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Rainbow tables are techniques commonly used in computer security to invert one-
way functions, for instance to crack passwords, when the domain of definition is
reasonably-sized. This article explores the limit on the problem size that can be
treated by rainbow tables when the precomputation and the attack phases are
both CPU-driven. We conclude that the bottleneck is no longer the memory as it
may have been and the precomputation phase seems to have been underestimated
so far. In contrast to the usual articles on rainbow tables, we offer a comparison of
what can be done on different environments depending on the needs and available

computing power of the users.
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1. INTRODUCTION

Context A rainbow table is a data structure used
to invert one-way functions – for example hash or
encryption functions – when the domain of definition
is reasonably-sized. It is the most used variant
of cryptanalytic Time-Memory Trade-Off (TMTO).
A TMTO has characteristics between that of brute-
force search (which has high computation cost) and
dictionary attack (which has high storage cost).
Rainbow tables are particularly useful (1) when the
inversion (or attack) is repeated many times, (2) when
the precomputation is delegated (e.g., a powerful entity
precomputes, but a simple laptop carries out the
attack), or (3) when there is a small pre-determined
window of opportunity for the attack but a possibly
long time to prepare for it (lunchtime attack).
The use of rainbow tables is divided in two phases:

precomputation phase (performed once) and attack
phase (performed for each inversion). Given a problem
of size N (N is the number of possible solutions) and a
memory of MT , the complexity of the precomputation
phase is linear in N (with a factor varying, depending
on parameters and optimizations – see discussion in [1])
and the complexity of the attack phase is O(N2/M2

T ).

This means that a memory anywhere from O(
√
N)

(below which the attack becomes slower than brute
force) to O(N) (above which the memory becomes
larger than in a dictionary attack) can be used to
accelerate the search with respect to brute force.
Various papers discuss algorithmic and implementation
improvements to both phases: variants [2, 3], attack
phase optimizations [4, 5, 6], storage optimizations [7],

and precomputation improvements [1].

Motivation This article aims to characterize the
efficiency of rainbow tables from a practical point of
view, and determine which largest N can be realistically
addressed by rainbow tables, with these optimizations
in mind. This is explored with a CPU-driven
computation model, with reasonable assumptions about
the computing environment and parameters. We
further aim to gain some insight from this work into the
current practical impact of rainbow tables in computer
security, and the future research for rainbow tables and
associated concepts.

Contribution We define three potential types of
environments for the precomputation phase. Each
environment corresponds to typical needs and budget
with today’s technology. For each environment, we
evaluate the largest N that can be undertaken and
we identify the technological bottleneck that prevents
going further. Experiments are provided to illustrate
certain theoretical evaluations.

Two environments are super-computers or rather
large computers, with at least 100 cores. The one
that we call supercomputer is a computer typically
belonging to the top-100 worldwide list3. The
other one, which we call computer corresponds to
a computer available for medium sized companies or
academic research teams. The third environment,
called the cloud environment corresponds to what
could be expected on rented machines available in the

3https://top500.org/

https://top500.org/
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cloud. The latter environment could be economically
interesting if precomputations are performed only once
or occasionally. Using these three environments, we
conclude what the three main entity types can achieve
in TMTOs today. Section 6 provides approaches to
improve TMTOs in the future. Knowing the space
size that can be easily attacked by TMTOs today also
allows the whole community to take measures to protect
themselves.

Organization Section 2 summarizes basics on rainbow
tables, especially the way the two phases are carried
out. Section 3 briefly presents other TMTOs variants
and improvements made. Section 4 introduces
the environments and scenarios considered in this
article. The performed evaluations and experiments
are described in Section 5. Discussions about the
technological limits of TMTOs then conclude the article
in Section 6.

2. BACKGROUND

2.1. Overview

The purpose of TMTOs is to retrieve a preimage of
a given value obtained through a (one-way) function.
Usually, this one-way function is denoted h with h :
A → B. The searched preimage is denoted by x with
x ∈ A, and the given value is denoted by y with y ∈ B.
The aim is therefore to retrieve x from y with y = h(x),
using precomputed tables.

Various TMTOs algorithms exist. One of the
most efficient and commonly used variant is the
rainbow tables variant, which is consequently the
variant addressed in this paper. Rainbow tables
without any improvement, called classic rainbow tables,
are considered in this section. Other variants and
improvements are briefly described in Section 3, and
more extensive descriptions can be found in, e.g.,
[1, 8, 9, 10].

2.2. Precomputation Phase

2.2.1. Matrix Construction
To construct a rainbow table, a rainbow matrix of m

rows and t+1 columns is firstly generated. Each matrix
element is denoted xi,j , with xi,j ∈ A, 0 ⩽ i ⩽ t and
0 < j ⩽ m. Each element xi+1,j of a row j, is obtained
from the previous element xi,j using a function denoted
fi and named hash-reduction function, where:

xi+1,j = fi(xi,j).

Given the hash function h : A → B, and a reduction
function family4 ri : B → A, the hash-reduction

4The purpose of a reduction function is to map a hash to an
arbitrary element of the input space A. A notable example is
ri(y) 7→ (y + i) mod N for A = {0, 1, . . . , N − 1}.

function fi is defined by:

fi : A → A
xi,j 7→ ri(h(xi,j)) = xi+1,j

The successive application of fi forms a chain. To
form a rainbow matrix of m rows and t+1 columns, m
chains are computed by iterating t times the function
fi on m arbitrary chosen elements of A.

f0 f1
x0,1 −→ x1,1 −→ x2,1 . . . . xt,1

f0 f1
x0,1 −→ x1,2 −→ x2,2 . . . . xt,2

...
...

...
...

f0 f1
x0,m −→ x1,m −→ x2,m . . . . xt,m

FIGURE 1: Rainbow matrix

Figure 1 illustrates the construction of a matrix with
m rows ans t + 1 columns. The elements in the
first column of the matrix are called start points and
elements in the last column are called end points. Only
start points and end points are kept to form the rainbow
table. All the other columns are discarded.

2.2.2. Clean Rainbow Table
During the matrix generation, chains may merge. A

merge between 2 chains occurs when all their elements
are equal after a given column, i.e., when xi,j ̸= xk,j

and xi,j+1 = xk,j+1, for 0 ⩽ j < t. Chain merging is
possible because |B| > |A|.
To make the attack phase as efficient as possible,

the table is trimmed to only keep rows that have not
merged, i.e., chains with unique end points – this is
called a clean or perfect table.
As the attack phase should be as fast as possible,

clean rainbow tables are usually used. In what follows,
tables will be considered clean, m0 will denote the
number of start points used to generate the matrix,
and mt will denote the number of points remaining in
column t after the cleaning process.

2.2.3. Non-Maximal Table
The number of start points, m0, is chosen to be as

high as practically possible for a given t. When m0 = N
the table is said to be maximal. In that case mmax

t

points remain in the last column after cleaning the
table. mmax

t is defined in Theorem 2.1 from [4].

Theorem 2.1. Given t and a sufficiently large N, the
expected maximum number of chains per clean rainbow
table is:

mmax
t ≈ 2N

t+ 2
.

The higher the desired number of points remaining in
column t, the higher the proportion of chains that need
to be thrown out during the cleaning due to duplicate
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end points. Therefore, besides being very costly, taking
m0 = N is not worth the cost compared to the number
of remaining chains at the end of the generation. Thus,
in practice, non-maximal tables are generated with a
number of start points much lower than N .
Given a number of start points m0 < N , the

maximality factor α with 0 < α < 1, is defined such
that:

mt = αmmax
t

It is then possible to define a ratio r of chains
to be generated in order to obtain a targeted
mt = αmmax

t number of chains in the final clean table.
Proposition 2.1 introduced in [1] defines this ratio r.

Proposition 2.1. With a target of mt = αmmax
t

unique end points, m0 = rmmax
t chains need to be

generated to construct a rainbow table, with:

r ≈ α

1− α

A table created with a typical ratio of r = 20 chains
computed per chain kept for instance, results in mt

being at about 95% of its maximal value.

2.2.4. Success Probability
A single clean table covers much of A, but not all of

it (very close to 86.47% for maximal tables). Therefore,
several independently-computed tables are used in the
attack phase, reaching a success probability arbitrarily
close to 1. For a single table with mt end points,
the success probability P (t) is given by Equation (1),
adapted from [8].

P (t) = 1− (1− mt

N
)t. (1)

Using ℓ tables the success probability P (t, ℓ) is given by
Equation (2) from [8].

P (t, ℓ) = 1− (1− Pc(t))
ℓ. (2)

2.3. Attack phase

Once the precomputation phase is completed, the
attack phase can be performed. The latter phase uses
the precomputed rainbow tables to find a preimage of
a given y ∈ B. The following process is iterated until
an answer is found or after t iterations (in which case
the process fails): at iteration i, a chain of length i
is computed: ft(. . . ft−i+1(rt−i(y)) . . . ). Its end point
is then compared to the end points in the table. If a
match is found, the corresponding chain of the matrix is
rebuilt from its start point, up to the column t− i− 1:
xt−i−1,j = ft−i−1(. . . f1(x1,j) . . . ). If h(xt−i−1) = y
then the attack is completed and successful. If the two
hashes are not equal, or if no match was found, the
process proceeds to the next iteration. If the attack
reaches t iterations, it fails.
Proposition 2.2 adapted from [4], defines the number

of operations needed to perform a search in the

column c, i.e., after t − c iterations. The number of
unique points remaining in column i is denoted mi and
can be easily computed as demonstrated in [1].

Proposition 2.2. After t− c iterations, the average
number of hash operations Cc needed to perform a
search is:

Cc = t− c

t∏
i=c

(
1− mi

N

)
Proof. A proof for maximal tables can be found in [4].
The result can be extrapolated to non-maximal rainbow
tables.

The average attack time using rainbow tables can
be deduced from Proposition 2.2 and is given by
Theorem 2.2

Theorem 2.2. The average number of hash opera-
tions T required to perform an attack using rainbow
tables, given a search space of size N and ℓ tables is:

T = ℓ

t∑
i=1

mt

N

(
1− mt

N

)ℓ(i−1) c∑
j=1

Ct−j+1

+e−2ℓℓ

t∑
i=1

Ci.

Proof. As Proposition 2.2, this theorem is derived from
formulas given in [4].

During the attack phase, tables can be loaded in
RAM or on disks (preferably SSDs). In the latter case,
several approaches can be taken (see [11, 12]).

In [11], the authors show that the attack time is not
significantly impacted by the use of secondary memory
(SSD, HDD etc.) rather than RAM. Furthermore, as
discussed in Section 5 and 6, performing the attack
phase on secondary memory rather than on RAM would
not change the conclusions of this paper.

However, an attack on secondary memory is more
complex. Thus, for the sake of clarity, in this paper, we
consider attack phase on RAM.

The attack phase benefited from various algorithmic
improvements that significantly improved its perfor-
mances. All told, a fully-fledged and well-parameterized
implementation can be from 5 to 10 times faster5 than
a naive implementation. While important in practice,
they do not change the order of magnitude of the attack
phase cost. A brief summary is nonetheless presented
in Section 3, but for clarity, rainbow tables without im-
provement on the attack will be used in this paper.

3. RELATED WORK

This section provides an overview of TMTO variants
and improvements published so far, along with
references that detail each of them.

5The exact speed-up depends on many factors and parameters.
This window is a conservative estimate, based on typical scenarios
and configurations.
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3.1. TMTOs Variants

Hellman Table. The earliest TMTO was introduced by
Martin Hellman in 1980 [13]. This work differs from the
rainbow variant on the choice of the reduction function:
only one reduction function is used in Hellman’s case
instead of a reduction function per column in the
rainbow variant. At each iteration performed during
the attack phase, only one additional application of
the reduction function is needed, which speeds up
considerably this step. However, the coverage of
Hellman’s tables is very poor due to the large number of
collisions it generates, which implies using a very large
number of tables (typically t tables) to obtain a suitable
coverage. The greater the number of tables used, the
longer the attack time. In addition, cleaning Hellman’s
table is very difficult and not necessarily worth it. In
the end, Hellman’s tables are less efficient than rainbow
tables and, therefore, are non longer used.

Distinguished Point (DP) Tables. DP variant is based
on Hellman’s tables, but instead of having chains of
length t, chains are computed until reaching a so-
called distinguished point (typically, points that have
at least d bits at 0). DP tables have thus chains with
variable lengths. End points are all distinguished points
which make the table easy to clean. As chains of DP
tables do not have predictable sizes, it alters both the
precomputation phase and the attack phase. In the end,
it has been established in [3, 10], that DP tables are less
efficient than rainbow tables.

Fuzzy Rainbow Tables. This variant is a trade-off
between rainbow tables and DP tables. Fuzzy rainbow
tables are extensively studied in [2]. In this variant,
each chain is built by concatenating DP chains. As
shown in [9], except for very low success probabilities
and, therefore, uninteresting cases in practice, fuzzy
rainbow tables are less efficient in precomputation and
attack than rainbow tables.

3.2. Precomputation Phase Improvement

Until recently, most of the improvements on TMTOs
focused on the memory or time needed for the attack.
In 2021, [1] shows that the precomputation time
can also be improved to cover larger spaces. The
filtration method have thus been introduced in [1], the
method consists in cleaning the matrix as the generation
progresses rather than at the end and allows dividing
the precomputation time by 6 without increasing the
attack time.

3.3. Attack Phase Improvements

Checkpoints. Checkpoints have been introduced in [4].
The concept consists in storing additional information
– so call checkpoints – on each chain, such that this
information allows reducing the attack phase time. The

checkpoints, are stored along with the start points
and end points. During the attack phase, when the
attack chain matches an end point of the table, the
checkpoints of the built attack chain are compared to
the checkpoints of the matching chain. It at least a
checkpoint differs, then the match is a false alarm and
it is consequently useless to rebuild the chain of the
table from its starting point. With optimal parameters,
rainbow tables with checkpoints are faster than the
classical case but require slightly more memory.

Fingerprints. This improvement has been introduced
in [5]. Its consists of applying in an efficient way the
checkpoints improvement with a memory improvement
called truncated end points. the principle is to store end
points that have been truncated to reduce the memory
needs for the attacks phase. Truncated end points alone
increase the attack time significantly but used combined
with checkpoints in the fingerprints method, they allow
a speedup of about 2 compared to the classical rainbow
table.

Heterogeneous Tables. This variant has been intro-
duced in [6]. It consists in using rainbow tables with
different lengths. This implies that searching in the
shorter tables takes less time than searching in classic
tables but searching in the longer ones takes more time.
This variant does not require more memory than the
classical case. By wisely performing the attack phase
(favoring searches in the shortest tables), this variant
reduces the average attack time by up to 40% with-
out increasing the memory. The counterpart is that the
worst case is slightly longer than with classic tables.

4. ENVIRONMENTS AND SCENARIOS
CONSIDERED

4.1. Context

In practice, the entities that perform TMTOs have
different needs, purposes, and resources (e.g., available
memory, price, time available, etc.). Resources
are, in addition, not the same for the attack and
precomputation phases.

It is therefore necessary to define the context in which
each phase is performed. A company, for instance,
does not have the same resources than a nation state.
The memory available for the precomputation must be
defined as well as the one for the attack. Other variables
such as the available time should also be specified in
advance.

To define the context in which a TMTO is performed,
we will use the notion of environments and scenarios.
An environment corresponds to the material resources
available (RAM, number of cores, CPU performances
etc.). A scenario corresponds to the non-material
resources available (Time or money).

In this paper, we consider different environments,
each of them described in 4.2 (precomputation) and
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in 4.3 (attack phase). These environments aim to
represent different entities. For each environment,
we have considered different scenarios depending on
available time or money.

4.2. Precomputation phase

Environment #Cores Hashes/Sec/Core RAM (TB)
supercomputer 86 344 25 000 000 16 182

computer 127 11 000 000 1

TABLE 1: Precomputing supercomputer and
computer environments

Three different types of precomputation environ-
ments are considered in this paper: (1) supercomputer,
which is representative of a supercomputer among the
top 100 worldwide; (2) computer, which corresponds
to a 128-core computer; and (3) cloud, which con-
sists of rented computing units from on the main
cloud platforms, e.g., AWS, Azure, or GCP. For each
environment, the number of cores, the number of
hashes/second/core, and the available memory (RAM)
are provided for supercomputer and computer in Ta-
ble 1 and in Table 2 for cloud.
Typically, supercomputer represents the computing

power of a governmental agency, computer might be a
computer owned by a university or a small to medium-
sized business, and cloud illustrates an entity that rents
commercial computing units in order to precompute
rainbow tables.

For each environment, three scenarios are considered.
As shown in Table 1, for supercomputer and computer,
the scenarios depends on the available time for the
precomputation phase: 1 year, 1 month, or 1 week.
For cloud however, the precomputation phase is
bounded to 1 month, and as shown in Table 2, the
environments are defined by the budget assigned to
the precomputation phase according to the different
scenarios: 1 000 000 USD, 100 000 USD, or 10 000 USD6.

cloud Environments
Scenarios

#Cores Hashes/Sec/Core RAM (TB)
1M USD 13 055 11 000 000 256
100K USD 1 279 11 000 000 20
10K USD 127 11 000 000 2

TABLE 2: Precomputing cloud environments according
to the scenarios

For each precomputing environment and scenario,
ℓ = 4 tables are used, and parameters α = 0.95 and
thus r = 20 are chosen to reach a success probability
larger than 99.95%. The aim is to maximize N while
keeping the attack phase affordable.

6The computing characteristics shown in Table 2 have been
obtained by simulating on these costs on AWS (cluster EC2).

Memory available for the attack (TB)
Scenarios supercomputer computer Scenarios cloud

1 year 32 0.8 1M USD 16
1 month 16 0.4 100K USD 8
1 week 8 0.2 10K USD 4

TABLE 3: Memory available for the attack according
to the scenarios and environments

4.3. Attack phase

For the attack phase, we consider environments with
a single core7. This makes the analysis and description
of environments a little simpler, and as discussed in
Section 6, does not change the overal situation.

The number of hashes per second nt, on the attack
core is fixed for each environment nt = 11 000 0008.
The idea is that the attacker usually has limited
resources for the attack phase and cannot benefit from
a supercomputer for this phase.

The only attribute that has a bearing on the efficiency
of the attack is the size of the memory available.
The different values for the attack memory MT are
chosen to correspond to realistic, practical cases and
influence the parameter t (given our assumption of ℓ = 4
tables). Memory available (but not necessarily used)
are presented in Table 3.

The memory available for this phase must remain
relatively small. To correspond to cases encountered
in practice, it must be small compared to the memory
available for the precomputation phase. The memory
available for the attack is therefore adapted to the
scenarios considered and to the environments used for
the precomputation phase.

For each environment, scenarios depend on the time
or money invested in the precomputation phase. The
aim is to perform the attack as quickly as possible
given the tables generated during the corresponding
precomputation scenarios: 1 year, 1 month, 1 week of
precomputation or 1M, 100K, 10K, USD invested.

5. EVALUATION OF THE MAXIMUM
PROBLEM SIZE

5.1. Methodology

The maximum problem size N that can be addressed
by a CPU-based TMTO in a given time-frame or
budget can be accurately evaluated from the analytical
formulas provided in [1] (precomputation time) and [11,
12] (attack time).

5.1.1. Precomputation Phase
The minimum precomputation time Pmin in seconds

is given by Equation (3) derived from Theorem 2 in [1].

7Note that a single core is considered to provide a reference
value, but the attack phase can be easily parallelized to operate
on several cores.

8This corresponds to the number of SHA256 hashes per second
measured on a AMD EPYC 7742 3.2 GHz processor.
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The total precomputation time P in seconds is given by
Equation (4) derived from Equations (5) to (9) in [1],
with the same speed values (called vo and vc) used in
the first environment of [1].

Pmin =
2N

nhvh
ln(1 + r) (3)

P = Max

(
1

nhvh

a+1∑
i=1

mci−1(ci − ci−1);
1

vfnf

a+1∑
i=1

mci−1

)

+ vo

a+1∑
i=1

mci−1 +
vc
nh

a+1∑
i=1

mci−1 (4)

The following parameters are used in these equations:
a is the number of filters used during the precomputa-
tion phase; each ci is the columns of the i-th filter, with
c0 = 0 and ca = t; finally, the values nh, vh, nf and vf
denote the number of computation nodes, the number
of hashes per second per core, the number of filtration
nodes and the number of filtration per second per core
respectively. As in [1], a single filtration core is suffi-
cient, thus nf = 1. Values of nh and vh according to the
environment and scenario are given in Table 1 and 2.
Values for vf are given in Table 4.

For computer and cloud environments the number of
hashes per second corresponds to typical hashes value
of an environment similar to computer. The filtration
speed corresponds to filtration speed measured on an
environment similar to computer. For supercomputer
environment hashes and filtrations per second have been
computed from typical FLOPS numbers on this kind of
environment.

Environment Hashes/Sec/Core Filtration/Sec/Core
supercomputer 25 000 000 51 270 585

computer 11 000 000 15 949 709
cloud 11 000 000 15 949 709

TABLE 4: Hashes and filtrations per second per core

Several fixed parameters are defined as follows: the
number of tables generated is ℓ = 4, the factor r = 20
is used (so m0 = 20mmax

t is considered at the beginning
of precomputation). Since environments considered in
this paper are very close to the first environment of [1],
identical values of vc and vo are used for the estimations,
i.e., vc = 0 and vo = 1.37.10−10.

5.1.2. Memory Used
The memory MT used by the ℓ = 4 tables is given

by Equation (5), the maximum RAM needed for the
precomputation phaseMP is given by Equation (6) with
mc1 the number of unique points in the column of the
first filter. The factor 3 is explained by the fact that the
hash table used for filtration has a load factor λ = 1.5
and that both start points and end points are stored.

As presented in [1], filters are placed to minimize P .

MT = 2ℓmt log2(N) (5)

MP = 3mc1 log2(N) (6)

The parameter t is chosen for each time frame (year,
month, or week), determined from MT , and according
to the budget (1M, 100K, or 10K USD) for the
precomputation phase. As presented, in Proposition 1
from [1], t impacts MP . Therefore, t influences the
memory of the two phases. If t is too high, the attack
phase will be too slow. On the other hand, if t is
too small, the memory needed for precomputation and
especially for storing tables may be too large.

5.1.3. Attack Phase
As only one core is used for the attack phase regard-

less of the environment used for the precomputation,
the attack time can be well estimated by dividing re-
sult of Theorem 2.2 by the number of hashes per second
nt performed by the CPU used for the attack. There-
fore, the attack time TRAM , is given by Equation (7)

TRAM =
T

nt
, (7)

with T the number of hashes needed to perform the
attack given in Theorem 2.2. As the attack should be
performed by an average computer, we have chosen to
use nt = 11 000 000 as the number of hash per second
used for the attack phase.

5.2. Results

The results of the evaluation are provided in Table 5,
where 9 configurations are presented according to the
environments and scenarios considered.

6. DISCUSSION

6.1. Noteworthy observations

(1) The cost P and the theoretical lower bound
Pmin are very close in most cases. In the cases
where the gap between Pmin and P is more significant
(e.g., supercomputer environment), converting some
computation nodes to filtering nodes would reduce the
gap significantly, as it is mainly explained by a lack of
filtration speed.

Therefore, unless a significant algorithmic change is
introduced, improving the efficiency of the precompu-
tation phase would have no noticeable impact on the
domain size that can be realistically attacked.

(2) For all environments considered, the largest
domain sizes on which tables can be precomputed in
each scenario lead to tables that are practical for the
attack phase (i.e., reasonably small in memory, and
reasonably fast to execute a search). In other words,
within the context established in this paper on the
environments, scenarios, technology, and algorithms,
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Precomputation phase
supercomputer computer cloud

1 year 1 month 1 week 1 year 1 month1 week 1M USD100K USD10K USD

N Problem size 261 256.83 254.2 250.68 247.05 244.9 253 250.13 247.05

t Number of columns (×103) 7 611 788 242.9 1 200 89 17.1 75.5 37 41.5
MP Mem.(TB) prcmp. Eq.(6) 182.23 59.82 14.1 0.98 0.96 0.98 25.05 15.29 1.99
MT Mem.(TB) attack Eq.(5) 32.0 16.0 8.0 0.13 0.14 0.15 11.02 2.89 0.29
P Prcmp. time (days) Eq.(4) 366.05 30.06 7.73 364.35 30.0 7.11 31.23 30.16 30.04
Pmin Prcmp. low. bnd.(days) Eq.(3) 301.13 16.73 2.7 354.34 28.62 6.45 17.21 24.01 28.4

Attack phase
supercomputer computer cloud

TRAM Attack time Eq.(7) 9.62 d 2.47 h 14.12 m 5.74 h 1.9 m 4.15 s 1.35 m 19.6 s 24.73 s

The abbreviations “d”, “h”, “m”, and “s” respectively denote “days”, “hours”, “minutes”, and “seconds”.

TABLE 5: Evaluation of the maximum problem size

the precomputation phase is the bottleneck to using
rainbow tables on large domains.

The slight overhead due to performing the attack
phase on secondary memory (HDD or SSD) would thus
not change this conclusion.

(3) The memory MP needed to perform the
precomputation is not a bottleneck in the environments
and scenarios analyzed in this paper.

For instance, in the case of computer environment,
the RAM available for the precomputation phase is
limited compared to the ones available in the other
environments. This limited memory available for
precomputation does not significantly impact the attack
times of the different scenarios as they remain fairly
fast.

Depending on the variants and improvements
considered, it might be expected that the memory for
precomputation would be limiting, although in theory,
this limitation would not necessarily exist.

Therefore, the cases considered in this paper demon-
strate that the memory available for precomputation is
not a limiting factor. Indeed, the attack times are fast
when using realistic environments and scenarios with
limited memory for precomputation.

6.2. Conclusion

Our main observation from Table 5 is that the
precomputation cost P is, today, the bottleneck of the
TMTO. Indeed, the attack time remains reasonably
low, even for the bigger space sizes considered. The
memory needed for the precomputation and the attack
is affordable (for the corresponding entity that performs
it). Therefore, it is the precomputation time P , and
more precisely, the computing power of the adversary
(number of computation nodes and/or number of hashes
per second) dedicated to the precomputation that limits
an increase in N .
Using the state-of-the-art precomputation algorithm,

there is little room for improvements on the precom-
putation cost P . Indeed, the P is very close to the
theoretical lower bound Pmin.

Going further may require forgoing the CPU
technology for a more efficient one, which could
currently be GPU or FPGA. While these technologies
have constraints in how they are put to use, they do
operate several orders of magnitude faster than typical
CPUs. Several articles, e.g., [14] treat this problem
and websites propose implementations or programs9

to purchase or generate rainbow tables on GPU.
Other contributions, e.g., [15, 16] focus on FPGA-
based TMTOs. However, these papers address the
problem with relatively small domains N (in the
240 to 250 range), deprecated one-way functions, or
older GPU/FPGA models. Furthermore, they do not
use recent improvements in TMTOs, e.g., filtration.
Therefore, it is not possible to compare these results
obtained on GPU/FGPA with the results we obtained
in this paper. A deeper look into efficient GPU-
or FPGA-based precomputation represents interesting
future work that could evaluate these technologies
capabilities to deal with larger TMTOs.

In summary, our work helps quantify the vulnerable
spaces to TMTOs performed on CPUs. In addition,
although the precomputation phase has not been as
widely studied as the attack phase, it nevertheless seems
to be the main bottleneck preventing larger TMTO-
based attacks today.

Our conclusions are of course dependent on the
assumptions made in the premise of this paper, i.e.
specific to CPU-based attacks, under some reasonable
computing environments and precomputation scenarios,
with specific attack phase context in mind, etc. These
assumptions were established with care, and a large

9For instance, https://www.cryptohaze.com/ offers a GPU-
based rainbow cracker, and http://project-rainbowcrack.com/

has implementations of rainbow tables on GPU.

https://www.cryptohaze.com/
http://project-rainbowcrack.com/
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spectrum of conditions were considered. Nevertheless,
a significant change in hardware technology, or a
profound algorithmic modification (especially targeting
the precomputation), or a notable deviation of the
assumptions, could yet increase the domain size
vulnerable to attacks.

The precomputation phase being a bottleneck in
our observations may likewise be challenged by such
changes. Indeed, the precomputation cost is by nature
linear in N , whereas the attack phase is by nature
quadratic in N . A situation where the attack phase
is the bottleneck is therefore not far-fetched, depending
on the development of technologies and research in this
field.
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Jacques Quisquater, and Jean-Didier Legat. A
time-memory tradeoff using distinguished points:
New analysis & FPGA results. In Burton S. Kaliski
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