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Abstract

In this paper, we revisit the problem of Bayesian shape-restricted function estimation. The
finite-dimensional Gaussian process (GP) approximation proposed in Maatouk and Bay
(2017) is considered, which admits an equivalent formulation of the shape constraints in
terms of basis coefficients. This approximation satisfies a wide variety of shape constraints
everywhere, whether applied alone, in combination, or sequentially. We propose a new,
efficient, and fast algorithm for sampling from a large Gaussian vector extracted from a
stationary GP. The proposed approach significantly improves the novel circulant embed-
ding technique proposed in Ray et al (2020) for efficiently sampling from the resulting
posterior constrained distribution. The main idea of the algorithm developed in the present
paper is to divide the input domain into smaller subdomains and apply a cross-correlated
technique to address the correlation structure in the entire domain. As the number of sub-
domains increases, the computational complexity is drastically reduced. The developed
algorithm is accurate and efficient, as demonstrated through comparisons with compet-
ing approaches. The performance of the proposed approach has been evaluated within the
context of shape-restricted function estimation.

Keywords: Elliptical slice sampling, nonparametric regression, shape constraints, smooth
relaxation, Toeplitz

1 Introduction

Various real-world scenarios have been presented in fields such as nuclear physics (Zhou et al,
2019) and econometrics (Chataigner et al, 2021; Cousin et al, 2022, 2016; Crépey and Dixon,
2020), in which the data indicate that the underlying function satisfies specific shape constraints
such as monotonicity, convexity and boundedness.

The utilization of a Bayesian framework provides a unified probabilistic approach to inte-
grating different shape constraints, leading to a rich literature devoted to Bayesian shape
constrained estimation. A common approach is to express the unknown function as a basis
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expansion and convert the functional constraints into linear constraints in the space of coeffi-
cients. Examples of such basis expansions include the piecewise linear model (Cai and Dunson,
2007; Neelon and Dunson, 2004), Bernstein polynomials (Curtis and Ghosh, 2011), splines
(Shively et al, 2011), and restricted splines (Meyer et al, 2011; Papp and Alizadeh, 2014).
Gaussian processes (GPs) are a well-known nonparametric Bayesian framework for estimating
functions (Williams and Rasmussen, 2006), and they have also been applied for shape-restricted
inference (Tran et al, 2023). For example, the authors in Riihimäki and Vehtari (2010) impose
the monotonicity constraint by including derivative information in a GP model. In Lin and
Dunson (2014), the idea is to project the GP prior into the space of constraints. The authors
in Pensoneault et al (2020) enforce nonnegativity constraints into GP models. They select a
set of constraint points in the domain and impose the nonnegativity on the posterior GP at
these points. Recently, an overview and survey detailing various strategies to incorporate shape
constraints into a GP are provided in Swiler et al (2020).

In the present paper, we focus on the finite-dimensional GP approximation originally pro-
posed in Maatouk and Bay (2017). Its performance has been demonstrated through several
real-world data applications (Cousin et al, 2022, 2016; López-Lopera et al, 2018; Maradesa
et al, 2022; Williams et al, 2023; Zhou et al, 2019). Through this approach (Maatouk and Bay,
2017), the generalization of the well-known Kimeldorf-Wahba correspondence (Kimeldorf and
Wahba, 1970) between Bayesian estimation on stochastic processes and splines for constrained
cases has been established (Bay et al, 2016; Grammont et al, 2022). The main idea in Maa-
touk and Bay (2017) is to approximate the samples of the GP prior by representing them in a
finite-dimensional space of functions using an appropriate basis expansion. The advantage of
this approach is that various functional shape constraints can be translated equivalently into
linear inequality constraints on the basis coefficients. This leads to the need for sampling from
a high-dimensional truncated multivariate normal (tMVN) distribution.

Sampling from a tMVN distribution is a challenging problem, especially in higher dimen-
sions. Recently, several efficient McMC algorithms have been proposed for sampling from a
tMVN distribution. These included Gibbs sampling (Taylor and Benjamini, 2016), Metropolis-
Hastings (MH) (Murphy, 2018), and the minimax tilting method accept-reject sampler (Botev,
2017). Moreover, an efficient Hamiltonian Monte Carlo (HMC) algorithm was proposed in
Pakman and Paninski (2014), which significantly improved the speed of sampling from tMVNs.

In the present paper, we focus on the strategy proposed in Ray et al (2020) for sampling
from a tMVN distribution restricted to the positive orthant. Their main idea is based on a
novel combination of elliptical slice sampling (denoted as ESS; (Murray et al, 2010)), circulant
embedding techniques, and smooth relaxation of hard constraints. They also use Durbin’s
recursion to efficiently update hyperparameters within the covariance function of the parent
GP. Therefore, sampling from the full conditional tMVN distribution is performed by sampling
from a prior MVN distribution. In other words, they sample before conditioning rather than
after. To accomplish this, they utilize the highly efficient sampler, based on the fast Fourier
transform (FFT) for stationary GPs on a regular grid (Wood and Chan, 1994), denoted as
samp.WC. In the present paper, we propose a new, efficient, and fast algorithm for sampling
from a large MVN distribution extracted from a stationary one-dimensional GP on a regular
grid. With the developed algorithm, generating a MVN distribution of size 1,000,000 takes
around 0.25 second on a machine with a 8-Core processor and 8 GB RAM. We demonstrate
its suitability and performance for the strategy outlined in Ray et al (2020); Zhou et al (2022)
within the context of shape-restricted function estimation.

The article is structured as follows: in Section 2, we present the proposed methodology for
generating samples from a large MVN distribution. We include a comparison with competing
approaches. Section 3 is devoted to the application of shape-restricted function estimation.
Firstly, we provide a brief recall of the efficient approach developed in Ray et al (2020). Secondly,
we evaluate the performance of the method proposed in this paper in terms of computational
complexity and prediction accuracy using the approach established in Ray et al (2020). Third,
we explore efficient samplers to approximate both the posterior and prior distributions, includ-
ing Hamiltonian Monte Carlo and the Fast Fourier Transform. Fourth, we investigate the
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behavior of both the maximum and mean a posterior estimate (MAP) and (mAP) respectively
in terms of prediction accuracy.

2 Prior sampling

Consider the problem of sampling from a prior distribution having the following form:

p(ξ) ∝ exp

{
− 1

2τ2
ξ>K−1ξ +

1

τ2
ξ>K−1µ

}
, ξ ∈ RN , (1)

where K is a positive definite matrix, τ > 0, and µ ∈ RN . Although our methodology is
generally applicable to any such K, we are specifically interested in situations where K results
from evaluating a stationary covariance function on a regular grid. This means that Kj,l =
k(uj − ul) for a positive definite function k and a set of regular grid points {uj}, j = 1, . . . , N
in R. Some commonly used stationary covariance functions can be found in Williams and
Rasmussen (2006). Throughout this paper, and without loss of generality, the Matérn family of
covariance functions will be employed with a smoothness parameter ν > 0 and a length-scale
parameter ` > 0.

The prior distribution (1) is widely used in Bayesian nonparametric regression problems,
especially when employing techniques such as Metropolis-Hastings (MH) (Cotter et al, 2013;
Neal, 1999), ESS (Murray et al, 2010), or Matheron’s update rule (MUR) (Cong et al, 2017;
Maatouk et al, 2023b; Wilson et al, 2021). Standard approaches such as eigendecomposition
and Cholesky factorization involve computing a scaling matrix S such that SS> = K. How-
ever, when N is high (i.e., N � 1, 000), these approaches become numerically heavy, with a
computational complexity of order O(N3), see Golub and Van Loan (1996) Chapter 4.2.3. In
the next section, we will present the proposed algorithm to overcome this issue.

2.1 Algorithm development

In this section, we present our methodology of sampling from a prior distribution as in (1).
Hereafter, we shall assume thatKj,l = k(uj−ul) for a positive definite function k and a regular
grid point {uj}, j = 1, . . . , N . Let (Y (x))x∈D be a zero-mean GP with covariance function k,
i.e., Y ∼ GP(0, k).

Suppose that D = [0, 1] is discretized into M × N1 = N equally spaced points {uj}, for
some M ≥ 1. We consider the case where D is partitioned into M ≥ 2 equally sized subdomains
Dm, i.e., D =

⋃M
m=1Dm. Then each subdomain contains N1 equally spaced points, where N1

is smaller than N . The algorithm developed in this section is also applicable for non-uniform
subdivision of D. In this paper, our focus is on the scenario where the Gaussian prior vector
ξ is determined by the value of the GP prior Y on the grid {uj}, i.e., ξj = Y (uj), for any

j = 1, . . . , N . The main idea is to generate M independent samples {ξ(m)}, m = 1, . . . ,M ,
each covering the associated subdomain, and then impose a correlation between the random
coefficients of the connected subdomains, to align with the given correlation structure. Let
us mention that since the random samples are generated independently, the associated GPs

(Ym(x))x∈Dm
and (Ym′(x))x∈Dm′ are uncorrelated for any m 6= m′, where, ξ

(m′)
j = Ym′(uj), for

some j′s in {1, . . . , N}. The random samples {ξ(m)} follow a MVN distribution, NN1(0,K11),
where K11 = (k(uj −ul))j,l, for j, l = 1, . . . , N1, with 0 being the N1-dimensional zero vector.

Proposition 1 (Construction of conditional coefficients). Suppose that {ξ(m)}, m = 1, . . . ,M
are independent samples from a NN1

(0,K11) distribution, and K12 := (Cov(ξj , ξl))j,l =

(k(uj − ul))j,l, where j ∈ {1, . . . , N1} and l ∈ {N1 + 1, . . . , 2N1}. Let

{
ξ̃
(m)
}

be a sequence of

conditional random vectors defined as follows:{
ξ̃
(1)

:= ξ(1);

ξ̃
(m)

:= Cξ̃
(m−1)

+Lξ(m), m = 2, . . . ,M
(2)
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where C := K12K
−1
11 and L := L(L)−1, with

K11 −K12K
−1
11K

>
12 = L(L)> and K11 = L(L)>.

Then, 
Cov

(
ξ̃
(m)
)

= K11, for any m = 1, . . . ,M ;

Cov

(
ξ̃
(m−1)

, ξ̃
(m)
)

= K12, for any m = 2, . . . ,M.

More generally, for any m < m′, we have Cov

(
ξ̃
(m)

, ξ̃
(m′)

)
= K12(C>)m

′−m−1, where

(C>)0 = I, the identity matrix.
Before presenting the proof of Proposition 1, let us recall that K11 −K12K

−1
11K

>
12 is a

symmetric and positive definite matrix that represents the covariance matrix of the conditional
MVN distribution {Y (u1)|Y (u2)}, where Y (u1) = [Y (u1), . . . , Y (uN1

)]> ∈ RN1 and Y (u2) =
[Y (uN1+1), . . . , Y (u2N1

)]> ∈ RN1 .

Proof of Proposition 1. Let us first proof that Cov

(
ξ̃
(m)
)

= K11, for any m = 1, . . . ,M . For

example, when m = 2, we have

Cov

(
ξ̃
(2)
)

= Cov
(
Cξ(1) +Lξ(2)

)
= CK11C

> +LK11L
>

= K12K
−1
11K

>
12 +L(L)> = K11.

Now, by induction, for any m > 2, we have

Cov

(
ξ̃
(m)
)

= Cov

(
Cξ̃

(m−1)
+Lξ(m)

)
= CCov

(
ξ̃
(m−1)

)
C> +LCov

(
ξ(m)

)
L>

= CK11C
> +LK11L

> = K11.

Additionally, for m = 2, we have

Cov

(
ξ̃
(1)
, ξ̃

(2)
)

= Cov
(
ξ(1),Cξ(1) +Lξ(2)

)
= K11C

> = K12.

Using induction, we can prove the general formula, thereby completing the proof of the
proposition.

Algorithm 1 Sampling scheme of ξ ∼ NN (µ,K), where N is too high.

Initialization: µ, K, M , N1, and N = M ×N1.

• Generate ξ ∼ NN (0,K):

– compute K11 and K12;
– sample independently ξ(m) ∼ NN1(0,K11), for any m = 1, . . . ,M ;
– compute the matrices C and L;

– compute ξ̃
(m)

using Equation (2), for any m = 1, . . . ,M ;

– bind ξ =

[
ξ̃
(1)
, . . . , ξ̃

(M)
]>

.

• Return µ+ ξ.

Algorithm 1 outlines the different steps for simulating a large MVN distribution ξ ∼
NN (µ,K) (i.e., when N � 1, 000) using the proposed approach when the domain D is
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divided into M equally sized subdomains. Generally speaking, Algorithm 1 is denoted as Fast
Large-Scale and abbreviated as Fast.LS throughout the paper.

2.2 Numerical performance

The aim of this section is to illustrate the proposed approach and demonstrate its efficiency
by comparing it with competing approaches. To accomplish this, we will utilize the Matérn
family of covariance functions with a smoothness parameter ν > 0 and a length-scale parameter
` > 0 (Williams and Rasmussen, 2006). Generally speaking, the length-scale parameter ` in the
numerical examples was chosen such that the correlation at the maximum separation between
covariates equals 0.05, unless otherwise specified.
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Fig. 1 The Matérn covariance function is plotted as a function of distance. We used 15,000 iterations repeated
25 times to compute the estimation of the covariance function for the two compared approaches: Fast.LS and
samp.WC. In the left panel, ν is fixed at 1.5, with an average mean squared error (MSE) of 5.82 × 10−3 for
Fast.LS and 27.30× 10−3 for samp.WC. In the right panel, ν is set to 0.75, and the average MSE is 1.53× 10−3

for Fast.LS, while it is 1.89× 10−3 for samp.WC.

In Fig. 1, we compare the accuracy of the proposed approach Fast.LS with the fast Fourier
transform (FFT), denoted as samp.WC (Wood and Chan, 1994). The Matérn covariance func-
tion with a smoothness parameter ν is plotted as a function of the distance h ∈ [0.5, 1] (black
slide curves). In the left panel, ν is fixed at 1.5, while in the right panel, it is fixed at 0.75. The
blue dashed curve and the red dashed-dotted curve represent the numerical estimation of the
Matérn covariance function based on 15,000 iterations repeated 25 times using the proposed
Fast.LS and samp.WC methods, respectively. The mean square error (MSE) for both approaches
is provided in the caption of Fig. 1. It is worth noting that the accuracy of both approaches
decreases as the smoothness parameter ν increases. Let us mention that the MVN generated
in this numerical example has a dimension of N = 250. When using the proposed approach,
the number of subdomains M is fixed at 5, and the size of the first subdomain N1 is set to 50.
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Fig. 2 Average running time of sampling a MVN over 25 replicates as a function of the dimension N . The
proposed approach, Fast.LS, has been compared to Cholesky factorization in the left panel and to FFT samp.WC
approach (Wood and Chan, 1994) in the right panel.
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Figure 2 displays the average running time (in seconds) of sampling from a MVN distri-
bution over 25 replicates as a function of the dimension N . The proposed approach exhibits
a clear advantage over both Cholesky factorization and the FFT, as the dimension N of the
MVN increases. Note that in our proposed approach, the value of N1 is fixed at 50 in the left
panel and 100 in the right panel, while the number of subdomains M varies from 2 to 20 in
left panel and from 1 to 100 in right panel.
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Fig. 3 Average running time (in seconds) of sampling a MVN over 25 replicates as a function of the dimension
using the proposed approach Fast.LS. In the left panel, we fix the value of N1 at 500, and the number of
subdomains, M , varies from 500 to 2,000. In the right panel, we fix the value of N1 at 100, and we vary the
number of subdomains, M , from 1,000 to 10,000.

Figure 3 displays the average sampling times in seconds of a MVN over 25 replicates as a
function of the dimension when using the proposed approach Fast.LS. The Matérn covariance
function with a smoothness parameter of ν = 0.5 was used. In the left panel, the first subdomain
is discretized into N1 = 500 equally spaced points, and the input domain D is split into M
subdomains, varying from 500 to 2,000. While in the right panel, we fix the value of N1 at
100, and we vary the number of subdomains, M , from 1,000 to 10,000. Using the algorithm
developed in this paper, a Gaussian vector of dimension N = 1, 000, 000 can be generated in
approximately 0.25 second. Let us mention that the running time is linear as a function of the
dimension N .
Remark 1 (Problem in sample.WC for smoothness cases). The function sample.WC, which
utilizes the FFT method described in Wood and Chan (1994), performs well for small smooth-
ness parameter ν (i.e., ν < 2). However, it encounters a problem when a higher value of ν
is employed. For example, when the smoothness parameter ν and the length-scale parameter
` of the Matérn covariance function are fixed at 2.5 and 0.5, respectively, sample.WC fails to
generate a Gaussian vector of dimension greater than 1,000. On the other hand, the proposed
Fast.LS algorithm does not suffer from this issue. Nevertheless, when smoothness is higher, a
nugget effect should be added to avoid numerical problems.
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Fig. 4 Average running time (in seconds) of sampling a MVN over 50 replicates as a function of the Matérn
smoothness parameter ν (left) and length-scale parameter ` (right), using the proposed approach Fast.LS (black
solid curve) and samp.WC (black dashed curve). The dimension N is fixed at 10,000.
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In Fig. 4, we examine the behavior of the proposed approach Fast.LS and the FFT
samp.WC as the Matérn parameters ν and ` increase. We computed the average running
time (in seconds) of sampling a MVN over 50 replicates as a function of ν (left panel) and `
(right panel). For the proposed approach, the average running time remains stable across all
values of ν and `, whereas for FFT samp.WC, it increases. Note that, in the proposed Fast.LS
approach, the parameters N1 and M are both fixed at 100.

We conclude this section with a comparison of computational running times using the
recently developed efficient large-scale Karhunen-Loève approach, abbreviated as LS.KLE, and
presented in Maatouk et al (2023b).
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Fig. 5 Average running time of sampling a MVN over 25 replicates as a function of the dimension N . The
proposed approach, Fast.LS, has been compared to the recently efficient LS.KLE approach developed in Maatouk
et al (2023b). The Matérn covariance function is employed with a smoothness parameter ν = 0.5 in the left
panel and ν = 1.5 in the right panel.

Figure 5 depicts the average running time for sampling a MVN distribution over 25 repli-
cates, plotted against the dimension N . The Matérn covariance function was employed with a
smoothness parameter ν = 0.5 in the left panel and ν = 1.5 in the right panel. The proposed
Fast.LS approach is compared to the recently efficient LS.KLE approach developed in Maatouk
et al (2023b). In both cases, the Fast.LS approach presented in this paper demonstrates faster
performance compared to LS.KLE.

2.3 Non stationary cases
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Fig. 6 A GP sample path was generated using the proposed approach with M = 5 and N1 = 20. The Brownian
motion covariance function was used in the left panel, while the polynomial covariance function was used in
the right panel.

In Fig. 6, a GP sample path is generated using the proposed approach with M = 5 and
N1 = 20. The left panel utilizes the Brownian motion covariance function k(x, x′) = min(x, x′).
On the other hand, the right panel employs the polynomial covariance function from Williams
and Rasmussen (2006), defined as k(x, x′) = (xx′ + σ2

0)p, where σ0 = 0.1 and p = 5. A non-
uniform grid was used for the input domain D = [0, 1] in both cases. The locations were
displayed using black crosses.
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3 Application to shape-restricted function estimation

In this section, we explore the application of the algorithm developed in this paper to shape-
restricted function estimation through GP regression, where the unknown function satisfies
shape constraints such as nonnegativity, monotonicity, or convexity. Let {(xi, yi) | i = 1, . . . , n}
be a training set of n observations, where xi denotes the covariates and yi represents the data.
The following regression problem is considered

yi = f(xi) + εi, εi
i.i.d.∼ N (0, σ2), (3)

i = 1, . . . , n, where f represents an unknown latent function that generates the data y =
[y1, . . . , yn]>. Each xi ∈ Rd is a covariate of dimension d, and εi is an additive independent
and identically distributed (i.i.d.) zero-mean Gaussian noise with a constant variance of σ2. We
assume a GP prior distribution on the unknown function f (Williams and Rasmussen, 2006).

3.1 Finite-dimensional Gaussian process approximation

We first introduce some notations to define the finite-dimension GP approximation proposed
in Maatouk and Bay (2017), which will be used in the present paper. For example, in the one-
dimensional case (i.e., d = 1), we denote by {uj , j = 1, . . . , N} the set of equally spaced knots
on D = [0, 1] with spacing δN = 1/(N − 1), where uj = (j − 1)δN . Note that the methodology
developed in the present paper is also applicable to non-uniform discretization of D. We recall
the three basis functions that will be used in three different models denoted as (Mh), (Mφ),
and (Mϕ):

hj(x) := h

(
x− uj

∆N

)
, φj(x) :=

∫ x

0

hj(t)dt, ϕj(x) :=

∫ x

0

∫ t

0

hj(u)dudt, (4)

for j ∈ {1, . . . , N}, where h(x) := (1−|x|)1[−1,1](x) is the hat function on [−1, 1]. Let us recall
that the hat functions {hj} have two nice properties. First, the value of any hat function at
any knot is equal to Kronecker’s delta function (i.e., hj(ul) = δj,l), where δj,l is equal to one

when j = l and zero otherwise. Second, for any x ∈ D, we have
∑N

j=1 hj(x) = 1. As outlined

in Maatouk and Bay (2017), any continuous function f : D → R, that is, f ∈ C0(D,R) can
be approximated by a piecewise linear interpolating between the function values at the knots
{uj},

f̃N (x) =

N∑
j=1

f(uj)hj(x), ∀x ∈ D, (5)

where {hj} are the basis functions defined in (4). Additionally, f̃N converges uniformly to f
when N tends to infinity.
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Fig. 7 Illustrative example of approximating a monotone (nondecreasing) function f (red solid curve) using a
piecewise linear interpolating function f̃N (black dashed curve). A uniform subdivision is used with N = 5 hat
functions represented by the gray triangles.
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Figure 7 presents an illustrative example of approximating the monotone (nondecreasing)
function f(x) = x3 (red solid curve) with the piecewise linear interpolating function f̃N defined
in (5), where N is fixed at 5. The gray triangles represent the five basis functions {hj}, while

the black crosses represent the values of f̃N at the knot points {uj}.
Now, if the function f is continuous differentiable or twice continuously differentiable, then

by the fundamental theorem of calculus, we get

f(x)− f(0) =

∫ x

0

f ′(t)dt;

f(x)− f(0)− xf ′(0) =

∫ x

0

(∫ t

0

f ′′(v)dv

)
dt.

Expending f ′ and f ′′ in the basis approximation (5) implies the following two approaches:

f̃N (x) = f(0) +

N∑
j=1

f ′(uj)φj(x) and f̃N (x) = f(0) + f ′(0)x+

N∑
j=1

f ′′(uj)ϕj(x),

for any x ∈ D. Now, we are ready to present the three different models:

Y N (x) :=

N∑
j=1

Y (uj)hj(x) =

N∑
j=1

ξjhj(x), (Mh)

Y N (x) := Y (0) +

N∑
j=1

Y ′(uj)φj(x) = ξ0 +

N∑
j=1

ξjφj(x), (Mφ)

Y N (x) := Y (0) + Y ′(0)x+

N∑
j=1

Y ′′(uj)ϕj(x) = ξ0 + ξ∗0x+

N∑
j=1

ξjϕj(x), (Mϕ)

for any x ∈ D, where ξj is equal to Y (uj) in (Mh), Y ′(uj) in (Mφ), and Y ′′(uj) in (Mϕ), for any
j = 1, . . . , N . Since (Y (x))x∈D is supposed a zero-mean GP with covariance function k, then
from (Mh), the vector of coefficient ξ = [ξ1, . . . , ξN ]> is zero-mean Gaussian with covariance
matrix K such that

Kj,l = k(uj − ul), ∀j, l = 1, . . . , N.

The covariance matrix K preserves the stationary property and exhibits a Toeplitz structure.
Before presenting the following equivalent results in Proposition 2, let us introduce some nota-
tions to simplify the presentation of the problem. Let C be the convex set of functions that verify
some shape constraints, such as monotonicity, convexity, and boundedness. The non-convex
case has been investigated in Maatouk et al (2023a). For instance,

C =

 Cb :=
{
f ∈ C0(D,R) s.t. f(x) ≥ 0, ∀x ∈ D

}
Cm :=

{
f ∈ C1(D,R) s.t. f ′(x) ≥ 0, ∀x ∈ D

}
Cc :=

{
f ∈ C2(D,R) s.t. f ′′(x) ≥ 0, ∀x ∈ D

} (6)

which corresponds to boundedness (nonnegativity), monotonicity (nondecreasing), and con-
vexity constraints, respectively. Here, C0(D,R), C1(D,R), and C2(D,R) represent the sets of
continuous, continuously differentiable, and twice continuously differentiable functions from D
to R, respectively. The authors in Maatouk and Bay (2017) have shown the advantages of using
the basis functions defined in (4). Indeed, they demonstrated an equivalent between the func-
tional constraints Y N ∈ C and a finite set of linear constraints on the basis coefficients {ξj}
for various shape constraints. To be more precise, for the functional constraints given in (6),
we have

Y N ∈ C ⇔ ξ ∈ E , (7)
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where E = {ξ ∈ RN : ξj ≥ 0, j = 1, . . . , N} representing the positive orthant in RN . Let us
now recall the following results provided in Maatouk and Bay (2017):
Proposition 2 (Equivalent constraints).

• Boundedness constraints: If Y N is defined as in (Mh), then Y N ∈ Cb if and only if ξ ∈ E.
• Monotonicity constraints: If Y N is defined as in (Mφ), then Y N ∈ Cm if and only if ξ ∈ E.

• Convexity constraints: If Y N is defined as in (Mϕ), then Y N ∈ Cc if and only if ξ ∈ E.

Here, Cb, Cm, and Cc represent the sets of functional constraints provided in (6), and E denotes
the positive orthant in RN .

Hereafter, we focus on the boundedness (nonnegativity) constraints using model (Mh). The
other shape constraints can be handled similarly. The Model (Mh), considering both noisy
observations and shape constraints, is expressed as follows:

Y N (x) =

N∑
j=1

ξjhj(x) s.t.

{
Y N (xi) + εi = yi (noisy observations),
Y N ∈ Cb (boundedness constraints),

(8)

where xi ∈ D is the covariate, yi ∈ R is the response and εi
iid∼ N (0, σ2), with σ2 the noise

variance. Following the equivalent in (7), the conditional distribution (8) can be written in a
matrix form as follows:

Hξ + ε = y, ξ ∈ E , (9)

where y = [y1, . . . , yn]> is the vector of data, ε = [ε1, . . . , εn]> is the noise Gaussian vector, H
is the n×N design matrix defined by Hi,j := hj(xi), and E is the positive orthant of RN . With
only noisy observations {Hξ + ε = y}, we have {ξ|y} follows a MVN distribution N (µ,Σ)
(see, for example, Williams and Rasmussen (2006), Section 2.1.1), where{

µ = (H>H/σ2 +K−1/τ2)−1H>y/σ2;

Σ = (H>H/σ2 +K−1/τ2)−1.
(10)

A tMVN prior is placed on ξ as ξ ∼ N (ξ; 0, τ2K) restricted to the positive orthant E of
RN , where K is a positive definite matrix defined as Kj,l = (k(uj−ul)), with k(·) representing
the stationary Matérn covariance function with a smoothness parameter ν > 0 and length-scale
parameter ` > 0. In this paper, we adopt the efficient MCMC sampler developed in Ray et al
(2020) to sample from the joint posterior (ξ, σ2, τ2, ν, `). Our contribution lies in the sampling of
the high-dimensional Gaussian prior ξ restricted to (9) using the efficient circulant embedding
technique introduced in Ray et al (2020), along with Algorithm 1 proposed in Section 2.1. In
the next section, we provide a brief overview of this technique.

3.2 Mean and Maximum a posteriori estimates (mAP) and (MAP)

Before presenting the new circulant embedding technique developed in Ray et al (2020), let
us first define the two posterior estimates, namely maximum a posterior (MAP) and mean a
posterior (mAP). We denote µ∗ as the mode of the posterior distribution (9). It maximizes the
following posterior probability density function (pdf):

µ∗ := arg max
ξ s.t. ξ∈E

{
−[ξ − µ]>Σ−1[ξ − µ]

}
, (11)

where E is the positive orthant of RN , µ and Σ are the conditional mean and covariance, respec-
tively, as given in (10). This is a quadratic optimization problem subject to linear inequality
constraints (Boyd and Vandenberghe, 2004; Goldfarb and Idnani, 1983). It is equivalent to

µ∗ := arg min
ξ s.t. ξ∈E

{
ξ>Σ−1ξ − 2µ>Σ−1ξ

}
. (12)

Now, we are ready to define the following two posterior estimates:
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Definition 1 (MAP estimate). The Maximum a posteriori (MAP) estimate of Y N condition-
ally on shape constraints and noisy observations is defined as

MN (x) :=

N∑
j=1

µ∗jhj(x) = h(x)>µ∗, x ∈ D,

where µ∗ = [µ∗1, . . . , µ
∗
N ]> ∈ RN is the posterior mode computed by (12) and h(x) =

[h1(x), . . . , hN (x)]>.
The MAP estimate is independent of the sampling process and is determined only by

solving a quadratic optimization problem with linear inequality constraints (see Equation (12)).
However, it does rely on the noise standard deviation parameter σ. To address this, we propose
using the average of the estimated values of σ obtained from the joint posterior presented
in Ray et al (2020). The asymptotic behavior of this estimate has been discussed in both
Bay et al (2016) and Grammont et al (2022), where they established a generalization of the
Kimeldorf-Wahba correspondence (Kimeldorf and Wahba, 1970) for constrained cases.
Definition 2 (mAP estimate). The mean a posteriori (mAP) estimate of Y N conditionally
on shape constraints and noisy observations is defined as

mN (x) := E
[
Y N (x)

∣∣y, Y N ∈ Cb] = h(x)>µ, x ∈ D,

where µ := E [ξ|y, ξ ∈ E ] is the posterior mean which is computed from simulations and h(x) =
[h1(x), . . . , hN (x)]>.

3.3 Constrained posterior sampling

The main results outlined in the present paper are motivated by a recent novel approach
proposed in Ray et al (2020). This approach is based on an efficient circulant embedding
technique for simulating a MVN distribution restricted to the positive orthant, which avoids
the use of the full conditional tMVN (14). In this section, we provide a brief overview of this
technique for simulating from a constrained posterior distribution with the following form:

p(ξ) ∝ exp

(
− 1

2σ2
‖y −Hξ‖2

)
︸ ︷︷ ︸

likelihood function

exp

(
− 1

2τ2
ξ>K−1ξ

)
︸ ︷︷ ︸
(untruncated) MVN prior

1E(ξ)︸ ︷︷ ︸
constraints

, ξ ∈ RN , (13)

where y ∈ Rn, H ∈ Rn×N , E is the positive orthant in RN , and K is a positive definite
matrix. This posterior pdf in (13) is proportional to the product of a likelihood function, an
(untruncated) MVN prior, and an indicator function representing the set of constraints. The
methodology generally applies to any such K. However, our specific interest lies in situations
where K is derived from the evaluation of a stationary covariance function on a regular grid.
Equation (13) represents the pdf of the posterior constrained distribution (9). A simple calcu-
lation yields that p(ξ) in (13) is the density function of the following MVN distribution (see
e.g., Williams and Rasmussen (2006), Section 2.1.1):

N

((
H>H

σ2
+
K−1

τ2

)−1
H>y

σ2
,

(
H>H

σ2
+
K−1

τ2

)−1)
(14)

truncated to the positive orthant E in RN . Sampling from the above tMVN distribution can
be achieved using the fast HMC approach developed in Pakman and Paninski (2014) and
implemented in the R package tmg. However, in situations when N is large, (H>H/σ2 +
K−1/τ2) keeps changing over each McMC iteration due to updates in σ and τ . This necessitates
an N × N matrix inversion at every iteration. Moreover, within a large McMC algorithm,
updating the unknown covariance function parameters involves computing the inversion of an
N ×N matrix at each step.
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The novel approach described in Ray et al (2020) for sampling from the density in (13) can
be summarized in three steps that avoid matrix inversions and direct sampling from the full
conditional posterior tMVN distribution in (14).

First step: smooth relaxation of the constraint

In the first step, the authors approximate the indicator function in Equation (13) by
employing a smooth approximant through the sigmoid function. Specifically, they use the
logistic sigmoid function 1/(1 + e−x), which is the cumulative distribution function (cdf)
of the logistic distribution. In other words, they use scaled logistic sigmoid approximations
1(0,+∞)(x) ≈ (1 + e−ηx)−1 for large η > 0 to derive a smooth approximation called Jη(·) for
1E(ξ) as follows:

1E(ξ) ≈ Jη(ξ) =

N∏
j=1

1

1 + e−ηξj
, (15)

where ξ = [ξ1, . . . , ξN ]> ∈ RN . By substituting the indicator function 1E(·) with its approx-
imation Jη(·) in (13), we obtain the following density approximation of p, where the smooth
relaxation of the constraints Jη has been absorbed into the likelihood:

p̃(ξ) ∝

[
exp

(
− 1

2σ2
‖y −Hξ‖2

) N∏
j=1

1

1 + e−ηξj

]
︸ ︷︷ ︸

redefined likelihood function

exp

(
− 1

2τ2
ξ>K−1ξ

)
︸ ︷︷ ︸
(untruncated) MVN prior

. (16)

Let us recall that the parameter η controls the quality of the approximation, which increases
with the value of η. The approximate posterior pdf p̃(ξ) in (16) is proportional to the product of
a redefined likelihood function (the quantity within the square brackets) and an (untruncated)
zero-mean MVN prior ξ.

Second step: circulant embedding techniques

In the second step, as described in Ray et al (2020), the authors utilize the efficient ESS
method developed in Murray et al (2010) to sample from the approximate posterior distribution
in (16). Let us give a brief overview of the ESS. The ESS is a general technique employed for
sampling from distributions with the following form:

p(ξ) ∝ L(ξ)N (ξ; 0,K). (17)

The above density (17) is proportional to a product of a general likelihood function L(·) and
a zero-mean MVN prior, where L represents the redefined likelihood function in (16). In this
context, sampling from (17) can be performed using Metropolis-Hastings proposals:

ξ′ = ρν +
√

1− ρ2ξ, ν ∼ N (0,K), (18)

where ρ ∈ [−1, 1] is a step-size parameter, ξ is the current state, and ξ′ is the proposal
state. These proposals are known to possess good empirical properties (Neal, 1999), as well
as theoretical properties (Cotter et al, 2013). This proposal maintains the zero-mean MVN

prior N (0,K). In other words, if ξ ∼ N (0,K) and ξ′|ξ ∼ N (
√

1− ρ2ξ, ρ2K) is drawn as
described above, then the marginal distribution of ξ′ remains N (0,K). Using this fact, it can
be observed that the Metropolis-Hastings acceptance ratio α = min

{
1, L(ξ′)/L(ξ)

}
only relies

on the likelihood ratio and is independent of ρ. The main idea is to generate u uniformly on

[0, 1] and then accept the proposal state ξ′ in (18) when u < L(ξ′)
L(ξ) . This is equivalent to

log(L(ξ)) + log u < log(L(ξ′)).

12



Let us recall that this method is simple to implement and can be immediately applied to a
much wider variety of models with Gaussian priors. As reported in Neal (1999), the Metropolis-
Hastings proposals performed better than Gibbs sampling for GP classification.

The ESS offers an adaptive and automated approach for tuning the step-size parameter ρ
in (18), ensuring acceptance at each step. This technique is founded on the parametrization
ρ = sin(θ):

ξ′ = sin(θ)ν + cos(θ)ξ, ν ∼ N (0,K), (19)

where the angle θ is uniformly generated from a [θmin, θmax] interval which is shrunk expo-
nentially fast until an acceptable state is reached. For each respective θ, a uniform random
number is generated and compared against the likelihood ratio L(ξ′)/L(ξ). In the event that
the proposal ξ′ is not acceptable, one shrinks the bracket of θ, and continues this process until
acceptance. The authors in Murray et al (2010) provide detailed explanations on how to shrink
the bracket.

Third step: efficient sampling from the prior MVN distribution

In the final step, as described in Ray et al (2020), the authors employed a highly efficient
sampler based on the fast Fourier transform (FFT) developed in Wood and Chan (1994) to
sample ν in (19) from the prior MVN distribution N (0, τ2K). The last step will not be cov-
ered in detail in this paragraph since it will be replaced by the proposed algorithm developed
in Section 2.1.

Since the covariance matrixK is obtained from a stationary covariance function on a regular
grid, sampling ν from the prior MVN distribution N (0, τ2K) is equivalent to generating a
stationary GP in a regular grid. For this reason, the authors in Ray et al (2020) utilize the
efficient FFT algorithm developed in Wood and Chan (1994). The efficiency of this algorithm
depends on the dimension N of the MVN prior and on both the smoothness parameter ν
and the length-scale parameter ` of the covariance function k, as demonstrated in Section 2.2
(refer to Figures 2 and 4). Our contribution in this paper is to apply the proposed Fast.LS
algorithm developed in Section 2.1 (i.e., Algorithm 1) to the methodology described in this
section, enabling us to efficiently sample from the posterior approximate distribution (16).

Algorithm 2 details the different steps for sampling from the approximate posterior pdf in
(16) using the proposed approach known as large-scale ESS, abbreviated as LS-ESS. It is worth
mentioning that the posterior mode µ∗ in (12) can be used as a starting point in the ESS step.
From Equation (16), the logarithm of the redefined likelihood is

log(L(ξ)) = − 1

2σ2
‖y −Hξ‖2 −

N∑
j=1

[
log
(
1 + e−ηξj

)]
. (20)

In that case, the computational complexity of computing the log-likelihood in (20) is O(nN),
where n is the number of samples and N is the dimension of the MVN prior ξ. Similar to the
MUR technique (Maatouk et al, 2023b; Wilson et al, 2021), the proposed approach involves
sampling before conditioning rather than after. This approach can be advantageous since it
preserves the stationary property during the sampling procedure. Nevertheless, sampling ν in
(19) from the prior MVN distribution N (0, τ2K) generally has a computational complexity
of order O(N3) (Golub and Van Loan, 1996). This complexity corresponds to only one McMC
sampler iteration. Through Algorithm 1, this complexity is reduced to O(N3

1 ), where N1 � N .
Consequently, the computational complexity of Algorithm 2 becomes O(min{nN,N3

1 }), with
N1 representing the size of the first split subdomain (see Section 2.1).

In the next section, we empirically demonstrate the computational complexity and pre-
diction accuracy of the proposed LS-ESS approach when applied to shape-restricted function
estimation. Furthermore, we compare it with the strategies outlined in Ray et al (2020); Zhou
et al (2022).
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Algorithm 2 Sampling scheme from the approximate posterior pdf in (16) using the proposed
LS-ESS approach for Nc McMC iterations.

Input: current state ξ = µ∗ in (12), N , τ , K, y, H, η, and Nc McMC iterations.

• For i from 1 to Nc, do

• Generate ν ∼ N (0, τ2K) using Algorithm 1.
• Compute the new state ξ′(i) in (19) using the ESS in Murray et al (2010):

1. Compute the log-likelihood functions:

log(L(ξ)) = − 1

2σ2
‖y −Hξ‖2 + η

N∑
j=1

ξj −
N∑
j=1

[
log
(
1 + eηξj

)]
;

log y = log(L(ξ)) + log u, u ∼ U([0, 1]).

2. Define an initial bracket [θmin, θmax]:

θ ∼ U([0, 2π]);

θmin = θ − 2π and θmax = θ.

3. Compute the proposal
ξ′(i) = sin(θ)ν + cos(θ)ξ.

4. While log(L(ξ′(i))) ≤ log y;

∗ shrink the bracket [θmin, θmax] as in Murray et al (2010) and generate θ ∼
U([θmin, θmax]);

∗ compute:
ξ′(i) = sin(θ)ν + cos(θ)ξ.

– Reinitialization: ξ = ξ′(i)

• EndFor

Output: return
[
ξ′(1), . . . , ξ

′
(Nc)

]>
.

3.4 Run-time comparison

The purpose of this section is to demonstrate the computational complexity of the proposed
approach when applied to shape-restricted function estimation. A comparison is conducted
with the efficient circulant embedding technique developed in Ray et al (2020); Zhou et al
(2022). As explained in Section 3.3, the circulant embedding technique proposed in Ray et al
(2020) for simulating a tMVN relies on the FFT technique developed in Wood and Chan (1994)
to sample from the (untruncated) prior distribution. However, our proposed approach LS-ESS
replaces the step of sampling the (untruncated) prior with Algorithm 1 outlined in Section 2.1.

3.4.1 Monotone function estimation

In this section, we consider the monotone (nondecreasing) function f(x) = 3/[1 + exp(−10x+
2.1)], with x ∈ [0, 1], as discussed in Maatouk et al (2023a); Zhou et al (2022). This function is
nondecreasing and exhibits approximate flatness between 0.7 and 1. We will use it as a basis
to evaluate the performance of the proposed approach in terms of computational running time
and prediction accuracy.

Figure 8 illustrates the monotone (nondecreasing) function estimation using the GP approx-
imation from Model (Mφ) and the circulant embedding technique presented in Section 3.3. We
fix N = 100 and randomly generate n = 100 samples from (3) using the true nondecreasing
function f (black solid curve) and a noise standard deviation of σ = 0.5. The covariates {xi},
i = 1, . . . , n are uniformly generated between 0 and 1. This dataset is then randomly divided
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Fig. 8 Monotone function estimation using the efficient circulant embedding technique. The proposed approach
(Fast.LS) is used in the left panel, while the FFT method (sample.WC) is employed in the right panel. The
average computing time (in seconds) over 25 replicates of running the McMC sampler for 6,000 iterations is
displayed in the main part of each panel. The dimension of the prior is fixed at N = 100.

into a training set of size 80 and a testing set of size 20. In Fig. 8, the training samples are rep-
resented by the black crosses. For the covariance function, we use the Matérn function with a
smoothness parameter of ν = 1.5. The length-scale parameter ` is chosen such that the corre-
lation at the maximum possible separation between the covariates equals 0.05. The parameters
σ and τ are updated at each McMC step using the inverse gamma distribution. The blue
dashed-dotted curve represents the mean of the posterior sample paths (i.e., mAP estimate
in Definition 2), while the red dashed curve represents the maximum of the posterior sample
paths (i.e., MAP estimate in Definition 1). The black solid curve represents the true nonde-
creasing function, and the gray shaded area represents the posterior 95% confidence interval.
The Fast.LS method is used to generate the working prior in the left panel with N1 = 20 and
M = 5, while the FFT sample.WC approach is employed in the right panel. The average com-
puting time (in seconds) over 25 replicates of running the McMC sampler for 6,000 iterations
is displayed in the main panel of each part, where the first 1,000 iterations are discarded as
burn-in. In that case, and under the same setting, our approach using Fast.LS is approximately
three times faster than the approach using the FFT sample.WC. Furthermore, the average root-
mean-square error (RMSE) over 25 replicates for both mAP and MAP estimates is displayed
in the main of each panel. According to the Bayesian analysis developed in Maatouk et al
(2023a), the MAP estimate outperforms the mAP estimate in terms of prediction accuracy.

3.4.2 Bounded function estimation

In this section, we use the nonnegative function introduced in Pensoneault et al (2020) to
evaluate the performance of the proposed approach in terms of computational complexity and
prediction accuracy. The function is defined as follows:

f(x) =
1

[1 + (10x)4]
+

1

2
exp

[
−100(x− 0.5)2

]
, x ∈ [0, 1]. (21)

This is a challenging situation because the underlying function f is nonnegative, flat, and
approximately zero on the interval [0.7, 1].

Figure 9 illustrates the nonnegative function estimation using the GP approximation from
Model (Mh). We fix N = 100 and randomly generate n = 100 samples from (3) using the
true nonnegative function f defined in (21) and a noise standard deviation of σ = 0.1. This
dataset is then randomly divided into an 80% training set and a 20% testing set. As in the
numerical example of Section 3.4.1, the Fast.LS method is used to generate the working prior
in the left panel with N1 = 20 and M = 5, while the FFT sample.WC approach is employed
in the right panel. The average computing time (in seconds) over 25 replicates of running the
McMC sampler for 6,000 iterations is displayed in the main panel of each part, where the first
1,000 iterations are discarded as burn-in. Again, the proposed approach is approximately three
times faster than the FFT approach.
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Fig. 9 Nonnegative function estimation using the efficient circulant embedding technique. The proposed
approach (Fast.LS) is used in the left panel, while the FFT method (sample.WC) from Wood and Chan (1994)
is employed in the right panel. The average computing time (in seconds) of running the McMC samplers for
6,000 iterations and the RMSE for both mAP and MAP estimates over 25 replicates are displayed in the main
part of each panel. The dimension of the prior is fixed at N = 100.

3.4.3 Comparison with alternative McMC samplers

The aim of this section is to illustrate the computational complexity of the proposed approach
compared to the highly efficient HMC sampler developed in Pakman and Paninski (2014)
and implemented in the R package tmg. The monotonicity (nondecreasing) and boundedness
(nonnegativity) constraints considered in Sections 3.4.1 and 3.4.2 are employed. In both cases,
the covariates are generated uniformly on [0, 1]. The parameter η is fixed at 50 and the number
of knots N = dn8 e. The Matérn covariance function is employed, with the smoothness parameter
ν fixed at 1.5, and the length-scale parameter ` chosen to achieve a correlation of 0.05 at
the maximum possible separation between the covariates. The other parameters σ and τ are
updated using the joint posterior distribution as in Sections 3.4.1 and 3.4.2.
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Fig. 10 Running time per McMC iteration (in seconds) plotted against the sample size (n) for two McMC
samplers: the proposed approach denoted LS.ESS (black solid curve) and the HMC tmg (black dashed curve).
The monotonicity nondecreasing constraint is considered in the left panel, while the nonnegative constraint is
considered in the right panel. In both cases, the dimension N is fixed at dn

8
e.

In Fig. 10, the average run-time per iteration (in seconds) over 10 replicates is plotted
against the sample size n (varied between 500 and 5,000). The monotonicity constraint is
considered in the left panel, while the nonnegativity constraint is applied in the right panel.
The large-scale ESS (LS-ESS) approach developed in the present paper is compared to the
efficient HMC sampler developed in Pakman and Paninski (2014). The proposed approach
is represented by the black solid curve, while the HMC sampler is represented by the black
dashed curve. The HMC performs well in low dimensions, specially when N ≤ 125 (i.e., when
n ≤ 1, 000). However, as both the sample size n and the dimension N of the MVN prior
ξ increase, the proposed LS-ESS approach outperforms the HMC sampler. Unlike the HMC
method, the LS-ESS approach grows linearly as a function of the sample size n and of the
dimension N .
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4 Conclusion

This paper introduces a new highly efficient approach for sampling from a large multivariate
normal distribution. The key concept is to partition the input domain into smaller subdomains
and utilize cross-correlation techniques among the connected subdomains to capture the cor-
relation structure across the entire domain. The proposed approach is simple to implement
and can be applied to a covariance function extracted from both stationary and non-stationary
Gaussian processes. This strategy significantly reduces computational complexity, especially as
the number of subdomains increases. The developed algorithm demonstrates superior efficiency
compared to other existing methods. Its performance has been evaluated using the efficient cir-
culant embedding technique proposed in Ray et al (2020); Zhou et al (2022) for shape-restricted
function estimation.
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López-Lopera AF, Bachoc F, Durrande N, et al (2018) Finite-dimensional Gaussian approxi-
mation with linear inequality constraints. SIAM/ASA Journal on Uncertainty Quantification
6(3):1224–1255

Maatouk H, Bay X (2017) Gaussian process emulators for computer experiments with
inequality constraints. Math Geosci 49(5):557–582

Maatouk H, Rullière D, Bay X (2023a) Bayesian analysis of constrained Gaussian processes,
URL https://hal.science/hal-04084865, under revision (round 2)

Maatouk H, Rullière D, Bay X (2023b) Sampling large hyperplane-truncated multivariate nor-
mal distributions. To appear in Comput Stat https://doi.org/10.1007/s00180-023-01416-7

Maradesa A, Py B, Quattrocchi E, et al (2022) The probabilistic deconvolution of the
distribution of relaxation times with finite Gaussian processes. Electrochim Acta 413:140119

Meyer MC, Hackstadt AJ, Hoeting JA (2011) Bayesian estimation and inference for generalised
partial linear models using shape-restricted splines. J Nonparametr Stat 23(4):867–884

Murphy KP (2018) Machine learning: A probabilistic perspective (adaptive computation and
machine learning series)

Murray I, Adams R, MacKay D (2010) Elliptical slice sampling. In: Proceedings of the thir-
teenth international conference on artificial intelligence and statistics, JMLR Workshop and
Conference Proceedings, pp 541–548

Neal RM (1999) Regression and classification using Gaussian process priors. Bayesian statistics
pp 475–501

Neelon B, Dunson DB (2004) Bayesian isotonic regression and trend analysis. Biometrics
60(2):398–406

Pakman A, Paninski L (2014) Exact Hamiltonian Monte Carlo for truncated multivariate
Gaussians. J Comput Graph Stat 23(2):518–542

Papp D, Alizadeh F (2014) Shape-constrained estimation using nonnegative splines. Journal
of Computational and Graphical Statistics 23(1):211–231

Pensoneault A, Yang X, Zhu X (2020) Nonnegativity-enforced Gaussian process regression.
Theor App Mech Lett 10(3):182–187

Ray P, Pati D, Bhattacharya A (2020) Efficient Bayesian shape-restricted function estimation
with constrained Gaussian process priors. Stat Comput 30(4):839–853
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