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Nonlinear regression play a crucial role in various engineering applications. For the sake of mathematical tractability and ease of implementation, most of the existing inference procedures are derived under the assumption of independent and identically distributed (i.i.d.) Gaussian-distributed data. However, real-world situations often deviate from this assumption, with the true data generating process being a correlated, heavytailed and non-Gaussian one. The paper aims at providing the Misspecified Cramér-Rao Bound (MCRB) on the Mean Squared Error (MSE) of any unbiased (or at least consistent) estimator of the parameters of a nonlinear regression model derived under the i.i.d. Gaussian assumption in the place of the actual correlated, non-Gaussian data generating process. As a special case, the MCRB for an uncorrelated, i.i.d. Complex Elliptically Symmetric (CES) data generating process under Gaussian assumption is also provided. Consistency and asymptotic normality of the related Mismatched Maximum Likelihood Estimator (MMLE) will be discussed along with its connection with the Nonlinear Least Square Estimator (NLLSE) inherent to the nonlinear regression model. Finally, the derived theoretical findings will be applied in the well-known problem of time-delay and Doppler estimation for GNSS.

I. INTRODUCTION

N ONINEAR regression are one of the most-used statistical models in Signal Processing (SP) and related engineering applications. In a regression model, an observation vector

C 𝑁 ∋ x = f ( θ) + n, (1) 
is characterized by i) a vector of unknown deterministic parameters θ, ii) a linear or nonlinear (continuous and differentiable) known function f, parameterized by θ and iii) an additive noise vector n. The function f generally specifies the measurement process while θ collects the quantities that need to be estimated. Regression models can be found in array processing, image processing, biomedical data analysis and even in climatic studies, just to name a few. While the definition of f, θ and of the measurement noise n depends on the particular application at hands, the inference procedures used to estimate Stefano Fortunati is with Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette & DR2I-IPSA, 94200, Ivry-sur-Seine, France.
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the parameter of interest usually share a common (although unrealistic) assumption: the entries of the noise vector n are sampled from an i.i.d. white Gaussian random process. This assumption is made to make the estimation algorithm mathematically tractable and easy to implement. In fact, it is well known that, under the i.i.d. Gaussian assumption, the optimal estimator is the (non) linear least square estimator (NLLSE). However, everyday engineering practice shows that this assumption is too simplistic since the noise process can be correlated and even non-Gaussian. The central question that we aim at answering in this paper is: how accurate can an i.i.d., Gaussian-based inference procedure be when the regression model is characterized by a correlated, generally non-Gaussian noise? In order to answer to this question, we will rely on the misspecification theory developed in [START_REF] Huber | The behavior of maximum likelihood estimates under nonstandard conditions[END_REF]- [START_REF] Vuong | Cramér-Rao bounds for misspecified models[END_REF] and recently rediscovered in [START_REF] Fortunati | Performance bounds for parameter estimation under misspecified models: Fundamental findings and applications[END_REF]- [START_REF] Mennad | Slepian-bangs-type formulas and the related misspecified cramér-rao bounds for complex elliptically symmetric distributions[END_REF] and the reference therein. Specifically, we will show that it is possible to derive the so-called Misspecified Cramér-Rao Bound (MCRB) on the estimation of θ when the assumed model is the "classical" i.i.d. Gaussian model while the true data model is a dependent and non-Gaussian one.

This paper is organized into seven distinct sections. In Section II, we present both the true and assumed nonlinear regression models. Section III introduce the calculation of the pseudo-true parameter vector for the misspecified Gaussian nonlinear regression model. Section IV derives the MCRB under quite general condition of the correlation structure of the true data generating process, while, in Sec. V, we specialize this general results to a case of practical interest in which the true data model is an i.d.d. Complex Elliptical Symmetric (CES) model with unspecified density generator. Sec. VI is dedicated to the investigation of the asymptotic properties of the NLLE under the above mentioned misspecified scenario and to its relation with the MMLE. Sec. VII provides an example of possible application of the theoretical results to the time-delay and Doppler estimation under the abovementioned misspecified scenario for GNSS applications. Our conclusion are collected in Sec. IX. Notation: Throughout this paper, italics indicates scalar quantities (𝑎), lower case and upper case boldface indicate column vectors (a) and matrices (A), respectively. Each entry of a matrix A is indicated as 𝑎 𝑖 𝑗 ≜ [A] 𝑖, 𝑗 . I 𝑁 defines the 𝑁 × 𝑁 identity matrix. The superscripts * , ⊤ and 𝐻 indicate the complex conjugation, the transpose and the Hermitian operators respectively, then A H = (A * ) ⊤ . The Euclidean norm of a vector a is indicated as ||a||.

II. NONLINEAR REGRESSION WHIT DEPENDENT

OBSERVATIONS

As discussed in the Introduction, the nonlinear regression is one of the most used statistical model in signal processing (SP) and statistics. The aim of this section is then to introduce firstly the model in its generality (i.e. the true signal model) and secondly to present its Gaussian-based, i.i.d. simplified version as it is generally assumed by SP practitioners for inference purposes.

A. True signal model

Let {𝑥 𝑘 ∈ C} +∞ 𝑘=-∞ be a sequence of scalar, complex-valued, observations characterized by the following data generating process:

𝑥 𝑘 = 𝑓 𝑘 ( θ) + 𝑛 𝑘 , -∞ < 𝑘 < +∞, (2) 
where θ ∈ Θ ⊂ R 𝑝 indicates the real-valued 1 , true parameter vector and Θ is a compact subset of R 𝑝 . The functions 𝑓 𝑘 : Θ → C, -∞ < 𝑘 < +∞ are known continuous and differentiable functions on Θ. In practical applications, the sequence (2) will be observed from a finite integer

𝑁 1 ∈ Z to a finite integer 𝑁 2 ∈ Z, such that -∞ < 𝑁 1 < 𝑁 2 < +∞.
Consequently, by defining 𝑁 = |𝑁 2 -𝑁 1 + 1|, the sequence (2) can be written in a vectorial form as in [START_REF] Huber | The behavior of maximum likelihood estimates under nonstandard conditions[END_REF] where n ∈ C 𝑁 is a zero-mean complex-valued noise vector whose 𝑁 entries are assumed to be sampled from a Wide Sense Stationary (WSS) discrete random process {𝑛 𝑘 : ∀𝑘 } characterizing the measurement noise 𝑛 𝑘 in (2).

Let us now have a closer look at the statistical characterization of {𝑛 𝑘 : ∀𝑘 }. As a zero-mean WSS process, {𝑛 𝑘 : ∀𝑘 } is fully characterized by (see e.g. [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF]Sec. 15.5], [START_REF] Stoica | Spectral Analysis of Signals[END_REF]Sec. 1.3]): i) its autocorrelation function 𝑟 𝑛 [𝑘 + 𝑗, 𝑘] = 𝑟 𝑛 [𝑘 + 𝑗 -𝑘] = 𝑟 𝑛 [ 𝑗] and ii) the joint probability density function (pdf) of the 𝑁 samples C 𝑁 ∋ n ∼ 𝑝 n , for any values of 𝑁. For further reference, we indicate the marginal pdf of each sample as 𝑛 𝑘 ∼ 𝑝 𝑛 𝑘 . We make the following extremely general (non-Gaussian, non-i.i.d.) assumption:

Assumption 1: Let {𝑛 𝑘 : ∀𝑘 } be a zero-mean, WSS discrete and circular complex-valued process [START_REF] Picinbono | On circularity[END_REF] such that the joint pdf of 𝑁 samples follows an unspecified pdf n ∼ 𝑝 n , ∀𝑁 admitting finite first and second order moments. Then, we assume that its autocorrelation function exists and satisfies

|𝑟 𝑛 [ 𝑗] | ≜ |𝐸 𝑝 n [𝑛 * 𝑘+ 𝑗 𝑛 𝑘 ] | = 𝑂 (| 𝑗 | -𝛾 ), 𝑚 ∈ Z, 𝛾 > 𝜚/( 𝜚 -1), 𝜚 > 1. 2 Note that the circularity of {𝑛 𝑘 : ∀𝑘 } implies that 𝐸 𝑝 n [𝑛 𝑘+ 𝑗 𝑛 𝑘 ] = 0, ∀𝑘, 𝑗.
It is worth noticing here that, as a direct consequence of this assumption: 1 We decided to work with real-valued parameters for two reasons. Firstly, in practical applications, the parameters of interest are real-valued physical quantities as e.g. time-delay and Doppler. Secondly, this choice allows us to avoid the technicalities related to the Wirtinger calculus [START_REF] Kreutz-Delgado | The complex gradient operator and the CRcalculus[END_REF] that may obscure the more important statistical concepts. It is worth stressing that this choice will not limit the generality of the derived results since any complex-valued vector can be recast in term of a real-valued vector by means of the standard isomorphism between C 𝑝 and R 2 𝑝 , i.e.

C 𝑝 ∋ 𝜃 ⇋ θ ≜ (Re( 𝜃 ) ⊤ , Im( 𝜃 ) ⊤ ) ⊤
2 Given a real-valued function 𝑓 ( 𝑥 ) and a positive real-valued function 

𝑔 ( 𝑥 ), 𝑓 ( 𝑥 ) = 𝑂 (𝑔 ( 𝑥 ) ) if
= 𝑟 𝑛 [(𝑘 + 𝑗) -𝑘] = 𝑟 * 𝑛 [𝑘 -(𝑘 + 𝑗)] = 𝑟 𝑛 [ 𝑗] = 𝑟 * 𝑛 [-𝑗], [𝚺] 𝑘,𝑘 = 𝑟 𝑛 [0] = σ2 𝑛 , ∀𝑘, (3) 
where σ2 𝑛 is the true and generally unknown noise power. We would like to stress that Assumption 1 is extremely general and allows for a wide range of realistic noise models [START_REF] Fortunati | Massive mimo radar for target detection[END_REF]. To be convinced of this, we can note that any (Gaussian and non-Gaussian) stable second-order stationary (SOS) ARMA, of any finite orders, satisfies Assumption 1, since the autocorrelation function of any stable SOS ARMA decays exponentially. It is well know that, by appropriately choosing the orders of the Autoregressive and of the Moving Average parts, an ARMA process can approximate the (continuous) power spectral density (PSD) of any complex discrete random processes [START_REF] Stoica | Spectral Analysis of Signals[END_REF]Ch. 3]. Moreover, a non-Gaussian ARMA can characterize the heavy-tailed behavior of realistic noise models. Another popular noise model of practical interest satisfying Assumption 1 is the Compound-Gaussian (CG) (or spherically invariant random vector (SIRV)) model [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF]. In fact, any SIRV n ∈ C 𝑁 can be represented as [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF]Def. 3] n = 𝑑 √ 𝜏m for some real-valued positive random variable 𝜏, such that 𝐸 [𝜏] = 1, called texture, independent of the zeromean, 𝑁-dimensional, circular, complex Gaussian random vector, called speckle, m ∼ CN (0, 𝚺), where 𝚺 is the covariance matrix given in (3).

To conclude this section, we note that the pdf of the data vector in eq. ( 1) can be expressed as function of the unspecified noise pdf 𝑝 n as:

x ∼ 𝑝 ε ≜ 𝑝 ε (x; σ2 𝑛 , θ) = 𝑝 n (𝑥 -f ( θ); σ2 𝑛 ), (5) 
where

ε = ( σ2 𝑛 , θ⊤ ) ⊤ ∈ Γ ⊂ R + × R 𝑝 (6) 
is the complete vector of the true parameters, where θ is the vector of the parameter of interest and R + ∋ σ2 𝑛 > 0 a nuisance parameter, i.e. a term whose estimation is not strictly required but the lack of its knowledge may have an impact on the estimation performance of θ.

B. Misspecified Gaussian, i.i.d. signal model

To do inference on the parameter vector θ, and specifically to estimate it, a common procedures among SP practitioners is to assume a simplified model describing the statistical behaviour of the observations in the place of the true data generating process in [START_REF] White | Maximum likelihood estimation of misspecified models[END_REF]. This model misspecification is dictated by two main reasons [START_REF] Fortunati | Performance bounds for parameter estimation under misspecified models: Fundamental findings and applications[END_REF]. The first one is that the autocorrelation structure, as well as the pdf 𝑝 n is generally not a-priori known and not easy to obtain from physical considerations on the random experiment at hand. Secondly, one could prefer a simplified model in order to derive estimation algorithms that are easy to implement and fast to compute.

One of the most popular simplifying assumption is to consider the noise process {𝑛 𝑘 : ∀𝑘 } as a zero-mean, White Gaussian WSS random process. This implies that its autocorrelation function can be expressed as 𝑟 𝑛 [ 𝑗] = σ2

𝑛 𝛿[ 𝑗], where 𝛿[ 𝑗] is the Kronecker delta sequence. As a consequence, the noise vector n ∈ C 𝑁 is distributed as a centered complex normal random vector with diagonal covariance matrix, i.e. n ∼ CN (0, 𝜎 2 𝑛 𝑰 𝑁 ). This simplifying assumption leads to the following misspecified statistical model for the data vector x ∈ C 𝑁 in (1):

F 𝝐 ≜ 𝑓 𝝐 | 𝑓 𝝐 (x; 𝝐) = CN (f (𝜽), 𝜎 2 𝑛 𝑰 𝑁 ), 𝝐 ∈ Γ , (7) 
that is, each pdf belonging to F 𝝐 can be expressed as:

𝑓 𝝐 (x; 𝜎 2 𝑛 , 𝜽) = (𝜋𝜎 2 𝑛 ) -𝑁 𝑒 -||x-f (𝜽) || 2 𝜎 2 𝑛 . ( 8 
)
The crucial question that we are going to answer in the next section is: is it possible to derive a lower bound to the Mean Squared Error (MSE) of any unbiased (or at least consistent) estimation procedure of θ, derived under the Gaussian, i.i.d., misspecified model F 𝝐 in [START_REF] Fortunati | The constrained Misspecified Cramér-Rao bound[END_REF] in the presence of dependent observations satisfying Assumption 1?

To answer to this question, we evaluate the MCRB [START_REF] Fortunati | Performance bounds for parameter estimation under misspecified models: Fundamental findings and applications[END_REF]- [START_REF] Richmond | Parameter bounds on estimation accuracy under model misspecification[END_REF] on the estimation of θ when the assumed model is F 𝝐 while the true data generating process is the (dependent, non-Gaussian) one introduced in (2). To this end, we start by evaluating the pseudo-true parameter vector 𝝐 0 ∈ Γ, i.e. the vector in Γ that minimizes the Kullback-Leibler Divergence (KLD) [4, A 1] [5, Sec. 4.4.1] between the true (and unknown) pdf x ∼ 𝑝 ε and any element 𝑓 𝝐 ∈ F 𝝐 of the assumed misspecified model in [START_REF] Fortunati | The constrained Misspecified Cramér-Rao bound[END_REF]. The vector 𝝐 0 ∈ Γ can be seen as a sort of "minimum divergence projector" of the true pdf onto the misspecified model F ε and then it characterizes the pdf 𝑓 𝝐 0 ∈ F 𝝐 closest, in the KLD sense, to the true pdf 𝑝 ε .

III. THE PSEUDO-TRUE PARAMETER VECTOR

As anticipated in the previous section, the pseudo-true parameter vector 𝝐 0 is the element in the parameter space Γ that minimizes the KLD between the true data pdf x ∼ 𝑝 ε and any (possibly) misspecified pdf 𝑓 𝝐 0 ∈ F 𝝐 [START_REF] Vuong | Cramér-Rao bounds for misspecified models[END_REF], [4, A1] and [START_REF] Fortunati | Chapter 4 -Parameter bounds under misspecified models for adaptive radar detection[END_REF]Sec. 4.4.1]:

𝐷 ( 𝑝 ε || 𝑓 𝝐 ) = 𝐸 𝑝 ε ln 𝑝 ε (x; ε) 𝑓 𝝐 (x; 𝝐) x ∼ 𝑝 ε , 𝑓 𝝐 ∈ F ε (9) 𝐸 𝑝 ε [•]
is the expectation with respect to (w.r.t.) the true model's pdf. Consequently:

𝝐 0 = arg min 𝝐 ∈Γ {𝐷 ( 𝑝 ε || 𝑓 𝝐 )} = arg min 𝝐 ∈Γ 𝐸 𝑝 ε [-ln 𝑓 𝝐 (x; 𝝐)] . (10 
) From ( 8), it follows directly that:

𝐸 𝑝 ε [-ln 𝑓 𝝐 ] = 𝑁 ln(𝜋) + 𝑁 ln(𝜎 2 𝑛 ) + 𝐸 𝑝 ε ||x -f (𝜽)|| 2 𝜎 2 𝑛 . (11) 
By substituting [START_REF] Stoica | Spectral Analysis of Signals[END_REF] in [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF], we have:

𝝐 0 = arg min 𝝐 ∈Γ 𝐸 𝑝 ε -ln 𝑓 𝝐 (x; 𝜎 2 𝑛 , 𝜽) = arg min 𝝐 ∈Γ 𝐸 𝑝 ε 1 𝜎 2 𝑛 ∥x -f ( θ) ∥ 2 + 𝑁 ln(𝜎 2 𝑛 ) (12) 
Let us start by minimizing w.r.t. to 𝜽:

𝜽 0 = arg min 𝜽 𝐸 𝑝 ε [-ln 𝑓 𝝐 (x; 𝝐)] (13a) = arg min 𝜽 𝐸 𝑝 ε ∥x -f ( θ) ∥ 2 (13b) = arg min 𝜽 𝐸 𝑝 ε tr (x -f ( θ)) (x -f ( θ)) 𝐻 (13c) = arg min 𝜽 tr 𝚺 + f ( θ)f ( θ) 𝐻 -× (13d) × -f ( θ)f (𝜽) 𝐻 -f (𝜽)f ( θ) 𝐻 + f (𝜽)f (𝜽) 𝐻 (13e) = arg min 𝜽 ||f (𝜽) -f ( θ)|| 2 ⇒ 𝜽 0 = θ. (13f) 
Remarkably, this result tells us that the pseudo-true parameter vector of interest 𝜽 0 is equal to the one θ.

Let us now minimize w.r.t. to the variance 𝜎 2 𝑛 . By using the result obtained in (13), we have:

𝜎 2 0 = arg min 𝜎 2 𝑛 𝐸 𝑝 ε -ln 𝑓 𝝐 (x; 𝜎 2 𝑛 , θ) (14) 
⇒ 𝐸 𝑝 ε 𝜕 𝜕𝜎 2 𝑛 ln 𝑓 𝝐 (x; 𝜎 2 𝑛 , θ) 𝜎 2 𝑛 =𝜎 2 0 = 0 (15) 
From direct calculation, we have:

𝐸 𝑝 ε 𝜕 𝜕𝜎 2 𝑛 ln 𝑓 𝝐 (x; 𝜎 2 𝑛 , θ) 𝜎 2 𝑛 =𝜎 2 0 (16a) = 𝐸 𝑝 ε - 𝑁 𝜎 2 𝑛 + 1 𝜎 4 𝑛 ∥x -f ( θ) ∥ 2 𝜎 2 𝑛 =𝜎 2 0 (16b) = 𝐸 𝑝 ε - 𝑁 𝜎 2 𝑛 + tr(nn 𝐻 ) 𝜎 4 𝑛 = - 𝑁 𝜎 2 0 + tr (𝚺) 𝜎 4 0 (16c) = - 𝑁 𝜎 2 0 + 𝑁𝑟 𝑛 [0] 𝜎 4 0 = - 𝑁 𝜎 2 0 + 𝑁 σ2 𝑛 𝜎 4 0 = 0 ⇒ 𝜎 2 0 = σ2 𝑛 (16d)
Again, eq. ( 16) tells us that the pseudo-true nuisance parameter 𝜎 2 0 equates the true one σ2 𝑛 . By collecting the results from eqs. ( 13) and ( 16), we have that the pseudo-true parameter vector equates the true one

𝝐 0 = ε ≜ ( σ2 𝑛 , θ⊤ ) ⊤ , (17) 
under extremely mild assumptions, i.e. for any noise vector C 𝑁 ∋ n ∼ 𝑝 n sampled form a discrete random process {𝑛 𝑘 : ∀𝑘 } whose unspecified joint pdf has finite first and second order moments, that is it admits a zero-mean 𝐸 𝑝 n [n] = 0 and a covariance matrix 𝚺 ≜ 𝐸 𝑝 n [nn 𝐻 ] statisfying (3) and ( 4).

It can be noted that the equality in [START_REF] Fortunati | Semiparametric inference and lower bounds for real elliptically symmetric distributions[END_REF] does not requires the polynomial decrease of the autocorrelation function introduced in Assumption 1. However, we will see that this requirement will be crucial to derive asymptotic results about the efficiency of misspecifed Gaussian procedures.

IV. CLOSED FORM EXPRESSION FOR THE MCRB

The aim of this section is to provide the closed form expression of the Misspecified Cramér-Rao Bound (MCRB) for the estimation of ε under the misspecified scenario discussed in Sec. II-B. Following [START_REF] Vuong | Cramér-Rao bounds for misspecified models[END_REF], [4, Theo. 1] and [5, Theo. 4.1] and by exploiting the equality between the true and the pseudo-true paramater vectors, the MCRB is given by:

MCRB(𝝐 0 ) = MCRB( ε) = A( ε) -1 B( ε)A( ε) -1 , (18) 
where:

[A( ε)] 𝑖, 𝑗 ≜ 𝐸 𝑝 ε ∇ 𝝐 ∇ ⊤ 𝝐 ln 𝑓 𝝐 (x; ε) 𝑖, 𝑗 = 𝐸 𝑝 ε 𝜕 2 𝜕 𝑖 𝜕 𝑗 ln 𝑓 𝝐 (x; 𝝐) 𝝐 =ε , (19) 
[B( ε)] 𝑖, 𝑗 ≜ 𝐸 𝑝 ε ∇ 𝝐 ln 𝑓 𝝐 (x; ε)∇ ⊤ 𝝐 ln 𝑓 𝝐 (x; ε) 𝑖, 𝑗 = 𝐸 𝑝 ε 𝜕 𝜕 𝑖 ln 𝑓 𝝐 (x; 𝝐) 𝝐 =ε 𝜕 𝜕 𝑗 ln 𝑓 𝝐 (x; 𝝐) 𝝐 =ε , (20) 
where 𝑓 𝝐 (x; 𝝐) ∈ F 𝝐 in [START_REF] Fortunati | The constrained Misspecified Cramér-Rao bound[END_REF].

The calculation of the matrices A( ε) and B( ε) will be performed in four steps:

1) Evaluation of the terms related to σ2 𝑛 . Through direct calculation, we have:

∇ 𝜎 2 𝑛 ln 𝑓 𝝐 (x; ε) = 𝜕 ln 𝑓 𝝐 (x; σ2 𝑛 , θ) 𝜕𝜎 2 𝑛 (21) = - 𝑁 𝜎 2 𝑛 + 1 𝜎 4 𝑛 ∥x -f ( θ) ∥ 2 𝜎 2 𝑛 = σ2 𝑛 = - 𝑁 σ2 𝑛 + tr(nn 𝐻 ) σ4 𝑛 ,
and then:

∇ 𝜎 2 𝑛 ∇ ⊤ 𝜎 2 𝑛 ln 𝑓 𝝐 (x; ε) = 𝑁 𝜎 4 𝑛 - 2 𝜎 6 𝑛 ∥x -f ( θ) ∥ 2 𝜎 2 𝑛 = σ2 𝑛 = 𝑁 σ4 𝑛 - 2tr(nn 𝐻 ) σ6 𝑛 . (22) 
By taking the expectation w.r.t. the true data distribution 𝑝 ε and following the same calculation done in [START_REF] Van Der | Asymptotic Statistics[END_REF], we get:

𝐸 𝑝 ε ∇ 𝜎 2 𝑛 ∇ ⊤ 𝜎 2 𝑛 ln 𝑓 𝝐 (x; ε) = 𝑁 σ4 𝑛 - 2tr (𝚺) σ6 𝑛 = - 𝑁 σ4 𝑛 , (23) 
where we used their linearity to invert the order of the expectation and trace operators. Similarly, we have that;

𝐸 𝑝 ε ∇ 𝜎 2 𝑛 ln 𝑓 𝝐 (x; ε) 2 = 𝐸 𝑝 n - 𝑁 σ2 𝑛 + n 𝐻 n σ4 𝑛 2 = 𝑁 2 σ4 𝑛 - 2𝑁tr (𝚺) σ6 𝑛 + 𝐸 𝑝 n (n 𝐻 n) 2 σ8 𝑛 = 𝐸 𝑝 n (n 𝐻 n) 2 -σ4 𝑛 𝑁 2 σ8 𝑛 . ( 24 
)
Note that the term 𝐸 𝑝 n (n 𝐻 n) 2 cannot be further developed without specifying the true pdf of the noise 𝑝 n . We will further discuss this point in the next section. 2) Evaluation of the terms related to θ

From the assumed Gaussian pdf in eq. ( 8), we have:

∇ 𝜽 ln 𝑓 𝝐 (x; σ2 𝑛 , θ) = - 1 σ2 𝑛 ∇ 𝜽 ∥x -f ( θ) ∥ 2 = 1 σ2 𝑛 𝑁 2 ∑︁ 𝑘=𝑁 1 𝑥 𝑘 -𝑓 𝑘 ( θ) * ∇ 𝜽 f𝑘 + 𝑥 𝑘 -𝑓 𝑘 ( θ) ∇ * 𝜽 f𝑘 = 2 σ2 𝑛 𝑁 2 ∑︁ 𝑘=𝑁 1 Re 𝑛 * 𝑘 ∇ 𝜽 f𝑘 , (25) 
where, for ease of notation, we posed ∇ 𝜽 𝑓 𝑘 ( θ) = ∇ 𝜽 f𝑘 . According to the eq. ( 20), we can evaluate the matrix B( θ) as showed in eq. ( 26) reported at the bottom of this page. It is worth noticing that, in the step (26c), we used the circularity assumption on {𝑛 𝑘 : ∀𝑘 }, i.e. 𝐸 𝑝 𝑛 [𝑛 𝑘 𝑛 𝑗 ] = 0, ∀𝑘, 𝑗 (see Assumption 1). The matrix P( θ) in (26f) has been introduced for further reference. Moreover, again thorough direct calculation, we have :

∇ 𝜽 ∇ ⊤ 𝜽 ln 𝑓 𝝐 (x; σ2 𝑛 , θ) = 1 σ2 𝑛 𝑁 2 ∑︁ 𝑘=𝑁 1 𝑥 𝑘 -𝑓 𝑘 ( θ) * ∇ 𝜽 ∇ ⊤ 𝜽 f𝑘 -∇ 𝜽 f𝑘 ∇ 𝐻 𝜽 f𝑘 × + 1 σ2 𝑛 𝑁 2 ∑︁ 𝑘=𝑁 1 𝑥 𝑘 -𝑓 𝑘 ( θ) ∇ 𝜽 ∇ ⊤ 𝜽 f𝑘 * -∇ * 𝜽 f𝑘 ∇ ⊤ 𝜽 f𝑘 = 2 σ2 𝑛 𝑁 2 ∑︁ 𝑘=𝑁 1 Re 𝑥 𝑘 -𝑓 𝑘 ( θ) ∇ 𝜽 ∇ ⊤ 𝜽 f𝑘 * (27a) × - 2 σ2 𝑛 𝑁 2 ∑︁ 𝑘=𝑁 1 Re ∇ 𝜽 f𝑘 ∇ 𝐻 𝜽 f𝑘 . ( 27b 
)
Then we can introduce the matrix A( θ) as

A( θ) ≜ 𝐸 𝑝 ε ∇ 𝜽 ∇ ⊤ 𝜽 ln 𝑓 𝝐 (x; σ2 𝑛 , θ) (28) = - 𝑁 σ2 𝑛 2 𝑁 𝑁 2 ∑︁ 𝑘=𝑁 1 Re ∇ 𝜽 f𝑘 ∇ 𝐻 𝜽 f𝑘 ≜ - 𝑁 σ2 𝑛 K( θ),
where, again, we have introduced the matrix K( θ) for further reference. Note that the expectation of the term in (27a) is nil since

𝐸 𝑝 ε 𝑥 𝑘 -𝑓 𝑘 ( θ) = 𝐸 𝑝 ε [𝑛 𝑘 ] = 0, ∀𝑘.

3) Evaluation of the cross-terms

From the circularity of the noise process (see Assumption 1), it is immediate to verify that:

𝐸 𝑝 ε ∇ 𝜎 2 𝑛 ln 𝑓 𝝐 (x; ε)∇ ⊤ 𝜽 ln 𝑓 𝝐 (x; σ2 𝑛 , θ) = 𝐸 𝑝 ε ∇ 𝜎 2 𝑛 ln 𝑓 𝝐 (x; ε)∇ 𝜽 ln 𝑓 𝝐 (x; σ2 𝑛 , θ) ⊤ = 0 1×4 . ( 29 
)
Moreover, we have that:

∇ 𝜎 2 𝑛 ∇ 𝜽 ln 𝑓 𝝐 (x; σ2 𝑛 , θ) = ∇ 𝜽 ∇ 𝜎 2 𝑛 ln 𝑓 𝝐 (x; σ2 𝑛 , θ) = 2 σ4 𝑛 𝑁 2 ∑︁ 𝑘=𝑁 1 Re 𝑛 * 𝑘 ∇ 𝜽 f𝑘 . (30) 
Consequently, since the noise process is zero-mean, we trivially have that:

𝐸 𝑝 ε ∇ 𝜎 2 𝑛 ∇ ⊤ 𝜽 ln 𝑓 𝝐 (x; σ2 𝑛 , θ) = 𝐸 𝑝 ε ∇ 𝜽 ∇ 𝜎 2 𝑛 ln 𝑓 𝝐 (x; σ2 𝑛 , θ) ⊤ = 0 1×4 . (31) 
4) Definition of the matrices A( ε) and B( ε) By collecting the previous results, we have that the matrix A( ε) in eq. ( 19) can be expressed as:

A( ε) = 𝑁 -1/ σ4 𝑛 0 1×4 0 4×1 -1 σ2 𝑛 K( θ) . (32) 
Similarly, for the matrix B( ε) in eq. ( 20), we have:

B( ε) = 𝑁 (𝐸 𝑝n [(n 𝐻 n) 2 ]-σ4 𝑛 𝑁 2 ) 𝑁 σ8 𝑛 0 1×4 0 4×1 1 σ4 𝑛 P( θ) . (33) 
As we can see from eq. ( 33), the matrix B( ε) is function of the matrix P( θ) in (26f) and the term

𝐸 𝑝 n [(n 𝐻 n) 2
] that depends on the autocorrelation function 𝑟 𝑛 [ 𝑗] involving summations over the index 𝑗 that can go until |𝑁 2 -𝑁 1 + 1| = 𝑁. Now, in order to provide asymptotic results on the number of observations, i.e. as 𝑁 → ∞, the norm of the matrix matrix B( ε) has to remain bounded as 𝑁 → ∞. As discussed in [START_REF] White | Nonlinear regression with dependent observations[END_REF], the polynomial decrease of 𝑟 𝑛 [ 𝑗] is needed to guarantees that B( ε) will not explode as 𝑁 → ∞. 3 Finally, the MCRB in ( 18) can be expressed as:

MCRB( ε) = A( ε) -1 B( ε)A( ε) -1 = 1 𝑁 (𝐸 𝑝 n (n 𝐻 n) 2 -σ4 𝑛 𝑁 2 )/𝑁 0 1×4 0 4×1 C( θ) , (34) 
where

C( θ) ≜ K( θ) -1 P( θ)K( θ) -1 . ( 35 
)
It is important to note that, due to the block-diagonal structure of MCRB( ε), the MCRB of the parameter of 3 Roughly speaking, the Assumption 1 guarantees the existence of a matrix B 0 , such that det(B 0 ) > 0 and a (B 0 -B( ε ) )a → 0 as 𝑁 → ∞, for any non-zero real vector a ∈ R 𝑝+1 .

interest vector θ can be simply obtained as:

MCRB( θ) = 𝑁 -1 C( θ). (36) 
Remarkably, this results tells us that the estimation of θ is asymptotically decorrelatd from the nuisance parameter σ2 𝑛 .

A. Consistent estimation of the matrix P( θ)

Let us take a closer look to the matrix P( θ) in eq. (26e). It can be immediately noted that it depends on the apriori knowledge of the autocorrelation function of the noise

𝑟 𝑛 [ 𝑗] ≜ 𝐸 𝑝 n [𝑛 * 𝑘+ 𝑗 𝑛 𝑘 ].
However, to evaluate it, we need to know the true pdf 𝑝 n of the noise. This is in contrast with the Assumption 1 where 𝑝 n is left fully unspecified. We should then rely on a consistent estimator P 𝑁 of P( θ). Thanks to Assumption 1, deriving such consistent estimator is possible, even in presence of dependent observations. Following [START_REF] White | Nonlinear regression with dependent observations[END_REF], let us define the estimator P 𝑁 of P( θ) as:

P 𝑁 = 2 𝑁 ∑︁ 𝑁 2 𝑘=𝑁 1 | n𝑘 | 2 Re ∇ 𝜽 f𝑘 ∇ 𝐻 𝜽 f𝑘 + 4 𝑁 ∑︁ 𝑙 𝑗=1 ∑︁ 𝑁 2 -𝑗 𝑘=𝑁 1 Re n * 𝑘+ 𝑗 n𝑘 ∇ 𝜽 f𝑘+ 𝑗 ∇ 𝐻 𝜽 f𝑘 , (37) 
where n𝑘 ≜ 𝑥 𝑘 -𝑓 𝑘 ( θ 𝑁 ) and ∇ 𝜽 f𝑘 ≜ ∇ 𝜽 𝑓 𝑘 ( θ 𝑁 ) and θ 𝑁 is a √ 𝑁-consistent estimator of the true parameter vector θ. Among all the possible consistent estimators, the best choice is the asymptotic efficient one that we are going to introduce in the subsequent section VI. The consistency of the estimator P 𝑁 in [START_REF] Lubeigt | Joint delay-doppler estimation performance in a dual source context[END_REF] is established in [START_REF] White | Nonlinear regression with dependent observations[END_REF]Theo. 3.5]:

Theorem 1: Under Assumption 1 and other technical regularity conditions (see A1a, A3, A4 and A7 in [START_REF] White | Nonlinear regression with dependent observations[END_REF]), if the correlation lag 𝑙 grows at the rate 𝑙 = 𝑜(𝑁 1/3 ) as 𝑁 → ∞, 4we have that P𝑁 is a consistent estimator of P( θ):

P 𝑁 𝑝 → P 𝑁 ( θ), (38) 
where 𝑝 → indicates the convergence (element by element) in probability.

B( θ) ≜ 𝐸 𝑝 ε ∇ 𝜽 ln 𝑓 𝜽 (x; ε)∇ ⊤ 𝝐 ln 𝑓 𝝐 (x; ε) = 𝐸 𝑝 n 2 σ2 𝑛 ∑︁ 𝑁 2 𝑘=𝑁 1 Re 𝑛 * 𝑘 ∇ 𝜽 f𝑘 2 σ2 𝑛 ∑︁ 𝑁 2 𝑗=𝑁 1 Re 𝑛 * 𝑗 ∇ 𝜽 f 𝑗 𝑇 (26a) = 4 σ4 𝑛 𝑁 2 ∑︁ 𝑘=𝑁 1 𝑁 2 ∑︁ 𝑗=𝑁 1 𝐸 𝑝 n Re 𝑛 * 𝑘 ∇ 𝜽 f𝑘 Re 𝑛 * 𝑗 ∇ 𝑇 𝜽 f 𝑗 = 4 σ4 𝑛 𝑁 2 ∑︁ 𝑘=𝑁 1 𝑁 2 ∑︁ 𝑗=𝑁 1 𝐸 𝑝 n 𝑛 * 𝑘 ∇ 𝜽 f𝑘 + 𝑛 𝑘 ∇ * 𝜽 f𝑘 2 𝑛 * 𝑗 ∇ 𝑇 𝜽 f 𝑗 + 𝑛 𝑗 ∇ 𝐻 𝜽 f 𝑗 2 (26b) = 2 σ4 𝑛 ∑︁ 𝑁 2 𝑘=𝑁 1 ∑︁ 𝑁 2 𝑗=𝑁 1 Re 𝐸 𝑝 n 𝑛 𝑘 𝑛 𝑗 * ∇ 𝜽 f𝑘 ∇ 𝑇 𝜽 f 𝑗 + Re 𝐸 𝑝 n 𝑛 * 𝑘 𝑛 𝑗 ∇ 𝜽 f𝑘 ∇ 𝐻 𝜽 f 𝑗 (26c) = 2 σ4 𝑛 ∑︁ 𝑁 2 𝑘=𝑁 1 𝐸 𝑝 n |𝑛 𝑘 | 2 Re ∇ 𝜽 f𝑘 ∇ 𝐻 𝜽 f𝑘 + 2 σ4 𝑛 ∑︁ 𝑁 2 𝑘=𝑁 1 ∑︁ 𝑁 2 𝑗=𝑁 1 𝑗≠𝑘 Re 𝐸 𝑝 n 𝑛 * 𝑘 𝑛 𝑗 ∇ 𝜽 f𝑘 ∇ 𝐻 𝜽 f 𝑗 (26d) = 2 σ4 𝑛 ∑︁ 𝑁 2 𝑘=𝑁 1 𝐸 𝑝 n |𝑛 𝑘 | 2 Re ∇ 𝜽 f𝑘 ∇ 𝐻 𝜽 f𝑘 + 4 σ4 𝑛 ∑︁ 𝑁 2 -𝑁 1 𝑗=1 ∑︁ 𝑁 2 -𝑗 𝑘=𝑁 1 Re 𝐸 𝑝 n 𝑛 * 𝑘+ 𝑗 𝑛 𝑘 ∇ 𝜽 f𝑘+ 𝑗 ∇ 𝐻 𝜽 f𝑘 (26e) = 𝑁 σ4 𝑛 2 𝑁 ∑︁ 𝑁 2 𝑘=𝑁 1 𝑟 𝑛 [0]Re ∇ 𝜽 f𝑘 ∇ 𝐻 𝜽 f𝑘 + 4 𝑁 ∑︁ 𝑁 2 -𝑁 1 𝑗=1 ∑︁ 𝑁 2 -𝑗 𝑘=𝑁 1 Re 𝑟 𝑛 [ 𝑗]∇ 𝜽 f𝑘+ 𝑗 ∇ 𝐻 𝜽 f𝑘 ≜ 𝑁 σ4 𝑛 P( θ). (26f) 
By a direct application of the Continuous Mapping Theorem and of the Slutsky's Lemma [16, Theo. 2.3 and Lemma 2.8],

we have that the matrix C( θ) in ( 35) can be consistently estimated as:

C 𝑁 ≜ K( θ 𝑁 ) -1 P 𝑁 K( θ 𝑁 ) -1 𝑝 → C( θ), (39) 
that can be exploited to get a consistent estimation of the MCRB on the vector of the parameter of interest θ.

V. MCRB EXPRESSION FOR CES UNCORRELATED DATA

In order to highlight the importance and the generality of the results obtained in the previous section, let us consider the particular case, yet important in applications, where the noise process {𝑛 𝑘 : ∀𝑘 } is assumed to be white with independent and identically Complex Elliptically Symmetric (CES)-distributed samples. More formally, we assume that:

Assumption 2: Let {𝑛 𝑘 : ∀𝑘 } be a zero-mean, white WSS discrete and circular complex-valued process [START_REF] Picinbono | On circularity[END_REF] such that:

1) each sample 𝑛 𝑘 follows a CES distribution 𝑛 𝑘 ∼ 𝑝 𝑛 = 𝐶𝐸 𝑆(0, σ2 𝑛 , 𝑔) with unspecified density generator 𝑔, 2) its autocorrelation satisfies

𝑟 𝑛 [ 𝑗] ≜ 𝐸 𝑝 n [𝑛 * 𝑘+ 𝑗 𝑛 𝑘 ] = σ2 𝑛 𝛿[ 𝑗],
where 𝛿[ 𝑗] is the Kronecker delta sequence. As a direct consequence of Assumption 2, we have that:

• the joint pdf 𝑝 n of the noise vector n ∼ 𝑝 n is the product of the marginal densities, i.e. 𝑝 n (n; σ2

𝑛 , 𝑔) = 𝑁 2 𝑘=𝑁 1 𝑝 𝑛 𝑘 (𝑛 𝑘 ; σ2 𝑛 , 𝑔) • the covariance matrix of n ∈ C 𝑁 is a diagonal matrix, i.e.
𝚺 ≜ 𝐸 𝑝 𝑛 [nn 𝐻 ] = 𝜎 2 𝑛 I. It is worth stressing here the generality of an unspecified CES distribution for the noise samples. The CES ones is a wide class of non-Gaussian and heavy-tailed distributions encompassing the Gaussian, the Generalized Gaussian, the 𝑡-, the 𝐾-and the Weibull distributions as special cases [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF]. Since its nominal density generator 𝑔 is left unspecified, we let the noise 𝑛 𝑘 ∼ 𝑝 𝑛 𝑘 have any possible distribution in the CES class.

From the Stochastic Representation Theorem [14, Theo. 3], each entry 𝑛 𝑘 can be represented as [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF]Theo. 3]:

𝑛 𝑘 = 𝑑 √︁ 𝑄 𝑘 σ𝑛 𝑢 𝑘 , (40) 
where 𝑢 𝑘 is a complex univariate random variable uniformly distributed on C𝑆 ≜ {𝑢 ∈ C||𝑢| = 1}, i.e. 𝑢 𝑘 ∼ 𝑈 (C𝑆). The second order modular variate 𝑄 𝑘 ∼ Q is a positive random variable, independent from 𝑢 𝑘 with pdf 𝑝 Q (𝑞) = 𝛿 -1 𝑔 𝑔(𝑞), where 𝛿 𝑔 ≜ ∫ ∞ 0 𝑔(𝑞)𝑑𝑞 is a normalizing constant (see [14, Eq. ( 19)]). Since the density generator 𝑔 is left unspecified, it is immediate to verify that there is a scale ambiguity between σ2

𝑛 and 𝑔 itself. To avoid this problem, we impose that 𝐸 {Q} = 1. Note that, this constraint allows us to consider σ2 𝑛 as the statistical power 𝑃 of the noise 𝑛 𝑘 , (see the discussion in [14, Sec. III.C]), since from (40), we have that:

𝑃 ≜ 𝐸 {|𝑥 𝑘 | 2 } = 𝐸 {Q}𝐸 {|𝑢 𝑘 | 2 } σ2 𝑛 = σ2 𝑛 , (41) 
where

𝐸 {|𝑢 𝑘 | 2 } = 1 [14, Lemma 1].
Let us now apply the general expression of the MCRB obtained in [START_REF] Niu | Wavelet Based Approach for Joint Time Delay and Doppler Stretch Measurements[END_REF] to the special case of an i.i.d. CES-distributed noise process formally characterized in Assumption 2. To this end, it is immediate to verify that the matrix A( ε) in (32) remain unchanged. Let us now focus on the matrix B( ε) in [START_REF] Jin | The Estimation of Time Delay and Doppler Stretch of Wideband Signals[END_REF]. We will proceed as follows.

1) Evaluation of the term [B( ε)] 1,1 in (24). Let us start by evaluating the term 𝐸 𝑝 n (n 𝐻 n) 2 . Under Assumption 2 and by exploiting the stochastic representation in [START_REF] Mcphee | On the accuracy limits of misspecified delay-doppler estimation[END_REF], the term 𝐸 𝑝 n [(n 𝐻 n) 2 ] can be evaluated as shown in [START_REF] Ortega | On gnss synchronization performance degradation under interference scenarios: Bias and misspecified cramér-rao bounds[END_REF], reported at the bottom of the page,where we used:

• the mutual independence between 𝑄 𝑖 ∼ Q and 𝑄 𝑗 ∼ Q and between 𝑢 𝑖 and 𝑢 𝑗 (see Assumption 2), • from the i.i.d. assumption, we have that Lemma 1]. By using this result, the term [B( ε)] 1,1 can be readily expressed as:

𝐸 𝑄 2 𝑖 = 𝐸 Q 2 , ∀𝑖, • the constraint 𝐸 [𝑄 𝑖 ] = 𝐸 𝑄 𝑗 = 𝐸 [Q] = 1, • the relations 𝐸 |𝑢 𝑗 | 2 = 1 and 𝐸 |𝑢 𝑗 | 4 = 1 from [14,
[B 𝑖𝑖𝑑 ( ε)] 1,1 = 𝑁 (𝐸 Q 2 -1)/ σ4 𝑛 (43)
2) Evaluation of the matrix B( ε) By putting in the general expression of B( θ) in ( 26) the autocorrelation function

𝑟 𝑛 [ 𝑗] = σ2 𝑛 𝛿[ 𝑗] (see Assumption 2)
, it is immediate to verify that:

B 𝑖𝑖𝑑 ( θ) = 2 σ2 𝑛 𝑁 2 ∑︁ 𝑘=𝑁 1 Re ∇ 𝜽 f𝑘 ∇ 𝐻 𝜽 f𝑘 ≜ 𝑁 σ2 𝑛 K( θ), (44) 
where K( θ) is the matrix already defined eq. ( 28). Consequently, the matrix B( ε), under Assuption 2, can be expressed as:

B 𝑖𝑖𝑑 ( ε) = 𝑁 (𝐸 {Q 2 } -1)/𝜎 4 𝑛 0 1×4 0 4×1 1 σ2 𝑛 K( θ) . (45)
Finally, from the general expression in [START_REF] Niu | Wavelet Based Approach for Joint Time Delay and Doppler Stretch Measurements[END_REF], the MCRB for the estimation of ε under Assumption 2 can be expressed as:

MCRB 𝑖𝑖𝑑 ( ε) = A( ε) -1 B 𝑖𝑖𝑑 ( ε)A( ε) -1 = 1 𝑁 𝜎 4 𝑛 (𝐸 {Q 2 } -1) 0 1×4 0 4×1 σ2 𝑛 K( θ) -1 , (46) 
and consequently, due to the block-diagonal structure of MCRB 𝑖𝑖𝑑 ( ε), the MCRB on the vector of the parameters of interest θ is given by:

MCRB 𝑖𝑖𝑑 ( θ) = σ2 𝑛 𝑁 K( θ) -1 . ( 47 
)
It is worth highlighting here an interesting result: under the misspecificed scenario discussed in this section, i.e. when the data follow a CES, i.i.d. (true) model while the assumed one is a Gaussian, i.i.d., model, we have that:

A( θ) + B 𝑖𝑖𝑑 ( θ) = 0. ( 48 
)
As explained in [START_REF] Fortunati | Chapter 4 -Parameter bounds under misspecified models for adaptive radar detection[END_REF]Lemma 4.1], the result in (48), along with the block-diagonal structure of MCRB 𝑖𝑖𝑑 ( ε) in ( 46), implies that the simplified Gaussian assumption does not lead to any degradation of the asymptotic estimation performance of the parameter vector of interest θ. In fact, MCRB 𝑖𝑖𝑑 ( θ) coincides with the lower bound that we can get if the true data model was an i.i.d. Gaussian one. This intriguing outcome can be explained through the semiparametric theory (refer to [17, Sec. IV;B] and [18, Sec. III.B]) that allows us to prove that the lack of knowledge of the density generator 𝑔 does not have any asymptotic impact on the estimation of θ.

Finally, if the true distribution is a Gaussian one, the term 𝐸 {Q 2 } is equal to 2 as proved in [START_REF] Mennad | Slepian-bangs-type formulas and the related misspecified cramér-rao bounds for complex elliptically symmetric distributions[END_REF]Eq. (41)] and this lead us to the classical result about the CRB on the estimation of the variance in complex Gaussian data.

VI. AN ASYMPTOTIC EFFICIENT ESTIMATOR UNDER DEPENDENT OBSERVATIONS

Let us go back now to the general misspecified nonlinear regression problem presented in Sec. II. After having derived the MCRB for the vector of the parameters of interest θ in [START_REF] Das | A New Compact Delay, Doppler Stretch and Phase Estimation CRB with a Band-Limited Signal for GenE[END_REF], the crucial question that arises is as follows: is it possible to derive, under the misspecified Gaussian model F 𝝐 in (7), a consistent estimator θ 𝑁 of θ able to achieve the MCRB, at least asymptotically?

It is well known that, under the i.i.d. case, the answer to this question is positive and θ 𝑁 is given by the Missmatched Maximum Likelihood estimator (MMLE) [START_REF] Huber | The behavior of maximum likelihood estimates under nonstandard conditions[END_REF], [START_REF] White | Maximum likelihood estimation of misspecified models[END_REF], [START_REF] Fortunati | Performance bounds for parameter estimation under misspecified models: Fundamental findings and applications[END_REF]- [START_REF] Richmond | Parameter bounds on estimation accuracy under model misspecification[END_REF]. The extension to the dependent case has been provided in [START_REF] White | Nonlinear regression with dependent observations[END_REF] where the asymptotic behaviour of the nonlinear least square estimator (NLLSE) for θ under the dependent data generating process in [START_REF] White | Maximum likelihood estimation of misspecified models[END_REF], that is:

θ 𝑁 = argmin 𝜽 ∈Θ 1 𝑁 ∑︁ 𝑁 2 𝑘=𝑁 1 |𝑥 𝑘 -𝑓 𝑘 (𝜽)| 2 , ( 49 
)
has been investigated. Note that, when the misspecified Gaussian model F 𝝐 in ( 7) is assumed, it is immediate to verify that, for any finite 𝑁, the NLLSE coincides with the MMLE. In fact, from (8), the misspecified log-likelihood function is

𝑙 (𝜽) = -𝑁 ln(𝜋𝜎 2 𝑛 ) -||x -f (𝜽)|| 2 /𝜎 2 𝑛 , then the MMLE for θ in F 𝝐 is given by: argmax 𝜽 ∈Θ 𝑙 (𝜽) = argmin 𝜽 ∈Θ ||x -f (𝜽)|| 2 = θ 𝑁 , (50) 
that is the same estimator of the one in (49). Remarkably, in [START_REF] White | Nonlinear regression with dependent observations[END_REF] it has been proved that: Theorem 2: Under Assumption 1 and other technical regularity conditions (see A1-A9 in [START_REF] White | Nonlinear regression with dependent observations[END_REF]), θ 𝑁 in (49) satisfies the following properties:

1) Consistency wrt the true parameter vector:

θ 𝑁 𝑎.𝑠. → θ, (51) 
𝑎.𝑠.

→ indicates the almost sure convergence.

2) Asymptotic normality: Let us indicate as ∼

𝑁 →∞ the convergence in distribution, we have:

√ 𝑁 P( θ) -1/2 K( θ) θ 𝑁 -θ ∼ 𝑁 →∞ N (0, I). (52)
The interested reader can find the proof of Theorem 2 in the supporting material associated to this paper. Our proof extends the one provided in [15, Theo. 3.1 and 3.2] to the case of complex observations. It follow directly from (52) that the asymptotic error covariance matrix of θ 𝑁 equates the MCRB( θ) in [START_REF] Das | A New Compact Delay, Doppler Stretch and Phase Estimation CRB with a Band-Limited Signal for GenE[END_REF], i.e.:

lim 𝑁 →∞ w 𝑇 𝑁 𝐸 𝑝 ε ( θ 𝑁 -θ) ( θ 𝑁 -θ) ⊤ -× × + K( θ) -1 P( θ)K( θ) -1 w = 0, ∀w ∈ R 𝑝 /{0}. (53)
Consequently, the NLLSE in (49) (that coincides with the MMLE under misspecified Gaussian assumption) is exactly the consistent and asymptotically efficient estimator that we were looking for.

To conclude, it can be noted that, in the i.i.d. case discussed in Sec. V, eq. ( 53) simplifies to:

lim 𝑁 →∞ w 𝑇 𝑁 𝐸 𝑝 ε ( θ 𝑁 -θ) ( θ 𝑁 -θ) ⊤ -× × + σ2 𝑛 K( θ) -1 w = 0, ∀w ∈ R 𝑝 /{0}. (54) 

VII. APPLICATION TO TIME-DELAY AND DOOPLER

ESTIMATION Time-delay and Doppler estimation is fundamental in a plethora of engineering domains, including communications, radar, and navigation [START_REF] Swick | A Review of Wideband Ambiguity Functions[END_REF]- [START_REF]Handbook of Global Navigation Satellite Systems[END_REF], as it serves as the initial step at the receiver [START_REF] Ricker | Echo Signal Processing[END_REF], [START_REF] Munoz | Position Location Techniques and Applications[END_REF], [START_REF] Yan | Review of range-based positioning algorithms[END_REF]. Due to its importance, understanding the achievable estimation performance in terms of MSE is of paramount practical interest. This crucial insight is typically provided by the CRB. Over the past few decades, numerous CRB expressions have been developed for time-delay and Doppler estimation problems, encompassing both finite narrow-band and wideband signals [START_REF] Van Trees | Detection, Estimation, and Modulation Theory, Part III: Radar -Sonar Signal Processing and Gaussian Signals in Noise[END_REF], [START_REF] Dogandzic | Cramér-Rao bounds for estimating range, velocity, and direction with an active array[END_REF]- [START_REF] Mcphee | Accounting for acceleration-signal parameters estimation performance limits in high dynamics applications[END_REF]. Furthermore, recent studies have explored scenarios in which the actual signal model at the receiver differs from the assumed one [START_REF] Lubeigt | Untangling first and second order statistics contributions in multipath scenarios[END_REF]- [START_REF] Ortega | On gnss synchronization performance degradation under interference scenarios: Bias and misspecified cramér-rao bounds[END_REF]. In these investigations, expressions for estimation boundaries, as determined by the MCRB, have been established. However all these prior studies share a common assumption: both the noise in the true signal model and the noise in the signal model assumed by the receiver follow a centered complex normal distribution with uncorrelated covariance matrix, i.e. a diagonal matrix. Surprisingly, despite the extensive

𝐸 𝑝 n (n 𝐻 n) 2 = σ4 𝑛 𝐸 ∑︁ 𝑁 2 𝑖=𝑁 1 𝑄 𝑖 |𝑢 𝑖 | 2 2 = σ4 𝑛 𝐸 ∑︁ 𝑁 2 𝑖=𝑁 1 ∑︁ 𝑁 2 𝑗=𝑁 1 𝑄 𝑖 𝑄 𝑗 |𝑢 𝑖 | 2 |𝑢 𝑗 | 2 = σ4 𝑛 𝐸 ∑︁ 𝑁 2 𝑖=𝑁 1 𝑄 2 𝑖 |𝑢 𝑖 | 4 + × (42a) × + σ4 𝑛 𝐸 𝑁 2 ∑︁ 𝑖=𝑁 1 𝑁 2 ∑︁ 𝑗=𝑁 1 , 𝑗≠𝑖 𝑄 𝑖 𝑄 𝑗 |𝑢 𝑖 | 2 |𝑢 𝑗 | 2 = σ4 𝑛 𝑁 2 ∑︁ 𝑖=𝑁 1 𝐸 𝑄 2 𝑖 𝐸 |𝑢 𝑖 | 4 + 𝑁 2 ∑︁ 𝑖=𝑁 1 𝑁 2 ∑︁ 𝑗=𝑁 1 , 𝑗≠𝑖 𝐸 [𝑄 𝑖 ] 𝐸 𝑄 𝑗 𝐸 |𝑢 𝑖 | 2 𝐸 |𝑢 𝑗 | 2 (42b) = σ4 𝑛 𝑁 𝐸 Q 2 + 𝑁 (𝑁 -1) = σ4 𝑛 𝑁 (𝐸 Q 2 -1) + 𝑁 2 , (42c) 
research in this area, there is a notable absence in the literature regarding the ultimate attainable estimation performance for time-delay and Doppler (in terms of MSE) when the true signal model features a correlated non-Gaussian distributed noise. The aim if this section os then to fill this gap by relying on the theoretical results derived in the previous sections.

A. Signal model

We consider the transmitter 𝑇 to receiver 𝑅 direct transmission of a band-limited signal 𝑎 (𝑡) with bandwidth 𝐵

𝑎 (𝑡) = 𝑁 2 ∑︁ 𝑛=𝑁 1 𝑎 (𝑛𝑇) sinc (𝜋𝐵 (𝑡 -𝑛𝑇)) , 𝑇 = 1/𝐵, (55) 
over a carrier with frequency 𝑓 𝑐 (𝜆 𝑐 = 𝑐/ 𝑓 𝑐 , 𝜔 𝑐 = 2𝜋 𝑓 𝑐 ). The transmitter is located at position 𝑷 𝑇 (𝑡) and the receiver is located at position 𝑷 𝑅 (𝑡). The distance travelled by the transmitted signal is 𝑷 𝑇 𝑅 = ∥𝑷 𝑇 (𝑡 -𝜏 0 (𝑡)) -𝑷 𝑅 (𝑡) ∥≈ (𝑷 𝑇 -𝑷 𝑅 ) 𝑐 + 𝑣 𝑐 𝑡, that is, a first order approximation where τ = (𝑷 𝑇 -𝑷 𝑅 ) 𝑐 and b = 𝑣 𝑐 with 𝑣 the relative velocity between the transmitter and the receiver. Once the baseband demodulation process has been completed, the received signal at the output of the Hilbert filter can be expressed as [START_REF] Dogandzic | Cramér-Rao bounds for estimating range, velocity, and direction with an active array[END_REF], [START_REF] Medina | Compact CRB for delay, doppler and phase estimation -application to GNSS SPP & RTK performance characterization[END_REF], [START_REF] Skolnik | Radar Handbook[END_REF] 

𝑥 (𝑡; η) = ᾱ𝑎 (𝑡 -τ) (1 -b) 𝑒 -𝑗2 𝜋 𝑓 𝑐 ( b (𝑡 -τ ) ) + 𝑛 (𝑡) , (56) yielding to 𝑥 (𝑡; η) = ᾱ𝑎 (𝑡 -τ) 𝑒 -𝑗2 𝜋 𝑓 𝑐 ( b (𝑡 -τ ) ) + 𝑛 (𝑡) , (57) 
under the narrowband assumption, i.e. the influence of the Doppler parameter on the baseband signal samples is omitted. The term ᾱ = ρ𝑒 𝑗 Φ represents a complex gain, while 𝑛(𝑡) is a zero-mean, generally non Gaussian, wide sense stationary (WSS) continuous random process. The discrete signal model is built from

𝑁 = |𝑁 1 -𝑁 2 + 1| samples at 𝑇 𝑠 = 1/𝐹 𝑠 = 1/𝐵, x = ᾱ𝝁( η) + n = ρ𝑒 𝑗 Φ 𝝁( η) + n, (58) 
with x = (. . . , 𝑥 (𝑘𝑇 𝑠 ) , . . .) ⊤ , 𝑁 1 ≤ 𝑘 ≤ 𝑁 2 signal samples. Moreover, by posing ( η) = [ τ, b] ⊤ , we have:

𝝁( η) = (. . . , 𝑎(𝑘𝑇 𝑠 -τ)𝑒 -𝑗2 𝜋 𝑓 𝑐 ( b (𝑘𝑇 𝑠 -τ ) , . . .) ⊤ . (59) 
Consequently, by defining the true vector of the parameters of interest as θ⊤ = ρ, Φ, η⊤ the signal model in eq. ( 58) follows the form in (1):

x = ᾱ𝝁( η) + n = f ( θ) + n. (60) 
Finally, standard receivers assumes that the noise vector n ∈ C 𝑁 is distributed as a centered complex normal random vector with diagonal covariance matrix, i.e. n ∼ CN (0, 𝜎 2 𝑛 𝑰 𝑁 ). Note that this represents the same misspecified scenario introduced in section II-B. Specifically, we have that the pdf of the observation vector x in (60) belongs to the misspecified model in [START_REF] Fortunati | The constrained Misspecified Cramér-Rao bound[END_REF], i.e. x ∼ 𝑓 𝝐 ∈ F 𝝐 .

B. Time-delay and Doppler Closed-Form MCRB Expression for a Band-Limited Signal

It is interesting to note the likelihood between the expression obtained in previous sections and those already derived in the state of art. In particular, we may note that the matrix -A( θ) derived in [START_REF]Handbook of Global Navigation Satellite Systems[END_REF] represents the FIM of a single source conditional signal model (CSM) [START_REF] Stoica | Performances study of conditional and unconditional direction of arrival estimation[END_REF]. A compact expression of this FIM, that depends only on the baseband signal samples, was recently derived in [START_REF] Medina | Compact CRB for delay, doppler and phase estimation -application to GNSS SPP & RTK performance characterization[END_REF] as:

-A( θ) = 2𝐹 𝑠 𝜎 2 𝑛 Re QWQ 𝐻 (61) 
with

W =       𝑤 1 𝑤 * 2 𝑤 * 3 𝑤 2 𝑊 2,2 𝑤 * 4 𝑤 3 𝑤 4 𝑊 3,3       , (62a) 
Q =         𝑒 𝑗 Φ 0 0 𝑗 ᾱ 0 0 𝑗 ᾱ2𝜋 𝑓 𝑐 b 0 - ᾱ 0 -𝑗 ᾱ2𝜋 𝑓 𝑐 0         , (62b) 
where the elements of W can be expressed w.r.t. the baseband signal samples as,

𝑤 1 = 1 𝐹 𝑠 a 𝐻 a, 𝑤 2 = 1 𝐹 2 𝑠 a 𝐻 Da, 𝑤 3 = a 𝐻 𝚲a, (63) 
𝑤 4 = 1 𝐹 𝑠 a 𝐻 D𝚲a, 𝑊 2,2 = 1 𝐹 3 𝑠 a 𝐻 D 2 a, 𝑊 3,3 = 𝐹 𝑠 a 𝐻 Va.
with a, the baseband samples vector, D, 𝚲 and V defined as, a = (. . . , 𝑎(𝑛𝑇 𝑠 ), . . .

) ⊤ 𝑁 1 ≤𝑛≤ 𝑁 2 , (64a) 
D = diag (. . . , 𝑛, . . .) 𝑁 1 ≤𝑛≤ 𝑁 2 , (64b) 
(𝚲) 𝑛,𝑛 ′ = 𝑛 ′ ≠ 𝑛 : (-1) |𝑛-𝑛 ′ | 𝑛-𝑛 ′ 𝑛 ′ = 𝑛 : 0 (64c) (V) 𝑛,𝑛 ′ = 𝑛 ′ ≠ 𝑛 : (-1) |𝑛-𝑛 ′ | 2 (𝑛-𝑛 ′ ) 2 𝑛 ′ = 𝑛 : 𝜋 2 3 (64d)
Moreover, under the uncorrelated noise assumption, we note from (46) that, since B 𝑖𝑖𝑑 ( θ) = -A( θ), the MCRB on the estimation of θ is given by:

MCRB 𝑖𝑖𝑑 ( θ) = 2𝐹 𝑠 σ2 𝑛 Re QWQ 𝐻 (65) 
In the case of correlated noise, the expression of the matrix B( θ) = 𝑁 -1 σ4 𝑛 P( θ) in ( 26) is more challenging since P( θ) involves the autocorrelation function 𝑟 𝑛 [ 𝑗]. We can distinguish between the following two cases. If 𝑟 𝑛 [ 𝑗] is a-priori known, for the application at hand P( θ) can be expressed as:

P( θ) = 2𝐹 𝑠 σ2 𝑛 𝑁 Re QWQ 𝐻 + 4𝐹 𝑠 𝑁 𝑙 ∑︁ 𝑗=1 Re 𝑟 𝑛 [ 𝑗]QW 𝑗 Q 𝐻 (66) 
where:

W 𝑗 =        𝑤 ( 𝑗 ) 1 𝑤 ( 𝑗 ) * 2 𝑤 ( 𝑗 ) * 3 𝑤 ( 𝑗 ) 2 𝑊 ( 𝑗 ) 2,2 𝑤 ( 𝑗 ) * 4 𝑤 ( 𝑗 ) 3 𝑤 ( 𝑗 ) 4 𝑊 ( 𝑗 ) 3,3        , (67) 
and the elements of W 𝑗 can be expressed w.r.t. the baseband signal samples as,

𝑤 ( 𝑗 ) 1 = 1 𝐹 𝑠 a 𝐻 𝑗 + a 𝑗 -, 𝑤 ( 𝑗 ) 2 = 1 𝐹 2 𝑠 a 𝐻 𝑗 + D 𝑗 a 𝑗 -, (68) 
𝑤 ( 𝑗 ) 3 = a 𝐻 𝑗 + 𝚲 𝑗 a 𝑗 -, 𝑤 ( 𝑗 ) 4 = 1 𝐹 𝑠 a 𝐻 𝑗 + D 𝑗 𝚲 𝑗 a 𝑗 -, 𝑊 ( 𝑗 ) 2,2 = 1 𝐹 3 𝑠 a 𝐻 𝑗 + D 2 𝑗 a 𝑗 -, 𝑊 ( 𝑗 ) 3,3 = 𝐹 𝑠 a 𝐻 𝑗 + V 𝑗 a 𝑗 -.
with a 𝑗 -, a 𝑗 + , D 𝑗 , 𝚲 𝑗 and V 𝑗 defined as,

a 𝑗 + = (. . . , 𝑎(𝑛𝑇 𝑠 ), . . .) ⊤ 𝑁 1 + 𝑗 ≤𝑛≤ 𝑁 2 , (69a) 
a 𝑗 -= (. . . , 𝑎(𝑛𝑇 𝑠 ), . . .) ⊤ 𝑁 1 ≤𝑛≤ 𝑁 2 -𝑗 , (69b) 
D 𝑗 = diag (. . . , 𝑛, . . .) 𝑁 1 ≤𝑛≤ 𝑁 2 -𝑗 , (69c) 
𝚲 𝑗 𝑛,𝑛 ′ = 𝑛 ′ ≠ 𝑛 : (-1) |𝑛-𝑛 ′ | 𝑛-𝑛 ′ 𝑛 ′ = 𝑛 : 0 (69d) V 𝑗 𝑛,𝑛 ′ = 𝑛 ′ ≠ 𝑛 : (-1) |𝑛-𝑛 ′ | 2 (𝑛-𝑛 ′ ) 2 𝑛 ′ = 𝑛 : 𝜋 2 3 (69e) with 𝑁 1 ≤ 𝑛, 𝑛 ′ ≤ 𝑁 2 -𝑗. If 𝑟 𝑛 [ 𝑗]
is not a-priori known, from (37), a consistent estimator of P( θ) can be implemented as:

P 𝑁 = 𝑁 -1 2𝐹 𝑠 Re QWQ 𝐻 ∑︁ 𝑁 2 𝑘=𝑁 1 | n𝑘 | 2 + + 𝑁 -1 4𝐹 𝑠 ∑︁ 𝑙 𝑗=1 Re n * 𝑘+ 𝑗 n𝑘 QW 𝑗 Q 𝐻 , (70) 
where n𝑘 ≜ 𝑥 𝑘 -𝑓 𝑘 ( θ 𝑁 ) and θ 𝑁 is the consistent estimator of θ defined as [START_REF] Ortega | On gnss synchronization performance degradation under interference scenarios: Bias and misspecified cramér-rao bounds[END_REF] 5 :

η = arg max 𝜼 𝚷 𝝁 (𝜼) x 2 (71) 𝜌 = 𝝁 𝐻 ( η) 𝝁 ( η) -1 𝝁 𝐻 ( η) x (72) Φ = arg 𝝁 𝐻 ( η) 𝝁 ( η) -1 𝝁 𝐻 ( η) x (73) 

VIII. SIMULATION AND DISCUSSION

To support our theoretical analysis, we examine the transmission and reception of a GPS L1 C/A signal [START_REF]Handbook of Global Navigation Satellite Systems[END_REF]. This signal employs a baseband signal represented by a periodic binary phase-shift keying (BPSK) Gold code with a length of 1023 chips of period 1ms. At the receiver, we set a sampling frequency 𝐹 𝑠 = 4 MHz, which is the standard rate for most commercial receivers. The GNSS receiver assumes that the noise follows a standard centered normal distribution.

Scenario 1 In a first scenario, we set a true signal model where the noise is sampled from a complex centered 𝑡distribution [5, Sec. 4.6.1.1] with 𝜐 > 1 degrees of freedom (or shape parameter) that control the level of non-Gaussianity and a scale parameter 𝜇. The second-order modular variate Q of a 𝑡-distribution is an 𝐹-distributed random variable with parameters 2 and 𝜐 i.e. Q ∼ 𝐹 (2, 𝜐) [14, Sec. IV.A]. Then, in order to meet the constraint 𝐸 {Q} = 1, the scale as to be set as 𝜇 = 𝜐 σ2 𝑛 ( 𝜐-1) where σ2 𝑛 depends on the signal to noise 5 Let 𝑆 = 𝑠 𝑝𝑎𝑛 (A), with A a matrix, be the linear span of the set of its column vectors. The orthogonal projector over 𝑆 is 𝚷 A = A A 𝐻 A A 𝐻 . ratio at the output of the match filter 𝑆𝑁 𝑅 𝑜𝑢𝑡 . The 𝑆𝑁 𝑅 𝑜𝑢𝑡 is defined as:

𝑆𝑁 𝑅 𝑜𝑢𝑡 = |𝛼| 2 a 𝐻 a σ2 𝑛 . (74) 
Furthermore, in this scenario, we employ two autoregressive processes (AR) of order 1 and 6, respectively, to model the noise correlation. The poles of the process are set to 𝑝 = 0.9•𝑒 𝑗2 𝜋•0. the 𝑆𝑁 𝑅 𝑜𝑢𝑡 . The number of Monte Carlo is set to 1000 iterations and 𝜐 = 2.5. In the results one can observe that the RMSE ( √ 𝑀𝑆𝐸) of the pseudotrue parameter converges to the asymptotic estimation performance derived in Section IV. These results confirm the theoretical derivation. Moreover, the Gaussian i.d.d

√

𝐶 𝑅𝐵 has been included to quantify the performance with respect to the correlated case. It is worth to underline that the previous theoretical results are valid for any joint pdf 𝑝 n admitting finite first and second order moments and not only of the one obtained from a 𝑡-distribution.

Scenario 2 In the second scenario, we would like to illustrate the estimation performance in the case where the noise is i.i.d. To do so, we propose to set the true signal model as in the previous scenario, i.e the noise process is complex centered 𝑡-distributed (we remind that in this particular case, the noise is assumed to be i.i.d and there is not need to define any process to characterized the noise correlation). Moreover, we also set a true signal model where the noise is distributed according to a complex centered Generalized Gaussian (GG) distribution, [START_REF] Fortunati | Chapter 4 -Parameter bounds under misspecified models for adaptive radar detection[END_REF]Sec. 4.6.1.2] with exponent 𝑠 > 0 and scale 𝑏 > 0, where 𝑠 is a parameter controlling the level of non-Gaussianity. The second-order modular variate Q of a GG distribution is given by Q = 𝑑 𝐺 1/𝑠 where 𝐺 is a Gamma distributed random variable with parameter 1/𝑠 and 𝑏, i.e. 3 and 4 w.r.t. the 𝑆𝑁 𝑅 𝑜𝑢𝑡 . The number of Monte Carlo is set to 1000 iterations. In the simulation, complex centered Generalized Gaussian distributions with 𝑠 = {0.5, 1.5, 2.5} and complex centered 𝑡-distributions with 𝜐 = {1.1, 2, 3} have been used as a true model. In the results one can that the RMSE of the pseudotrue parameter converges to asymptotic estimation performance derived in Section IV. These results confirm the theoretical Note also that the

√

𝑀𝐶 𝑅𝐵 is equal to the √ 𝐶 𝑅𝐵. It is important to underline that the preceding theoretical findings are applicable to all true noise models characterized by Complex Elliptically Symmetric (CES) distributions, not limited to the Gaussian (GG) and 𝑡-distribution cases. As mentioned earlier, a thorough explanation of this phenomenon is rooted in semiparametric theory (refer to [17, Sec. IV.B] and [18, Sec. III.B]), and a comprehensive explanation will be provided in future research. For now, we restrict our discussion to this observation: the equivalence between the MCRB and the CRB holds true only when the parameters of interest parameterize the mean of the observation vectors. Conversely, if some parameter of interest is involved in the covariance matrix of the observations, this equivalence may no longer be valid.

IX. CONCLUSION

This paper focused on the performance evaluation of estimation procedures in nonlinear regression models. In particular, we were interested in analyzing the asymptotic performance of inference algorithms based on the simplistic i.i.d. Gaussian assumption in the presence of correlated and non-Gaussian noise. To this end, the related MCRB has been evaluated and the consistency and efficiency properties of the MMLE/NLLSE investigated. Under a weak condition on the rate of decay of the autocorrelation function (Assumption 1), our results show that: • The MCRB for the parameters of interest in the nonlinear regression model depends of the autocorrelation function of the noise but not on the joint pdf on the noise samples that can then be left unspecified. Moreover, the MMLE/NLLSE is consistent and efficient with respect to the relevant MCRB. • If the noise samples are modeled as zero-mean, i.i.d. CESdistributed (with unspecified density generator) random variables, the MCRB on the parameter of interest equates the CRB derived under i.i.d. Gaussian assumption. This means that the asymptotic performance of Gaussian-based MMLE, i.e. the NLLSE, are not affected by the lack of knowledge of the true non-Gaussian and heavy-tailed noise distribution. Since the i.i.d. Gaussian assumption is widely used in applications, these theoretical results are of great practical interest. Specifically, they implies that, a practitioner can continue to use the i.i.d. Gaussian-based inference procedures without any loss in asymptotic estimation performance even when the noise samples are heavy-tailed, non-Gaussian but still i.i.d. random variables. On the other hands, if the noise samples are correlated heavy-tailed, non-Gaussian random variables, the asymptotic performance of i.i.d. Gaussian-based procedures depends only on the autocorrelation function of the noise process and not on the specific joint pdf of its samples. Our theoretical findings have been then used to investigate the asymptotic performance of Gaussian procedure in time-delay and Doppler estimation for GNSS.

Future works will focus on the possibility to derive lower bounds on the performance of estimation procedures in the presence of an non-perfect knowledge of the nonlinear function characterizing the regression model.
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 1 Fig.1. RMSE of the MMLE of the time-delay considering complex centered t-dist. with 𝜐 = 2.5 and two AR processes of order 1 and 6, respectively, to model the noise correlation.
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 3 for the order 1 process and 𝒑 =[0.5•𝑒 -𝑗2 𝜋•0.4 , 0.6• 𝑒 -𝑗2 𝜋•0.2 , 0.7, 0.4 • 𝑒 𝑗2 𝜋•0.1 , 0.5 • 𝑒 𝑗2 𝜋•0.3 , 0.6 • 𝑒 𝑗2 𝜋•0.35 ] for the order 6 process. The MMLE for the joint estimation of the time-delay and Doppler is defined in (71). The root mean square error (RMSE) results of the MMLE for the parameters of interest 𝜼 𝑇 = [𝜏, 𝑏] are shown in Figs. 1 and 2 w.r.t.

Fig. 2 .

 2 Fig.2. RMSE of the MMLE of the Doppler considering complex centered t-dist. with 𝜐 = 2.5 and two AR processes of order 1 and 6, respectively, to model the noise correlation.

Fig. 3 .

 3 Fig.3. RMSE of the MMLE of the time-delay considering complex centered GG dist. with 𝑠 = {0.5, 1.5, 2.5} and t-dist. with 𝜐 = {1.1, 2, 3}.

Fig. 4 .

 4 Fig. 4. RMSE of the MMLE of the Doppler considering complex centered GG dist. with 𝑠 = {0.5, 1.5, 2.5} and 𝑡-dist. with 𝜐 = {1.1, 2, 3}.

  the marginal pdf 𝑝 𝑛 𝑘 of each sample 𝑛 𝑘 ∼ 𝑝 𝑛 𝑘 is left fully unspecified, • the covariance matrix of n , i.e. 𝚺 ≜ 𝐸 𝑝 n [nn 𝐻 ], has the following Hermitian Toeplitz structure [11, Sec. 1.3]: [𝚺] 𝑘,𝑘+ 𝑗 = [𝚺] 𝑘+1,𝑘+ 𝑗+1 = [𝚺] *

	𝑘+ 𝑗+1,𝑘+1

and only if there exists a positive real number 𝑎 and a real number 𝑥 0 such that | 𝑓 ( 𝑥 ) | ≤ 𝑎𝑔 ( 𝑥 ), ∀ 𝑥 ≥ 𝑥 0 .

•

Given a real-valued function 𝑓 ( 𝑥 ) and a strictly positive real-valued function 𝑔 ( 𝑥 ), 𝑓 ( 𝑥 ) = 𝑜 (𝑔 ( 𝑥 ) ) if for every positive real number 𝑎, there exists a real number 𝑥 0 such that | 𝑓 ( 𝑥 ) | ≤ 𝑎𝑔 ( 𝑥 ), ∀𝑥 ≥ 𝑥 0 .
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