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On the efficiency of misspecified Gaussian
inference in nonlinear regression: application to

time-delay and Doppler estimation
Stefano Fortunati, Lorenzo Ortega

Abstract—Nonlinear regression play a crucial role in various
engineering applications. For the sake of mathematical tractabil-
ity and ease of implementation, most of the existing inference
procedures are derived under the assumption of independent and
identically distributed (i.i.d.) Gaussian-distributed data. However,
real-world situations often deviate from this assumption, with
the true data generating process being a correlated, heavy-
tailed and non-Gaussian one. The paper aims at providing the
Misspecified Cramér-Rao Bound (MCRB) on the Mean Squared
Error (MSE) of any unbiased (or at least consistent) estimator of
the parameters of a nonlinear regression model derived under the
i.i.d. Gaussian assumption in the place of the actual correlated,
non-Gaussian data generating process. As a special case, the
MCRB for an uncorrelated, i.i.d. Complex Elliptically Symmetric
(CES) data generating process under Gaussian assumption is also
provided. Consistency and asymptotic normality of the related
Mismatched Maximum Likelihood Estimator (MMLE) will be
discussed along with its connection with the Nonlinear Least
Square Estimator (NLLSE) inherent to the nonlinear regression
model. Finally, the derived theoretical findings will be applied in
the well-known problem of time-delay and Doppler estimation
for GNSS.

Index Terms—Nonlinear regression, Misspecified Cramér-Rao
bound, Mismatched Maximum Likelihood estimator, time-delay
and Doppler estimation, band-limited signals.

I. INTRODUCTION

NONINEAR regression are one of the most-used statistical
models in Signal Processing (SP) and related engineering

applications. In a regression model, an observation vector

C𝑁 ∋ x = f (𝜽̄) + n, (1)

is characterized by i) a vector of unknown deterministic
parameters 𝜽̄ , ii) a linear or nonlinear (continuous and dif-
ferentiable) known function f, parameterized by 𝜽̄ and iii) an
additive noise vector n. The function f generally specifies the
measurement process while 𝜽̄ collects the quantities that need
to be estimated. Regression models can be found in array pro-
cessing, image processing, biomedical data analysis and even
in climatic studies, just to name a few. While the definition of
f, 𝜽̄ and of the measurement noise n depends on the particular
application at hands, the inference procedures used to estimate
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the parameter of interest usually share a common (although
unrealistic) assumption: the entries of the noise vector n
are sampled from an i.i.d. white Gaussian random process.
This assumption is made to make the estimation algorithm
mathematically tractable and easy to implement. In fact, it
is well known that, under the i.i.d. Gaussian assumption, the
optimal estimator is the (non) linear least square estimator
(NLLSE). However, everyday engineering practice shows that
this assumption is too simplistic since the noise process can
be correlated and even non-Gaussian. The central question
that we aim at answering in this paper is: how accurate can
an i.i.d., Gaussian-based inference procedure be when the
regression model is characterized by a correlated, generally
non-Gaussian noise? In order to answer to this question, we
will rely on the misspecification theory developed in [1]–[3]
and recently rediscovered in [4]–[8] and the reference therein.
Specifically, we will show that it is possible to derive the
so-called Misspecified Cramér-Rao Bound (MCRB) on the
estimation of 𝜽̄ when the assumed model is the “classical”
i.i.d. Gaussian model while the true data model is a dependent
and non-Gaussian one.

This paper is organized into seven distinct sections. In
Section II, we present both the true and assumed nonlinear
regression models. Section III introduce the calculation of the
pseudo-true parameter vector for the misspecified Gaussian
nonlinear regression model. Section IV derives the MCRB
under quite general condition of the correlation structure of the
true data generating process, while, in Sec. V, we specialize
this general results to a case of practical interest in which
the true data model is an i.d.d. Complex Elliptical Symmetric
(CES) model with unspecified density generator. Sec. VI is
dedicated to the investigation of the asymptotic properties of
the NLLE under the above mentioned misspecified scenario
and to its relation with the MMLE. Sec. VII provides an
example of possible application of the theoretical results
to the time-delay and Doppler estimation under the above-
mentioned misspecified scenario for GNSS applications. Our
conclusion are collected in Sec. IX. Notation: Throughout this
paper, italics indicates scalar quantities (𝑎), lower case and
upper case boldface indicate column vectors (a) and matrices
(A), respectively. Each entry of a matrix A is indicated as
𝑎𝑖 𝑗 ≜ [A]𝑖, 𝑗 . I𝑁 defines the 𝑁 × 𝑁 identity matrix. The
superscripts ∗, ⊤ and 𝐻 indicate the complex conjugation,
the transpose and the Hermitian operators respectively, then
AH = (A∗)⊤. The Euclidean norm of a vector a is indicated
as | |a| |.0000–0000/00$00.00 © 2021 IEEE
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II. NONLINEAR REGRESSION WHIT DEPENDENT
OBSERVATIONS

As discussed in the Introduction, the nonlinear regression is
one of the most used statistical model in signal processing (SP)
and statistics. The aim of this section is then to introduce firstly
the model in its generality (i.e. the true signal model) and
secondly to present its Gaussian-based, i.i.d. simplified version
as it is generally assumed by SP practitioners for inference
purposes.

A. True signal model

Let {𝑥𝑘 ∈ C}+∞
𝑘=−∞ be a sequence of scalar, complex-valued,

observations characterized by the following data generating
process:

𝑥𝑘 = 𝑓𝑘 (𝜽̄) + 𝑛𝑘 , −∞ < 𝑘 < +∞, (2)

where 𝜽̄ ∈ Θ ⊂ R𝑝 indicates the real-valued 1, true parameter
vector and Θ is a compact subset of R𝑝 . The functions
𝑓𝑘 : Θ → C, −∞ < 𝑘 < +∞ are known continuous and
differentiable functions on Θ. In practical applications, the
sequence (2) will be observed from a finite integer 𝑁1 ∈ Z
to a finite integer 𝑁2 ∈ Z, such that −∞ < 𝑁1 < 𝑁2 < +∞.
Consequently, by defining 𝑁 = |𝑁2 −𝑁1 +1|, the sequence (2)
can be written in a vectorial form as in (1) where n ∈ C𝑁

is a zero-mean complex-valued noise vector whose 𝑁 entries
are assumed to be sampled from a Wide Sense Stationary
(WSS) discrete random process {𝑛𝑘 : ∀𝑘} characterizing the
measurement noise 𝑛𝑘 in (2).

Let us now have a closer look at the statistical characteriza-
tion of {𝑛𝑘 : ∀𝑘}. As a zero-mean WSS process, {𝑛𝑘 : ∀𝑘} is
fully characterized by (see e.g. [10, Sec. 15.5], [11, Sec. 1.3]):
i) its autocorrelation function 𝑟𝑛 [𝑘 + 𝑗 , 𝑘] = 𝑟𝑛 [𝑘 + 𝑗 − 𝑘] =

𝑟𝑛 [ 𝑗] and ii) the joint probability density function (pdf) of the
𝑁 samples C𝑁 ∋ n ∼ 𝑝n, for any values of 𝑁 . For further
reference, we indicate the marginal pdf of each sample as
𝑛𝑘 ∼ 𝑝𝑛𝑘 . We make the following extremely general (non-
Gaussian, non-i.i.d.) assumption:

Assumption 1: Let {𝑛𝑘 : ∀𝑘} be a zero-mean, WSS discrete
and circular complex-valued process [12] such that the joint
pdf of 𝑁 samples follows an unspecified pdf n ∼ 𝑝n,∀𝑁
admitting finite first and second order moments. Then, we
assume that its autocorrelation function exists and satisfies
|𝑟𝑛 [ 𝑗] | ≜ |𝐸𝑝n [𝑛∗𝑘+ 𝑗𝑛𝑘] | = 𝑂 ( | 𝑗 |−𝛾), 𝑚 ∈ Z, 𝛾 > 𝜚/(𝜚 − 1),
𝜚 > 1.2 Note that the circularity of {𝑛𝑘 : ∀𝑘} implies that
𝐸𝑝n [𝑛𝑘+ 𝑗𝑛𝑘] = 0, ∀𝑘, 𝑗 .

It is worth noticing here that, as a direct consequence of
this assumption:

1We decided to work with real-valued parameters for two reasons. Firstly,
in practical applications, the parameters of interest are real-valued physical
quantities as e.g. time-delay and Doppler. Secondly, this choice allows us to
avoid the technicalities related to the Wirtinger calculus [9] that may obscure
the more important statistical concepts. It is worth stressing that this choice
will not limit the generality of the derived results since any complex-valued
vector can be recast in term of a real-valued vector by means of the standard
isomorphism between C𝑝 and R2𝑝 , i.e. C𝑝 ∋ 𝜃 ⇋ 𝜃 ≜ (Re(𝜃 )⊤, Im(𝜃 )⊤ )⊤

2Given a real-valued function 𝑓 (𝑥 ) and a positive real-valued function
𝑔 (𝑥 ) , 𝑓 (𝑥 ) = 𝑂 (𝑔 (𝑥 ) ) if and only if there exists a positive real number 𝑎

and a real number 𝑥0 such that | 𝑓 (𝑥 ) | ≤ 𝑎𝑔 (𝑥 ) , ∀𝑥 ≥ 𝑥0.

• the marginal pdf 𝑝𝑛𝑘 of each sample 𝑛𝑘 ∼ 𝑝𝑛𝑘 is left
fully unspecified,

• the covariance matrix of n , i.e. 𝚺 ≜ 𝐸𝑝n [nn𝐻 ], has the
following Hermitian Toeplitz structure [11, Sec. 1.3]:

[𝚺]𝑘,𝑘+ 𝑗 = [𝚺]𝑘+1,𝑘+ 𝑗+1 = [𝚺]∗𝑘+ 𝑗+1,𝑘+1 (3)

= 𝑟𝑛 [(𝑘 + 𝑗) − 𝑘] = 𝑟∗𝑛 [𝑘 − (𝑘 + 𝑗)] = 𝑟𝑛 [ 𝑗] = 𝑟∗𝑛 [− 𝑗],

[𝚺]𝑘,𝑘 = 𝑟𝑛 [0] = 𝜎̄2
𝑛 ,∀𝑘, (4)

where 𝜎̄2
𝑛 is the true and generally unknown noise power.

We would like to stress that Assumption 1 is extremely
general and allows for a wide range of realistic noise models
[13]. To be convinced of this, we can note that any (Gaus-
sian and non-Gaussian) stable second-order stationary (SOS)
ARMA, of any finite orders, satisfies Assumption 1, since
the autocorrelation function of any stable SOS ARMA decays
exponentially. It is well know that, by appropriately choosing
the orders of the Autoregressive and of the Moving Average
parts, an ARMA process can approximate the (continuous)
power spectral density (PSD) of any complex discrete random
processes [11, Ch. 3]. Moreover, a non-Gaussian ARMA
can characterize the heavy-tailed behavior of realistic noise
models. Another popular noise model of practical interest
satisfying Assumption 1 is the Compound-Gaussian (CG) (or
spherically invariant random vector (SIRV)) model [14]. In
fact, any SIRV n ∈ C𝑁 can be represented as [14, Def. 3]
n =𝑑

√
𝜏m for some real-valued positive random variable 𝜏,

such that 𝐸 [𝜏] = 1, called texture, independent of the zero-
mean, 𝑁-dimensional, circular, complex Gaussian random vec-
tor, called speckle, m ∼ CN(0,𝚺), where 𝚺 is the covariance
matrix given in (3).

To conclude this section, we note that the pdf of the data
vector in eq. (1) can be expressed as function of the unspecified
noise pdf 𝑝n as:

x ∼ 𝑝𝝐 ≜ 𝑝𝝐 (x; 𝜎̄2
𝑛 , 𝜽̄) = 𝑝n (𝑥 − f (𝜽̄); 𝜎̄2

𝑛), (5)

where
𝝐 = (𝜎̄2

𝑛 , 𝜽̄
⊤)⊤ ∈ Γ ⊂ R+ × R𝑝 (6)

is the complete vector of the true parameters, where 𝜽̄ is the
vector of the parameter of interest and R+ ∋ 𝜎̄2

𝑛 > 0 a nuisance
parameter, i.e. a term whose estimation is not strictly required
but the lack of its knowledge may have an impact on the
estimation performance of 𝜽̄ .

B. Misspecified Gaussian, i.i.d. signal model

To do inference on the parameter vector 𝜽̄ , and specifically
to estimate it, a common procedures among SP practitioners
is to assume a simplified model describing the statistical be-
haviour of the observations in the place of the true data gener-
ating process in (2). This model misspecification is dictated by
two main reasons [4]. The first one is that the autocorrelation
structure, as well as the pdf 𝑝n is generally not a-priori known
and not easy to obtain from physical considerations on the
random experiment at hand. Secondly, one could prefer a
simplified model in order to derive estimation algorithms that
are easy to implement and fast to compute.
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One of the most popular simplifying assumption is to
consider the noise process {𝑛𝑘 : ∀𝑘} as a zero-mean, White
Gaussian WSS random process. This implies that its autocor-
relation function can be expressed as 𝑟𝑛 [ 𝑗] = 𝜎̄2

𝑛𝛿[ 𝑗], where
𝛿[ 𝑗] is the Kronecker delta sequence. As a consequence, the
noise vector n ∈ C𝑁 is distributed as a centered complex
normal random vector with diagonal covariance matrix, i.e.
n ∼ CN(0, 𝜎2

𝑛 𝑰𝑁 ). This simplifying assumption leads to the
following misspecified statistical model for the data vector
x ∈ C𝑁 in (1):

F𝝐 ≜
{
𝑓𝝐 | 𝑓𝝐 (x; 𝝐) = CN(f (𝜽), 𝜎2

𝑛 𝑰𝑁 ), 𝝐 ∈ Γ
}
, (7)

that is, each pdf belonging to F𝝐 can be expressed as:

𝑓𝝐 (x;𝜎2
𝑛 , 𝜽) = (𝜋𝜎2

𝑛)−𝑁 𝑒
− | |x−f (𝜽) | |2

𝜎2
𝑛 . (8)

The crucial question that we are going to answer in the next
section is: is it possible to derive a lower bound to the Mean
Squared Error (MSE) of any unbiased (or at least consistent)
estimation procedure of 𝜽̄ , derived under the Gaussian, i.i.d.,
misspecified model F𝝐 in (7) in the presence of dependent
observations satisfying Assumption 1?

To answer to this question, we evaluate the MCRB [4]–[6]
on the estimation of 𝜽̄ when the assumed model is F𝝐 while the
true data generating process is the (dependent, non-Gaussian)
one introduced in (2). To this end, we start by evaluating the
pseudo-true parameter vector 𝝐0 ∈ Γ, i.e. the vector in Γ that
minimizes the Kullback-Leibler Divergence (KLD) [4, A 1]
[5, Sec. 4.4.1] between the true (and unknown) pdf x ∼ 𝑝𝝐
and any element 𝑓𝝐 ∈ F𝝐 of the assumed misspecified model
in (7). The vector 𝝐0 ∈ Γ can be seen as a sort of “minimum
divergence projector” of the true pdf onto the misspecified
model F𝝐 and then it characterizes the pdf 𝑓𝝐0 ∈ F𝝐 closest,
in the KLD sense, to the true pdf 𝑝𝝐 .

III. THE PSEUDO-TRUE PARAMETER VECTOR

As anticipated in the previous section, the pseudo-true
parameter vector 𝝐0 is the element in the parameter space Γ

that minimizes the KLD between the true data pdf x ∼ 𝑝𝝐 and
any (possibly) misspecified pdf 𝑓𝝐0 ∈ F𝝐 [3], [4, A1] and [5,
Sec. 4.4.1]:

𝐷 (𝑝𝝐 | | 𝑓𝝐 ) = 𝐸𝑝𝝐̄

[
ln

(
𝑝𝝐 (x; 𝝐)
𝑓𝝐 (x; 𝝐)

)]
x ∼ 𝑝𝝐 , 𝑓𝝐 ∈ F𝝐 (9)

𝐸𝑝𝝐̄ [·] is the expectation with respect to (w.r.t.) the true
model’s pdf. Consequently:

𝝐0 = arg min
𝝐∈Γ

{𝐷 (𝑝𝝐 | | 𝑓𝝐 )} = arg min
𝝐∈Γ

{
𝐸𝑝𝝐̄ [− ln 𝑓𝝐 (x; 𝝐)]

}
.

(10)
From (8), it follows directly that:

𝐸𝑝𝝐̄ [− ln 𝑓𝝐 ] = 𝑁 ln(𝜋)+𝑁 ln(𝜎2
𝑛)+

𝐸𝑝𝝐̄

[
| |x − f (𝜽) | |2

]
𝜎2
𝑛

. (11)

By substituting (11) in (10), we have:

𝝐0 = arg min
𝝐∈Γ

{
𝐸𝑝𝝐̄

[
− ln 𝑓𝝐 (x;𝜎2

𝑛 , 𝜽)
]}

= arg min
𝝐∈Γ

{
𝐸𝑝𝝐̄

[
1
𝜎2
𝑛

[
∥x − f (𝜽̄)∥2] ] + 𝑁 ln(𝜎2

𝑛)
}

(12)

Let us start by minimizing w.r.t. to 𝜽:

𝜽0 = arg min
𝜽

{
𝐸𝑝𝝐̄ [− ln 𝑓𝝐 (x; 𝝐)]

}
(13a)

= arg min
𝜽

{
𝐸𝑝𝝐̄

[ [
∥x − f (𝜽̄)∥2] ]} (13b)

= arg min
𝜽

{
𝐸𝑝𝝐̄

[
tr

(
(x − f (𝜽̄)) (x − f (𝜽̄))𝐻

)]}
(13c)

= arg min
𝜽

{
tr

(
𝚺 + f (𝜽̄)f (𝜽̄)𝐻 − × (13d)

× − f (𝜽̄)f (𝜽)𝐻 − f (𝜽)f (𝜽̄)𝐻 + f (𝜽)f (𝜽)𝐻
)}

(13e)

= arg min
𝜽

{
| |f (𝜽) − f (𝜽̄) | |2

}
⇒ 𝜽0 = 𝜽̄ . (13f)

Remarkably, this result tells us that the pseudo-true parameter
vector of interest 𝜽0 is equal to the one 𝜽̄ .

Let us now minimize w.r.t. to the variance 𝜎2
𝑛 . By using the

result obtained in (13), we have:

𝜎2
0 = arg min

𝜎2
𝑛

{
𝐸𝑝𝝐̄

[
− ln 𝑓𝝐 (x;𝜎2

𝑛 , 𝜽̄)
]}

(14)

⇒ 𝐸𝑝𝝐̄

[
𝜕

𝜕𝜎2
𝑛

ln 𝑓𝝐 (x;𝜎2
𝑛 , 𝜽̄)

����
𝜎2
𝑛=𝜎

2
0

]
= 0 (15)

From direct calculation, we have:

𝐸𝑝𝝐̄

[
𝜕

𝜕𝜎2
𝑛

ln 𝑓𝝐 (x;𝜎2
𝑛 , 𝜽̄)

����
𝜎2
𝑛=𝜎

2
0

]
(16a)

= 𝐸𝑝𝝐̄

[
− 𝑁

𝜎2
𝑛

+ 1
𝜎4
𝑛

∥x − f (𝜽̄)∥2
����
𝜎2
𝑛=𝜎

2
0

]
(16b)

= 𝐸𝑝𝝐̄

[
− 𝑁

𝜎2
𝑛

+ tr(nn𝐻 )
𝜎4
𝑛

]
= − 𝑁

𝜎2
0
+ tr (𝚺)

𝜎4
0

(16c)

= − 𝑁

𝜎2
0
+ 𝑁𝑟𝑛 [0]

𝜎4
0

= − 𝑁

𝜎2
0
+ 𝑁𝜎̄

2
𝑛

𝜎4
0

= 0 ⇒ 𝜎2
0 = 𝜎̄2

𝑛 (16d)

Again, eq. (16) tells us that the pseudo-true nuisance parameter
𝜎2

0 equates the true one 𝜎̄2
𝑛 .

By collecting the results from eqs. (13) and (16), we have
that the pseudo-true parameter vector equates the true one

𝝐0 = 𝝐 ≜ (𝜎̄2
𝑛 , 𝜽̄

⊤)⊤, (17)

under extremely mild assumptions, i.e. for any noise vector
C𝑁 ∋ n ∼ 𝑝n sampled form a discrete random process {𝑛𝑘 :
∀𝑘} whose unspecified joint pdf has finite first and second
order moments, that is it admits a zero-mean 𝐸𝑝n [n] = 0 and
a covariance matrix 𝚺 ≜ 𝐸𝑝n [nn𝐻 ] statisfying (3) and (4).
It can be noted that the equality in (17) does not requires the
polynomial decrease of the autocorrelation function introduced
in Assumption 1. However, we will see that this requirement
will be crucial to derive asymptotic results about the efficiency
of misspecifed Gaussian procedures.

IV. CLOSED FORM EXPRESSION FOR THE MCRB

The aim of this section is to provide the closed form expres-
sion of the Misspecified Cramér-Rao Bound (MCRB) for the
estimation of 𝝐 under the misspecified scenario discussed in
Sec. II-B. Following [3], [4, Theo. 1] and [5, Theo. 4.1] and by
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exploiting the equality between the true and the pseudo-true
paramater vectors, the MCRB is given by:

MCRB(𝝐0) = MCRB(𝝐) = A(𝝐)−1B(𝝐)A(𝝐)−1, (18)

where:

[A(𝝐)]𝑖, 𝑗 ≜
[
𝐸𝑝𝝐̄

[
∇𝝐∇⊤

𝝐 ln 𝑓𝝐 (x; 𝝐)
] ]

𝑖, 𝑗

= 𝐸𝑝𝝐̄

[
𝜕2

𝜕𝑖𝜕 𝑗
ln 𝑓𝝐 (x; 𝝐)

����
𝝐=𝝐

]
, (19)

[B(𝝐)]𝑖, 𝑗 ≜
[
𝐸𝑝𝝐̄

[
∇𝝐 ln 𝑓𝝐 (x; 𝝐)∇⊤

𝝐 ln 𝑓𝝐 (x; 𝝐)
] ]

𝑖, 𝑗

= 𝐸𝑝𝝐̄

[
𝜕

𝜕𝑖
ln 𝑓𝝐 (x; 𝝐)

����
𝝐=𝝐

𝜕

𝜕 𝑗
ln 𝑓𝝐 (x; 𝝐)

����
𝝐=𝝐

]
, (20)

where 𝑓𝝐 (x; 𝝐) ∈ F𝝐 in (7).

The calculation of the matrices A(𝝐) and B(𝝐) will be
performed in four steps:

1) Evaluation of the terms related to 𝜎̄2
𝑛 .

Through direct calculation, we have:

∇𝜎2
𝑛

ln 𝑓𝝐 (x; 𝝐) = 𝜕 ln 𝑓𝝐 (x; 𝜎̄2
𝑛 , 𝜽̄)

𝜕𝜎2
𝑛

(21)

= − 𝑁

𝜎2
𝑛

+ 1
𝜎4
𝑛

∥x − f (𝜽̄)∥2
����
𝜎2
𝑛=𝜎̄

2
𝑛

= − 𝑁

𝜎̄2
𝑛

+ tr(nn𝐻 )
𝜎̄4
𝑛

,

and then:

∇𝜎2
𝑛
∇⊤
𝜎2
𝑛

ln 𝑓𝝐 (x; 𝝐) = 𝑁

𝜎4
𝑛

− 2
𝜎6
𝑛

∥x − f (𝜽̄)∥2
����
𝜎2
𝑛=𝜎̄

2
𝑛

=
𝑁

𝜎̄4
𝑛

− 2tr(nn𝐻 )
𝜎̄6
𝑛

. (22)

By taking the expectation w.r.t. the true data distribution
𝑝𝝐 and following the same calculation done in (16), we
get:

𝐸𝑝𝝐̄

[
∇𝜎2

𝑛
∇⊤
𝜎2
𝑛

ln 𝑓𝝐 (x; 𝝐)
]
=
𝑁

𝜎̄4
𝑛

− 2tr (𝚺)
𝜎̄6
𝑛

= − 𝑁

𝜎̄4
𝑛

,

(23)

where we used their linearity to invert the order of the
expectation and trace operators. Similarly, we have that;

𝐸𝑝𝝐̄

[(
∇𝜎2

𝑛
ln 𝑓𝝐 (x; 𝝐)

)2
]
= 𝐸𝑝n

[(
− 𝑁

𝜎̄2
𝑛

+ n𝐻n
𝜎̄4
𝑛

)2]
=
𝑁2

𝜎̄4
𝑛

− 2𝑁tr (𝚺)
𝜎̄6
𝑛

+
𝐸𝑝n

[
(n𝐻n)2]
𝜎̄8
𝑛

=
𝐸𝑝n

[
(n𝐻n)2] − 𝜎̄4

𝑛𝑁
2

𝜎̄8
𝑛

. (24)

Note that the term 𝐸𝑝n

[
(n𝐻n)2] cannot be further

developed without specifying the true pdf of the noise
𝑝n. We will further discuss this point in the next section.

2) Evaluation of the terms related to 𝜽̄

From the assumed Gaussian pdf in eq. (8), we have:

∇𝜽 ln 𝑓𝝐 (x; 𝜎̄2
𝑛 , 𝜽̄) = − 1

𝜎̄2
𝑛

∇𝜽 ∥x − f (𝜽̄)∥2

=
1
𝜎̄2
𝑛

𝑁2∑︁
𝑘=𝑁1

[ (
𝑥𝑘 − 𝑓𝑘 (𝜽̄)

)∗ ∇𝜽 𝑓𝑘 +
(
𝑥𝑘 − 𝑓𝑘 (𝜽̄)

)
∇∗
𝜽 𝑓𝑘

]
=

2
𝜎̄2
𝑛

𝑁2∑︁
𝑘=𝑁1

Re
{
𝑛∗𝑘∇𝜽 𝑓𝑘

}
, (25)

where, for ease of notation, we posed ∇𝜽 𝑓𝑘 (𝜽̄) = ∇𝜽 𝑓𝑘 .
According to the eq. (20), we can evaluate the matrix
B(𝜽̄) as showed in eq. (26) reported at the bottom of
this page. It is worth noticing that, in the step (26c),
we used the circularity assumption on {𝑛𝑘 : ∀𝑘}, i.e.
𝐸𝑝𝑛 [𝑛𝑘𝑛 𝑗 ] = 0, ∀𝑘, 𝑗 (see Assumption 1). The matrix
P(𝜽̄) in (26f) has been introduced for further reference.
Moreover, again thorough direct calculation, we have :

∇𝜽∇⊤
𝜽 ln 𝑓𝝐 (x; 𝜎̄2

𝑛 , 𝜽̄)

=
1
𝜎̄2
𝑛

𝑁2∑︁
𝑘=𝑁1

[ (
𝑥𝑘 − 𝑓𝑘 (𝜽̄)

)∗ ∇𝜽∇⊤
𝜽 𝑓𝑘 − ∇𝜽 𝑓𝑘∇𝐻

𝜽 𝑓𝑘
]

× + 1
𝜎̄2
𝑛

𝑁2∑︁
𝑘=𝑁1

[ (
𝑥𝑘 − 𝑓𝑘 (𝜽̄)

) [
∇𝜽∇⊤

𝜽 𝑓𝑘
]∗ − ∇∗

𝜽 𝑓𝑘∇
⊤
𝜽 𝑓𝑘

]
=

2
𝜎̄2
𝑛

𝑁2∑︁
𝑘=𝑁1

Re
{(
𝑥𝑘 − 𝑓𝑘 (𝜽̄)

) [
∇𝜽∇⊤

𝜽 𝑓𝑘
]∗} (27a)

× − 2
𝜎̄2
𝑛

𝑁2∑︁
𝑘=𝑁1

Re
{
∇𝜽 𝑓𝑘∇𝐻

𝜽 𝑓𝑘
}
. (27b)

Then we can introduce the matrix A(𝜽̄) as

A(𝜽̄) ≜ 𝐸𝑝𝝐̄

[
∇𝜽∇⊤

𝜽 ln 𝑓𝝐 (x; 𝜎̄2
𝑛 , 𝜽̄)

]
(28)

= − 𝑁

𝜎̄2
𝑛

[
2
𝑁

𝑁2∑︁
𝑘=𝑁1

Re
{
∇𝜽 𝑓𝑘∇𝐻

𝜽 𝑓𝑘
}]
≜ − 𝑁

𝜎̄2
𝑛

K(𝜽̄),

where, again, we have introduced the matrix K(𝜽̄) for
further reference. Note that the expectation of the term in
(27a) is nil since 𝐸𝑝𝝐̄

[
𝑥𝑘 − 𝑓𝑘 (𝜽̄)

]
= 𝐸𝑝𝝐̄ [𝑛𝑘] = 0,∀𝑘 .

3) Evaluation of the cross-terms
From the circularity of the noise process (see Assump-
tion 1), it is immediate to verify that:

𝐸𝑝𝝐̄

[
∇𝜎2

𝑛
ln 𝑓𝝐 (x; 𝝐)∇⊤

𝜽 ln 𝑓𝝐 (x; 𝜎̄2
𝑛 , 𝜽̄)

]
=

𝐸𝑝𝝐̄

[
∇𝜎2

𝑛
ln 𝑓𝝐 (x; 𝝐)∇𝜽 ln 𝑓𝝐 (x; 𝜎̄2

𝑛 , 𝜽̄)
]⊤

= 01×4. (29)

Moreover, we have that:

∇𝜎2
𝑛
∇𝜽 ln 𝑓𝝐 (x; 𝜎̄2

𝑛 , 𝜽̄) = ∇𝜽∇𝜎2
𝑛

ln 𝑓𝝐 (x; 𝜎̄2
𝑛 , 𝜽̄)

=
2
𝜎̄4
𝑛

𝑁2∑︁
𝑘=𝑁1

Re
{
𝑛∗𝑘∇𝜽 𝑓𝑘

}
. (30)

Consequently, since the noise process is zero-mean, we
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trivially have that:

𝐸𝑝𝝐̄

[
∇𝜎2

𝑛
∇⊤
𝜽 ln 𝑓𝝐 (x; 𝜎̄2

𝑛 , 𝜽̄)
]

= 𝐸𝑝𝝐̄

[
∇𝜽∇𝜎2

𝑛
ln 𝑓𝝐 (x; 𝜎̄2

𝑛 , 𝜽̄)
]⊤

= 01×4. (31)

4) Definition of the matrices A(𝝐) and B(𝝐)
By collecting the previous results, we have that the
matrix A(𝝐) in eq. (19) can be expressed as:

A(𝝐) = 𝑁
(
−1/𝜎̄4

𝑛 01×4
04×1 − 1

𝜎̄2
𝑛
K(𝜽̄)

)
. (32)

Similarly, for the matrix B(𝝐) in eq. (20), we have:

B(𝝐) = 𝑁 ©­«
(𝐸𝑝n [ (n𝐻n)2]− 𝜎̄4

𝑛𝑁
2 )

𝑁 𝜎̄8
𝑛

01×4

04×1
1
𝜎̄4
𝑛
P(𝜽̄)

ª®¬ . (33)

As we can see from eq. (33), the matrix B(𝝐) is
function of the matrix P(𝜽̄) in (26f) and the term
𝐸𝑝n [(n𝐻n)2] that depends on the autocorrelation func-
tion 𝑟𝑛 [ 𝑗] involving summations over the index 𝑗 that
can go until |𝑁2 −𝑁1 +1| = 𝑁 . Now, in order to provide
asymptotic results on the number of observations, i.e.
as 𝑁 → ∞, the norm of the matrix matrix B(𝝐) has to
remain bounded as 𝑁 → ∞. As discussed in [15], the
polynomial decrease of 𝑟𝑛 [ 𝑗] is needed to guarantees
that B(𝝐) will not explode as 𝑁 → ∞. 3

Finally, the MCRB in (18) can be expressed as:

MCRB(𝝐) = A(𝝐)−1B(𝝐)A(𝝐)−1

=
1
𝑁

(
(𝐸𝑝n

[
(n𝐻n)2] − 𝜎̄4

𝑛𝑁
2)/𝑁 01×4

04×1 C(𝜽̄)

)
, (34)

where
C(𝜽̄) ≜ K(𝜽̄)−1P(𝜽̄)K(𝜽̄)−1. (35)

It is important to note that, due to the block-diagonal
structure of MCRB(𝝐), the MCRB of the parameter of

3Roughly speaking, the Assumption 1 guarantees the existence of a matrix
B0, such that det(B0 ) > 0 and a⊤ (B0 − B(𝝐 ) )a → 0 as 𝑁 → ∞, for any
non-zero real vector a ∈ R𝑝+1.

interest vector 𝜽̄ can be simply obtained as:

MCRB(𝜽̄) = 𝑁−1C(𝜽̄). (36)

Remarkably, this results tells us that the estimation
of 𝜽̄ is asymptotically decorrelatd from the nuisance
parameter 𝜎̄2

𝑛 .

A. Consistent estimation of the matrix P(𝜽̄)
Let us take a closer look to the matrix P(𝜽̄) in eq.

(26e). It can be immediately noted that it depends on the a-
priori knowledge of the autocorrelation function of the noise
𝑟𝑛 [ 𝑗] ≜ 𝐸𝑝n [𝑛∗𝑘+ 𝑗𝑛𝑘]. However, to evaluate it, we need to
know the true pdf 𝑝n of the noise. This is in contrast with the
Assumption 1 where 𝑝n is left fully unspecified. We should
then rely on a consistent estimator P̂𝑁 of P(𝜽̄). Thanks to
Assumption 1, deriving such consistent estimator is possible,
even in presence of dependent observations. Following [15],
let us define the estimator P̂𝑁 of P(𝜽̄) as:

P̂𝑁 =
2
𝑁

∑︁𝑁2

𝑘=𝑁1
|𝑛̂𝑘 |2Re

{
∇𝜽 𝑓𝑘∇𝐻

𝜽 𝑓𝑘
}

+ 4
𝑁

∑︁𝑙

𝑗=1

∑︁𝑁2− 𝑗

𝑘=𝑁1
Re

{
𝑛̂∗𝑘+ 𝑗 𝑛̂𝑘∇𝜽 𝑓𝑘+ 𝑗∇𝐻

𝜽 𝑓𝑘

}
,

(37)

where 𝑛̂𝑘 ≜ 𝑥𝑘 − 𝑓𝑘 (𝜽̂𝑁 ) and ∇𝜽 𝑓𝑘 ≜ ∇𝜽 𝑓𝑘 (𝜽̂𝑁 ) and 𝜽̂𝑁

is a
√
𝑁-consistent estimator of the true parameter vector 𝜽̄ .

Among all the possible consistent estimators, the best choice
is the asymptotic efficient one that we are going to introduce
in the subsequent section VI. The consistency of the estimator
P̂𝑁 in (37) is established in [15, Theo. 3.5]:

Theorem 1: Under Assumption 1 and other technical reg-
ularity conditions (see A1a, A3, A4 and A7 in [15]), if the
correlation lag 𝑙 grows at the rate 𝑙 = 𝑜(𝑁1/3) as 𝑁 → ∞,4

we have that P̂𝑁 is a consistent estimator of P(𝜽̄):

P̂𝑁

𝑝
→ P𝑁 (𝜽̄), (38)

where
𝑝
→ indicates the convergence (element by element) in

probability.

4Given a real-valued function 𝑓 (𝑥 ) and a strictly positive real-valued
function 𝑔 (𝑥 ) , 𝑓 (𝑥 ) = 𝑜 (𝑔 (𝑥 ) ) if for every positive real number 𝑎, there
exists a real number 𝑥0 such that | 𝑓 (𝑥 ) | ≤ 𝑎𝑔 (𝑥 ) , ∀𝑥 ≥ 𝑥0.

B(𝜽̄) ≜ 𝐸𝑝𝝐̄

[
∇𝜽 ln 𝑓𝜽 (x; 𝝐)∇⊤

𝝐 ln 𝑓𝝐 (x; 𝝐)
]
= 𝐸𝑝n

[ [
2
𝜎̄2
𝑛

∑︁𝑁2

𝑘=𝑁1
Re

{
𝑛∗𝑘∇𝜽 𝑓𝑘

}] [
2
𝜎̄2
𝑛

∑︁𝑁2

𝑗=𝑁1
Re

{
𝑛∗𝑗∇𝜽 𝑓 𝑗

}]𝑇 ]
(26a)

=
4
𝜎̄4
𝑛

𝑁2∑︁
𝑘=𝑁1

𝑁2∑︁
𝑗=𝑁1

𝐸𝑝n

[
Re

{
𝑛∗𝑘∇𝜽 𝑓𝑘

}
Re

{
𝑛∗𝑗∇𝑇

𝜽 𝑓 𝑗

}]
=

4
𝜎̄4
𝑛

𝑁2∑︁
𝑘=𝑁1

𝑁2∑︁
𝑗=𝑁1

𝐸𝑝n

[(
𝑛∗
𝑘
∇𝜽 𝑓𝑘 + 𝑛𝑘∇∗

𝜽 𝑓𝑘

2

) (
𝑛∗
𝑗
∇𝑇
𝜽 𝑓 𝑗 + 𝑛 𝑗∇

𝐻
𝜽 𝑓 𝑗

2

)]
(26b)

=
2
𝜎̄4
𝑛

∑︁𝑁2

𝑘=𝑁1

∑︁𝑁2

𝑗=𝑁1

[
Re

{(
𝐸𝑝n

[
𝑛𝑘𝑛 𝑗

] )∗ ∇𝜽 𝑓𝑘∇𝑇
𝜽 𝑓 𝑗

}
+ Re

{
𝐸𝑝n

[
𝑛∗𝑘𝑛 𝑗

]
∇𝜽 𝑓𝑘∇𝐻

𝜽 𝑓 𝑗
}]

(26c)

=
2
𝜎̄4
𝑛

∑︁𝑁2

𝑘=𝑁1
𝐸𝑝n

[
|𝑛𝑘 |2

]
Re

{
∇𝜽 𝑓𝑘∇𝐻

𝜽 𝑓𝑘
}
+ 2
𝜎̄4
𝑛

∑︁𝑁2

𝑘=𝑁1

∑︁𝑁2
𝑗=𝑁1
𝑗≠𝑘

Re
{
𝐸𝑝n

[
𝑛∗𝑘𝑛 𝑗

]
∇𝜽 𝑓𝑘∇𝐻

𝜽 𝑓 𝑗
}

(26d)

=
2
𝜎̄4
𝑛

∑︁𝑁2

𝑘=𝑁1
𝐸𝑝n

[
|𝑛𝑘 |2

]
Re

{
∇𝜽 𝑓𝑘∇𝐻

𝜽 𝑓𝑘
}
+ 4
𝜎̄4
𝑛

∑︁𝑁2−𝑁1

𝑗=1

∑︁𝑁2− 𝑗

𝑘=𝑁1
Re

{
𝐸𝑝n

[
𝑛∗𝑘+ 𝑗𝑛𝑘

]
∇𝜽 𝑓𝑘+ 𝑗∇𝐻

𝜽 𝑓𝑘

}
(26e)

=
𝑁

𝜎̄4
𝑛

[
2
𝑁

∑︁𝑁2

𝑘=𝑁1
𝑟𝑛 [0]Re

{
∇𝜽 𝑓𝑘∇𝐻

𝜽 𝑓𝑘
}
+ 4
𝑁

∑︁𝑁2−𝑁1

𝑗=1

∑︁𝑁2− 𝑗

𝑘=𝑁1
Re

{
𝑟𝑛 [ 𝑗]∇𝜽 𝑓𝑘+ 𝑗∇𝐻

𝜽 𝑓𝑘
}]
≜
𝑁

𝜎̄4
𝑛

P(𝜽̄). (26f)
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By a direct application of the Continuous Mapping Theorem
and of the Slutsky’s Lemma [16, Theo. 2.3 and Lemma 2.8],
we have that the matrix C(𝜽̄) in (35) can be consistently
estimated as:

Ĉ𝑁 ≜ K(𝜽̂𝑁 )−1P̂𝑁K(𝜽̂𝑁 )−1 𝑝
→ C(𝜽̄), (39)

that can be exploited to get a consistent estimation of the
MCRB on the vector of the parameter of interest 𝜽̄ .

V. MCRB EXPRESSION FOR CES UNCORRELATED DATA

In order to highlight the importance and the generality of
the results obtained in the previous section, let us consider the
particular case, yet important in applications, where the noise
process {𝑛𝑘 : ∀𝑘} is assumed to be white with independent and
identically Complex Elliptically Symmetric (CES)-distributed
samples. More formally, we assume that:

Assumption 2: Let {𝑛𝑘 : ∀𝑘} be a zero-mean, white WSS
discrete and circular complex-valued process [12] such that:

1) each sample 𝑛𝑘 follows a CES distribution 𝑛𝑘 ∼ 𝑝𝑛 =

𝐶𝐸𝑆(0, 𝜎̄2
𝑛 , 𝑔) with unspecified density generator 𝑔,

2) its autocorrelation satisfies 𝑟𝑛 [ 𝑗] ≜ 𝐸𝑝n [𝑛∗𝑘+ 𝑗𝑛𝑘] =

𝜎̄2
𝑛𝛿[ 𝑗], where 𝛿[ 𝑗] is the Kronecker delta sequence.

As a direct consequence of Assumption 2, we have that:
• the joint pdf 𝑝n of the noise vector n ∼ 𝑝n is the

product of the marginal densities, i.e. 𝑝n (n; 𝜎̄2
𝑛 , 𝑔) =∏𝑁2

𝑘=𝑁1
𝑝𝑛𝑘 (𝑛𝑘 ; 𝜎̄2

𝑛 , 𝑔)
• the covariance matrix of n ∈ C𝑁 is a diagonal matrix, i.e.
𝚺 ≜ 𝐸𝑝𝑛 [nn𝐻 ] = 𝜎2

𝑛I.
It is worth stressing here the generality of an unspecified
CES distribution for the noise samples. The CES ones is
a wide class of non-Gaussian and heavy-tailed distributions
encompassing the Gaussian, the Generalized Gaussian, the 𝑡−,
the 𝐾− and the Weibull distributions as special cases [14].
Since its nominal density generator 𝑔 is left unspecified, we
let the noise 𝑛𝑘 ∼ 𝑝𝑛𝑘 have any possible distribution in the
CES class.

From the Stochastic Representation Theorem [14, Theo. 3],
each entry 𝑛𝑘 can be represented as [14, Theo. 3]:

𝑛𝑘 =𝑑

√︁
𝑄𝑘𝜎̄𝑛𝑢𝑘 , (40)

where 𝑢𝑘 is a complex univariate random variable uniformly
distributed on C𝑆 ≜ {𝑢 ∈ C| |𝑢 | = 1}, i.e. 𝑢𝑘 ∼ 𝑈 (C𝑆). The
second order modular variate 𝑄𝑘 ∼ Q is a positive random
variable, independent from 𝑢𝑘 with pdf 𝑝Q (𝑞) = 𝛿−1

𝑔 𝑔(𝑞),
where 𝛿𝑔 ≜

∫ ∞
0 𝑔(𝑞)𝑑𝑞 is a normalizing constant (see [14,

Eq. (19)]). Since the density generator 𝑔 is left unspecified, it
is immediate to verify that there is a scale ambiguity between
𝜎̄2
𝑛 and 𝑔 itself. To avoid this problem, we impose that 𝐸{Q} =

1. Note that, this constraint allows us to consider 𝜎̄2
𝑛 as the

statistical power 𝑃 of the noise 𝑛𝑘 , (see the discussion in [14,
Sec. III.C]), since from (40), we have that:

𝑃 ≜ 𝐸{|𝑥𝑘 |2} = 𝐸{Q}𝐸{|𝑢𝑘 |2}𝜎̄2
𝑛 = 𝜎̄2

𝑛 , (41)

where 𝐸{|𝑢𝑘 |2} = 1 [14, Lemma 1].
Let us now apply the general expression of the MCRB

obtained in (34) to the special case of an i.i.d. CES-distributed

noise process formally characterized in Assumption 2. To this
end, it is immediate to verify that the matrix A(𝝐) in (32)
remain unchanged. Let us now focus on the matrix B(𝝐) in
(33). We will proceed as follows.

1) Evaluation of the term [B(𝝐)]1,1 in (24).
Let us start by evaluating the term 𝐸𝑝n

[
(n𝐻n)2] . Under

Assumption 2 and by exploiting the stochastic represen-
tation in (40), the term 𝐸𝑝n [(n𝐻n)2] can be evaluated as
shown in (42), reported at the bottom of the page,where
we used:

• the mutual independence between 𝑄𝑖 ∼ Q and 𝑄 𝑗 ∼
Q and between 𝑢𝑖 and 𝑢 𝑗 (see Assumption 2),

• from the i.i.d. assumption, we have that 𝐸
[
𝑄2

𝑖

]
=

𝐸
[
Q2] ,∀𝑖,

• the constraint 𝐸 [𝑄𝑖] = 𝐸
[
𝑄 𝑗

]
= 𝐸 [Q] = 1,

• the relations 𝐸
[
|𝑢 𝑗 |2

]
= 1 and 𝐸

[
|𝑢 𝑗 |4

]
= 1 from

[14, Lemma 1].
By using this result, the term [B(𝝐)]1,1 can be readily
expressed as:

[B𝑖𝑖𝑑 (𝝐)]1,1 = 𝑁 (𝐸
[
Q2] − 1)/𝜎̄4

𝑛 (43)

2) Evaluation of the matrix B(𝝐) By putting in the general
expression of B(𝜽̄) in (26) the autocorrelation function
𝑟𝑛 [ 𝑗] = 𝜎̄2

𝑛𝛿[ 𝑗] (see Assumption 2), it is immediate to
verify that:

B𝑖𝑖𝑑 (𝜽̄) =
2
𝜎̄2
𝑛

𝑁2∑︁
𝑘=𝑁1

Re
{
∇𝜽 𝑓𝑘∇𝐻

𝜽 𝑓𝑘
}
≜
𝑁

𝜎̄2
𝑛

K(𝜽̄), (44)

where K(𝜽̄) is the matrix already defined eq. (28).
Consequently, the matrix B(𝝐), under Assuption 2, can
be expressed as:

B𝑖𝑖𝑑 (𝝐) = 𝑁
(
(𝐸{Q2} − 1)/𝜎4

𝑛 01×4
04×1

1
𝜎̄2
𝑛
K(𝜽̄)

)
. (45)

Finally, from the general expression in (34), the MCRB for
the estimation of 𝝐 under Assumption 2 can be expressed as:

MCRB𝑖𝑖𝑑 (𝝐) = A(𝝐)−1B𝑖𝑖𝑑 (𝝐)A(𝝐)−1

=
1
𝑁

(
𝜎4
𝑛 (𝐸{Q2} − 1) 01×4

04×1 𝜎̄2
𝑛K(𝜽̄)−1

)
,

(46)

and consequently, due to the block-diagonal structure of
MCRB𝑖𝑖𝑑 (𝝐), the MCRB on the vector of the parameters of
interest 𝜽̄ is given by:

MCRB𝑖𝑖𝑑 (𝜽̄) =
𝜎̄2
𝑛

𝑁
K(𝜽̄)−1. (47)

It is worth highlighting here an interesting result: under the
misspecificed scenario discussed in this section, i.e. when the
data follow a CES, i.i.d. (true) model while the assumed one
is a Gaussian, i.i.d., model, we have that:

A(𝜽̄) + B𝑖𝑖𝑑 (𝜽̄) = 0. (48)

As explained in [5, Lemma 4.1], the result in (48), along with
the block-diagonal structure of MCRB𝑖𝑖𝑑 (𝝐) in (46), implies
that the simplified Gaussian assumption does not lead to any
degradation of the asymptotic estimation performance of the
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parameter vector of interest 𝜽̄ . In fact, MCRB𝑖𝑖𝑑 (𝜽̄) coincides
with the lower bound that we can get if the true data model
was an i.i.d. Gaussian one. This intriguing outcome can be
explained through the semiparametric theory (refer to [17, Sec.
IV;B] and [18, Sec. III.B]) that allows us to prove that the
lack of knowledge of the density generator 𝑔 does not have
any asymptotic impact on the estimation of 𝜽̄ .

Finally, if the true distribution is a Gaussian one, the term
𝐸{Q2} is equal to 2 as proved in [8, Eq. (41)] and this lead
us to the classical result about the CRB on the estimation of
the variance in complex Gaussian data.

VI. AN ASYMPTOTIC EFFICIENT ESTIMATOR UNDER
DEPENDENT OBSERVATIONS

Let us go back now to the general misspecified nonlinear
regression problem presented in Sec. II. After having derived
the MCRB for the vector of the parameters of interest 𝜽̄ in
(36), the crucial question that arises is as follows: is it possible
to derive, under the misspecified Gaussian model F𝝐 in (7),
a consistent estimator 𝜽̂𝑁 of 𝜽̄ able to achieve the MCRB, at
least asymptotically?

It is well known that, under the i.i.d. case, the answer to
this question is positive and 𝜽̂𝑁 is given by the Missmatched
Maximum Likelihood estimator (MMLE) [1], [2], [4]–[6]. The
extension to the dependent case has been provided in [15]
where the asymptotic behaviour of the nonlinear least square
estimator (NLLSE) for 𝜽̄ under the dependent data generating
process in (2), that is:

𝜽̂𝑁 = argmin
𝜽∈Θ

{
1
𝑁

∑︁𝑁2

𝑘=𝑁1
|𝑥𝑘 − 𝑓𝑘 (𝜽) |2

}
, (49)

has been investigated. Note that, when the misspecified Gaus-
sian model F𝝐 in (7) is assumed, it is immediate to verify
that, for any finite 𝑁 , the NLLSE coincides with the MMLE.
In fact, from (8), the misspecified log-likelihood function is
𝑙 (𝜽) = −𝑁 ln(𝜋𝜎2

𝑛) − ||x − f (𝜽) | |2/𝜎2
𝑛 , then the MMLE for 𝜽̄

in F𝝐 is given by:

argmax
𝜽∈Θ

𝑙 (𝜽) = argmin
𝜽∈Θ

{
| |x − f (𝜽) | |2

}
= 𝜽̂𝑁 , (50)

that is the same estimator of the one in (49).
Remarkably, in [15] it has been proved that:
Theorem 2: Under Assumption 1 and other technical regu-

larity conditions (see A1-A9 in [15]), 𝜽̂𝑁 in (49) satisfies the
following properties:

1) Consistency wrt the true parameter vector:

𝜽̂𝑁

𝑎.𝑠.→ 𝜽̄ , (51)

𝑎.𝑠.→ indicates the almost sure convergence.
2) Asymptotic normality: Let us indicate as ∼

𝑁→∞
the

convergence in distribution, we have:
√
𝑁

[
P(𝜽̄)

]−1/2 K(𝜽̄)
(
𝜽̂𝑁 − 𝜽̄

)
∼

𝑁→∞
N(0, I). (52)

The interested reader can find the proof of Theorem 2 in the
supporting material associated to this paper. Our proof extends
the one provided in [15, Theo. 3.1 and 3.2] to the case of
complex observations.

It follow directly from (52) that the asymptotic error covari-
ance matrix of 𝜽̂𝑁 equates the MCRB(𝜽̄) in (36), i.e.:

lim
𝑁→∞

w𝑇
(
𝑁𝐸𝑝𝝐̄

[
(𝜽̂𝑁 − 𝜽̄) (𝜽̂𝑁 − 𝜽̄)⊤

]
− ×

× + K(𝜽̄)−1P(𝜽̄)K(𝜽̄)−1
)

w = 0, ∀w ∈ R𝑝/{0}.
(53)

Consequently, the NLLSE in (49) (that coincides with the
MMLE under misspecified Gaussian assumption) is exactly
the consistent and asymptotically efficient estimator that we
were looking for.

To conclude, it can be noted that, in the i.i.d. case discussed
in Sec. V, eq. (53) simplifies to:

lim
𝑁→∞

w𝑇
(
𝑁𝐸𝑝𝝐̄

[
(𝜽̂𝑁 − 𝜽̄) (𝜽̂𝑁 − 𝜽̄)⊤

]
− ×

× + 𝜎̄2
𝑛K(𝜽̄)−1

)
w = 0, ∀w ∈ R𝑝/{0}.

(54)

VII. APPLICATION TO TIME-DELAY AND DOOPLER
ESTIMATION

Time-delay and Doppler estimation is fundamental in a
plethora of engineering domains, including communications,
radar, and navigation [19]–[28], as it serves as the initial
step at the receiver [23], [26], [27]. Due to its importance,
understanding the achievable estimation performance in terms
of MSE is of paramount practical interest. This crucial in-
sight is typically provided by the CRB. Over the past few
decades, numerous CRB expressions have been developed for
time-delay and Doppler estimation problems, encompassing
both finite narrow-band and wideband signals [20], [29]–
[38]. Furthermore, recent studies have explored scenarios in
which the actual signal model at the receiver differs from the
assumed one [39]–[42]. In these investigations, expressions
for estimation boundaries, as determined by the MCRB, have
been established.

However all these prior studies share a common assumption:
both the noise in the true signal model and the noise in
the signal model assumed by the receiver follow a centered
complex normal distribution with uncorrelated covariance ma-
trix, i.e. a diagonal matrix. Surprisingly, despite the extensive

𝐸𝑝n

[
(n𝐻n)2] = 𝜎̄4

𝑛𝐸

[(∑︁𝑁2

𝑖=𝑁1
𝑄𝑖 |𝑢𝑖 |2

)2]
= 𝜎̄4

𝑛𝐸

[∑︁𝑁2

𝑖=𝑁1

∑︁𝑁2

𝑗=𝑁1
𝑄𝑖𝑄 𝑗 |𝑢𝑖 |2 |𝑢 𝑗 |2

]
= 𝜎̄4

𝑛𝐸

[∑︁𝑁2

𝑖=𝑁1
𝑄2

𝑖 |𝑢𝑖 |4
]
+ × (42a)

× +𝜎̄4
𝑛𝐸

[
𝑁2∑︁

𝑖=𝑁1

𝑁2∑︁
𝑗=𝑁1 , 𝑗≠𝑖

𝑄𝑖𝑄 𝑗 |𝑢𝑖 |2 |𝑢 𝑗 |2
]
= 𝜎̄4

𝑛

[
𝑁2∑︁

𝑖=𝑁1

𝐸
[
𝑄2

𝑖

]
𝐸

[
|𝑢𝑖 |4

]
+

𝑁2∑︁
𝑖=𝑁1

𝑁2∑︁
𝑗=𝑁1 , 𝑗≠𝑖

𝐸 [𝑄𝑖] 𝐸
[
𝑄 𝑗

]
𝐸

[
|𝑢𝑖 |2

]
𝐸

[
|𝑢 𝑗 |2

] ]
(42b)

= 𝜎̄4
𝑛

(
𝑁𝐸

[
Q2] + 𝑁 (𝑁 − 1)

)
= 𝜎̄4

𝑛

(
𝑁 (𝐸

[
Q2] − 1) + 𝑁2

)
, (42c)
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research in this area, there is a notable absence in the literature
regarding the ultimate attainable estimation performance for
time-delay and Doppler (in terms of MSE) when the true signal
model features a correlated non-Gaussian distributed noise.
The aim if this section os then to fill this gap by relying on
the theoretical results derived in the previous sections.

A. Signal model

We consider the transmitter 𝑇 to receiver 𝑅 direct transmis-
sion of a band-limited signal 𝑎 (𝑡) with bandwidth 𝐵

𝑎 (𝑡) =
𝑁2∑︁

𝑛=𝑁1

𝑎 (𝑛𝑇) sinc (𝜋𝐵 (𝑡 − 𝑛𝑇)) , 𝑇 = 1/𝐵, (55)

over a carrier with frequency 𝑓𝑐 (𝜆𝑐 = 𝑐/ 𝑓𝑐, 𝜔𝑐 = 2𝜋 𝑓𝑐).
The transmitter is located at position 𝑷𝑇 (𝑡) and the receiver is
located at position 𝑷𝑅 (𝑡). The distance travelled by the trans-
mitted signal is 𝑷𝑇𝑅 = ∥𝑷𝑇 (𝑡−𝜏0 (𝑡))−𝑷𝑅 (𝑡)∥≈ (𝑷𝑇−𝑷𝑅 )

𝑐
+ 𝑣

𝑐
𝑡,

that is, a first order approximation where 𝜏 =
(𝑷𝑇−𝑷𝑅 )

𝑐
and

𝑏̄ = 𝑣
𝑐

with 𝑣 the relative velocity between the transmitter
and the receiver. Once the baseband demodulation process has
been completed, the received signal at the output of the Hilbert
filter can be expressed as [29], [35], [43]

𝑥 (𝑡; 𝜼̄) = 𝛼̄𝑎
(
(𝑡 − 𝜏) (1 − 𝑏̄)

)
𝑒− 𝑗2𝜋 𝑓𝑐 (𝑏̄ (𝑡− 𝜏̄ ) ) + 𝑛 (𝑡) , (56)

yielding to

𝑥 (𝑡; 𝜼̄) = 𝛼̄𝑎 (𝑡 − 𝜏) 𝑒− 𝑗2𝜋 𝑓𝑐 (𝑏̄ (𝑡− 𝜏̄ ) ) + 𝑛 (𝑡) , (57)

under the narrowband assumption, i.e. the influence of the
Doppler parameter on the baseband signal samples is omitted.
The term 𝛼̄ = 𝜌̄𝑒 𝑗Φ̄ represents a complex gain, while 𝑛(𝑡) is
a zero-mean, generally non Gaussian, wide sense stationary
(WSS) continuous random process. The discrete signal model
is built from 𝑁 = |𝑁1 − 𝑁2 + 1| samples at 𝑇𝑠 = 1/𝐹𝑠 = 1/𝐵,

x = 𝛼̄𝝁(𝜼̄) + n = 𝜌̄𝑒 𝑗Φ̄𝝁(𝜼̄) + n, (58)

with x = (. . . , 𝑥 (𝑘𝑇𝑠) , . . .)⊤, 𝑁1 ≤ 𝑘 ≤ 𝑁2 signal samples.
Moreover, by posing (𝜼̄) = [𝜏, 𝑏̄]⊤, we have:

𝝁(𝜼̄) = (. . . , 𝑎(𝑘𝑇𝑠 − 𝜏)𝑒− 𝑗2𝜋 𝑓𝑐 (𝑏̄ (𝑘𝑇𝑠− 𝜏̄ ) , . . .)⊤. (59)

Consequently, by defining the true vector of the parameters
of interest as 𝜽̄

⊤
=

(
𝜌̄, Φ̄, 𝜼̄⊤

)
the signal model in eq. (58)

follows the form in (1):

x = 𝛼̄𝝁(𝜼̄) + n = f (𝜽̄) + n. (60)

Finally, standard receivers assumes that the noise vector n ∈
C𝑁 is distributed as a centered complex normal random vector
with diagonal covariance matrix, i.e. n ∼ CN(0, 𝜎2

𝑛 𝑰𝑁 ). Note
that this represents the same misspecified scenario introduced
in section II-B. Specifically, we have that the pdf of the
observation vector x in (60) belongs to the misspecified model
in (7), i.e. x ∼ 𝑓𝝐 ∈ F𝝐 .

B. Time-delay and Doppler Closed-Form MCRB Expression
for a Band-Limited Signal

It is interesting to note the likelihood between the expression
obtained in previous sections and those already derived in

the state of art. In particular, we may note that the matrix
−A(𝜽̄) derived in (28) represents the FIM of a single source
conditional signal model (CSM) [44]. A compact expression
of this FIM, that depends only on the baseband signal samples,
was recently derived in [35] as:

−A(𝜽̄) = 2𝐹𝑠
𝜎2
𝑛

Re
{
QWQ𝐻

}
(61)

with

W =


𝑤1 𝑤∗

2 𝑤∗
3

𝑤2 𝑊2,2 𝑤∗
4

𝑤3 𝑤4 𝑊3,3

 , (62a)

Q =


𝑒 𝑗Φ̄ 0 0
𝑗 𝛼̄ 0 0

𝑗 𝛼̄2𝜋 𝑓𝑐 𝑏̄ 0 −𝛼̄
0 − 𝑗 𝛼̄2𝜋 𝑓𝑐 0

 , (62b)

where the elements of W can be expressed w.r.t. the baseband
signal samples as,

𝑤1 =
1
𝐹𝑠

a𝐻a, 𝑤2 =
1
𝐹2
𝑠

a𝐻Da, 𝑤3 = a𝐻𝚲a, (63)

𝑤4 =
1
𝐹𝑠

a𝐻D𝚲a, 𝑊2,2 =
1
𝐹3
𝑠

a𝐻D2a, 𝑊3,3 = 𝐹𝑠a𝐻Va.

with a, the baseband samples vector, D, 𝚲 and V defined as,

a = (. . . , 𝑎(𝑛𝑇𝑠), . . .)⊤𝑁1≤𝑛≤𝑁2
, (64a)

D = diag (. . . , 𝑛, . . .)𝑁1≤𝑛≤𝑁2 , (64b)

(𝚲)𝑛,𝑛′ =
����� 𝑛′ ≠ 𝑛 : (−1) |𝑛−𝑛′ |

𝑛−𝑛′
𝑛′ = 𝑛 : 0

(64c)

(V)𝑛,𝑛′ =
����� 𝑛′ ≠ 𝑛 : (−1) |𝑛−𝑛′ | 2

(𝑛−𝑛′ )2

𝑛′ = 𝑛 : 𝜋2

3

(64d)

Moreover, under the uncorrelated noise assumption, we note
from (46) that, since B𝑖𝑖𝑑 (𝜽̄) = −A(𝜽̄), the MCRB on the
estimation of 𝜽̄ is given by:

MCRB𝑖𝑖𝑑 (𝜽̄) =
2𝐹𝑠
𝜎̄2
𝑛

Re
{
QWQ𝐻

}
(65)

In the case of correlated noise, the expression of the matrix
B(𝜽̄) = 𝑁−1𝜎̄4

𝑛P(𝜽̄) in (26) is more challenging since P(𝜽̄)
involves the autocorrelation function 𝑟𝑛 [ 𝑗]. We can distinguish
between the following two cases. If 𝑟𝑛 [ 𝑗] is a-priori known,
for the application at hand P(𝜽̄) can be expressed as:

P(𝜽̄) = 2𝐹𝑠𝜎̄2
𝑛

𝑁
Re

{
QWQ𝐻

}
+ 4𝐹𝑠
𝑁

𝑙∑︁
𝑗=1

Re
{
𝑟𝑛 [ 𝑗]QW 𝑗Q𝐻

}
(66)

where:

W 𝑗 =


𝑤

( 𝑗 )
1 𝑤

( 𝑗 )∗
2 𝑤

( 𝑗 )∗
3

𝑤
( 𝑗 )
2 𝑊

( 𝑗 )
2,2 𝑤

( 𝑗 )∗
4

𝑤
( 𝑗 )
3 𝑤

( 𝑗 )
4 𝑊

( 𝑗 )
3,3

 , (67)
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and the elements of W 𝑗 can be expressed w.r.t. the baseband
signal samples as,

𝑤
( 𝑗 )
1 =

1
𝐹𝑠

a𝐻
𝑗+a 𝑗− , 𝑤

( 𝑗 )
2 =

1
𝐹2
𝑠

a𝐻
𝑗+D 𝑗a 𝑗− , (68)

𝑤
( 𝑗 )
3 = a𝐻

𝑗+𝚲 𝑗a 𝑗− , 𝑤
( 𝑗 )
4 =

1
𝐹𝑠

a𝐻
𝑗+D 𝑗𝚲 𝑗a 𝑗− ,

𝑊
( 𝑗 )
2,2 =

1
𝐹3
𝑠

a𝐻
𝑗+D

2
𝑗a 𝑗− , 𝑊

( 𝑗 )
3,3 = 𝐹𝑠a𝐻

𝑗+V 𝑗a 𝑗− .

with a 𝑗− , a 𝑗+ , D 𝑗 , 𝚲 𝑗 and V 𝑗 defined as,

a 𝑗+ = (. . . , 𝑎(𝑛𝑇𝑠), . . .)⊤𝑁1+ 𝑗≤𝑛≤𝑁2
, (69a)

a 𝑗− = (. . . , 𝑎(𝑛𝑇𝑠), . . .)⊤𝑁1≤𝑛≤𝑁2− 𝑗 , (69b)

D 𝑗 = diag (. . . , 𝑛, . . .)𝑁1≤𝑛≤𝑁2− 𝑗 , (69c)(
𝚲 𝑗

)
𝑛,𝑛′ =

����� 𝑛′ ≠ 𝑛 : (−1) |𝑛−𝑛′ |
𝑛−𝑛′

𝑛′ = 𝑛 : 0
(69d)

(
V 𝑗

)
𝑛,𝑛′ =

����� 𝑛′ ≠ 𝑛 : (−1) |𝑛−𝑛′ | 2
(𝑛−𝑛′ )2

𝑛′ = 𝑛 : 𝜋2

3

(69e)

with 𝑁1 ≤ 𝑛, 𝑛′ ≤ 𝑁2 − 𝑗 . If 𝑟𝑛 [ 𝑗] is not a-priori known, from
(37), a consistent estimator of P(𝜽̄) can be implemented as:

P̂𝑁 = 𝑁−12𝐹𝑠Re
{
QWQ𝐻

} ∑︁𝑁2

𝑘=𝑁1
|𝑛̂𝑘 |2+

+ 𝑁−14𝐹𝑠
∑︁𝑙

𝑗=1
Re

{
𝑛̂∗𝑘+ 𝑗 𝑛̂𝑘QW 𝑗Q𝐻

}
,

(70)

where 𝑛̂𝑘 ≜ 𝑥𝑘 − 𝑓𝑘 (𝜽̂𝑁 ) and 𝜽̂𝑁 is the consistent estimator
of 𝜽̄ defined as [42] 5:

𝜼̂ = arg max
𝜼



𝚷𝝁 (𝜼)x


2 (71)

𝜌̂ =

��� [𝝁𝐻 (𝜼̂) 𝝁 (𝜼̂)
]−1

𝝁𝐻 (𝜼̂) x
��� (72)

Φ̂ = arg
{[
𝝁𝐻 (𝜼̂) 𝝁 (𝜼̂)

]−1
𝝁𝐻 (𝜼̂) x

}
(73)

VIII. SIMULATION AND DISCUSSION

To support our theoretical analysis, we examine the trans-
mission and reception of a GPS L1 C/A signal [28]. This
signal employs a baseband signal represented by a periodic
binary phase-shift keying (BPSK) Gold code with a length of
1023 chips of period 1ms. At the receiver, we set a sampling
frequency 𝐹𝑠 = 4 MHz, which is the standard rate for most
commercial receivers. The GNSS receiver assumes that the
noise follows a standard centered normal distribution.

Scenario 1 In a first scenario, we set a true signal model
where the noise is sampled from a complex centered 𝑡-
distribution [5, Sec. 4.6.1.1] with 𝜐 > 1 degrees of freedom
(or shape parameter) that control the level of non-Gaussianity
and a scale parameter 𝜇. The second-order modular variate
Q of a 𝑡-distribution is an 𝐹-distributed random variable with
parameters 2 and 𝜐 i.e. Q ∼ 𝐹 (2, 𝜐) [14, Sec. IV.A]. Then,
in order to meet the constraint 𝐸{Q} = 1, the scale as to be
set as 𝜇 = 𝜐

𝜎̄2
𝑛 (𝜐−1) where 𝜎̄2

𝑛 depends on the signal to noise

5Let 𝑆 = 𝑠𝑝𝑎𝑛 (A) , with A a matrix, be the linear span of the set of its
column vectors. The orthogonal projector over 𝑆 is 𝚷A = A

(
A𝐻A

)
A𝐻 .
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Fig. 1. RMSE of the MMLE of the time-delay considering complex centered
t-dist. with 𝜐 = 2.5 and two AR processes of order 1 and 6, respectively, to
model the noise correlation.

ratio at the output of the match filter 𝑆𝑁𝑅𝑜𝑢𝑡 . The 𝑆𝑁𝑅𝑜𝑢𝑡 is
defined as:

𝑆𝑁𝑅𝑜𝑢𝑡 =
|𝛼 |2a𝐻a
𝜎̄2
𝑛

. (74)

Furthermore, in this scenario, we employ two autoregressive
processes (AR) of order 1 and 6, respectively, to model the
noise correlation. The poles of the process are set to 𝑝 =

0.9·𝑒 𝑗2𝜋 ·0.3 for the order 1 process and 𝒑 = [0.5·𝑒− 𝑗2𝜋 ·0.4, 0.6·
𝑒− 𝑗2𝜋 ·0.2, 0.7, 0.4 · 𝑒 𝑗2𝜋 ·0.1, 0.5 · 𝑒 𝑗2𝜋 ·0.3, 0.6 · 𝑒 𝑗2𝜋 ·0.35] for the
order 6 process. The MMLE for the joint estimation of the
time-delay and Doppler is defined in (71). The root mean
square error (RMSE) results of the MMLE for the parameters
of interest 𝜼𝑇 = [𝜏, 𝑏] are shown in Figs. 1 and 2 w.r.t.
the 𝑆𝑁𝑅𝑜𝑢𝑡 . The number of Monte Carlo is set to 1000
iterations and 𝜐 = 2.5. In the results one can observe that
the RMSE (

√
𝑀𝑆𝐸) of the pseudotrue parameter converges

to the asymptotic estimation performance derived in Section
IV. These results confirm the theoretical derivation. Moreover,
the Gaussian i.d.d

√
𝐶𝑅𝐵 has been included to quantify the

performance with respect to the correlated case. It is worth to
underline that the previous theoretical results are valid for any
joint pdf 𝑝n admitting finite first and second order moments
and not only of the one obtained from a 𝑡-distribution.

Scenario 2 In the second scenario, we would like to
illustrate the estimation performance in the case where the
noise is i.i.d. To do so, we propose to set the true signal model
as in the previous scenario, i.e the noise process is complex
centered 𝑡-distributed (we remind that in this particular case,
the noise is assumed to be i.i.d and there is not need to define
any process to characterized the noise correlation). Moreover,
we also set a true signal model where the noise is distributed
according to a complex centered Generalized Gaussian (GG)
distribution, [5, Sec. 4.6.1.2] with exponent 𝑠 > 0 and scale
𝑏 > 0, where 𝑠 is a parameter controlling the level of non-
Gaussianity. The second-order modular variate Q of a GG
distribution is given by Q =𝑑 𝐺1/𝑠 where 𝐺 is a Gamma
distributed random variable with parameter 1/𝑠 and 𝑏, i.e.
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Fig. 2. RMSE of the MMLE of the Doppler considering complex centered
t-dist. with 𝜐 = 2.5 and two AR processes of order 1 and 6, respectively, to
model the noise correlation.

𝐺 ∼ Gam(1/𝑠, 𝑏) [14, Sec. IV.B]. In order to satisfy the
constraint 𝐸{Q} = 1 (see section IV), we set 𝑏 =

(
𝜎̄2
𝑛Γ (1/𝑠)
Γ (2/𝑠)

)𝑠
.

Again, 𝜎̄2
𝑛 set the 𝑆𝑁𝑅𝑜𝑢𝑡 . The RMSE results of the MMLE

for the parameters of interest 𝜼𝑇 = [𝜏, 𝑏] are shown in Figs.
3 and 4 w.r.t. the 𝑆𝑁𝑅𝑜𝑢𝑡 . The number of Monte Carlo is
set to 1000 iterations. In the simulation, complex centered
Generalized Gaussian distributions with 𝑠 = {0.5, 1.5, 2.5}
and complex centered 𝑡-distributions with 𝜐 = {1.1, 2, 3} have
been used as a true model. In the results one can observe
that the RMSE of the pseudotrue parameter converges to
the asymptotic estimation performance derived in Section IV.
These results confirm the theoretical derivation. Note also
that the

√
𝑀𝐶𝑅𝐵 is equal to the

√
𝐶𝑅𝐵. It is important to

underline that the preceding theoretical findings are applicable
to all true noise models characterized by Complex Elliptically
Symmetric (CES) distributions, not limited to the Gaussian
(GG) and 𝑡-distribution cases. As mentioned earlier, a thorough
explanation of this phenomenon is rooted in semiparametric
theory (refer to [17, Sec. IV.B] and [18, Sec. III.B]), and a
comprehensive explanation will be provided in future research.
For now, we restrict our discussion to this observation: the
equivalence between the MCRB and the CRB holds true only
when the parameters of interest parameterize the mean of the
observation vectors. Conversely, if some parameter of interest
is involved in the covariance matrix of the observations, this
equivalence may no longer be valid.

IX. CONCLUSION

This paper focused on the performance evaluation of estima-
tion procedures in nonlinear regression models. In particular,
we were interested in analyzing the asymptotic performance of
inference algorithms based on the simplistic i.i.d. Gaussian as-
sumption in the presence of correlated and non-Gaussian noise.
To this end, the related MCRB has been evaluated and the
consistency and efficiency properties of the MMLE/NLLSE
investigated. Under a weak condition on the rate of decay of
the autocorrelation function (Assumption 1), our results show
that:
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Fig. 3. RMSE of the MMLE of the time-delay considering complex centered
GG dist. with 𝑠 = {0.5, 1.5, 2.5} and t-dist. with 𝜐 = {1.1, 2, 3}.
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Fig. 4. RMSE of the MMLE of the Doppler considering complex centered
GG dist. with 𝑠 = {0.5, 1.5, 2.5} and 𝑡-dist. with 𝜐 = {1.1, 2, 3}.

• The MCRB for the parameters of interest in the nonlinear
regression model depends of the autocorrelation function
of the noise but not on the joint pdf on the noise
samples that can then be left unspecified. Moreover, the
MMLE/NLLSE is consistent and efficient with respect to
the relevant MCRB.

• If the noise samples are modeled as zero-mean, i.i.d. CES-
distributed (with unspecified density generator) random
variables, the MCRB on the parameter of interest equates
the CRB derived under i.i.d. Gaussian assumption. This
means that the asymptotic performance of Gaussian-based
MMLE, i.e. the NLLSE, are not affected by the lack
of knowledge of the true non-Gaussian and heavy-tailed
noise distribution.

Since the i.i.d. Gaussian assumption is widely used in appli-
cations, these theoretical results are of great practical interest.
Specifically, they implies that, a practitioner can continue to
use the i.i.d. Gaussian-based inference procedures without
any loss in asymptotic estimation performance even when the
noise samples are heavy-tailed, non-Gaussian but still i.i.d.
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random variables. On the other hands, if the noise samples are
correlated heavy-tailed, non-Gaussian random variables, the
asymptotic performance of i.i.d. Gaussian-based procedures
depends only on the autocorrelation function of the noise
process and not on the specific joint pdf of its samples. Our
theoretical findings have been then used to investigate the
asymptotic performance of Gaussian procedure in time-delay
and Doppler estimation for GNSS.

Future works will focus on the possibility to derive lower
bounds on the performance of estimation procedures in the
presence of an non-perfect knowledge of the nonlinear func-
tion characterizing the regression model.
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