = sT .
(3)

Problem 3 can be recasted again as an integer linear programming problem:
we only have to change the value of c. We also propose a greedy heuristic for
solving quickly and approximately the problem: we define the “basis cost” of
implementing s as the sum of the costs of each canonical vector whose component
in s is nonzero. Let bc(s) be this cost. Our greedy approach consists in finding
among the parities of H the parity v (column i of H) that minimizes the cost

c[i] + bc(s⊕ v).

This approach gives a good trade-off between zeroing the most costly com-
ponents of s and applying parities at a very high cost. Again we can repeat
the algorithm with random changes of basis to find a better solution. Especially
we focused on computing bases for which the canonical vectors have the lowest
possible costs.

Nonetheless, compared to the all-to-all case, solving the weighted syndrome
decoding problem is not the only computational core for controlling both the
quality of the solution and the computational time. Another key task lies in the
enumeration of the available parities. As we will see, it is possible to generate
more parities for one syndrome decoding problem instance and this increases the
chances to get a low-cost solution.

Listing the parities available. Until now we set the weighted syndrome de-
coding instances by computing the parities appearing during the synthesis and



by using the template in Fig. 4 to estimate their costs. This is in fact inefficient
because it ignores some specificities of the problem:

– It is possible to add multiple parities in one shot using the template in Fig. 4.
– There is not necessarily one unique path in G between the control qubit and

the target qubit.

|xc〉

|x1〉

|x2〉

|x3〉

|x4〉

|xt〉

|xc〉

|x1〉

|x2〉

|x3〉

|x4〉

|y〉

|y〉 = |xt ⊕ xc⊕x1⊕x2⊕x3 ⊕ x4〉

Fig. 5: Fan in CNOT in LNN architecture

More precisely, the template shown in Fig. 4 is the best to our knowledge,
in terms of size, to apply solely the parity on qubit qc to qubit qt. However it is
possible to apply any parity

qt ← qt ⊕ qc ⊕ki=1 αiqi

with αi ∈ {0, 1} using less CNOTs than required for applying only qc. In fact
the less costly linear combination of parities is the complete combination qc ⊕
q1⊕ ...⊕ qk, showing that 2k+1 CNOTs are enough. Removing any parity from
this combination requires 2 additional CNOTs per parity except for the qubit qk
that needs only one extra CNOT. An explanatory template on 6 qubits (k = 4)
is given on Fig. 5. For any parity at a distance k of the target qubit, there is at
most 2k−1 different linear combinations possible and just as many new parities
to consider. Moreover the path between the control qubit and the target qubit
matters as a different path will result in different linear combinations of parities.
A slight modification of the A* algorithm is enough to compute all the shortest
paths between two nodes in a graph.

Even for a small number of qubits the number of parities becomes quickly
intractable. The number of linear combinations along a path increases expo-
nentially with the length of the path as the number of paths for most of the
architectures — a grid for instance. In practice we control the total number of
parities by favoring paths over the choices in the linear combinations. This op-
tion is empirically justified but a more detailed analysis could be made. For one



path we only consider the less costly linear combination, i.e, the one that adds
all the parities on the way. On the other hand if possible we go through all the
shortest paths between one control qubit and one target qubit. We introduce a
parameter Pmax equal to the maximum number of shortest paths we consider
between two qubits.

4.2 Synthesis of a general operator

The extension of the synthesis from triangular to general operator is not as
straightforward as in the all-to-all connectivity case. We cannot simply write
A = PLU and concatenate the circuits synthesizing L and U and ultimately
permuting the qubits. If we want to use this algorithm as a sub-task of a global
circuit optimizer for NISQ architectures we cannot afford to swap the qubits
because it could break the optimizations done in the rest of the circuit.

To avoid the permutation of the qubits we have to transform the matrix A
by applying a pre-circuit C such that CA = LU . Then the concatenation of C−1
and the circuits synthesizing L and U gives a valid implementation of A.

Computation of C. If A is invertible, which is always the case, then it admits
an LU factorization if and only if all its leading principal minors are nonzero.
We propose an algorithm for computing C exploiting this property while trying
to optimize the final size of C. We successively transform A such that every
submatrix A[1:i, 1:i] is invertible. By construction when trying to make A[1 :
k, 1 : k] invertible for some k we have A[1:k−1, 1:k−1] invertible. If A[1 : k, 1 : k]
is invertible then we do nothing, otherwise we look in the parities A[k+1:n,1:k]
those who, added to A[k, 1 : k], make A[1 : k, 1 : k] invertible. By assumption
A is invertible so there is at least one such row that verifies this property. Then
among the valid parities we choose the closest one to qubit k in G. We can add
all the parities along the path because by assumption they belong to the span of
the first k−1 rows of A[1 : k, 1 : k] so it has no effect on the rank of A[1 : k, 1 : k].

Choice of the qubit ordering. A last optimization can be performed by
changing the qubits ordering. The algorithm we have presented for synthesizing
a triangular operator is still valid up to row and column permutations. Thus,
given a permutation P of the qubits, one can synthesize P−1LP by applying
our algorithm with the order given by P . Then, instead of computing a circuit
C such that CA = LU we search for a circuit C satisfying P−1CAP = LU and

CA = PLP−1PUP−1 = L′U ′

where L′ and U ′ can be synthesized using our algorithm. Searching for such
C can be done using our algorithm on A[P, P ] (in Matlab notation, i.e. the
reordering of A along the vector P ).

This means that we can choose P such that the synthesis of L and U will
yield shorter circuits. Empirically we noticed that when synthesizing the kth



parity of L it is preferable to have access to the parities appearing on qubits
k − 1, k − 2 etc. in priority for two reasons: first because they can modify more
bits on the kth parity and secondly because it is likely that there will be much
more parities available, increasing the chance to have an inexpensive solution to
the weighted syndrome decoding problem. Intuitively we want the ordering of
the qubits to follow at least an Hamiltonian path in G = (V,E) which would
match the previous restriction on the ordering we formulated at the beginning
of the section. We formulate the best ordering π : V → [[1, n]] as a solution of
the Minimum Linear Arrangement problem

minimize
π

∑
(u,v)∈E

wuv |π(u)− π(v)| (4)

where wuv is the weight of the edge connecting u and v in the graph. Here we
want to give priority to neighbors in the hardware: the nodes must be as close
as possible in the hardware if their “numbers” are also close. A way to do so is
to solve the MinLA problem, not in the hardware graph, but in the complete
graph with suitable weights. Namely wij must be large when i, j are neighbors
in the hardware and wij must be smaller if i, j are at distance 2 etc. The MinLA
problem has already been used for qubit routing [24] and the problem is in
general NP-Hard [10]. In our case we did not use any heuristic for solving this
problem: all the architectures chosen to test our method have Hamiltonian paths
and we simply chose manually a suitable ordering of the qubits. Fig. 6 features
the choices we made for some architectures: nodes are labeled with their position
in the linear arrangement. We leave as a future work the inclusion of the solution
of the MinLA problem in our algorithm.

4.3 Benchmarks

We compare our method against the best algorithm in the literature [17] whose
source code is available on the PyZX Github repository [16]. For each archi-
tecture considered in their implementation we generate a set of 100 random
operators and perform the synthesis using the Steiner trees. Their algorithm
provides an optimization using genetic algorithms but this implements the cir-
cuit up to a permutation of the qubits. As we focus on implementing exactly the
operator we considered their algorithm without this extra optimization.

Our own algorithm is implemented in Julia. The experiments have been car-
ried out on one node of the QLM (Quantum Learning Machine) located at
ATOS/BULL. We set a time limit of 10 minutes for the synthesis of an opera-
tor. We recall that Pmax is the maximum number of shortest paths considered
between two qubits. We also set Niter_syndrome to be the number of iterations
for the solution of a decoding syndrome and Niter the number of times that
the synthesis has been repeated. The values of the parameters for the different
problem sizes are the following:

– n < 36, Pmax = Inf, Niter = 100 and Niter_syndrome = 1,



Architecture #
Steiner

Syndrome
Saving

tSt (s) tSy (s)
[17] Mean Min. Max. Positive

9q Square 9 60 56 6% -25.5% 40.6% 66% 0.01 0.16
Rigetti 16q 16 272 245 10% -6% 23.1% 97% 0.022 1.6
IBM QX 5 16 245 195 20.2% 10% 28.7% 100% 0.019 2
16q Square 16 205 183 10.7% -7.1% 33% 93% 0.02 1.6
19q Line 19 455 470 -6.7% -19.4% 7.9% 6% 0.045 4.5

IBM Q20 Tokyo 20 292 239 18.1% 8.7% 26.9% 100% 0.025 1.8
25q Square 25 512 458 10.6% 3.5% 19.1% 100% 0.04 19

25q Sq. + diag. 25 410 324 21% 10.7% 28.3% 100% 0.035 8
36q Square 36 1067 891 16.5% 11% 22.4% 100% 0.1 67

36q Sq. + diag. 36 861 667 22.5% 18.2% 26.6% 100% 0.09 22
49q Square 49 1981 1662 16% 11.9% 20.7% 100% 0.2 420

49q Sq. + diag. 49 1607 1246 22.4% 19% 25.2% 100% 0.19 114
64q Square 64 3374 2812 16.6% 13.9% 18.9% 100% 0.54 79
81q Square 81 5363 4447 17% 14.4% 19.2% 100% 1.04 192
100q Square 100 8148 6666 18.2% 16.8% 19.8% 100% 2.1 449

Table 1: Performance of our Syndrome Decoding based algorithm vs Steiner trees
algorithm [17] for several architectures

– n = 36, Pmax = Inf, Niter = 20 and Niter_syndrome = 1,
– n = 49, Pmax = 10, Niter = 100 and Niter_syndrome = 1,
– n > 49, Pmax = 1, Niter = 100 and Niter_syndrome = 1.

The results are summarized in Table 1. Columns 3 and 4 give the average
size of the generated circuits for the method using Steiner trees in [17] and our
algorithm based on syndrome decoding. The next columns detail the savings:
the mean saving, the minimum saving (negative saving means that our algo-
rithm performs worse), the maximum saving and the proportion of operators for
which our circuit is actually shorter than the one provided by the state-of-the-
art method. The last two columns give the average time required to perform the
synthesis of one operator (all iterations included for our algorithm).

We can expect our algorithm to behave better if there are more connections
between the qubits. When the connectivity is as limited as possible, for instance
with an LNN architecture, our algorithm does not outperform the algorithm
based on Steiner trees. Except for 6% of the operators where we have a slight
gain (less than 8%) we provide circuits with more gates, up to 19%. For other
architectures the results are more promising. In the case of the 9-qubit square
there is a lot of variance in the results: depending on the operator we can have a
gain of 40% or a loss of 25%. Overall we still manage to produce a shorter circuit



66% of the time. For larger square architectures, we outperform the state-of-the-
art algorithm consistently with increasing savings, between 10% for the 25 qubits
square to 18% for the 100 qubits square. When adding diagonal connections in
the square architectures the results are even better. This shows that improving
just slightly the connectivity can improve consistently the results of our algo-
rithm compared to the state of the art method. Finally on specific architectures
we also provide better results. The results for Rigetti’s chip are not as good as
for IBM’s chips essentially because the connectivity is still close to a straight
line, otherwise we manage to have a saving of around 20% for both IBM-QX5
and IBM-Tokyo chips.

5 Conclusion

We have presented a new framework for the synthesis of linear reversible cir-
cuits. We exploit the specific structure of triangular operators to transform the
synthesis into a series of syndrome decoding problems, which are well-known
problems in cryptography. Using an LU decomposition we can synthesize any
quantum operator in the case of an all-to-all connectivity. Benchmarks show
that we outperform a state-of-the-art algorithm for intermediate sized problems
(n < 400). Our heuristics for solving the syndrome decoding problem are effi-
cient but could be still improved, both in circuit size and computational time.
For instance, some quantum algorithms have been proposed for solving the syn-
drome decoding problem via the Information Set Decoding algorithm [5,14,15],
which gives the possibility of designing a hybrid quantum/classical compiler for
this particular synthesis problem.

Then we have highlighted the robustness of our framework by extending it
to an arbitrary connectivity graph having a Hamiltonian path. With a suitable
pre-processing of the matrix we transform the problem into a series of weighted
syndrome decoding problems. Except for the LNN architecture whose connectiv-
ity is too sparse, we consistently outperform existing algorithms by a percentage
that increases with the number of qubits. As a future work, we can study how
to extend our method to the case where the connectivity graph does not have a
Hamiltonian path, similarly to [17].
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