
HAL Id: hal-04349311
https://hal.science/hal-04349311

Submitted on 17 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stairway To Rainbow
Gildas Avoine, Xavier Carpent, Diane Leblanc-Albarel

To cite this version:
Gildas Avoine, Xavier Carpent, Diane Leblanc-Albarel. Stairway To Rainbow. ASIA CCS ’23: ACM
ASIA Conference on Computer and Communications Security, Jul 2023, Melbourne VIC Australia,
Australia. �10.1145/3579856.3582825�. �hal-04349311�

https://hal.science/hal-04349311
https://hal.archives-ouvertes.fr

Stairway To Rainbow
Gildas Avoine

INSA, CNRS, IRISA

France

Xavier Carpent

University of Nottingham

United Kingdom

Diane Leblanc-Albarel

CNRS, INSA, IRISA

France

ABSTRACT
A cryptanalytic time-memory trade-off is a technique introduced

by M. Hellman in 1980 to perform brute-force attacks. It consists

of a time-consuming precomputation phase performed and stored

once and for all, which is then used to reduce the computation time

of brute-force attacks. A variant, known as rainbow tables, intro-
duced by Oechslin in 2003 is used by most of today’s off-the-shelf

password-guessing tools. Precomputation of such tables is highly

inefficient however, because much of the values computed during

this task are eventually discarded. This paper revisits rainbow ta-

bles precomputation, challenging what has so far been regarded

as an immutable foundation. The key idea consists in recycling

values discarded during the precomputation phase, and adapting

the brute force phase to make use of these recycled values. For a

given memory and probability of success, the stepped rainbow ta-
bles thus created significantly reduce the workload induced by both
the precomputation phase and the attack phase. The speedup ob-

tained by using such tables is provided, and backed up by practical

experiments.

CCS CONCEPTS
• Security and privacy→ Cryptanalysis and other attacks;
Authentication.

KEYWORDS
Applied Cryptography, Time-Memory Trade-Offs, Password Crack-

ing, Rainbow Tables

ACM Reference Format:
Gildas Avoine, Xavier Carpent, and Diane Leblanc-Albarel. 2023. Stairway

To Rainbow. In ACM ASIA Conference on Computer and Communications
Security (ASIA CCS ’23), July 10–14, 2023, Melbourne, VIC, Australia. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3579856.3582825

1 INTRODUCTION
A cryptanalytic Time-Memory Trade-Off (TMTO) is a technique

used to find preimages of outputs of a one-way function. TMTOs

were initially developed by Hellman in 1980 [21] to attack block

ciphers. TMTO has been at the heart of many real life attacks. For

example, A5/1, a stream cipher used in GSM communications, was

the target of a TMTO based attack [16, 19, 29]. More recently, in

2022, WPA3, a widely used WiFi protocol, has been attacked using

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0098-9/23/07. . . $15.00

https://doi.org/10.1145/3579856.3582825

TMTO [33]. TMTOs have notoriously been used to demonstrate

the weakness of Windows passwords [31] and played a significant

role in the popularization of salting in password hashing.

The preimage problem is defined as “finding 𝑥∗ ∈ 𝐴 such that

ℎ(𝑥∗) = 𝑦, given a one way (e.g., hash) function ℎ : 𝐴 → 𝐵, and

an image 𝑦 ∈ ℎ(𝐴) ⊆ 𝐵”. It has two extreme solutions: (1) the

brute force attack, where all preimages in 𝐴 are tested sequentially;

and (2) the dictionary or precomputed attack, where a database

of preimage-image pairs is computed and saved, and answering

an instance of the preimage problem consists in a simple lookup.

Denoting 𝑁 = |𝐴|, the former costs 𝑂 (𝑁) hash operations during

the attack phase but requires no setup or storage. The latter costs

𝑂 (𝑁) hash operations during the precomputation phase as well as

𝑂 (𝑁) in storage, but costs nothing in the attack phase (barring the

cost of the lookup). A TMTO presents a compromise between the

two: with 𝑂 (𝑀) memory, the attack phase costs 𝑂 (𝑁 2/𝑀2) and
the precomputation phase is 𝑂 (𝑁) [15].

Variants on Hellman’s original construction have been devel-

oped over time. Some were designed to be applied to stream ci-

phers [14, 18, 20], or generalized to work with multiple data (so-

called Time-Memory-Data Trade-Off [17]). Others apply TMTOs

in specific circumstances or environments, such as when the input

space is not uniformly distributed [9, 22], using external mem-

ory [8, 26], or FPGA [30, 32] and GPU [27, 29]. Finally, a number

of techniques were designed to improve the trade-off characteris-

tics, most notably distinguished points [23], rainbow tables [31], and
fuzzy rainbow tables [25]. All of these have been analyzed [13, 32],

improved upon [5–7, 12], and compared extensively [24, 28]. The

rainbow tables technique in particular stands out in terms of effi-

ciency as evidenced in [28], and is also popular in practice partly

due to the visibility of the Windows password attack [31], and a

number of hacking tools that implement rainbow tables [1–4]. We

consequently focus on rainbow tables in this work.

A TMTO is usually thought of as a trade-off between attack

time and attack memory (as its name suggests). However, other

characteristics are important, namely: probability of success and

precomputation time. The precomputation time in particular should

not be underestimated, as for large 𝑁 , it is the most likely practical

bottleneck [10].

In this paper, we identify that these four characteristics are dic-

tated by only three parameters: length of chains 𝑡 , number of tables
ℓ , and coefficient of maximality 𝛼 (see Sect. 2). We then propose a

new construction of rainbow tables that takes this framework into

consideration. Using the same memory and the same probability of
success, this construction, named stepped rainbow tables, can reach

new points in the trade-off space that were not reachable with

classic rainbow tables, and performs better everywhere else. Using

stepped rainbow tables for instance allows (all other characteristics

being equal) for 1.2 times smaller attack time, or 2.56 times smaller

precomputation time (See Sect. 6.4).

286

https://doi.org/10.1145/3579856.3582825
https://doi.org/10.1145/3579856.3582825
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579856.3582825&domain=pdf&date_stamp=2023-07-10

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Avoine, Carpent, Leblanc-Albarel

𝑓0 𝑓1
𝒙0,1 −→ 𝑥1,1 −→ 𝑥2,1 𝒙𝒕,1

𝑓0 𝑓1
𝒙0,2 −→ 𝑥1,2 −→ 𝑥2,2 𝒙𝒕,2
.
.
.

.

.

.
.
.
.

.

.

.

𝑓0 𝑓1
𝒙0,𝒎 −→ 𝑥1,𝑚 −→ 𝑥2,𝑚 𝒙𝒕,𝒎

Figure 1: Rainbow Matrix.

The paper is organized as follows. Some background on the

construction and properties of rainbow tables is given in Sect. 2.

The concept and construction of stepped rainbow tables is given

in Sect. 3. A theoretical analysis of their properties is given in Sect. 4.

A comparison between theoretical analysis and experiments is

given in Sect. 5. A comparison between rainbow tables and stepped

rainbow tables is given in Sect. 6. Finally, Sect. 7 concludes on the

benefits of using stepped rainbow tables.

2 BACKGROUND ON RAINBOW TABLES
2.1 Matrix Generation
The first and main step of the precomputation is the construction

of a so-called rainbow matrix (see Fig. 1), which consists of 𝑡 + 1
columns and𝑚 rows, where each element is denoted 𝑥𝑖, 𝑗 , such that

𝑥𝑖, 𝑗 ∈ 𝐴 with 0 ⩽ 𝑖 ⩽ 𝑡 and 0 < 𝑗 ⩽ 𝑚. Given 𝑥𝑖, 𝑗 , 𝑥𝑖+1, 𝑗 is defined
as:

𝑥𝑖+1, 𝑗 = 𝑓𝑖 (𝑥𝑖, 𝑗) .
The functions 𝑓𝑖 are called the hash-reduction functions and they

are different in each column of the matrix with:

𝑓𝑖 : 𝐴 → 𝐴

𝑥𝑖, 𝑗 ↦→ 𝑅𝑖 (ℎ(𝑥𝑖, 𝑗)) = 𝑥𝑖+1, 𝑗 ,

where 𝑅𝑖 : 𝐵 → 𝐴 are called reduction functions and ℎ is the one-

way function intrinsic to the preimage problem at hand. The choice

of reduction functions is discussed in [31]. In a nutshell, they are

chosen to (1) (nearly) uniformly map elements from 𝐵 to elements

in 𝐴,; (2) all be different; and (3) take negligible time compared to

hash functions. A common construction is 𝑅𝑖 : 𝑦 ↦→ 𝑦 + 𝑖 mod 𝑁 .

A sequence (𝑥𝑖, 𝑗)𝑡𝑖=0 is called a chain. The length of a chain is

the number of hash-reduction functions applied to build a chain. A

matrix of 𝑡 + 1 columns has chains of length 𝑡 .

Fig. 1 depicts a rainbow matrix. 𝑥0, 𝑗 is called the start point (SP)
of row 𝑗 and it can be arbitrarily chosen. 𝑥𝑡, 𝑗 is called the end point
(EP) of row 𝑗 .

After thematrix is computed, only the start points and end points,

i.e., the first and the last columns (in bold in Fig. 1) are stored, while

intermediary values are discarded. This is the key point of the time-

memory trade-off technique. The set of pairs resulting from the

first and last columns is called a rainbow table.

2.2 Clean Rainbow Tables
During the matrix generation, collisions may (and do) occur. When

a collision between two values occurs in a given column, the corre-

sponding chains merge, meaning that all their elements are equal

after that column. More formally, a merge between two chains 𝑗

and 𝑘 occurs when 𝑥𝑖, 𝑗 ≠ 𝑥𝑖,𝑘 and 𝑥𝑖+1, 𝑗 = 𝑥𝑖+1,𝑘 for a given col-

umn 𝑖 . Merges are a source of inefficiency for rainbow tables. It is

thus recommended (see e.g., [24, 28, 31]) to keep a single chain in

each set of merged chains. A table without merged chains is called

a clean rainbow table
1
. The rest of the paper discusses clean tables

only.

2.3 Maximality of Rainbow Tables
Since cleaning a table reduces the number of chains it contains,

there is an upper-bound on the number of chains a clean table of a

given length can have. A clean table is said to be maximal when
it has been generated from𝑚0 = 𝑁 start points. Given a maximal

table containing 𝑡 + 1 columns, the number of unique end points in

column 𝑡 is given by Thm. 1, introduced and proved in [13]. This

approximation is very precise numerically, and its simple closed

form allows for expressing other results in a clear and insightful

way.

Theorem 1. Given t and a sufficiently large N, the expected maxi-
mum number of chains per clean rainbow table is:

𝑚max

𝑡 ≈ 2𝑁

𝑡 + 2 .

Computing maximal tables is not practical however, because 𝑁

is typically very large. In practice, non-maximal rainbow tables are

generated, with𝑚0 ≪ 𝑁 . Themaximality factor 𝛼 (with 0 < 𝛼 < 1),

introduced in [10] is defined in Eq. (1)

𝑚𝑡 = 𝛼𝑚max

𝑡 . (1)

Eq. (2), introduced and proved in [10], generalizes Thm. 1 and

provides 𝑚𝑖 , the expected number of unique points in column 𝑖 ,

given𝑚0:

𝑚𝑖 ≈
2𝑁

𝑖 + 2𝑁
𝑚0

. (2)

By setting 𝑚0 = 𝑟𝑚max

𝑡 , one can combine Eq. (1) and Eq. (2) to

derive Eq. (3) (see proof and details in [10]):

𝑟 ≈ 𝛼

1 − 𝛼 . (3)

This helps determine the target number of chains𝑚0 to generate

in order to create a clean table with𝑚𝑡 chains and a maximality

factor 𝛼 :

𝑚0 =
𝑚𝑡

1 − 𝛼 (4)

2.4 Success probability
The coverage of a given matrix is the ratio between the number

of its unique values and 𝑁 . The coverage of a matrix is trivially

equivalent to the success probability of the attack phase: a value in

the matrix will always be recovered, and conversely. The success

probability of a table with𝑚 chains of length 𝑡 is given in [31] for

maximal rainbow tables and is adapted for non-maximal rainbow

tables with𝑚𝑡 chains and 𝑡 + 1 columns in Eq. (5).

𝑝 = 1 −
(
1 − 𝑚𝑡

𝑁

)𝑡
. (5)

With𝑚𝑡 =𝑚max

𝑡 , 𝑝 ≈ 1−𝑒−2 ≈ 0.86, which is an upper bound [31].

In order to obtain a higher success probability, a set of ℓ independent

1
Also known as perfect rainbow table.

287

Stairway To Rainbow ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

tables should be used instead of a single one. For ℓ tables, the success

probability is thus given by Eq. (6) [31]:

𝑝ℓ = 1 − (1 − 𝑝)ℓ . (6)

2.5 Filtration
As explained in Sect. 2.2, among the𝑚0 chains used at the beginning

of the precomputation phase, only𝑚𝑡 ≪ 𝑚0 chains remain after

cleaning. Therefore (𝑚0−𝑚𝑡) ·𝑡 hash operations – which represents
most of the effort – are wasted.

The paper [10] addresses this issue by introducing a technique

named filtration, which significantly reduces the number of un-

necessary hash operations during the precomputation phase. The

filtration method consists in progressively cleaning the rainbow

matrix in well-chosen columns instead of once at the end. Pushed

to its limit, filtration in every column leads to Thm. 2 [10].

Theorem 2. Given the factor 𝑟 =
𝑚0

𝑚max

𝑡
≪ 𝑡 , the number of

columns 𝑡 + 1, the minimum precomputation cost is:

𝑃min =

𝑡−1∑︁
𝑖=0

𝑚𝑖 ≈ 2𝑁 ln(1 + 𝑟) .

Filtering in every column is not advisable however, due to the

overhead of the filtration process [10]. Cleaning the tables in a

limited number of well-chosen columns is already sufficient to

be very close to the theoretical lower bound without incurring a

significant overhead. For instance, filtering in 25 optimally-placed

columns leads to a precomputation cost of 𝑃 ≈ 1.13 × 𝑃min[10].

2.6 Attack Phase
The attack phase is divided into 𝑡 steps (per table). One first assumes

that 𝑥∗ belongs to column 𝑡 − 1 (of a given table) and tests the

hypothesis as described below. If not, one proceeds similarly to

column 𝑡 − 2, and so on, until either a valid preimage is found, or

until reaching the beginning of the table.

Checking whether 𝑥∗ is in column 𝑡 − 1 consists in checking

whether 𝑅𝑡 (𝑦) matches an end point 𝑥𝑡, 𝑗 (since the table is clean,

there can be at most one such end point). If so, the chain 𝑗 is rebuilt

from the corresponding start point 𝑥0, 𝑗 up to 𝑥𝑡−1, 𝑗 . Ifℎ(𝑥𝑡−1, 𝑗) = 𝑦

(a case called a true alarm), the attack succeeds and the preimage of

𝑦 is 𝑥𝑡−1, 𝑗 . If not (a case called a false alarm), the attack proceeds

to the next step. In the next step, 𝑓𝑡 (𝑅𝑡−1 (𝑦)) is computed and,

again, the attacker checks for a matching end point. In the 𝑖-th

step (corresponding to column 𝑡 − 𝑖), 𝑓𝑡 (𝑓𝑡−1 (. . . 𝑓𝑡−𝑖+1 (𝑅𝑡−𝑖 (𝑦))))
is computed.

The average number of hash operations needed to perform a

search in column 𝑐 is given by Prop. 1.

Proposition 1. For a given column 𝑐 , the average number of
hash operations 𝐶𝑐 needed to perform a search is:

𝐶𝑐 = 𝑡 − 𝑐
𝑡∏
𝑖=𝑐

(
1 − 𝑚𝑖

𝑁

)
.

Proof. A proof for maximal tables can be found in [13]. The

result is here generalized to non-maximal rainbow tables, as in the

proof of Thm. 5. □

Once the search cost in a given column 𝑐 is known, the average

number of hash operations for an entire attack using ℓ tables can

be deduced. Thm. 3 gives a general expression of the average attack

phase cost.

Theorem 3. The average number of hash operations𝑇 required to
perform an attack using ℓ rainbow tables of length 𝑡 , given a search
space of size 𝑁 is:

𝑇 = ℓ

𝑡∑︁
𝑐=1

©­«𝑚𝑡

𝑁

(
1 − 𝑚𝑡

𝑁

)ℓ (𝑐−1) 𝑐∑︁
𝑗=1

𝐶𝑡− 𝑗+1
ª®¬ + ℓ

(
1 − 𝑚𝑡

𝑁

)𝑡 𝑡∑︁
𝑐=1

𝐶𝑐 .

Proof. See [13]. □

2.7 Memory Used
Due to the characteristic complexity of the attack phase,𝑂 (𝑁 2/𝑀2),
optimizing the use of the memory is paramount. Different storage

optimizations can be used to store rainbow tables [6, 12, 13]. In [6],

the authors show that a very effective method to store rainbow

tables, the compressed delta encoding method, allows to store tables

with a memory very close to the theoretical lower bound (approx.

0.66% [6]). We use this lower bound in the rest of this paper, as it

simplifies discussions, and is extremely close to the practical storage

cost using compressed delta encoding.

Near-optimal storage of rainbow tables consists in sorting and

compressing the end points (using ad-hoc compression), and storing

the start points as-is on ⌈log
2
(𝑚0)⌉ bits [6]. The total cost is given

by Eq. (7):

𝑀𝑅𝑇 = 𝑀𝑅𝑇
𝑠𝑝 +𝑀𝑅𝑇

𝑒𝑝

= ℓ

[
𝑚𝑡 ⌈log2 (𝑚0)⌉ + log2

(
𝑁

𝑚𝑡

)]
. (7)

3 STEPPED RAINBOW TABLES
During the cleaning process of rainbow tables, most computed

chains are discarded due to merges. Our key idea consists in re-

cycling some of these merged chains instead of discarding them.

The recycled chains are shorter than regular chains because the

merged parts are removed. Such tables may contain several such

“steps”, leading to so-called stepped rainbow tables. For the sake of
clarity, they are first introduced with a single step in Sect. 3.1, then

generalized to the multiple steps in Sect. 3.2.

3.1 Stepped Rainbow Tables with a Single Step
3.1.1 Precomputation phase. Precomputation is similar to that of

classic rainbow tables with the following twist. Once column 𝑠

is reached, a filtration is performed and intermediary end points
are temporarily stored. At each subsequent filtration, when chains

merge, one is kept for further extension while the rest are cut short.

The chains that are cut short have length 𝑠 and their intermediary

end points are their final end point. The ones that still remain after

the final filtration in column 𝑡 have length 𝑡 and their final end

point is their value in column 𝑡 . Fig. 2 illustrates the construction of

a stepped rainbow table. The solid blue curve is𝑚𝑐 , the number of

unique points remaining in column 𝑐 . The area under the dashed red

curve represents the amount of hash operations needed to generate

the table using the filtration method (each landing of the curve

288

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Avoine, Carpent, Leblanc-Albarel

Figure 2: Construction of stepped rainbowmatrix with single
step.

corresponds to the application of a filter). The stepped rainbow

matrix obtained at the end of precomputation phase is colored in

green.

3.1.2 Attack Phase. In a classic rainbow table, all columns have the

same probability of raising a true alarm, but the further to the right

the column is, the lower is the cost of searching in that column (in

other words, 𝐶𝑐 is decreasing). Therefore, the most effective search

order is from the last column 𝑡 and in subsequent decreasing order.

For a 1-step stepped rainbow table, the probability of finding the

preimage depends on the column index, because not all columns

contain the same number of points: columns 0 to 𝑠 contain 𝑚𝑠

points and columns 𝑠 + 1 to 𝑡 contain𝑚𝑡 points.

Moreover, when an alarm (true or false) occurs in a column 𝑐

with 𝑐 < 𝑠 , it can either be detected in column 𝑠 or in column 𝑡 . It

is detected in column 𝑠 if a match occurs with one of the chains of

length 𝑠 , otherwise the alarm is detected in column 𝑡 . The number

of cryptographic operations needed to obtain an alarm is conse-

quently not the same in all columns. Additionally, the number of

cryptographic operations to check whether an alarm is true or false

similarly depends whether the alarm was raised in column 𝑠 or in

column 𝑡 .

Consequently, with 1-step stepped rainbow tables, instead of

exploring the table from column 𝑡 − 1 to column 0, the search is

performed in an order that minimizes the total expected time. This

corresponds to searching in the non-explored column with the

highest success probability over average cost ratio
2
.

The procedure to perform the attack phase with 1-step stepped

rainbow table is provided in Algo. 1. The definition of the function 𝜇

that appears in Algo. 1 is provided in Def. 3. In a nutshell, this

function returns the index of the most promising column for the

forthcoming search.

3.2 Stepped Rainbow Tables with 𝜏 Steps
The concept of stepped rainbow tables can be naturally generalized

to 𝜏 > 1 steps. Fig. 3 illustrates the resulting structure. In what

2
Another example of non-monotonic search order is discussed in the analysis of

rainbow tables with heterogeneous widths [7]. Optimality of the “success probability

over average cost ratio” as a decision metric is also discussed there.

Algorithm 1: Attack Phase (1-step)

Input :𝑦 ∈ 𝐵 : 𝑦 = ℎ (𝑥∗) ∈ 𝐴
Output :𝑥∗ (success) or ⊥ (failure)

1 𝑠𝑡𝑒𝑝𝑠𝐿𝑖𝑠𝑡 ← [𝑠, 𝑡]
2 𝐸𝑃 ← [[𝐸𝑃1 ...𝐸𝑃𝑚𝑠−𝑚𝑡], [𝐸𝑃𝑚𝑠−𝑚𝑡 +1 ...𝐸𝑃𝑚𝑠]]
3 𝑆𝑃 ← [[𝑆𝑃1 ...𝑆𝑃𝑚𝑠−𝑚𝑡], [𝑆𝑃𝑚𝑠−𝑚𝑡 +1 ...𝑆𝑃𝑚𝑠]]
4 𝑐 ← [𝑠, 𝑡]
5 v← [0 : len(𝑐) − 1]
6 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← False

7 while 𝑐 ≠ [0, 0] and 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = False do
8 𝑎𝑙𝑎𝑟𝑚 ← False

9 for 𝑑 = 0 to len(𝑐) − 1 do
10 v[𝑑] ← 𝜇 (𝑐 [𝑑])
11 end
12 𝑗 ← 𝑐 [v.index(max(v))]
13 𝑖 ← 𝑗

14 𝑥𝑖 ← 𝑅𝑖 (𝑦)
15 while 𝑖 ⩽ 𝑡 and 𝑎𝑙𝑎𝑟𝑚 = False do
16 if 𝑖 ∈ 𝑠𝑡𝑒𝑝𝑠𝐿𝑖𝑠𝑡 then
17 𝑖𝑛𝑑𝑒𝑥𝑖 ← 𝑠𝑡𝑒𝑝𝑠𝐿𝑖𝑠𝑡 .index(𝑖)
18 if 𝑥𝑖 ∈ 𝐸𝑃 [𝑖𝑛𝑑𝑒𝑥𝑖] then
19 𝑎𝑙𝑎𝑟𝑚 ← True

20 𝑥 ← 𝑆𝑃 [𝐸𝑃 [𝑖𝑛𝑑𝑒𝑥𝑖] .index(𝑥𝑖)]
21 for 𝑔 = 1 to 𝑗 − 1 do
22 𝑥 ← 𝑓𝑔 (𝑥)
23 end
24 if ℎ (𝑥) = 𝑦 then
25 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← True

26 end
27 end
28 end
29 if 𝑎𝑙𝑎𝑟𝑚 = False and 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = False then
30 𝑥𝑖 ← 𝑓𝑖 (𝑥𝑖)
31 𝑖 ← 𝑖 + 1
32 end
33 end
34 if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = False then
35 𝑐 [𝑐.index(𝑗)] ← 𝑐 [𝑐.index(𝑗)] − 1

36 else
37 return (𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 𝑥)
38 end
39 end
40 return (𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 0)

follows, the columns that specify the steps are denoted 𝑠𝑖 with

0 < 𝑖 ⩽ 𝜏 , with 𝑠𝑖 < 𝑠 𝑗 for 𝑖 < 𝑗 .

In the stepped rainbow table, 𝑚𝑠1 end points and their corre-

sponding start points are stored: for each step 𝑠𝑖 with 0 < 𝑖 < 𝜏 ,

𝑚𝑠𝑖 −𝑚𝑠𝑖+1 chains are stored with a length 𝑠𝑖 , and 𝑚𝑡 chains of

length 𝑡 are also stored.

The attack phase using 𝜏 steps is similar to Algo. 1. Algo. 2,

provided in Appendix B, depicts the attack phase of the generalized

stepped rainbow tables.

289

Stairway To Rainbow ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

𝒙0,1 𝒙𝒕,1
.
.
.

.

.

.

𝒙0,𝒎𝒕 𝒙𝒕,𝒎𝒕

𝒙0,𝒎𝒕+1 𝒙𝒔𝝉 ,𝒎𝒕+1
.
.
.

.

.

.

𝒙0,𝒎𝒔𝝉
. 𝒙𝒔𝝉 ,𝒎𝒔𝝉

𝒙0,𝒎𝒔𝝉 +1 𝒙𝒔𝝉−1,𝒎𝒔𝝉 +1
.
.
.

.

.

.

𝒙0,𝒎𝒔𝝉−1
. 𝒙𝒔𝝉−1,𝒎𝒔𝝉−1

.

.

.
.
.
.

.

.

.
.
.
.

𝒙0,𝒎𝒔1
. . . 𝒙𝒔1,𝒎𝒔1

Figure 3: Stepped rainbow matrix with 𝜏 steps.

4 ANALYSIS OF STEPPED RAINBOW TABLES
This section presents an analysis of the characteristics of stepped

rainbow tables.

4.1 Notations
Definition 1. We note 𝑘 (𝑐) the index of the leftmost step that is

to the right of column 𝑐 , i.e., 𝑠𝑘 (𝑐)−1 ⩽ 𝑐 < 𝑠𝑘 (𝑐) .

Def. 1 is useful to express some quantities concisely, in particular:

there are𝑚𝑠𝑘 (𝑐) points in the step immediately to the right of column

𝑐; similarly, there are𝑚𝑠𝑘 (𝑐) −𝑚𝑠𝑘 (𝑐)+1 chains of length 𝑠𝑘 (𝑐) there.
Where appropriate, 𝑠𝜏+1 refers to column 𝑡 and 𝑠0 refers to col-

umn 0. This convention allows for some results to be presented

more clearly and concisely.

The ratio 𝜌 is also introduced in Def. 2 for the purpose of making

subsequent results more concise.

Definition 2. Given a column 𝑐 and a step 𝑠𝑖 of a stepped rainbow
table, the proportion of chains with length 𝑠𝑖 in column 𝑐 is given by
𝜌𝑖,𝑘 (𝑐) with 𝜌𝑖, 𝑗 such that:

𝜌𝑖, 𝑗 =


𝑚𝑠𝑖
−𝑚𝑠𝑖+1
𝑚𝑠𝑗

𝑖 ⩽ 𝜏

𝑚𝑡

𝑚𝑠𝑗
𝑖 = 𝜏 + 1

In what follows, the attack chain refers to the chain built from 𝑦.

The attack chain starting in column 𝑐 and ending in column 𝑡 is

thus the chain finishing by the value 𝑓𝑡 (𝑓𝑡−1 (. . . 𝑓𝑐+1 (𝑅𝑐 (𝑦)))))).

4.2 Success Probability
Theorem 4. Given 𝜏 steps noted 𝑠𝑖 with 0 < 𝑖 ⩽ 𝜏 , 𝑠0 = 0 and

𝑠𝜏+1 = 𝑡 , and considering 𝑚𝑠𝑖 the number of unique elements in
column 𝑠𝑖 , the success probability 𝑝 of a single clean stepped rainbow
table is:

𝑝 = 1 −
𝜏+1∏
𝑖=1

(
1 −

𝑚𝑠𝑖

𝑁

)𝑠𝑖−𝑠𝑖−1
.

Proof. Each column 𝑐 covers𝑚𝑠𝑘 (𝑐) different elements. Follow-

ing a similar argument as for Eq. (5), we write:

𝑝 = 1 −
𝑡∏

𝑐=1

(
1 −

𝑚𝑠𝑘 (𝑐)

𝑁

)
.

Using the fact that 𝑠𝑘 (𝑐) (and therefore 𝑚𝑠𝑘 (𝑐)) is equal for all 𝑐

between two steps, we can group these factors together, resulting

in the expression in Thm. 4. □

The success probability for ℓ stepped rainbow tables 𝑝ℓ is then

directly obtained from Thm. 4, and is given by Eq. (8)

𝑝ℓ = 1 − (1 − 𝑝)ℓ . (8)

4.3 Precomputation Time
Constructing stepped rainbow tables costs the same number of hash

operations as classic rainbow tables (see Sect. 2.5). Whether inter-

mediary steps are saved during the precomputation phase or not

has no bearing on the number of hash computations (only the num-

ber𝑚0 of start points considered at the beginning of generation and

the number and positions of filters matter). As shown in Sect. 6.4,

the overhead due to filtration or the storage of intermediary points

is insignificant.

A distinguishing feature of stepped rainbow tables however is

that, for a given target memory and probability of success,𝑚0 is

typically much smaller than with classic tables. All other things

being equal, this significantly reduces the precomputation time.

The figure 𝑃 = 1.13 × 𝑃min is used to quantify the number of

hash operations performed in this phase (for both stepped rainbow

and classic tables, in accordance with [10]). As discussed in Sect. 5,

our experimental results closely match this estimation.

4.4 Attack Time
Contrarily to rainbow tables, the search order is not monotonic.

The cost in each column has an associated average cost, and a

given probability that the search succeeds. The average attack time

corresponds to the sum of the cost of the search in all columns,

visited in optimal order, and weighted by the probability that the

search stops there.

As in the classic case, a search in a given column either leads to

a true alarm (successful search), a false alarm or to no alarm. An

analysis of these probabilities and the associated costs is the focus

of sections 4.4.1 to 4.4.6.

A useful intermediary result is the probability that no merge

occurs between two given columns. This is one of the fundamental

results in [31] and is generalized to any two columns 𝑐 and 𝑐′ in
Lemma 1.

Lemma 1. Given two columns 𝑐 and 𝑐′ with 𝑐 < 𝑐′ ⩽ 𝑡 , the
probability that the attack chain does not merge with any chain of
the rainbow matrix by 𝑐′, given it had not merged in or before 𝑐 , is:

𝑝nomrg (𝑐, 𝑐′) =
𝑐′∏

𝑖=𝑐+1

(
1 − 𝑚𝑖

𝑁

)
. (9)

4.4.1 Probability of True Alarm. A true alarm occurs when the

start point of the attack chain appears in the corresponding column

of the stepped rainbow matrix.

290

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Avoine, Carpent, Leblanc-Albarel

Proposition 2. The probability that a true alarm occurs when
starting the attack chain in 𝑐 is:

𝑝find (𝑐) =
𝑚𝑠𝑘 (𝑐)

𝑁
.

Proof. There are𝑚𝑠𝑘 (𝑐) different elements in column 𝑐 of the

stepped rainbow matrix. Given that elements are uniformly dis-

tributed and that the number of elements in the solutions space is

𝑁 , the probability that the target 𝑥∗ is an element of a column 𝑐 is

the stated quantity. □

4.4.2 Probability of False Alarm. In stepped rainbow tables, a false

alarm occurs when the attack chain at column 𝑐 merges with a

chain of the matrix. This is similar to classic rainbow tables, with

the exception that this merge can be observed at any of the steps

𝑠𝑖 > 𝑐 , including indeed 𝑠𝜏+1 = 𝑡 , but not exclusively.

There is a distinction to be made as to whether the merge occurs

before 𝑠𝑘 (𝑐) or after. The two cases are analyzed in Props. 3 and 4.

Proposition 3. The probability to raise a false alarm due to a
merge between columns 𝑐 and 𝑠𝑘 (𝑐) is

𝑝fa-pre (𝑐) = 1 − 𝑝find (𝑐) − 𝑝nomrg (𝑐, 𝑠𝑘 (𝑐)) .

Proof. Straightforward, as these events (no alarm, true alarm,

false alarm) are mutually exclusive. □

Proposition 4. The probability to raise a false alarm due to a
merge between columns 𝑠𝑖 an 𝑠 𝑗 , with 𝑐 ⩽ 𝑠𝑘 (𝑐) < 𝑠𝑖 < 𝑠 𝑗 , is:

𝑝fa-post (𝑐, 𝑠𝑖 , 𝑠 𝑗) = 𝑝nomrg (𝑐, 𝑠𝑖) − 𝑝nomrg (𝑐, 𝑠 𝑗).

Proof. A false alarm due to a merge between columns 𝑠𝑖 and

𝑠 𝑗 means that no merge occurs between 𝑐 and 𝑠𝑖 but one occurs

between 𝑠𝑖 and 𝑠 𝑗 . Writing 𝐸1 and 𝐸2 respectively the events "no

merge occurs between 𝑐 and 𝑠𝑖 " and "a merge occurs between 𝑠𝑖
and 𝑠 𝑗 ", we have:

𝑝
fa-post

(𝑐, 𝑠𝑖 , 𝑠 𝑗) = Pr(𝐸1 ∧ 𝐸2)
= Pr(𝐸1) × Pr(𝐸2 | 𝐸1)
= 𝑝nomrg (𝑐, 𝑠𝑖)

(
1 − 𝑝nomrg (𝑠𝑖 , 𝑠 𝑗)

)
= 𝑝nomrg (𝑐, 𝑠𝑖) − 𝑝nomrg (𝑐, 𝑠𝑖)𝑝nomrg (𝑠𝑖 , 𝑠 𝑗)
= 𝑝nomrg (𝑐, 𝑠𝑖) − 𝑝nomrg (𝑐, 𝑠 𝑗)

The last equality stems from the nature of Eq. (9). □

4.4.3 Probability of No Alarms. When no match occurs between

the attack chain and end points of a table, no alarm is raised.

Proposition 5. The probability that no alarm occurs between a
column 𝑐 and column 𝑡 is

𝑝noalarm (𝑐) = 𝑝nomrg (𝑐, 𝑡).

Proof. For no alarm to happen, the attack chain must not merge

with the stepped rainbow matrix at any point between its start in

column 𝑐 and its end in column 𝑡 . □

4.4.4 Cost of Alarms. The cost of an alarm, i.e., the number of

cryptographic operations performed when an alarm occurs, is the

same for true and false alarms. In both cases, an entire chain has to

be rebuilt: firstly from column 𝑐 , where the search is performed, to

a step 𝑠𝑖 or to column 𝑡 (depending where the merge is detected)

and then from column 0 to column 𝑐 − 1. Therefore, the cost of an
alarm does not depends on its nature (true or false alarm) but only

on the column in which it is detected. The cost of an alarm is given

in Prop. 6 using Def. 2.

Proposition 6. Given a search performed in a column 𝑐 and 𝑘 (𝑐)
the index of the leftmost step that is to the right of column c, the
number of hash operations needed to rule out a false alarm is:

𝜏+1∑︁
𝑖=𝑘 (𝑐)

𝜌𝑖,𝑘 (𝑐)𝑠𝑖 .

Proof. 𝜌𝑖,𝑘 (𝑐) is the proportion of chains with length 𝑠𝑖 in col-

umn 𝑐 . It corresponds to the number of chains with a length 𝑠𝑖
in column 𝑠𝑖 divided by the total number of chains in column 𝑠𝑖 .

Given 𝑐 and 𝑘 (𝑐) as 𝑠𝑘 (𝑐)−1 ⩽ 𝑐 < 𝑠𝑘 (𝑐) , alarms are not necessarily

detected in step 𝑠𝑘 (𝑐) but can be detected in each step 𝑠 𝑗 > 𝑠𝑘 (𝑐) .
If a merge occurs in column 𝑗 with 𝑐 < 𝑗 ⩽ 𝑠𝑖 , the probability that

this merge is detected in step 𝑠𝑖 is 𝜌𝑖,𝑘 (𝑐) .
If an alarm is detected in step 𝑠𝑖 , a chain of length 𝑠𝑖 has to be

rebuilt, which costs 𝑠𝑖 hash operations. Therefore, the average cost

of an alarm in a column 𝑐 is the sum of the probability to detect the

alarm in each step 𝑠𝑖 with 𝑐 ⩽ 𝑠𝑖 , multiplied by the number of hash

operations needed to rule it out, depending on the step in which

the alarm is detected. □

4.4.5 Cost of No Alarm. The cost of no alarm in a given column 𝑐

is (𝑡 − 𝑐). If no alarm occurs in any steps, no chain will be rebuilt,

therefore only (𝑡 − 𝑐) hash operations will be computed.

4.4.6 Total Time of a Search in a Given Column. The number of

operations needed to perform a search in a column 𝑐 is given by

Thm. 5.

Theorem 5. For a given column 𝑐 and the index 𝑘 (𝑐), the average
number of cryptographic operations𝐶𝑐 needed to perform a search is:
For 𝑠𝜏 < 𝑐 ⩽ 𝑡 :

𝐶𝑐 = 𝑡 − 𝑐𝑝noalarm (𝑐) .
For 𝑐 ⩽ 𝑠𝜏 :

𝐶𝑐 =

(
1 − 𝑝nomrg (𝑐, 𝑠𝑘 (𝑐))

) 𝜏+1∑︁
𝑖=𝑘 (𝑐)

𝜌𝑖,𝑘 (𝑐)𝑠𝑖

+
𝜏∑︁

𝑗=𝑘 (𝑐)
𝑝fa-post (𝑐, 𝑠 𝑗 , 𝑠 𝑗+1)

𝜏+1∑︁
𝑖=𝑗+1

𝜌𝑖, 𝑗+1𝑠𝑖

+ (𝑡 − 𝑐) 𝑝noalarm (𝑐).

Proof. See Appendix A □

4.4.7 Average Attack Time. As explained in Sect. 3.1.2, a metric 𝜇

(corresponding to probability of success over average cost ratio) is

used to determine the most efficient column in which to perform

each iteration of the search. Using 𝜇 as defined in Def. 3, vector 𝜈 is

defined in Def. 4. Vector 𝜈 is composed of all columns of a stepped

rainbow table from the most to least efficient.

291

Stairway To Rainbow ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

Definition 3. Given 𝑁 and a column 𝑐 with 0 ⩽ 𝑐 ⩽ 𝑡 :

𝜇 (𝑐) =
𝑚𝑠𝑘 (𝑐)

𝑁𝐶𝑐
.

Definition 4. Given a stepped rainbow table with 𝑡 columns, the
vector 𝜈 with 𝜈 = [𝜈1, 𝜈2, . . . , 𝜈𝑡] is obtained by sorting the columns
[1, . . . , 𝑡] in decreasing order of 𝜇 (𝑐).

The average attack time i.e., the average number of hash opera-

tions needed to perform an attack with a set of ℓ stepped rainbow

tables, is given by Thm. 6.

Theorem 6. Given 𝑁 , ℓ stepped rainbow tables with 𝜏 steps, and
considering its vector 𝜈 = [𝜈1, 𝜈2, ...𝜈𝑡] ordering the columns of tables,
the average number of hash operations 𝑇 required to perform an
attack is:

𝑇 = ℓ

𝑡∑︁
𝑐=1

©­«
𝑚𝜈𝑐

𝑁

𝑐−1∏
𝑖=1

(
1 −

𝑚𝜈𝑖

𝑁

) 𝑐∑︁
𝑗=1

𝐶𝜈𝑡− 𝑗+1
ª®¬+ℓ

𝑡∏
𝑖=1

(
1 −

𝑚𝜈𝑖

𝑁

) 𝑡∑︁
𝑐=1

𝐶𝜈𝑐 .

with𝑚𝜈𝑐 the number of points in column 𝑐 , and with 𝑠𝜈𝑐−1 ⩽ 𝑐 < 𝑠𝜈𝑐 .

Proof. This expression is a generalization of Thm. 3. The proof

is constructed using an approach similar to the one used in [31].

𝑇 is obtained by adding on the one hand, the success probability

of the attack using ℓ tables, multiplied by its average cost, and on

the other hand, the failure probability of the attack using ℓ tables,

multiplied by the cost of a failed search.

The first term is obtained by multiplying for each column 𝑐 , the

probability of true alarm in the column, with the probability of no

true alarm in all earlier iterations:

𝑚𝜈𝑐

𝑁

𝑐−1∏
𝑖=1

(
1 −

𝑚𝜈𝑖

𝑁

)
This is multiplied by the cost of all searches performed until reach-

ing this column:

∑𝑐
𝑗=1𝐶𝜈𝑡− 𝑗+1 .

The second term is obtained by multiplying the failure proba-

bility using ℓ tables, namely ℓ

𝑡∏
𝑖=1

(
1 −

𝑚𝜈𝑖

𝑁

)
, with the cost of per-

forming a search in all columns of a table, namely

𝑡∑︁
𝑐=1

𝐶𝜈𝑡− 𝑗+1 . □

4.5 Memory Used
Formulas to evaluate the memory needed to store rainbow tables

are presented in [6]. In this section, these are adapted to stepped

rainbow tables.

4.5.1 Rationale. When using stepped rainbow tables, instead of

considering one set of points per table, end points and start points

are grouped according to their step. For the same number of chains

and the same number of tables, storage of stepped rainbow tables

end points thus takes more memory than rainbow tables. Indeed,

the points to be stored are divided into independent collections as

opposed to a single collection, resulting in less efficient compres-

sion.

On the other hand, in order to generate the same number of

chains and the same number of tables, much fewer start points

need to be considered at the beginning of precomputation. Thus

for a given number of chains (regardless of their size),𝑚0 is smaller

for stepped rainbow tables than for classic tables. As the memory

needed for storing start points depends on𝑚0, the storage of start

points ends up using less memory for stepped rainbow tables than

for rainbow tables.

Overall, the memory for stepped rainbow tables compared to

classic tables depends on specific parameters (See Sect. 6.5.3 for

discussion). Nevertheless, in this paper we always choose param-

eters to compare with rainbow tables for the same coverage and

memory.

4.5.2 Analysis. For each step 𝑠𝑖 , there are𝑚𝑠𝑖 −𝑚𝑠𝑖+1 points to be

stored. These are in addition to the𝑚𝑡 chains of length 𝑡 .

The memory needed to store the table end points is given by

Eq. (10), adapted for stepped rainbow tables from [6].

𝑀𝑆𝑅𝑇
𝑒𝑝 = ℓ

(
log

2

(
𝑁

𝑚𝑡

)
+

𝜏∑︁
𝑖=1

log
2

(
𝑁

𝑚𝑠𝑖 −𝑚𝑠𝑖+1

))
. (10)

As for start points,𝑚𝑠1 points are stored for each table instead

of𝑚𝑡 . The storage of individual start points is the same as in the

classic case. The memory needed to store stepped rainbow tables

start points,𝑀𝑆𝑅𝑇
𝑠𝑝 , is given in Eq. (11)):

𝑀𝑆𝑅𝑇
𝑠𝑝 = ℓ𝑚𝑠1 ⌈log2 (𝑚0)⌉ . (11)

The total memory used to store ℓ stepped rainbow tables𝑀𝑆𝑅𝑇

is simply𝑀𝑆𝑅𝑇 = 𝑀𝑆𝑅𝑇
𝑠𝑝 +𝑀𝑆𝑅𝑇

𝑒𝑝 .

5 EXPERIMENTS
This section illustrates the theoretical results obtained in Sect. 4

with practical experiments. Stepped rainbow tables with between

1 to 5 steps have been generated, and their precomputation time,

success probability, and attack time have been compared to the

respective theoretical results. In all cases, when a sufficient number

of experiments have been done, the relative difference between

theoretical and practical results is below 1%.

It is worth noting that the precomputation time (number of

hash operations) is the same for both rainbow tables and stepped

rainbow tables when considering equal parameters, namely number

of start points, number and positions of filters, and value of 𝑡 . The

comparison that follows consequently focuses on attack time and

success probability only.

In what follows, for the sake of clarity, we call configuration a list
of parameters describing a set of rainbow tables: maximality factor

of the tables, number of columns, and number of tables, respectively

denoted 𝛼 , 𝑡 , and ℓ . When considering stepped rainbow tables, the

configuration also contains the number of steps, denoted 𝜏 , and

their positions 𝑠1, . . . , 𝑠𝜏 .

5.1 Availability
The code used to generate stepped rainbow tables and perform

attacks with them is publicly available on GitHub
3
. It provides a

python script that launches stepped rainbow tables generation for

parameters (i.e., 𝑁 , ℓ , 𝛼 , 𝑡 and step positions) given in the script

header, and performs attacks using these generated tables. The

number of attacks to perform has to be specified. Log files are

3
https://github.com/DianeLeblancAlbarel/Stairway-To-Rainbow

292

https://github.com/DianeLeblancAlbarel/Stairway-To-Rainbow

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Avoine, Carpent, Leblanc-Albarel

created for tracing success probability, precomputation time and

attack time.

5.2 Environment
Experiments were conducted on a computer hosting two AMD

EPYC 7H12 processors composed of 64 physical cores and 64 virtual

cores each, for a total of 128 physical cores and 128 virtual cores.

We used up to 128 of the physical cores in our experiments.

The precomputation phase has been distributed as proposed

in [10] using the filtration method adapted on stepped rainbow

tables. Both the precomputation and attack phases were written

in C, using function SHA256 of OpenSSL for hashing. The Open

MPI library was used to distribute the precomputation phase.

5.3 Success Probability
Theorem 4 is used to choose stepped rainbow tables configurations

that reach a target success probability.

Experiments with different configurations were performed, con-

taining up to 5 steps positioned between columns 0.3𝑡 and 𝑡 . The

positions of the steps are not critical in these experiments, given

that there is no “optimal” configuration. Indeed, the position of

the steps defines a trade-off between precomputation time and the

attack time. Nevertheless, configurations with widely different step

positions were tested to cover various cases: concentrated on the

right, concentrated on the left, uniformly distributed, etc. Success

probabilities were tested from 85% to 99.5%. All experiments lead

to the same conclusions. For brevity, only the case using 2 tables

and a 95% success probability is presented here. The probability of

95% have been chosen arbitrary but same results are obtained with

other target success probabilities.

Fig. 4 depicts the success probabilities when considering exper-

iments based on ℓ stepped rainbow tables with ℓ = 2. The blue

horizontal line in the figure is the theoretical success probability,

chosen to be 95%.

A test consists in randomly choosing one of the 𝑁 elements

of the space 𝐴, hashing it, and trying to find its preimage using

the generated stepped rainbow tables. In Fig. 4, 25 configurations

are tested. A batch of 10 000 attacks was performed for each con-

figuration. Each point of the figure represents a different tested

configuration. The success probability obtained corresponds to the

proportion of the attacks in the batch that succeeded.

For all configurations, the obtained success probabilities are all

between 94.7% and 95.4%.

5.4 Attack Time
To test the compliance of the attack time with the model given in

Sect. 4, various configurations have been tested. For each config-

uration tested, 25 batches of 20 000 attacks were performed, i.e.,

500 000 attacks per configuration. For brevity and clarity of exposi-

tion, we display a random selection of 25 among the large sample of

tested configurations. Tests were made for the same coverage and

memory, though experiments performed for different memory and

coverage lead to same conclusion. The 25 configurations presented

here use 5 steps, 2 tables, and a 95% success probability. The differ-

ences between each configuration tested are various values of the

parameters 𝛼 and 𝑡 , and steps positions. The target probability and

Figure 4: Experimental success probability according to the
configuration used, with theoretical success probability equal
to 95%.

Figure 5: Average number of hash for an attack over theoret-
ical number of hash for different configurations.

memory are the same. The memory𝑀 and 𝑁 have been arbitrarily

chosen to correspond to reasonable cases, namely𝑀 = 63.9 GB and

𝑁 = 2
42
. The position of the steps varies between 0.3𝑡 and 𝑡 (See

Sect. 6.3 for explanations about this bound).

Fig. 5 presents the results obtained. For each tested configuration,

the average attack time of the configuration corresponds to the

average number of hashes performed over the 500 000 attacks. Each

point represents the ratio between the average attack time of each

configuration and the theoretical counterpart given by Thm. 6.

The black line represents for each point the first and third quartile

obtained on each of the 25 batches of 20 000 attacks. The black

dashes represent quartiles 0 and 4.

The results are well distributed around 1.0. The large majority

of experiments (between first and third quartile) are within ±1.5%.
Fig. 5 leads to conclude that experimental results fit the theory very

well. It is worth noting that significant variations in the attack time

are intrinsic to rainbow tables and are noticeable for both stepped

rainbow and classical rainbow tables.

293

Stairway To Rainbow ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

6 EVALUATION
This section compares performances of rainbow tables and stepped

rainbow tables. The comparison methodology is first introduced,

then the configurations used for the comparison are established, the

results are presented, and the compatibility of the stepped rainbow

tables with existing improvements is finally discussed.

6.1 Comparison Methodology
The concept of configuration is introduced in Sect. 5. Defining such

a configuration is needed prior to generating a set of tables. As

concluded in [11], the precomputation time is usually the bottleneck

that prevents the use of large-scale TMTOs. Nonetheless, the attack

time is of primary importance as well. The comparison thus focuses

on the trade-off between these two constraints.

Various trade-off curves are compared. For each comparison, a

target success probability and an available memory for the attack

phase are set. These parameters being fixed, the best configuration
refers to the configuration for which there is no other configuration

having both better precomputation time and better attack time,

whether we consider rainbow tables or stepped rainbow tables.

These configurations define the Pareto frontier for each comparison.

We describe costs (both precomputation and attack phases) in

terms of number of hash operations. This allows for better accuracy,

and can be transposed to any computing environment. A good

approximation of the time in seconds for the precomputation or

attack phase is indeed simply the number of hash operations to be

performed divided by the number of hash operations computable

per second on the chosen environment. As shown in [10], this

approximation may vary slightly for the precomputation phase

depending on the distributed environment used. For the attack

phase, this approximation is very accurate.

6.2 Configurations
This section presents how the configurations for the comparisons

were determined.

6.2.1 Rainbow Tables. As previously explained in Sect. 5, three

parameters, namely 𝛼 , 𝑡 , and ℓ are sufficient to fully define the

characteristics of a rainbow table. The success probability of a single

table and the memory available for the attack phase, respectively

given by Eq. (5) and Eq. (7), are fixed by 𝛼 and 𝑡 . Only the number

of tables, ℓ , remains free. As a consequence, for any given value
4

for ℓ , there exist a unique configuration once 𝛼 and 𝑡 are chosen.

Typically, the number ℓ of tables chosen, is the smallest or second

smallest value that allows reaching the expected success probabil-

ity
5
given by Eq. (6). In practice, only a small range of values for ℓ

is used, since, above a certain number of tables (e.g., 6 tables and

up), adding a table does not reduce the precomputation time sig-

nificantly but does increases the attack significantly. Therefore, in

practice, for a given success probability and a given memory for

the attack phase, only a few configurations of rainbow tables are

meaningful.

4
Barring those for which the target success probability or memory are unattainable.

5
Certain success probabilities are only achievable by using a sufficient number of

tables.

6.2.2 Stepped Rainbow Tables. By using stepped rainbow tables

instead of rainbow tables, new parameters are available for deter-

mining possible configurations: the number of steps 𝜏 , and their

positions. Considering various numbers of steps and their possible

positions, a large number of stepped rainbow tables configurations

can reach the expected success probability and memory. When

considering 𝜏 steps, the number of possible configurations is tech-

nically bounded by (𝑡 − 1)𝜏 . Among these, many provide better

performance than rainbow tables. However, some of them perform

worse. This often arises for example when the steps are mostly

located towards the left part of the chains. Indeed, in such a case, a

lot of very short chains are stored, causing a significant increase in

memory without significantly increasing the success probability.

6.3 Parameters
We considered configurations with 1 to 5 steps positioned between

0.3𝑡 and 𝑡 . Placing steps further to the left of the table (in columns

smaller than about 0.3𝑡) is possible and the formulas apply perfectly

to these cases, but in practice these tables are very inefficient and

are therefore never used. Using more than 5 steps is possible but we

have observed that it does not improve the trade-off between pre-

computation time and attack time sufficiently to justify the effort in

finding the optimal step positions. To determine the configurations

that reach the success probability and the available memory, we

performed a search according to Algo. 3 available in Appendix C.

We chose a set of size 𝑁 = 2
42

and a memory of size 63.9 GB

distributed over ℓ tables. 𝑁 = 2
42

has been used to provide an

easy comparison with articles[5, 10], also dealing with this space.

The memory was arbitrarily chosen to enable use of our results in

practical cases.

For each evaluation we performed, we identified the configu-

rations that reach the expected success probability and available

memory according to Algo. 3. For all configurations, the precom-

putation time and the attack time are plotted, both expressed in

number of hash operations.

6.4 Results
Results are presented in Fig. 6a to 6c, which correspond to suc-

cess probabilities of 96%, 98%, and 99.5%, respectively. The (green)

crosses in the figures represent the results for rainbow tables and

the (red) dots, the results for stepped rainbow tables. Black dots

identify the best results, which indeed all correspond to stepped

rainbow tables.

It is worth noting that the precomputation times differ between

Fig. 6a to 6c depending on both the number of chains and the

number of tables to generate to reach the target coverage given the

target memory.

The main highlight is that, no matter the success probability,

there is always a configuration where stepped rainbow tables be-

have better than rainbow tables. In other words, when comparing

rainbow tables and stepped rainbow tables for a same memory and

success probability, rainbow tables are not on the Pareto frontier of

configurations.

The relative gain depends on the success probability, which is

mostly due to the maximality factor 𝛼 . Indeed, whatever the success

probability, using stepped rainbow tables reduces 𝛼 and thus the

294

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Avoine, Carpent, Leblanc-Albarel

(a) Trade off between precomputation time and attack time 96%
of success, 𝑁 = 2

42 and a 63.9 GB memory. 2 and 3 tables used.

(b) Trade off between precomputation time and attack time 98%
of success, 𝑁 = 2

42 and a 63.9 GB memory. 2, 3 and 4 tables used.

(c) Trade off between precomputation time and attack time 99.5%
of success, 𝑁 = 2

42 and a 63.9 GB memory. 3 to 5 tables used.

Figure 6: Trade-off between precomputation and attack.

Table 1: Expected gain illustrated on several examples with
SRTmeaning SteppedRainbowTables, andRTmeaningRain-
bow Tables. Precomputation and attack phase numbers are
quantity of cryptographic operations.

Success probability: 96%
Precomputation Attack

2 SRT 2.46 × 1013
6.99 × 1052 RT 3.26 × 1013

Gain 25%

2 SRT

2.32 × 1013
7.17 × 105

3 RT 8.6 × 105
Gain 17%

Success probability: 98%
Precomputation Attack

2 SRT 2.96 × 1013
9.79 × 1052 RT 7.59 × 1013

Gain 61%

2 SRT

3.17 × 1013
1.04 × 106

3 RT 9.26 × 105
Gain 11%

Success probability: 99.5%
Precomputation Attack

3 SRT 4.4 × 1013
1.45 × 1063 RT 6.42 × 1013

Gain 31%

3 SRT

4.35 × 1013
1.59 × 106

4 RT 1.46 × 105
Gain 8%

number of chains to be computed during the precomputation phase.

Therefore the gain in precomputation time is even more important

when the success probability requires a larger maximality factor.

For example, Fig. 6b for success probability of 98%, using two

stepped rainbow tables instead of two rainbow tables divides the

precomputation time by 2.56 without increasing the attack time

(as all of these comparisons, for the same coverage and the same

memory used). On the environment described in Sect. 5.2, this

correspond to generating a set of tables in approximately 5.6 hours,

instead of 14.4 hours. If three classic rainbow tables are used instead

of two, stepped rainbow tables perform 11% faster. On a single core,

these attack times correspond to approximately 0.08 second per

attack.

Table 1 provides the expected gains of several configuration

examples with various success probabilities.

We compared so far stepped rainbow tables and rainbow tables

either for the same attack time or for the same precomputation time.

However, Fig. 6a to 6c shows that many other configurations (“best

295

Stairway To Rainbow ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

configurations”, represented by black dots) may also be interesting

in practice.

For instance, for a success probability of 99.5%, in the config-

uration identified by an orange dot in Fig. 6c, the use of stepped

rainbow tables results in a precomputation time of 3.98 × 10
13

hash operations and an attack time of 1.53 × 106 hash operations.

Compared to the 3-tables rainbow table configuration, this stepped

rainbow tables configuration allows a reduction of 38% in the pre-

computation time for an attack time phase only 5% slower.

In the same vein, in Fig. 6a, the stepped rainbow tables config-

uration identified by an orange dot has a much faster attack time

than the 3-table rainbow table configuration (right green cross)

and in the same time has a slightly faster precomputation time.

Indeed, using this stepped rainbow tables configuration instead of

3 rainbow tables decreases by 2% the precomputation time, and

decreases by 16% the attack time. Compared to the 2-tables rain-

bow table configuration (left green cross), this stepped rainbow

tables configuration allows a reduction of more than 30% in the

precomputation time for an attack time phase only 4% slower.

6.5 Conclusion on Efficiency Comparison
6.5.1 Coverage. As seen in Sect. 2.4, the maximum coverage of a

rainbow table is approximately 86%. Stepped rainbow tables, how-

ever, have a maximum coverage of 100%, obtained when a step is

placed in every column. Of course, placing a step in every column

is not worth the cost in memory. Instead, a few, well-positioned

steps are used. Nevertheless, the coverage obtained with a stepped

rainbow table is better than those obtained with a rainbow table.

This allows using one or two fewer tables to obtain the same cover-

age for the same memory. This decreases simultaneously the attack

time, and the precomputation time (all other characteristics being

equal).

6.5.2 Attack Time. Even for the same number of tables used, there

are always better configurations of stepped rainbow tables with

the same memory and coverage as rainbow tables, that are faster

in both attack and precomputation. The gain in precomputation

is obtained from the smaller number of chains that have to be

computed to obtain the same coverage.

When using the same number of tables, the attack time is smaller

for a less obvious reason. As mentioned in Sect. 4, when a false

is detected in a step, the attack chain is not rebuilt until the last

column of the table. This allows to decrease the average cost of

false alarms and thus, the attack time.

6.5.3 Memory. Intuitively, stepped rainbow tables are more ex-

pensive in memory than rainbow tables. However, in this paper,

rainbow tables and stepped rainbow tables are compared for the

same memory and the same coverage.

The memory used to store end points is larger for stepped rain-

bow tables than for rainbow tables, but as fewer points are consid-

ered at the beginning of the generation, less memory is required

to store start points. The storage of start points allows to keep the

total storage cost of stepped rainbow tables close to those of classic

tables and thus obtain more efficient tables in precomputation and

attack for the same memory and coverage.

6.5.4 Memory Accesses. Depending on the memory used for the

trade-off, the number ofmemory accessesmay also be quite relevant

to determine the real cost of an attack.

The number of memory accesses needed for an attack with

stepped rainbow tables and rainbow tables are very close. In our

experiments, stepped rainbow tables in their optimal configurations

typically require fewer memory accesses. This is particularly the

case when stepped rainbow tables have fewer tables than classic

rainbow tables, which is often the case, as discussed in 6.5.1.

6.6 Future Work
Many improvements on the seminal rainbow tables introduced by

Oechslin [31] have been published. Although some improvements

and variants concern the precomputation phase, the vast majority

of them focus on the attack phase.

Concerning the precomputation phase, the fuzzy rainbow vari-

ant [25] of TMTOs can have, for a same attack time, a slightly

faster precomputation time than clean rainbow tables, but only for

low success probabilities, which makes this variant uninteresting

in many practical cases. The filtration method introduced in [10],

designed for clean rainbow tables significantly reduces the pre-

computation time of rainbow tables and can be applied on stepped

rainbow tables as well. The stepped rainbow tables and the rainbow

tables configurations used in Sect. 5, have been generated using

this method.

Concerning the attack phase, the major improvements on rain-

bow tables are checkpoints [12], truncation and fingerprints [5, 28],

and the heterogeneous tables [7], which is arguably the most ef-

ficient variant suggested so far. For the sake of clarity, stepped

rainbow tables are introduced in the general case, without any im-

provement on the attack phase. Combining the concept of hetero-

geneous tables with stepped rainbow tables seems very promising

since this could drastically reduce both the precomputation and

attack phases. We leave the evaluation of combining these two

methods for future work.

7 CONCLUSION
This paper introduces stepped rainbow tables, which outperform

classic rainbow tables. The key idea of stepped rainbow tables

consists in recycling chains that merged during the precomputation

phase instead of discarding them. These recycled chains are shorter

than classic ones. This leads to the concept of stepped rainbow tables,

a name inspired by their staircase-like appearance in a graphical

representation. The attack phase is modified accordingly to take

advantage of the new construction. Stepped rainbow tables allow

configurations that are not reachable by classic rainbow tables. The

impact is twofold.

Firstly, stepped rainbow tables always perform better than classic

rainbow tables. Either precomputation is reduced without increas-

ing the attack time, or the attack time is reduced without increasing

precomputation. Both of those characteristics are reduced in certain

scenarios. The gain depends on the problem parameters and other

characteristics. In the practical examples we explored, stepped rain-

bow tables divide by 2.56 the precomputation time for the same

attack time, same coverage and same memory used, or reduce the

296

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Avoine, Carpent, Leblanc-Albarel

attack time by up to 17% for the same precomputation time, same

coverage and memory.

Secondly, stepped rainbow tables are able to slightly increase

a parameter to significantly reduce another one. For instance for

same coverage and same memory used, stepped rainbow tables can

reduce the precomputation time by 38% while increasing by 5% the

attack phase.

The consequence of the reduction in precomputation time in

particular is not to be understated. The precomputation phase is the

bottleneck of rainbow tables for large spaces today. And a reduction

in the precomputation cost directly translates into a (admittedly

modest, but significant) increase in the reachable attack space.

ACKNOWLEDGMENTS
A significant portion of this work was done while author Xavier

Carpent worked at COSIC/KULeuven (Leuven, Belgium).

REFERENCES
[1] Last consulted January 2023. Cryptohaze, GPU Rainbow Cracker. https://www.

cryptohaze.com/.

[2] Last consulted January 2023. L0phtCrack, L0phtCrack 6. http://www.l0phtcrack.

com/.

[3] Last consulted January 2023. Objectif Sécurité, Ophcrack. http://ophcrack.

sourceforge.net/.

[4] Last consulted January 2023. RainbowCrack Project, RainbowCrack and Rain-

bowCrack for GPU. http://project-rainbowcrack.com/.

[5] Gildas Avoine, Adrien Bourgeois, and Xavier Carpent. 2015. Analysis of Rainbow

Tables with Fingerprints. In Information Security and Privacy - 20th Australasian
Conference, ACISP 2015, Brisbane, QLD, Australia, June 29 - July 1, 2015, Proceedings
(Lecture Notes in Computer Science, Vol. 9144), Ernest Foo and Douglas Stebila

(Eds.). Springer, 356–374. https://doi.org/10.1007/978-3-319-19962-7_21

[6] Gildas Avoine and Xavier Carpent. 2013. Optimal Storage for Rainbow Tables. In

Information Security and Cryptology - ICISC 2013 - 16th International Conference,
Seoul, Korea, November 27-29, 2013, Revised Selected Papers (Lecture Notes in
Computer Science, Vol. 8565), Hyang-Sook Lee and Dong-Guk Han (Eds.). Springer,
144–157.

[7] Gildas Avoine and Xavier Carpent. 2017. Heterogeneous Rainbow Table Widths

Provide Faster Cryptanalyses. In Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, AsiaCCS 2017, Abu Dhabi, United Arab
Emirates, April 2-6, 2017, Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi,

and Xun Yi (Eds.). ACM, 815–822.

[8] Gildas Avoine, Xavier Carpent, Barbara Kordy, and Florent Tardif. 2017. How

to Handle Rainbow Tables with External Memory. In Information Security and
Privacy - 22nd Australasian Conference, ACISP 2017, Auckland, New Zealand, July
3-5, 2017, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 10342), Josef
Pieprzyk and Suriadi Suriadi (Eds.). Springer, 306–323.

[9] Gildas Avoine, Xavier Carpent, and Cédric Lauradoux. 2015. Interleaving Crypt-

analytic Time-Memory Trade-Offs on Non-uniform Distributions. In Computer
Security - ESORICS 2015 - 20th European Symposium on Research in Computer
Security, Vienna, Austria, September 21-25, 2015, Proceedings, Part I (Lecture Notes
in Computer Science, Vol. 9326), Günther Pernul, Peter Y. A. Ryan, and Edgar R.

Weippl (Eds.). Springer, 165–184.

[10] Gildas Avoine, Xavier Carpent, and Diane Leblanc-Albarel. 2021. Precomputation

for Rainbow Tables has Never Been so Fast. In Computer Security – ESORICS 2021,
Elisa Bertino, Haya Shulman, and Michael Waidner (Eds.). Springer International

Publishing, Cham, 215–234.

[11] Gildas Avoine, Xavier Carpent, and Diane Leblanc-Albarel. 2022. Rainbow

Tables: How Far Can CPU Go? Comput. J. (10 2022). https://doi.org/10.

1093/comjnl/bxac147 arXiv:https://academic.oup.com/comjnl/advance-article-

pdf/doi/10.1093/comjnl/bxac147/46671690/bxac147.pdf bxac147.

[12] Gildas Avoine, Pascal Junod, and Philippe Oechslin. 2005. Time-Memory Trade-

Offs: False Alarm Detection Using Checkpoints. In Progress in Cryptology - IN-
DOCRYPT 2005 (Lecture Notes in Computer Science, Vol. 3797), Subhamoy Maitra,

C. E. Veni Madhavan, and Ramarathnam Venkatesan (Eds.). Springer, 183–196.

https://doi.org/10.1007/11596219_15

[13] Gildas Avoine, Pascal Junod, and Philippe Oechslin. 2008. Characterization and

Improvement of Time-Memory Trade-Off Based on Perfect Tables. ACM Trans.
Inf. Syst. Secur. 11, 4 (2008), 17:1–17:22.

[14] S.H. Babbage. 1995. Improved "exhaustive search" attacks on stream ciphers. In

European Convention on Security and Detection, 1995. 161–166. https://doi.org/10.

1049/cp:19950490

[15] Elad Barkan, Eli Biham, and Adi Shamir. 2006. Rigorous Bounds on Cryptanalytic

Time/Memory Tradeoffs. In Advances in Cryptology - CRYPTO 2006, 26th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 20-24,
2006, Proceedings (Lecture Notes in Computer Science, Vol. 4117), Cynthia Dwork
(Ed.). Springer, 1–21. https://doi.org/10.1007/11818175_1

[16] Eli Biham and Orr Dunkelman. 2000. Cryptanalysis of the A5/1 GSM Stream

Cipher. In Progress in Cryptology - INDOCRYPT 2000, First International Conference
in Cryptology in India, Calcutta, India, December 10-13, 2000, Proceedings (Lecture
Notes in Computer Science, Vol. 1977), Bimal K. Roy and Eiji Okamoto (Eds.).

Springer, 43–51. https://doi.org/10.1007/3-540-44495-5_5

[17] Alex Biryukov, Sourav Mukhopadhyay, and Palash Sarkar. 2005. Improved Time-

Memory Trade-Offs with Multiple Data. In Selected Areas in Cryptography, 12th
International Workshop, SAC 2005, Kingston, ON, Canada, August 11-12, 2005,
Revised Selected Papers (Lecture Notes in Computer Science, Vol. 3897), Bart Preneel
and Stafford E. Tavares (Eds.). Springer, 110–127.

[18] Alex Biryukov andAdi Shamir. 2000. Cryptanalytic Time/Memory/Data Tradeoffs

for StreamCiphers. InAdvances in Cryptology - ASIACRYPT 2000, 6th International
Conference on the Theory and Application of Cryptology and Information Security,
Kyoto, Japan, December 3-7, 2000, Proceedings (Lecture Notes in Computer Science,
Vol. 1976), Tatsuaki Okamoto (Ed.). Springer, 1–13. https://doi.org/10.1007/3-

540-44448-3_1

[19] Alex Biryukov, Adi Shamir, and David Wagner. 2000. Real Time Cryptanalysis of

A5/1 on a PC. In International Workshop on Fast Software Encryption. Springer,
1–18.

[20] Jovan Dj Golić. 1997. Cryptanalysis of alleged A5 stream cipher. In International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
239–255.

[21] Martin E. Hellman. 1980. A cryptanalytic time-memory trade-off. IEEE Trans.
Inf. Theory 26, 4 (1980), 401–406.

[22] Yaacov Zvi Hoch. 2009. Security analysis of generic iterated hash functions. Ph. D.
Dissertation.

[23] Jin Hong, Kyung Chul Jeong, Eun Young Kwon, In-Sok Lee, and Daegun Ma. 2008.

Variants of the Distinguished Point Method for Cryptanalytic Time Memory

Trade-Offs. In Information Security Practice and Experience, 4th International
Conference, ISPEC 2008, Sydney, Australia, April 21-23, 2008, Proceedings (Lecture
Notes in Computer Science, Vol. 4991), Liqun Chen, Yi Mu, and Willy Susilo (Eds.).

Springer, 131–145.

[24] Jin Hong and Sunghwan Moon. 2013. A Comparison of Cryptanalytic Tradeoff

Algorithms. J. Cryptol. 26, 4 (2013), 559–637.
[25] Byoung-Il Kim and Jin Hong. 2013. Analysis of the Non-perfect Table Fuzzy

Rainbow Tradeoff. In Information Security and Privacy - 18th Australasian Con-
ference, ACISP 2013, Brisbane, Australia, July 1-3, 2013. Proceedings (Lecture Notes
in Computer Science, Vol. 7959), Colin Boyd and Leonie Simpson (Eds.). Springer,

347–362. https://doi.org/10.1007/978-3-642-39059-3_24

[26] Jung Woo Kim, Jin Hong, and Kunsoo Park. 2013. Analysis of the Rainbow

Tradeoff Algorithm Used in Practice. IACR Cryptol. ePrint Arch. (2013), 591.
[27] Jung Woo Kim, Jungjoo Seo, Jin Hong, Kunsoo Park, and Sung-Ryul Kim. 2015.

High-speed parallel implementations of the rainbow method based on perfect

tables in a heterogeneous system. Softw. Pract. Exp. 45, 6 (2015), 837–855. https:

//doi.org/10.1002/spe.2257

[28] Ga-Won Lee and Jin Hong. 2016. Comparison of perfect table cryptanalytic

tradeoff algorithms. Des. Codes Cryptogr. 80, 3 (2016), 473–523.
[29] Jiqiang Lu, Zhen Li, and Matt Henricksen. 2015. Time-Memory Trade-Off Attack

on the GSM A5/1 Stream Cipher Using Commodity GPGPU. In Applied Cryptog-
raphy and Network Security - 13th International Conference, ACNS 2015, New York,
USA, June 2-5, 2015, Revised Selected Papers (Lecture Notes in Computer Science,
Vol. 9092), Tal Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis

Polychronakis (Eds.). Springer, 350–369.

[30] Nele Mentens, Lejla Batina, Bart Preneel, and Ingrid Verbauwhede. 2006. Time-

Memory Trade-Off Attack on FPGA Platforms: UNIX Password Cracking. In

Reconfigurable Computing: Architectures and Applications, Second International
Workshop, ARC 2006, Delft, The Netherlands, March 1-3, 2006, Revised Selected
Papers (Lecture Notes in Computer Science, Vol. 3985), Koen Bertels, João M. P.

Cardoso, and Stamatis Vassiliadis (Eds.). Springer, 323–334.

[31] Philippe Oechslin. 2003. Making a Faster Cryptanalytic Time-Memory Trade-Off.

In Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings
(Lecture Notes in Computer Science, Vol. 2729), Dan Boneh (Ed.). Springer, 617–630.

[32] François-Xavier Standaert, Gaël Rouvroy, Jean-Jacques Quisquater, and Jean-

Didier Legat. 2002. A Time-Memory Tradeoff Using Distinguished Points: New

Analysis & FPGA Results. In Cryptographic Hardware and Embedded Systems
- CHES 2002, 4th International Workshop, Redwood Shores, CA, USA, August 13-
15, 2002, Revised Papers (Lecture Notes in Computer Science, Vol. 2523), Burton
S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar (Eds.). Springer, 593–609.

[33] Mathy Vanhoef. 2022. A Time-Memory Trade-Off Attack on WPA3’s SAE-PK. In

APKC ’22: Proceedings of the 9th ACM on ASIA Public-Key CryptographyWorkshop,
APKC@AsiaCCS 2022, Nagasaki, Japan, 30 May 2022, Jason Paul Cruz and Naoto

Yanai (Eds.). ACM, 27–37. https://doi.org/10.1145/3494105.3526235

297

https://www.cryptohaze.com/
https://www.cryptohaze.com/
http://www.l0phtcrack.com/
http://www.l0phtcrack.com/
http://ophcrack.sourceforge.net/
http://ophcrack.sourceforge.net/
http://project-rainbowcrack.com/
https://doi.org/10.1007/978-3-319-19962-7_21
https://doi.org/10.1093/comjnl/bxac147
https://doi.org/10.1093/comjnl/bxac147
https://arxiv.org/abs/https://academic.oup.com/comjnl/advance-article-pdf/doi/10.1093/comjnl/bxac147/46671690/bxac147.pdf
https://arxiv.org/abs/https://academic.oup.com/comjnl/advance-article-pdf/doi/10.1093/comjnl/bxac147/46671690/bxac147.pdf
https://doi.org/10.1007/11596219_15
https://doi.org/10.1049/cp:19950490
https://doi.org/10.1049/cp:19950490
https://doi.org/10.1007/11818175_1
https://doi.org/10.1007/3-540-44495-5_5
https://doi.org/10.1007/3-540-44448-3_1
https://doi.org/10.1007/3-540-44448-3_1
https://doi.org/10.1007/978-3-642-39059-3_24
https://doi.org/10.1002/spe.2257
https://doi.org/10.1002/spe.2257
https://doi.org/10.1145/3494105.3526235

Stairway To Rainbow ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

A PROOF OF THEOREM 5
Proof. To obtain the total cost of the search, the probability

of the three events (true alarm, false alarm, no alarm) has to be

multiplied by their cost and summed together.

Case 1: 𝑠𝜏 < 𝑐 ⩽ 𝑡 .

(a) The probability of a true alarm is obtained from Prop. 2

and is
𝑚𝑡

𝑁
, its cost is obtained from Prop. 6 and is 𝜌𝜏+1,𝑘 (𝑐)𝑠𝜏+1 =

𝜌𝜏+1,𝜏+1𝑠𝜏+1 = 𝑡 .

(b) The probability of false alarm is given by Prop. 3 and is:

1 − 𝑚𝑡

𝑁
− 𝑝

noalarm
(𝑐). The cost is the same as for true alarms.

(c) The probability of no alarm is given by Prop. 5 and its cost is

𝑡 − 𝑐 (Sect. 4.4.5).
In total, we thus have:

𝐶𝑐 = 𝑡
𝑚𝑡

𝑁
+ 𝑡

(
1 − 𝑚𝑡

𝑁
− 𝑝

noalarm
(𝑐)

)
+ (𝑡 − 𝑐)𝑝

noalarm
(𝑐)

= 𝑡 − 𝑐𝑝
noalarm

(𝑐).
Case 2: 𝑐 ⩽ 𝑠𝜏 .

(a) The probability of a true alarm is

𝑚𝑠𝑘 (𝑐)
𝑁

, and its cost is∑𝜏+1
𝑖=𝑘 (𝑐) 𝜌𝑖,𝑘 (𝑐)𝑠𝑖 .
(b) The probability of a false alarm due to a merge between 𝑐

and 𝑠𝑘 (𝑐) is given by Prop. 3 and is 1 −
𝑚𝑠𝑘 (𝑐)

𝑁
− 𝑝nomrg (𝑐, 𝑘 (𝑐)). Its

cost is the same as for a true alarm.

(b’) The probability of a false alarm due to a merge between

𝑠 𝑗 and 𝑠 𝑗+1 is 𝑝fa-post (𝑐, 𝑠 𝑗 , 𝑠 𝑗+1) with 𝑐 ⩽ 𝑠 𝑗 < 𝑠 𝑗+1 and is given by

Prop. 4. Therefore the probability of false alarm due to a merge

between 𝑠𝑘 (𝑐) and 𝑠𝜏 is

∑𝜏
𝑗=𝑘 (𝑐) 𝑝fa-post (𝑐, 𝑠 𝑗 , 𝑠 𝑗+1). Its cost, given

by Prop. 6, depends of step 𝑠 𝑗 in which the false alarm is detected

and is

∑𝜏+1
𝑖=𝑗+1 𝜌𝑖, 𝑗+1𝑠𝑖 .

(c) The probability of no alarm is given by Prop. 5 and its cost is

𝑡 − 𝑐 (Sect. 4.4.5).
In total, we thus have:

𝐶𝑐 =
𝑚𝑠𝑘 (𝑐)

𝑁

𝜏+1∑︁
𝑖=𝑘 (𝑐)

𝜌𝑖,𝑘 (𝑐)𝑠𝑖

+
(
1 −

𝑚𝑠𝑘 (𝑐)

𝑁
− 𝑝nomrg (𝑐, 𝑠𝑘 (𝑐))

) 𝜏+1∑︁
𝑖=𝑘 (𝑐)

𝜌𝑖,𝑘 (𝑐)𝑠𝑖

+
𝜏∑︁

𝑗=𝑘 (𝑐)
𝑝
fa-post

(𝑐, 𝑠 𝑗 , 𝑠 𝑗+1)
𝜏+1∑︁
𝑖=𝑗+1

𝜌𝑖, 𝑗+1𝑠𝑖

+ (𝑡 − 𝑐) 𝑝
noalarm

(𝑐).

The conclusion follows from the

𝑚𝑠𝑘 (𝑐)
𝑁

∑𝜏+1
𝑖=𝑘 (𝑐) 𝜌𝑖,𝑘 (𝑐)𝑠𝑖 terms can-

celing out. □

298

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Avoine, Carpent, Leblanc-Albarel

B ATTACK PHASE WITH 𝜏 STEPS

Algorithm 2: Attack Phase with 𝜏-Steps stepped rainbow

table

input :𝑦 ∈ 𝐵 s.t. 𝑦 = ℎ (𝑥∗) ∈ 𝐴
output :𝑥∗, if it belongs to the stepped rainbow matrix

1 𝑠𝑡𝑒𝑝𝑠𝐿𝑖𝑠𝑡 ← [𝑠1, 𝑠2, ...𝑠𝜏 , 𝑡]
2 𝐸𝑃 ← [[𝐸𝑃1 ...𝐸𝑃𝑚𝑠

1
−𝑚𝑠

2

],
[𝐸𝑃𝑚𝑠

1
−𝑚𝑠

2
+1 ...𝐸𝑃𝑚𝑠

1
−𝑚𝑠

3

]...
[𝐸𝑃𝑚𝑠

1
−𝑚𝑡 +1 ...𝐸𝑃𝑚𝑠

1

]]
3 𝑆𝑃 ← [𝑆𝑃1 ...𝑆𝑃𝑚𝑠

1
−𝑚𝑠

2

],
[𝑆𝑃𝑚𝑠

1
−𝑚𝑠

2
+1 ...𝑆𝑃𝑚𝑠

1
−𝑚𝑠

3

]...
[𝑆𝑃𝑚𝑠

1
−𝑚𝑡 +1 ...𝑆𝑃𝑚𝑠

1

]]
4 𝑐 ← [𝑠1, 𝑠2, ..𝑠𝜏 , 𝑡]
5 v← [0 : 𝑙𝑒𝑛 (𝑐) − 1]
6 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← 𝐹𝑎𝑙𝑠𝑒

7 while 𝑐 ≠ [0, 0, .., 0] and 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝐹𝑎𝑙𝑠𝑒 do
8 𝐴𝑙𝑎𝑟𝑚 ← 𝐹𝑎𝑙𝑠𝑒

9 for 𝑑 = 0 to 𝑙𝑒𝑛 (𝑐) − 1 do
10 v[𝑑] ← 𝜇 (𝑐 [𝑑]) #See Def. 3
11 end
12 𝑗 ← 𝑐 [v.𝑖𝑛𝑑𝑒𝑥 (𝑚𝑎𝑥 (v))]
13 𝑖 ← 𝑗

14 𝑥𝑖 ← 𝑅𝑖 (𝑦)
15 while 𝑖 ⩽ 𝑡 and 𝐴𝑙𝑎𝑟𝑚 = 𝐹𝑎𝑙𝑠𝑒 do
16 if 𝑖 in 𝑠𝑡𝑒𝑝𝑠𝐿𝑖𝑠𝑡 then
17 𝑖𝑛𝑑𝑒𝑥𝑖 ← 𝑠𝑡𝑒𝑝𝑠𝐿𝑖𝑠𝑡 .𝑖𝑛𝑑𝑒𝑥 (𝑖)
18 if 𝑥𝑖 in 𝐸𝑃 [𝑖𝑛𝑑𝑒𝑥𝑖] then
19 𝐴𝑙𝑎𝑟𝑚 ← 𝑇𝑟𝑢𝑒

20 𝑥 ← 𝑆𝑃 [𝐸𝑃 [𝑖𝑛𝑑𝑒𝑥𝑖] .𝑖𝑛𝑑𝑒𝑥 (𝑥𝑖)]
21 for 𝑔 = 1 to 𝑔 = 𝑗 − 1 do
22 𝑥 ← 𝑓𝑔 (𝑥)
23 end
24 if ℎ (𝑥) = 𝑦 then
25 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← 𝑇𝑟𝑢𝑒

26 end
27 end
28 end
29 if 𝐴𝑙𝑎𝑟𝑚 = 𝐹𝑎𝑙𝑠𝑒 and 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝐹𝑎𝑙𝑠𝑒 then
30 𝑥𝑖 ← 𝑓𝑖 (𝑥𝑖)
31 𝑖 ← 𝑖 + 1
32 end
33 end
34 if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝐹𝑎𝑙𝑠𝑒 then
35 𝑐 [𝑐.𝑖𝑛𝑑𝑒𝑥 (𝑗)] ← 𝑐 [𝑐.𝑖𝑛𝑑𝑒𝑥 (𝑗)] − 1

36 else
37 return (𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 𝑥)
38 end
39 end
40 return (𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 0)

C CONFIGURATIONS
Function adjust used in Algo. 3, takes a number of column 𝑡 , and a

list of steps, with a relative step position between 30% and 100% of

𝑡 for each step. It return the positions of steps according to 𝑡 .

Algorithm 3: Algorithm used to find valid configurations

input :The success probability TargetProba
The targeted memory

TargetMemory
output :A list validConfig of configurations that reaches the

targeted success probability and memory

1 Procedure:
2 𝑡 ← 1

3 𝛼 ← 0.001

4 for 𝑒𝑙𝑙 = 1 to ℓ = 6 do
5 for 𝑛𝑏𝑆𝑡𝑒𝑝𝑠 = 1 to 𝑛𝑏𝑆𝑡𝑒𝑝𝑠 = 5 do
6 for 𝑝𝑜𝑠 in all possible steps combinations do
7 𝑐𝑜𝑛𝑓 𝑖𝑔← [𝑡, 𝑎𝑙𝑝ℎ𝑎, ℓ, 𝑠𝑡𝑒𝑝𝑠]
8 𝑒𝑛𝑑 ← 𝑣𝑎𝑙𝑖𝑑_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎(𝑐𝑜𝑛𝑓 𝑖𝑔)
9 while 𝑒𝑛𝑑 ≠ 1 do
10 while 𝑝𝑟𝑜𝑏𝑎(𝑐𝑜𝑛𝑓 𝑖𝑔) < 𝑇𝑎𝑟𝑔𝑒𝑡𝑃𝑟𝑜𝑏𝑎 do
11 𝛼 ← 𝛼 + 0.001
12 𝑐𝑜𝑛𝑓 𝑖𝑔← [𝑡, 𝑎𝑙𝑝ℎ𝑎, ℓ, 𝑠𝑡𝑒𝑝𝑠]
13 end
14 while

𝑚𝑒𝑚𝑜𝑟𝑦 (𝑐𝑜𝑛𝑓 𝑖𝑔) < 0.999𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑒𝑚𝑜𝑟𝑦

do
15 𝑡 ← 𝑡 − 1
16 𝑠𝑡𝑒𝑝𝑠 ← 𝑎𝑑 𝑗𝑢𝑠𝑡 (𝑡, 𝑝𝑜𝑠)
17 𝑐𝑜𝑛𝑓 𝑖𝑔← [𝑡, 𝑎𝑙𝑝ℎ𝑎, ℓ, 𝑠𝑡𝑒𝑝𝑠]
18 end
19 while

𝑚𝑒𝑚𝑜𝑟𝑦 (𝑐𝑜𝑛𝑓 𝑖𝑔) > 1.001𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑒𝑚𝑜𝑟𝑦

do
20 𝑡 ← 𝑡 + 1
21 𝑠𝑡𝑒𝑝𝑠 ← 𝑎𝑑 𝑗𝑢𝑠𝑡 (𝑡, 𝑝𝑜𝑠)
22 𝑐𝑜𝑛𝑓 𝑖𝑔← [𝑡, 𝑎𝑙𝑝ℎ𝑎, ℓ, 𝑠𝑡𝑒𝑝𝑠]
23 end
24 𝑒𝑛𝑑 ← 𝑣𝑎𝑙𝑖𝑑_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎(𝑐𝑜𝑛𝑓 𝑖𝑔)
25 end
26 𝑣𝑎𝑙𝑖𝑑𝐶𝑜𝑛𝑓 𝑖𝑔.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐𝑜𝑛𝑓 𝑖𝑔)
27 end
28 end
29 end
30 return validConfig

299

	Abstract
	1 Introduction
	2 Background on Rainbow Tables
	2.1 Matrix Generation
	2.2 Clean Rainbow Tables
	2.3 Maximality of Rainbow Tables
	2.4 Success probability
	2.5 Filtration
	2.6 Attack Phase
	2.7 Memory Used

	3 Stepped Rainbow Tables
	3.1 Stepped Rainbow Tables with a Single Step
	3.2 Stepped Rainbow Tables with Steps

	4 Analysis of Stepped Rainbow Tables
	4.1 Notations
	4.2 Success Probability
	4.3 Precomputation Time
	4.4 Attack Time
	4.5 Memory Used

	5 Experiments
	5.1 Availability
	5.2 Environment
	5.3 Success Probability
	5.4 Attack Time

	6 Evaluation
	6.1 Comparison Methodology
	6.2 Configurations
	6.3 Parameters
	6.4 Results
	6.5 Conclusion on Efficiency Comparison
	6.6 Future Work

	7 Conclusion
	Acknowledgments
	References
	A Proof of Theorem 5
	B Attack Phase with steps
	C Configurations

