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Supporting material for the paper:

On the efficiency of misspecified Gaussian inference in nonlinear
regression: application to time-delay and Doppler estimation

Stefano Fortunati, Lorenzo Ortega

The aim if this supporting material is to provide a sketch of the proof of the Theorem 2 in the main paper.
The interested readers can find all the measure-theoretic aspects on α-mixing processes and the related technical
regularity conditions in [1]. For the aim of clarity, let us start by recalling here the Assumption 1 and Theorem
2 reported in the main paper.
Assumption 1 Let {nk : ∀k} be a zero-mean, WSS discrete and circular complex-valued process [2] such that
the joint pdf of N samples follows an unspecified pdf n ∼ pn, ∀N . Then, we assume that its autocorrelation
function exists and satisfies |rn[j]| ≜ |Epn

[n∗
k+jnk]| = O(|j|−γ), m ∈ Z, γ > ϱ/(ϱ − 1), ϱ > 1.1 Note that the

circularity of {nk : ∀k} implies that Epn
[nk+jnk] = 0, ∀k, j.

Theorem 2 Let {xk}N2

k=N1
be a sequence of N = |N2 −N1 + 1| scalar, complex-valued, random variables s.t.:

C ∋ xk = fk(θ̄) + nk, N1 ≤ k ≤ N2, (75)

where θ̄ ∈ Θ ⊂ Rp indicates the real-valued, true parameter vector and Θ is a compact subset of Rp. The
functions fk : Θ → C ∀k, are known, continuous and differentiable functions on Θ. Under Assumption 1 and
other technical regularity conditions (see A1-A9 in [1]), the estimator

θ̂N = argmin
θ∈Θ

{
N−1

∑N2

k=N1

|xk − fk(θ)|2
}
, (76)

satisfies the following properties:

1) Consistency wrt the true parameter vector:
θ̂N

a.s.→ θ̄, (77)

a.s.→ indicates the almost sure convergence.
2) Asymptotic normality: Let us indicate as ∼

N→∞
the convergence in distribution, we have:

√
N
[
P(θ̄)

]−1/2
K(θ̄)

(
θ̂N − θ̄

)
∼

N→∞
N (0, I), (78)

where the matrices P(θ̄) and K(θ̄) are defined in eqs. (27f) and (29) of the main paper.

Proof : To show the consistency property in (77), let us start by introducing the function:

QN (θ) ≜ N−1
N2∑

k=N1

|xk − fk(θ)|2. (79)

1Given a real-valued function f(x) and a positive real-valued function g(x), f(x) = O(g(x)) if and only if there exists a positive real
number a and a real number x0 such that |f(x)| ≤ ag(x), ∀x ≥ x0.
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Moreover, under [1, A2], we can define the expected value of QN (θ) as:

QN (θ) ≜ N−1
N2∑

k=N1

E
{
|xk − fk(θ)|2

}
. (80)

By definition, θ̂N in (76) minimizes QN (θ).
Let us define now as θ0 the vector that minimizes QN (θ). Following [1, A4], we assume that θ0 is unique

in a neighborhood of θ̄. It follows directly from the statistical characterization of {nk : ∀k} in Assumption 1 of
our main paper that:

θ0 = argmin
θ∈Θ

QN (θ)

= argmin
θ∈Θ

{
N2∑

k=N1

E
{
|fk(θ̄)− fk(θ) + nk|2

}}

= argmin
θ∈Θ

{
N2∑

k=N1

|
(
fk(θ̄)− fk(θ)|2 + 2Re{(fk(θ̄)− fk(θ))E{nk}}+ E{|nk|2}

)}

= argmin
θ∈Θ

{
N2∑

k=N1

|fk(θ̄)− fk(θ)|2
}

= θ̄.

(81)

This result suggest us that, if QN (θ) converges to QN (θ), one could expect that θ̂N (that minimizes QN (θ))
would converges to the vector θ0 that minimizes QN (θ). Then, the consistency property would follows directly
from the fact that, as proved in (81), θ0 equates the true parameter vector θ̄.

This line of reasoning can be formally proved under the Assumption 1. Specifically, by using a generalization
of the Strong Law of Large Numbers (SLLN), obtained under Assumption 1 in [1, Theo. 2.3], one can prove
that:

QN (θ)
a.s.→ QN (θ), (82)

uniformly in θ ∈ Θ. Moreover, Under the Assumption 1, the Theorem 3.1 in [1] assures us that:

θ̂N
a.s.→ θ0, (83)

that implies the consistency since θ0 = θ̄ as proved in (81).
Let us now move to the asymptotic normality property. By assuming the differentiability (in the Wirtinger

sense [3], [4]) of the function fk : Rp → C, the θ̂N in eq. (76) can be rewritten in terms of estimating equations
as the solution of the following non-linear system:

∇θQN (θ)|θ=θ̂N
≡ ∇θQN (θ̂N ) = 0. (84)

Using the standard first order Taylor expansion around the true parameter vector θ̄, we have that: 2

∇θQN (θ̂N )−∇θQN (θ̄) = ΩN (θ̃)
(
θ̂N − θ̄

)
+ oP (1), (85)

2The term oP (1) characterizes a sequence of random variables converging to 0 in probability. Formally, given a sequence of random
variables {xk}, the notation xk = oP (1) stands for lim

k→∞
Pr {|xk| ≥ ε} = 0,∀ε > 0.
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where ΩN (θ̃) is the Hessian of QN (θ):

ΩN (θ̃) ≜ ∇θ∇⊤
θ QN (θ)

∣∣∣
θ=θ̃

, (86)

evaluated at θ̃ lying on the Euclidean path between θ̂N and θ̄. Let us know take a closer look at the two terms
in the LHS of eq. (85). The first term ∇θQN (θ̂N ) = 0 by definition of θ̂N given in (84). The second term can
be evaluated as follows:

∇θQN (θ̄) = − 1

N

N2∑
k=N1

[(
xk − fk(θ̄)

)∗∇θfk(θ̄) +
(
xk − fk(θ̄)

)
∇∗

θfk(θ̄)
]

= − 2

N

N2∑
k=N1

Re
{
n∗
k∇θfk(θ̄)

}
.

(87)

By substituting the previous results in (85), we have:

√
N
(
θ̂N − θ̃

)
= Ω−1

N (θ̄)

[
− 2√

N

N2∑
k=N1

Re
{
n∗
k∇θfk(θ̄)

}]
+ oP (1), (88)

where the matrix ΩN (θ̃) can be evaluated as:

ΩN (θ̃) = ∇θ∇⊤
θ QN (θ)

∣∣∣
θ=θ̃

= − 1

N

N2∑
k=N1

[(
xk − fk(θ̃)

)∗
∇θ∇⊤

θ fk(θ̃)−∇θfk(θ̃)∇H
θ fk(θ̃)

]
+×

×− 1

N

N2∑
k=N1

[(
xk − fk(θ̃)

) [
∇θ∇⊤

θ fk(θ̃)
]∗

−∇∗
θfk(θ̃)∇⊤

θ fk(θ̃)
]

= − 2

N

N2∑
k=N1

Re
{(

xk − fk(θ̃)
) [

∇θ∇⊤
θ fk(θ̃)

]∗}
+

2

N

N2∑
k=N1

Re
{
∇θfk(θ̃)∇H

θ fk(θ̃)
}
.

(89)

From the consistency result, we have that, since θ̂N
a.s.→ θ̄, then θ̃ → θ̄ as N → ∞. Moreover, using again the

generalization of the SLLN [1, Theo. 2.3], we have that:

− 2

N

N2∑
k=N1

Re
{(

xk − fk(θ̃)
) [

∇θ∇⊤
θ fk(θ̃)

]∗} a.s.→ −
N2∑

k=N1

Re
{
Epn

[
xk − fk(θ̄)

] [
∇θ∇⊤

θ fk(θ̄)
]∗}

= 0, (90)

since Epn

[
xk − fk(θ̄)

]
= Epn

[nk] = 0 ∀k from Assumption 1. As a consequence, we immediately have that:

ΩN (θ̃)
a.s.→ 2

N

N2∑
k=N1

Re
{
∇θfk(θ̄)∇H

θ fk(θ̄)
}
= K(θ̄), (91)

where the matrix K(θ̄) as been introduced in eq. (29) of our main paper.
Let us now evaluate the covariance matrix of

√
N∇θQN (θ̄) in (87) as (for ease of notation we will indicate
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∇θfk(θ̄) = ∇θf̄k):

ΨN (θ̄) ≜ Epn

[[√
N∇θQN (θ̄)

] [√
N∇θQN (θ̄)

]⊤]

= Epn

[ 2√
N

N2∑
k=N1

Re
{
n∗
k∇θf̄k

}] 2√
N

N2∑
j=N1

Re
{
n∗
j∇θf̄j

}⊤


=
4

N

N2∑
k=N1

N2∑
j=N1

Epn

[
Re
{
n∗
k∇θf̄k

}
Re
{
n∗
j∇⊤

θ f̄j

}]

=
4

N

N2∑
k=N1

N2∑
j=N1

Epn

[(
n∗
k∇θf̄k + nk∇∗

θf̄k
2

)(
n∗
j∇⊤

θ f̄j + nj∇H
θ f̄j

2

)]

=
2

N

N2∑
k=N1

N2∑
j=N1

[
Re
{
(Epn

[nknj ])
∗∇θf̄k∇⊤

θ f̄j

}
+ Re

{
Epn

[n∗
knj ]∇θf̄k∇H

θ f̄j
}]

=
2

N

N2∑
k=N1

Epn

[
|nk|2

]
Re
{
∇θf̄k∇H

θ f̄k
}
+

2

N

N2∑
k=N1

N2∑
j=N1

j ̸=k

Re
{
Epn

[n∗
knj ]∇θf̄k∇H

θ f̄j
}

=
2

N

N2∑
k=N1

Epn

[
|nk|2

]
Re
{
∇θf̄k∇H

θ f̄k
}
+

4

N

N2−N1∑
j=1

N2−j∑
k=N1

Re
{
Epn

[
n∗
k+jnk

]
∇θf̄k+j∇H

θ f̄k
}

=
2

N

N2∑
k=N1

rn[0]Re
{
∇θf̄k∇H

θ f̄k
}
+

4

N

N2−N1∑
j=1

N2−j∑
k=N1

Re
{
rn[j]∇θf̄k+j∇H

θ f̄k
}
= P(θ̄),

(92)

where the matrix P(θ̄) as been introduced in eq. (27f) of the main document.
Finally, by recalling that ΩN (θ̃)

a.s.→ K(θ̄), from a direct application of the Central Limit Theorem (CLT) for
dependent random variables satisfying Assumption 1 [1, Theo. 2.4] to the Taylor expansion in (85), we get:

√
N
[
P(θ̄)

]−1/2
K(θ̄)

(
θ̂N − θ̄

)
∼

N→∞
N (0, I). (93)

that implies the asymptotic normality of θ̂N in (76),
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