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ABSTRACT

This paper describes a novel neuro-steered music source separation framework and conducts an
extensive evaluation of the proposed system on MAD-EEG, a dataset composed of EEG recordings
of subjects attending to a particular in duo and trio music excerpts. We propose an unsupervised
non-negative matrix factorisation (NMF) variant, named Contrastive-NMF, that separates a target
instrument, guided by the user’s selective auditory attention to that instrument, which is tracked
in his/her electroencephalographic (EEG) response to music. We analyse the impact of multiple
aspects of the musical stimuli, such as the number and type of instruments in the mixture, the spatial
rendering and the music genre, obtaining encouraging results, especially in difficult cases where
non-informed models struggle. We believe that this unsupervised NMF variant is advantageous
for neuro-steered music source separation as it allows us to incorporate additional information in
a principled optimisation fashion and does not need training data, which is particularly difficult to
acquire for applications involving EEG recording.

Keywords Audio source separation · Auditory attention decoding · Polyphonic music · EEG ·Matrix factorisation ·
Multimodal processing

1 Introduction

Music source separation aims to isolate individual sources, such as singing voice, guitar, drums, cello, etc., mixed in an
audio recording of a musical piece. More precisely, such individual voices can be referred to as stems, i.e. recordings
of individual instruments that are arranged together and mastered into the final audio mix. Considering the case of
single-channel recordings, one can assume that the mixture signal x(t) at sample t is a linear mixture of J sources sj(t)
such as:

x(t) =
∑J

j=1
sj(t). (1)

Given only x(t), the goal of a source separation system is to recover one or more sources sj(t), where j ∈ {1, ..., J}.
Recovering such stems is a very challenging problem, and a source separation system can be either directly exploited by
the end-user (e.g. a musician or a sound engineer) or be an intermediate step that significantly helps other downstream
tasks such as automatic music transcription, instrument classification, score following, lyrics alignment and many others.
Nowadays, most state-of-the-art music source separation systems are based on supervised deep learning [1, 2, 3, 4],
where an extensive collection of mixtures and corresponding isolated sources are needed during a training phase.
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Despite the release of dedicated datasets for this task [5, 6], it is still hard for those models to generalize to unseen test
data with significant timbral variation compared to training.

A possible solution to mitigate this issue is to inform the source separation system with additional information one may
have about the test data. In this case, the approach is referred to as informed audio source separation [7] and, if this
additional information comes from another modality than the audio itself, as multimodal source separation. Examples
of such additional information include the score [8], the pitch contour [9], the lyrics [10], the motion of the sound
sources and visual cues [11], or the user feedback [12, 13]. In this context, the user can be considered as a rich source of
information about the sources of interest. Beyond manual annotations, our body’s reaction to external auditory stimuli
manifests itself through many observable physiological phenomena. Reaction to music can be seen in the heartbeat
variability [14], in the body movements [15], as well as in the neural activity [16] to mention a few. Such kind of
information would help the separation process and make it also interactive and real-time, allowing for a number of
futuristic applications.

Among those physiological responses to music stimuli, we are particularly interested in looking at the neural response,
focusing on the concept of selective auditory attention. Humans’ auditory system is naturally able to process concurrent
sounds in a complex auditory scene to isolate the ones of interest. This problem is known as the cocktail party problem
[17, 18, 19] and has been studied mostly for what concerns the perception of speech sources in noisy or multi-speaker
settings. Even if the cognitive mechanism behind this capability is not yet fully understood, selective auditory attention
has been proven to have a determinant role in it [20]. The attended source’s neural encoding appears to be substantially
stronger than the one of the unattended sources left in the mixture, and therefore, the attended source can be tracked
in the neural activity [21]. This fact makes it possible to decode the auditory attention, i.e. determining which sound
source a person is "focusing on" by just observing the listener’s brain response. This task is known as auditory attention
decoding (AAD), and typical applications are intelligent hearing aids where a neuro-steered enhancement of the attended
speaker is desired [22, 23, 24].

When dealing with polyphonic music, one can recast the problem as one of decoding the attention to a particular
instrument playing in the ensemble. However, this transposition is not straightforward as, unlike in the cocktail party
problem where there is one source of interest to separate from unrelated background noise or speakers, music consists
of multiple voices playing together in a coordinated way. Thus, the sources are generally highly correlated, making the
decoding problem even more difficult, but still possible [25, 26].

In our previous works [26, 27], we explored how the neural activity reflects information about the attended instrument
and how we can use it to inform a source separation system and adapt it to the specific stimulus. We were particularly
interested in electroencephalographic signals (EEG), which allow for non-invasive neural activity acquisition with high
temporal resolution. Since the topic had not yet been explored, mainly due to the lack of data, we began by acquiring
a dataset, namely, the MAD-EEG [28] dataset, which consists of a set of musical stimuli and corresponding EEG
responses, where the participants attend to a particular instrument in the stimulus. First, in [26], we studied the problem
of EEG-based AAD to a target instrument in polyphonic music, showing that the EEG tracks musically-relevant features
which are highly correlated with the time-frequency representation of the attended source and only weakly correlated
with the unattended one. Second, in [27], we leveraged this “contrast” to inform an unsupervised source separation
model based on a novel non-negative matrix factorization (NMF) variant, named Contrastive-NMF (C-NMF) and
automatically separate the attended source.

In this work, we present a consolidated view of our neuro-steered music source separation paradigm, further validating
and extending the preliminary evidence obtained in [27], where only a subset of pop mixtures with at most two
instruments was analyzed. Key contributions of this paper are the following:

• the C-NMF algorithm is generalised so as to make it valid for mixtures containing more than two instruments;

• the AAD problem is reformulated in a “blind” way, i.e. without access to the ground truth sources;

• a new experimental setting with a substantial extension of previous experiments is provided, where all the
mixtures in the MAD-EEG dataset are considered. All pop mixtures are tested, also considering trios. Classical
mixtures are also taken into account, increasing the number of analysed instruments from four to nine;

• an extensive analysis of the algorithm’s behaviour w.r.t. to its hyperparameters was conducted, followed by a
discussion on the option of adapting them to specific instruments and songs.

The remainder of the paper is organized as follows. In Section 2, we describe works related to EEG-based AAD and
informed music source separation, while in Section 3, we describe the MAD-EEG data. In Section 4 and 5, we describe
the work conducted on EEG-based auditory attention decoding and neuro-steered music source separation, respectively
and how they relate to each other. Finally, we conduct a reflection about future research directions and limitations in
Section 6.
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2 Related Work

2.1 EEG-based Auditory Attention Decoding

EEG-based Auditory attention decoding (AAD) aims at determining which sound source a person is “focusing on”
by analysing the listener’s brain response. Most of the literature in the field focuses on decoding auditory attention
to naturalistic speech in multi-speaker or noisy scenarios from the brain’s electric activity measured on the scalp
[29, 30]. Indeed, the topic is raising more and more interest thanks to the multitude of promising applications, especially
concerning hearing aids and cochlear implants [31, 24, 22, 23, 32, 33].

First studies on AAD based on continuous electrocorticographic (ECoG) [21, 34, 35] and electroencephalographic
(EEG) [29, 30, 36] responses have shown that changes in the audio stimulus can be tracked in the neural activity. They
evidenced how the attended source’s neural encoding is substantially stronger than the one of the other sources left in
the mixture, allowing for a successful decoding of selective attention to a speaker. Similarly to Treder et al. [25], in our
previous work [26], we recast the AAD problem in the music domain as one of decoding attention to a specific musical
instrument playing in a musical ensemble.

The decoding procedure is usually two-fold [29]: first, a feature representation of the attended audio source is
reconstructed from the neural response. Secondly, the reconstruction is correlated with the ground truth sources to
determine the attended source. The stimulus reconstruction is referred to as the backward problem, as one goes from
the brain response back to the stimulus. The mapping is usually done using linear models: a multichannel Wiener filter
maps the neural activity back to a stimulus feature representation [36]. Such a filter is known in the field as temporal
response function (TRF) and is learned on a training set using a minimum mean squared error (MMSE) criterion [36].

The majority of works represented the speech merely by its broadband temporal envelope [37, 38, 29, 30]. Other works
obtained promising results using the speech spectrogram [21, 34, 35], phonemes [39], or semantic features [40]. In our
previous work [27], we compared multiple acoustic representations of the music stimulus in terms of AAD performance,
namely the broadband amplitude envelope, the spectrogram and the Mel-spectrogram.

2.2 EEG-informed Source Separation

The AAD task is naturally related to audio source separation. As previously explained in Section 2.1, the decoding
paradigm requires access to the ground truth sources to correlate them to the neural data. However, this situation is
never met in realistic scenarios such as hearing aids and cochlear implants, where only the mixture of the sound scene
recorded by their microphones is available. In such scenarios, an additional audio source separation step is needed
to extract the reference sources needed for the decoding. Typically, the separation and the decoding tasks are tackled
sequentially: a separation system provides the reference sources for the decoding, and the decoding system selects the
source which needs to be enhanced.

Most of the studies that relate speech source enhancement and AAD have been working in this direction. Many of
them focused on the multi-channel audio scenario using beamforming [41, 42, 24] and multi-channel Wiener filtering
[31, 43, 23]. Both techniques estimate spatial filters that return the target speech when applied to the mixture while
suppressing the background noise and interfering sources. The former uses only spatial information such as the
directions of arrival while the latter also requires information about the target activity to compute the second-order
statistics of the noise and interferers.

Other works focus on the single-channel scenario using deep-learning-based approaches. O’Sullivan et al. [44] were
the first along this line. However, their paradigm requires prior training on the target speakers, which is a substantial
limitation in real scenarios. The problem is tackled by Han et al. [22] with a speaker-independent source separation
system able to generalize to unseen speakers. Such a system relies on a deep attractor network, which projects the
mixture’s time-frequency representation in a high-dimensional space where the speakers are separable [45, 46]. Ceolini
et al. [33], instead, informed a speech separation neural network with the decoded attended speech envelope, leading to
the extraction of the attended source. However, the training of the source separation model and that of the AAD model
are still decoupled due to the lack of large datasets collected for AAD.

In general, performing the source separation and AAD steps independently is sub-optimal. In their work [32], Pu et
al. propose a unified model for joint AAD and binaural beamforming. An adaptive beamformer is learned thanks to
an objective which minimizes noise and interference but, at the same time, controls the target speaker distortion and
maximizes the Pearson correlation between the envelope of the beamformer output and the decoded EEG. In a later
work [47], the same authors showed that their algorithm is robust to attention switching, which can be tracked in real
time thanks to the joint approach.
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Nevertheless, none of these works considers music audio signals. We aim to pursue the joint approach, which we believe
is the most promising one for a neuro-steered music source separation. In [27], we propose to adapt an NMF-based
source separation model to a specific mixture using a weak signal decoded from the EEG using an AAD model. The
AAD model is not fixed and is also updated during the optimization. Our work differs from those by Pu at al. [32] as
our aim is not to maximize the Pearson correlation between the envelope of the beamformer output and the decoded
EEG. Since the decoded output can be significantly deteriorated [26], we leverage instead the fact that the attended
instrument’s neural encoding is substantially stronger than the one of the unattended sources left in the mixture. This
“contrast” is maximized when solving our separation model estimation problem.

3 Data

We start by recalling the main features of the dataset we have assembled for this work to allow the reader to have a clear
understanding of the recording protocol and how the proposed algorithm is applied to this data. For more details, the
interested reader can refer to [28].

A few publicly available music-related EEG datasets exist [48, 49, 50, 51, 52] which contain EEG responses to
naturalistic music stimuli. Nevertheless, in those cases, the participants were asked to focus on the entire stimulus,
making them not relevant for studying the AAD problem. The only music-related EEG dataset where participants were
asked to attend to a target instrument in the music mixture is the music BCI dataset collected by Treder et al. [25].
However, it was explicitly designed for studying ERP-based AAD using a multi-streamed oddball paradigm, which
does not hold in real-world scenarios. On the contrary, when considering speech-related EEG datasets, one can find
several of them specifically designed to study the AAD problem using a single-trial approach, but only a few of them
are accessible [38, 53].

Taking inspiration from the speech-related EEG datasets, we acquired our EEG dataset from subjects listening to
realistic polyphonic music and attending to a particular instrument in the mixture. Our dataset represents the first EEG
dataset specifically designed for studying auditory attention decoding applied to music using single-trial techniques.

3.1 Participants and neural recording

Eight volunteers (7 males and one female, all but one right-handed, aged between 23 and 54 years, mean age of 28) took
part in the study. All of them were healthy and reported no history of hearing impairments or neurological disorders.
The study conforms with the Declaration of Helsinki [54]. Moreover, all participants signed a consent that informed
them about the experiment’s modalities and purposes.

They were all non-professional musicians with varying years of musical experience (from 7 to 30 years, mean 13.5).
Five out of them play the guitar, one the bass, one the drums, and one is a multi-instrumentalist playing the drums,
guitar and bass. They all studied music theory (from 1 to 2 hours per week, mean 1.75) and practised regularly with
their instrument (from 2 to 14 hours per week, mean 6.25). All of them were familiar with the modern instruments in
the dataset (drums, guitar, bass and singing voice), while for specific classical instruments (bassoon, French horn and
oboe), not all of them were equally confident. Thus, they were trained to recognize them before the experiment using
excerpts not used as stimuli.

3.2 Stimuli

The stimuli consist of realistic polyphonic music mixtures containing two to three instruments played concurrently in
an ensemble. The chosen mixtures reproduce a realistic setting. In particular, we chose to use real music composition
for pop pieces for which we had access to the isolated instrument tracks. For Classical music pieces, instead, we
linearly mixed a selection of excerpts played by single instruments as follows: x(t) =

∑J
j=1 gjsj(t), where sj(t) is the

mono-channel audio track of the single instrument j, gj is the corresponding gain, T its number of samples, and J is
the number of instruments. Finally, the sound volume was normalized to avoid bias due to the loudness of the audio.

In order to test the influence of certain factors on the attention decoding performance, we considered different
configurations in the choice of the musical stimuli (see Figure 1):

• Two musical genres: pop and Classical music.

• Two musical pieces per genre and two themes per musical piece. That is, for the same piece, two different
excerpts , corresponding to different parts of the score.

• Two ensemble types: duets and trios.
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Figure 1: On the left, an illustration of the recording session for one subject. A recording session is divided into sections.
Each section is associated with a given musical piece in the dataset and consists of a training and a test phase, where a
series of stimuli sequences is played. Each stimulus sequence consists of 4 trials where the same stimulus is listened to
repetitively. On the right details about the mixtures and how they are spatially rendered.

• Two spatial rendering configurations: monophonic and stereo. The speakers were situated ±45o along the
azimuth direction relative to the listener (see Figure 1). The stereo spatial rendering was implemented by
merely using conventional stereo panning where we have one instrument mostly on the right and the other one
mostly on the left for duets, while for trios, the third instrument is in the centre. The target instrument is never
in the same position across different stimuli.

• Musical instruments present in the mixture: different combinations of flute, oboe, French horn, bassoon and
cello for Classical pieces, along with singing voice, guitar, bass and drums for pop excerpts.

3.3 Recording protocol

Each stimulus duration had to be long enough to allow the study of attention decoding on a single-trial basis while
targeting realistic music excerpts. On the other hand, the experiment’s duration had to remain reasonably short to control
the subject’s cognitive load and avoid an unsatisfactory level of concentration throughout the session. Consequently, we
limited the duration of a stimulus to around 6 seconds. Then, during the experiment, each stimulus was heard by the
subject four consecutive times, referred to as trials, corresponding to around 24 seconds of EEG recordings. Since each
subject listened to 78 stimuli, this corresponds to approximately 30-32 minutes of recordings.

For each subject, the recording session was divided into sections (see Figure 1). In each section, a series of stimuli
sequences is played. Each section is actually composed of a training and a test phase. During the training phase, single
instrument tracks of a given piece are played separately as solos in random order. Then, during the test phase, all the
corresponding duo and trio variants of the same piece are played, also in a random order, but with a potentially different
spatial rendering and considering a different theme of the same musical piece. A section is presented to the user through
a slide-show video showing instructions, displayed as white text on a black background, asking the participant to attend
to a particular instrument and visually fix a cross at the centre of the screen. A "beep" precedes each stimulus launch.

3.4 Data Acquisition and Preprocessing

A B-Alert X24 headset was used to record the surface EEG, EOG (Electrooculogram), EMG (Electromyogram) and
ECG (Electrocardiogram) of the participants, as well as their head motion acceleration, thanks to an integrated inertial
measurement unit, all at a sampling frequency fs = 256Hz. The headset consists of a wireless digital acquisition unit
connected to an electrode strip. The strip used has electrodes F1, F2, F3, F4, Fz, C1, C2, C3, C4, Cz, CPz, P1, P2, P3,
P4, Pz, POz, O1, O2 and Oz, placed according to the 10-20 montage system. Active electrodes were referenced to the
left mastoid in a unipolar setting. The acquired EEG data was synchronized with each stimulus, the 50 Hz power-line
interference was removed using a notch filter, and EOG/ECG artefacts were detected and removed using independent
component analysis (ICA). The frequencies below 1 Hz were filtered out using a Butterworth zero-phase filter with
order 2. Each channel was normalized to ensure zero mean and unit variance.
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4 EEG-based Auditory Attention Decoding

The goal is to determine the attended instrument in a single-trial fashion based on 24-second-long EEG excerpts aligned
to corresponding audio stimuli. The procedure is two-fold and is similar to the one commonly used for decoding the
attention to speech [21, 35, 34, 29, 36] (see Figure 2). First, a feature representation of the attended audio source is
reconstructed from the neural response, exploiting a decoder previously trained on solos of that instrument. Second, the
reconstruction is correlated with the ground truth sources to determine the attended source. The attended instrument is
recognized as the one that has the highest Pearson’s correlation coefficient.

4.1 Audio Feature Extraction

Choosing the audio representation is a crucial point of the AAD paradigm, as this choice includes a hypothesis about
the neural coding of the stimulus and can significantly impact the reconstruction quality and the decoding performance.
We studied three different audio representations, one in the time domain and two in the time-frequency (TF) domain:
the time domain amplitude envelope computed using the Hilbert transform (AE), the magnitude spectrogram (MAG),
and the Mel spectrogram (MEL), a perceptually-scaled representation commonly used for music analysis.

The AE is one of the most used feature representations for AAD with speech stimuli as the EEG was shown to track
slowly varying changes in the audio stimulus [55, 29]. The assumption is that the EEG is linearly related to the
broadband energy envelope of the stimulus. However, frequency modulations, i.e. envelope fluctuations at specific
frequencies, can give a more complete view of the audio signal. In fact, the spectrogram envelope of natural sounds
fluctuates across both frequency and time, and this was shown, for instance, to be important for the intelligibility of
speech [35]. The same can be said for music, where the modulations’ complexity is much higher than in speech. In
practice, the spectrogram can be seen as a time-varying representation of the amplitude envelope at each frequency bin
[35]. Thus, we will assume that the neural responses are linearly related to the spectrogram envelope.

4.2 Temporal Response Function (TRF)

A feature representation of the attended source Ŝ ∈ RK×N where K is the number of features and N is the number of
time samples, is reconstructed from the EEG using the TRF backward model commonly used in the AAD framework
[36]. This filter can be seen as a spatio-temporal decoder which linearly maps the neural activity back to the audio feature
representation, as a weighted sum of activity at each electrode in a given temporal context, as follows: Ŝ = gTR, where
g = [g1, ...,gK ] ∈ R(C×L)×K is a tensor composed by the set of multi-channel Wiener filters, and R ∈ R(C×L)×N is
the Toepliz matrix of the neural response. C represents the number of EEG channels and L the number of time lags, i.e.
the temporal context where we assume to see the EEG response to the stimulus which ranges between 0 and τmax. In
practice, each k − th feature of Ŝ is reconstructed independently from the others using a multi-channel Wiener filter
gk ∈ RC×L, which is learned through an MMSE criterion on a training set of solos of the same instrument. Each
filter is estimated independently as the normalized reverse correlation: gk = C−1

RRCRS, where CRR = RRT is the
auto-correlation of the EEG data and CRS = RST

k is the cross-correlation of the stimulus and EEG data across all
electrodes and time-lags for the kth feature. Since EEG signals are high-dimensional, autocorrelated, noisy data with
high trial-to-trial variability, the estimate of the covariance matrices can be imprecise and subject to overfitting due to
the high number of parameters to estimate [56]. Thus, a Ridge regularization is used to constrain the model coefficients
as follows: gk = (CRR + γI)−1CRS, where I ∈ RC×L is the identity matrix and γ ∈ [0, 1] is the regularization
parameter.

4.3 Evaluation

We evaluate the TRF reconstruction capabilities through the Pearson’s correlation coefficient of the reconstructed
stimulus representation with the attended instrument rattended, the unattended instrument runattended and the mixture
rmixture.

Beside the reconstruction capabilities, we also evaluate the decoding performance in terms of accuracy on the AAD
task. Their statistical significance was assessed using an adaptation of the computationally-intensive randomization
test [57], a non-parametric hypothesis test, comparing to chance, which does not make any assumption on the score
distribution [58]. The considered significance levels are 5%, 1%, 0.1% and 0.01%, and the tests were performed over
104 iterations. This was done by implementing the following procedure: first, we considered a random classifier, that,
given a test mixture, chooses the attended instrument randomly among the instruments in the given mixture. Then, the
performances were computed over the random predictions on the complete test set. This procedure was repeated 10000
times, which resulted in a distribution of the performances. This empirical distribution was then approximated with a
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Figure 2: AAD paradigm: a subject-specific TRF model is used to predict a representation of the attended instrument
from the EEG response to the musical stimulus. Then, the reconstruction is correlated with the ground truth sources to
determine the attended source.

theoretical distribution which could be a normal or a t-distribution (the one that fits better). Then we evaluated how
likely our model’s actual performances were to be produced by this artificial distribution of performances obtaining the
P-value.

4.4 Experimental Results

In Table 1 one can see the decoding accuracy with respect to the three audio descriptors and number of instruments in
the mixture (γ = 0.1, τmax = 250ms). All the scores are significantly above the chance level, which is 50% for duets,
around 33% for trios, and around 44% for all the test mixtures together. TF representations are clearly beneficial for
the decoding indicating that envelope fluctuations at specific frequencies can give a complete view of the music audio
signal. The two spectrograms, especially the MEL spectrogram, also proven to be more robust to the mixture’s number
of instruments. Nevertheless, even if the accuracy scores obtained with the AE are drastically below those obtained
with the other two descriptors, they are still statistically significant.
In Figure 3 one can see the Pearson’s correlation coefficients of the reconstructed stimulus with the attended source
(blue), the unattended one (pink) and the mixture (orange) for the three audio descriptors. The correlation scores are
very low, indicating that the reconstructions are highly deteriorated. Nevertheless, the “contrast” between rattended and
runattended is evident, especially for the two TF descriptors, confirming the decoding results of Table 1.
The lowest rattended Pearson’s coefficients are those related to the AE but are still comparable to those obtained by
O’Sullivan et al. in [29] for speech with the same audio descriptor. However, since the contrast between rattended
and runattended is only marginal, the decoding accuracy is much lower than the one obtained by the same authors.
The broadband envelope is probably enough for discriminating between attended and unattended speakers but is not
enough when dealing with music. Music present complex modulations both in time and frequency, for which the
energy envelope is not enough representative. From the same plot, we can observe that the correlations obtained with
the MAG spectrogram are marginally higher than the ones obtained with the MEL one (median r = 0.215 for MAG,
median r = 0.119 for MEL). However, the “contrast” between rattended and runattended is higher for MEL, which is
reflected in the decoding accuracy. The MEL spectrogram is a perceptually scaled and compact version of the linear
spectrogram (MAG). A non-linear transformation of the frequency scale based on the perception of pitches (Mel scale)
is applied to the linear spectrogram so that two pairs of frequencies that are equidistant in the Mel scale are perceived
as being equidistant by humans. We observed that a lower number of features K, or MEL bands, is beneficial for the
performance during the experiments. In particular, we tested values ∈ [12, 60], and the results we show are relative to
24 Mel bands. Probably, the MAG representation has a too high number of features K, as it corresponds to the number
of frequency bins (in our experiments 512), which might be too complex for the AAD task.
The outcomes are very positive: using a simple linear regression model, we obtain a reconstructed representation that is

7



Preprint

AE MAG MEL
descriptor

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r

source
attended
unattended
mixture

Figure 3: Pearson’s correlation coefficients of the reconstructed stimulus with the attended source (blue), the unattended
one (pink) and the mixture (orange) for the three audio descriptors.

Accuracy (%) All Duets Trios

AE 52 *** 59 ** 40*
MAG 75 **** 78 **** 69****
MEL 75 **** 76 **** 74 ****

Table 1: Decoding accuracy for different subsets of the test set with γ = 0.1 and τmax = 250ms. “****” denotes very
high (p < 0.0001), “***” high (p < 0.001), “**” good (p < 0.01), “*” marginal (p < 0.05) and “n.s.” no (p > 0.05)
statistical significance for a non-parametric randomization test.

more correlated with the attended instrument than with the unattended one. This contrast is particularly significant
when using TF audio representations, highlighting amplitude modulations in different frequency bands. Among the two
TF representations, the more compact and perceptually scaled representation given by the MEL spectrograms appears
to be more robust to highlight the contrast.

5 EEG-informed Source Separation

The goal is now to separate a target instrument from a given music mixture. Along with the audio signal, we have
access to the EEG recorded from the subject while she/he was listening to the given mixture and attending to the target
instrument.

From the experiments presented in the previous Section, we know that the reconstruction of the audio modulations we
can get from the EEG is more correlated with those of the attended instrument than with those of the unattended one.
We observed that this reconstruction is highly deteriorated but still “good enough” to discriminate among the attended
and unattended sources. These two facts can be naturally exploited in an informed NMF-based sound source separation
system, where the sources are decomposed into spectral patterns and corresponding activations. Our proposal is then to
reconstruct the attended source’s activations from the EEG using a linear regression model like the one used in the AAD
experiments. Indeed, the NMF activations can be seen as modulations across time of specific spectral patterns found by
the factorisation. Thus, they will represent a rough approximation of the TF representations used in our previous AAD
experiments.

One advantage over other source separation models is that NMF makes it possible to incorporate additional information
about the sources directly in his optimisation cost without requiring a data intensive training phase. The additional
information at our disposal is represented by the attended source’s temporal activations for a given set of spectral
patterns representing that source reconstructed from the EEG. Since those reconstructed activations are significantly
deteriorated, it is hard to use them directly. Nevertheless, these reconstructions are good enough to discriminate the
attended instrument from the unattended one. In the proposed Contrastive-NMF, this “contrast” is used to guide the
separation. The factorisation and the decoding are learnt jointly. The target instrument’s activations are reconstructed
from the multi-channel EEG at first using a pre-trained TRF backward model. Then they are used to guide the mixture’s
factorisation and cluster the components into the respective sources. At the same time, the decoding model is updated
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Figure 4: Proposed scheme: the target instrument’s activations are reconstructed from the listener’s multi-channel
EEG using a pre-trained TRF backward model. They are then used to guide the mixture’s factorisation and cluster
the components into the respective sources (C-NMF). At the same time, the decoding model is updated every certain
number of C-NMF iterations to adapt to the observed signal. After convergence, the dictionary and the activations
related to the attended source are used to obtain the Wiener filter soft-mask.

every certain number of NMF iterations to adapt to the observed signal. A good initialisation of the TRF can be learned
from a small training set of solos and corresponding EEG recordings from the same subject.

5.1 NMF-based audio source separation

The proposed Contrastive-NMF (C-NMF) is a novel variant of Non-negative matrix factorization (NMF), a technique
for data decomposition which has been very popular in many audio inverse problems such as source separation,
enhancement or transcription as it is able to unmix superimposed spectral components [59]. Among other factorization
techniques (e.g. Principal Component Analysis (PCA), Independent Component Analysis (ICA)), NMF distinguishes
itself because of its nonnegativity constraints which lead to a part-based representation of the data that is interpretable
[60].
In the case of single-channel audio source separation, one can assume that an audio signal x(t) at time sample t is given
by the linear mixture of J sources sj(t):

x(t) =
∑J

j=1
sj(t). (2)

Observing the mixture x(t), a source separation system aims to recover one or more sources sj(t) of interest. Such
a mixture can be represented in matrix form through its magnitude spectrogram X ∈ RM×N

+ , where M represents
the number of frequency bins and N the number short-time Fourier transform (STFT) frames. X can be factorized
into two unknown matrices W and H such that X ≈WH, where the columns of W ∈ RM×K

+ are interpreted as
non-negative audio spectral patterns, expected to correspond to different sources and the rows of H ∈ RK×N

+ as their
temporal activations. Usually, one refers to W as the dictionary and to H as the activation matrix. When K, namely
the rank of the factorization, is much smaller than M , WH represents a low-rank approximation of the data matrix X
[59]. The factorisation can be achieved by minimizing a cost function as the following:

C(W,H) = D(X|WH)︸ ︷︷ ︸
audio factorization

+µ∥H∥1 + β∥W∥1︸ ︷︷ ︸
sparsity

W,H ≥ 0.

(3)

Usually, for the mixture reconstruction β-divergences are used, which have been very popular for audio inverse
problems. It is also common to impose a sparsity constrain on both W and H using an ℓ1 regularization controlled by
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the hyperparameters µ and β, respectively, to improve the source modelling. In fact, music is often given by a repetition
of a few audio patterns, thus we can easily assume that the activations are sparse [61]. The same can be assumed for
the spectral patterns as there is only a low probability that two given sources are highly activated in the same set of
frequency bins [62].
At this point, the separation problem reduces to the assignment of each component to the corresponding source j. Then,
the complex-valued spectrogram Sj of each source can be estimated by Wiener filtering as:

Sj =
WjHj

WH
⊗ X̃, (4)

where the element-wise division (WjHj)/(WH) is the soft mask associated to source j and X̃ is the complex
spectrogram of the mixture. ⊗ denotes an element-wise multiplication. Through an inverse STFT one can recover the
corresponding audio signal in the time domain.
What we have described so far is the so-called unsupervised NMF, i.e. a blind signal decomposition where both the
dictionary and the activations are estimated from the mixture [59]. However, in real music compositions a source plays
several notes with different pitches and it might be hard to represent it with a single component. Moreover, two sources
may be represented by similar components as they might overlap and be highly correlated. Therefore, the component
assignment might be hard and requires specific classification or clustering techniques. In such a complex situation,
the factorization needs to be “guided” by incorporating prior information about the sources to return a meaningful
representation [63].
Starting from the unsupervised formulation, one can incorporate prior knowledge directly in the optimisation cost,
e.g., through hard or soft constrains, specific regularizers, pretrained dictionaries, or forcing the elements of W and/or
H to follow a given distribution [61]. Particularly interesting is the multimodal scenario, where one has access to
multiple views of the same phenomenon (e.g., video, motion capture data, score) which are synchronized with the audio.
Seichepine et al. [64], for instance, propose to impose the equality (hard constraint) or the similarity (soft constraint) of
the source activations in the two modalities. This is not applicable in our case as the time activations we can reconstruct
from the EEG are very deteriorated, making it hard to use them directly. Nevertheless, these reconstructions are “good
enough” to discriminate the attended instrument from the unattended one, leading to a “contrast” that can guide the
separation.

5.2 A novel NMF variant: Contrastive-NMF (C-NMF)

The general idea of discriminating sources according to some criterion for NMF-based audio source separation was
already explored in the past but most of the proposals refer to fully supervised or semi-supervised scenarios, where the
basis functions are learned in a training phase. Weninger et al. [65] and Kitamura at al. [66] propose to learn basis
matrices that are as much discriminative as possible to have unique spectral templates for each source. Grais et al. [67]
propose to minimize the cross-coherence between dictionaries belonging to different sources, while Chung at al. [68] to
learn a factorization so that each basis is classified into one source. Kumar et al. [69] propose a max-margin framework,
where the projections are learned to maximize an SVM classifier’s discriminative ability. Within this work, instead, the
projections are learned by an unsupervised NMF to maximize the discrimination ability of a TRF model. Specifically,
the proposed cost aims at decomposing the audio spectrogram while maximizing the similarity of the EEG-derived
activations with the audio-derived ones for the target source and minimizing it for the interference sources. Thanks
to this formulation, the components resulting from the decomposition should already be clustered into the target and
interference sources.
Let us analyze the novel cost function. Considering a mixture x(t) given by the linear mixing of the attended source
sa(t) and some interferers su(t), let Wa be a sub-dictionary of W containing a set of bases representing source sa(t)
and Ha be their activations. Ha can be roughly approximated by Sa reconstructed from the time-lagged EEG response
R, the assumption being that it is likely to be more correlated with the NMF-derived activations of the attended source
Ha than with the ones of the interferers Hu. This contrast can be integrated in the unsupervised NMF cost function as
follows: 

C(W,H) = D(X|WH)︸ ︷︷ ︸
audio factorization

+µ∥H∥1 + β∥W∥1︸ ︷︷ ︸
sparsity

+

− δ(∥HaS
T
a ∥2F − ∥HuS

T
a ∥2F )︸ ︷︷ ︸

contrast
W,H,Sa ≥ 0

∥hk:∥2 = 1, ∥sk:∥2 = 1.

(5)

hk: and sk: represent the rows of H and Sa respectively and are normalized to have unit ℓ2 norm in order to minimize
the effect of a scale mismatch between the modalities.
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We derived the update rules for H and W using multiplicative update heuristics. They are given on line (10) and (12)
of Algorithm 1 respectively.2 This pseudo-code provides all the details of the algorithm: ⊗ and exponents denote
element-wise operations, 1 is a matrix of ones whose size is given by context and P−,P+ ∈ RK×N denote the negative
and positive parts of the auxiliary matrix P respectively (for more details see the derivation in the supplementary
material). The inputs are the magnitude spectrogram of the mixture X and the time-lagged EEG data matrix R while
the outputs are the two matrices Wa and Ha associated to the attended source. The hyperparameters to be tuned are µ,
β and δ.

input :X,R, µ ≥ 0, β ≥ 0, δ ≥ 0, γ ∈ [0, 1]
output :Wa, Ha

1 W, H, g initialization
2 H← diag(∥h1:∥−1, ..., ∥hK:∥−1)H ▷ normalization
3 W←W diag(∥h1:∥, ..., ∥hK:∥) ▷ re-scaling
4 Λ = WH
5 repeat
6 Sa ← gTR
7 Sa ← diag(∥s1:∥−1, ..., ∥sK:∥−1)Sa

8 repeat
9 P← [−HaS

T
a Sa,HuS

T
a Sa]

T

10 H← H⊗ WT (X⊗Λ−1)+δP−

WT 1+µ+δP+

11 H← diag(∥h1:∥−1, ..., ∥hK:∥−1)H
12 W←W diag(∥h1:∥, ..., ∥hK:∥)
13 Λ = WH

14 W←W ⊗ (Λ−1⊗X)HT

1HT+β

15 Λ = WH
16 until convergence;
17 update g
18 until convergence;
19 return Wa, Ha

Algorithm 1: Contrastive NMF pseudo-code

5.3 Experiments

The experiments are designed to evaluate weather the EEG information helps the separation process. However, to verify
that the improvement is due to the EEG and not to the cost function’s discriminative capacity, it was not enough to have
the blind NMF as the only baseline. Therefore, we built a second baseline which consists of the Contrastive NMF to
which meaningless side information is given. The meaningless side information consists of random activations sampled
from a Gaussian distribution. To summarise, we tested three models:

1. Blind NMF (NMF);
2. Contrastive NMF + Random side activations (C-NMF-r);
3. Contrastive NMF + EEG-derived activations (C-NMF-e).

As the models are entirely unsupervised, the factorised components need to be assigned to each source before applying
the multi-channel Wiener filter. In the two baselines, the components are clustered according to their Mel-frequency
cepstral coefficient (MFCC) similarity. In the case of the C-NMF-e, the EEG information automatically identifies and
gathers the target instrument components. Thanks to this we can reformulate the AAD problem exposed in Section 4,
where we had access to the ground truth sources, differently. This time, the instrument which is predicted as being the
attended one is the one that is automatically separated by the proposed source separation system. Specifically for our
formulation, the attended instrument is the one represented by the Wa dictionary ad Ha activations.
For each method, NMF is run for 400 iterations while the TRF model is updated every 100 iterations of the C-NMF-e.
For each method, the initialization of W and H is obtained by applying a blind NMF to the mixture for 200 iterations.
For a given mixture, the initialization of the three models is the same to guarantee a fair comparison. As a cost function,

2For the detailed derivation, refer to https://hal.telecom-paris.fr/hal-02978978/file/Update-rule-C-NMF.pdf
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Pop Classical

SDR [dB] Guitar Vocals Drums Bass Oboe Flute Horn Cello Bassoon

Duo Trio Duo Trio Duo Trio Duo Trio Duo Trio Duo Trio Duo Trio Duo Trio Duo Trio
NMF 3.4 1.9 2.3 5.4 -2.0 7.8 0.6 -12.5 4.4 5.3 6.3 3.7 5.9 5.3 5.5 6.3 4.7 -2.9
C-NMF-r 1.0 2.8 3.2 5.6 0.4 0.9 0.4 -14.9 3.9 -1.7 1.2 1.6 3.7 2.2 7.3 6.6 4.6 1.8
C-NMF-e 4.4 3.4 3.8 5.1 5.6 2.0 5.2 3.9 5.4 1.4 3.0 1.7 2.1 1.6 4.5 3.6 3.6 3.7
Mono 3.4 3.5 3.6 5.2 5.8 1.7 5.2 3.7 5.5 4.8 2.9 2.1 2.3 1.6 4.9 2.9 3.6 3.7
Stereo 4.5 3.4 4.0 3.2 5.4 2.5 9.0 4.0 4.9 -3.9 3.0 1.4 2.0 2.3 4.5 4.1 4.5 3.9

Table 2: SDR separation results for different models, ensemble types and instruments. The metrics are shown in dB
and all values are medians over the corresponding subset of the test set. In the last two rows, the SDR results of the
proposed method C-NMF-e are split for stereo and mono listening tests.

we chose the Kullback-Leibler divergence. We learned a good initialization of the TRF model from a training set
of solos (different from the ones used in the test mixtures) and corresponding EEG recordings for each subject and
instrument. The Ridge parameter is set to be γ = 0.1 and the considered temporal context is [0, 250]ms post-stimulus
as done in the experiments of Section 4. Note that in our preliminary work [27], only pop duets associated with the
musical piece “mixtape” were analyzed. Here we consider all the pop and classical mixtures in the MAD-EEG dataset
including also trios. Indeed, we generalized the C-NMF implementation so that it is valid for mixtures containing more
than two instruments.

5.4 Evaluation

The models are evaluated using a standard metric in music source separation, i.e. the Signal-to-Distortion Ratio (SDR)
expressed in dB and computed using BSSEval v4 [70, 71]. The metric is computed over the whole length of each music
excerpt (around 24 seconds). In the tables below are reported median values. To assert the statistical significance of our
model’s improvement over the baselines, we opted for a non-parametric Wilcoxon test on the metrics’ linear values.
The considered significance levels are 5%, 1%, 0.1% and 0.01%.
It is worth noting that given the user-driven nature of the EEG-driven separation system, the performance not only
depends on the algorithm but also on the subject’s ability to properly attend to the target instrument.

5.5 Experimental results

Separation quality In Table 2, one can see the median SDR values for different methods, instruments and spatial
rendering. As far as spatial rendering is concerned, it is important to keep in mind that the audio signal processed by the
source separation system is always mono (i.e. the task is single-channel audio source separation). The “mono” and
“stereo” results relate to the way the stimuli were played to the subjects which differently affects their EEG response.
It is immediate to see that the contrast derived from the EEG can improve the separation quality for all the pop
instruments, especially when separated from duets. Particularly significant is the improvement over the blind baseline
(NMF) for the drums (more than 7 dB).
It is also clear that the proposed model needs to be fed with meaningful side information and that the activations
reconstructed with the TRF model are indeed meaningful. In fact, the same model informed with the random side
information (C-NMF-r) performs significantly worse than the one fed with the EEG-derived contrast (drums and bass
p < 0.0001, guitar p < 0.01, singing voice p < 0.05, Wilcoxon test). In general, the C-NMF-r model introduces lots of
artefacts, even without removing the interferers. Moreover, the random side information can even fool the factorization
leading to a degradation of the performance w.r.t. the blind NMF. Only in some rare cases (e.g. Vocals, drums, and
cello), even with the random information, the proposed paradigm “guides” the separation indirectly by imposing that
the Ha and Hu activations are different, leading to a little improvement over the blind NMF. Those results confirm the
preliminary results obtained in [27], where only pop duets associated with the song “mixtape” were tested. Now, let us
analyze the result related to trios and Classical mixtures.
The situation is different for Classical music instruments, where the improvement over the baselines is statistically
significant only for the oboe’s separation from duets and the bassoon’s separation from trios. The main reason is that the
blind NMF is already obtaining a good separation, as the Classical music mixtures of the MAD-EEG dataset can be too
easy to separate, and the EEG information helps especially in difficult cases (e.g. bass separation where the baselines
suffer from the task’s complexity). In such cases, it is hard to see the beneficial effects of the additional information.
Regarding trios, the SDR improvement over the baseline is statistically significant only for guitar, bass and the oboe. In
general, separating trios is more challenging as the input SDR is much lower. Some previous works on AAD applied
to speech [38, 72] showed that the attention task is more challenging for the listener with an increasing number of
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Figure 5: Inter and intra-subject variability in duets: the SDR results are expressed in dB and different nuances of pink
indicate different subjects.

sources and noise levels. In practice, high noise levels can impact the listener’s ability to segregate the source of interest
leading to poor decoding quality. In music, this problem can be related to how much the attended instrument is in the
foreground, i.e. its predominance. The input SDR of a given source w.r.t. the mixture can give us a rough idea of one
source predominance, and for trios it is lower than for duets.
We remark that the results in Table 2 were obtained with K = 16, µ = β = 10, and δ = 104, set of values which was
found to give good overall results. However, we observed that specific instruments and mixtures would need a specific
hyperparameter tuning to maximize the performance. To give an example, by only reducing the value of µ from 10 to 1
when separating the oboe from trios, one can improve the SDR by more than 4 dB. This data-dependent behaviour of
NMF scheme’s hyperparameters was previously observed [11] and can be mitigated by allowing a user of the system to
adjust the hyperparameter values typically through a knob/slider.

Spatial rendering The stimuli were played to the subjects with two possible spatial renderings: one where both
instruments are in the centre denoted as mono modality, and one where the instruments are spatialized, denoted as
stereo. The last two rows of Table 2 show the results for these two different cases for all the instruments in the dataset.
The results are differentiated w.r.t. the number of instruments in the mixture, and all values are medians over the test
set. Intuitively, the stereo setting should help the subject in focusing on the target instrument as it makes it easier
to localize it, leading to a better reconstruction of its activations and finally giving a better separation. We observed
statistically significant improvement only for the pop instruments when listened to in duets (guitar p < 0.01, singing
voice p < 0.001, drums and bass p < 0.05, Wilcoxon test).

Inter and intra-subject variability Part of the high variance in the SDR performances is because different mixtures
in the dataset can be more or less difficult for the separation system. However, most of the variance comes from the
very high inter and intra-subject variability. The attention task may be more or less difficult for different subjects (inter-
subject variability), which may depend on factors such as musical training and attention capacity [73]. Simultaneously,
one single subject may perform differently throughout the experiment (intra-subject variability), maybe due to stress
and fatigue that affect the attention level. These effects are evident in Figure 5, where the SDR results for duets are
differentiated according to the participants involved in the experiment and the target instrument. Looking at Figure 5,
one can realise that for a given instrument different subjects may behave very differently while for other ones they
behave similarly. Moreover, for single instruments, subject’s performance may span a wide SDR range. For example,
regarding Classical instruments, one can observe that the intra-subject variability is generally lower while sometimes
there is a clear inter-subject variability. This may be due to the subjects’ unfamiliarity with some instruments like the
French horn and the bassoon.
Another factor is that some instruments can be more difficult than others to follow. For instance, instruments like the
bass and the drums, which usually guide the rhythm and tempo, are notably more difficult to be tracked, especially for
non-professional musicians and this is reflected in the very high inter and intra-subject variability.

Attention decoding performances Even if the SDR improvement is not systematic for all the instruments, the main
advantage of the C-NMF-e model is that it gives an automatic clustering of the components and automatically enhances
the attended source. Therefore, the instrument that is automatically separated by the proposed source separation
system, i.e. the one represented by the Wa and Ha, is predicted as being the attended one. It is an asset w.r.t. the
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Figure 6: Decoding accuracy for different instruments and ensemble types compared with the chance level for duets
and trios respectively.
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Figure 7: Decoding accuracy for different instruments and values of hyperparameter δ that weights the contrastive term.

baselines, which need an additional step to cluster the components and cannot automatically identify the target source.
In Figure 6, we report the AAD accuracy values for different instruments and ensemble types. The blue and the red lines
represent the chance level for the duets and the trios. The accuracy is satisfactory and statistically above chance for four
instruments: guitar, drums, French horn, and cello. For some other instruments (singing voice, bass, bassoon, and oboe),
the accuracy is much below chance indicating that the contrastive term is always forcing them not to be represented
by Wa and Ha. The reason for this behaviour lies in a non-customized tuning of the δ parameter. We observed, for
instance, that δ = 104 causes a drop of the performances for the singing voice and the bassoon, which instead were
much above chance with δ < 104. As we said previously, this can be easily solved by a customized fine-tuning of the
hyperparameters by the user.

Effect of hyperparameters We first analyze the number of NMF components necessary to describe each instrument
testing 4 values ({4, 8, 16, 32}). We observe that an increasing number of components improves the separation
performance as it allows a more accurate description of the sources. As for the impact of the sparsity constraints
imposed on H and W by µ and β, respectively, which in our experiments are set to be equal, we tested 4 values
({0, 0.1, 1, 10}), observing that higher µ and β improve the separation quality as it allows a better source modelling.
Lastly, we tested four reasonable values for δ ({101, 102, 103, 104}), which weights the contrastive term in the C-NMF
cost function. We observed that increasing values of δ lead to significantly higher SDR for all the tested instruments
except for the French horn, for which there is no significant difference (p > 0.05, Wilcoxon test). However, one has to
be careful not to chose a too high value of δ, which may push to a trivial solution where the activations of the interferers
Hu are set to zero and all the sources in the mixture are represented by the Wa and Ha. This effect is reflected in
the AAD accuracy reported in Figure 7, where the performance drops for δ = 104 for the vocals and the bassoon.
However, this effect is strictly instrument-dependent as for other instruments like the cello, the decoding accuracy
becomes statistically better than chance only with δ = 104 (p < 0.0001, randomization test).
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6 Conclusions

This paper describes a novel neuro-steered music source separation framework and conducts an extensive evaluation
of the proposed system on the MAD-EEG dataset. We have analysed the impact of various aspects of the musical
stimuli, such as the number and type of instruments in the mixture, the spatial rendering and the music genre, obtaining
encouraging results. The results support the thesis that the EEG can guide and help a source separation system,
especially in difficult cases where non-informed models struggle. Our ablation study, where the proposed model is
informed with random side information, shows that the C-NMF formulation is not enough by itself but needs to be
informed with meaningful side information and that the activations reconstructed with the TRF model are indeed
meaningful. The main advantage of the C-NMF formulation is that it allows us to reformulate the AAD problem without
access to the ground truth sources, paving the way for real-life applications. Moreover, it can be generalised and used
with temporal activations derived from other modalities than the EEG (e.g., video, score, motion capture data) or from a
manual annotation provided by the user (e.g. a sound engineer that annotates when the instrument of interest is active).
One limitation of the C-NMF model is that it needs customised fine-tuning of the hyperparameters for each test mixture
to perform optimally. However, as the number of hyperparameters is limited, this can be easily mitigated by allowing
users to adjust their values through a set of knobs/sidebars. Further, the EEG-driven C-NMF system has the intrinsic
limitation of the subject-related variability: if the level of attention of the subject is not sufficient, this will inevitably
impact the performance. Another factor that needs to be considered is musical expertise and training, which may help
the subject while attending to an instrument.
We believe that this NMF variant is advantageous for neuro-steered music source separation. Indeed the available
music-related EEG datasets are still costly and time-expensive to acquire, precluding the possibility to tackle the
problem with data-driven approaches. Unsupervised NMF represents a powerful approach in such applications where
there is no or a limited amount of training data. Moreover, additional information can be easily incorporated into the
model cost function directly at test time.
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