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Abstract: Chlorophyll-a concentration (Chl-a) is a crucial parameter for monitoring the water quality
in coastal waters. The principal aim of this study is to evaluate the performance of existing Chl-a
band ratio inversion models for estimating Chl-a from Sentinel2-MSI and Sentinel3-OLCI observation.
This was performed using an extensive in situ Rrs-Chl-a dataset covering contrasted coastal waters
(N = 1244, Chl-a (0.03–555.99) µg/L), which has been clustered into five optical water types (OWTs).
Our results show that the blue/green inversion models are suitable to derive Chl-a over clear to
medium turbid waters (OWTs 1, 2, and 3) while red/NIR models are adapted to retrieve Chl-a in
turbid/high-Chl-a environments. As they exhibited the optimal performance considering these
two groups of OWTs, MuBR (multiple band ratio) and NDCI (Normalized Difference Chlorophyll-a
Index)-based models were merged using the probability values of the defined OWTs as the blending
coefficients. Such a combination provides a reliable Chl-a prediction over the vast majority of the
global coastal turbid waters (94%), as evidenced by a good performance on the validation dataset
(e.g., MAPD = 21.64%). However, our study further illustrated that none of the evaluated algorithms
yield satisfying Chl-a estimates in ultra-turbid waters, which are mainly associated with turbid river
plumes (OWT 5). This finding highlights the limitation of multispectral ocean color observation in
such optically extreme environments and also implies the interest to better explore hyperspectral Rrs
information to predict Chl-a.

Keywords: chlorophyll-a; coastal waters; ocean color remote sensing; optical water types

1. Introduction

Phytoplankton biomass, estimated through the Chlorophyll-a (Chl-a) concentration,
represents a key parameter for monitoring the response of the coastal domain to environ-
mental changes of natural or anthropogenic origins. The evaluation of human impacts
on coastal ecosystems’ structure and functioning leading for instance to eutrophication
processes (e.g., [1]) represents a crucial scientific and societal objective, which strongly relies
on the availability of long-lasting consistent Chl-a times series. Satellite ocean observation
represents in this context a relevant tool since it provides a continuous synoptic view of the
coastal waters over more than two decades. At the same time, the spatial and temporal res-
olutions of ocean color observations are fine enough for allowing local studies or capturing
episodic events advantageously complementing classical in situ monitoring. Recent ocean
color sensors onboard satellites from the ESA Sentinel constellation (i.e., Sentinel2-MSI
and Sentinel3-OLCI) have further increased the availability of ocean satellite data. These
satellite archives are now considered an essential observation tool for supporting the devel-
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opment of sustainable environmental policies (EU Water Framework Directive and Marine
Strategy Framework Directive, [2,3]).

While Chl-a concentration represents the pioneer product of ocean color observation,
efforts are still required for improving the accuracy of Chl-a estimation in optically complex
waters [4,5]. Chl-a inversion algorithms have indeed been first dedicated to the oceanic
(Case-1) waters where the variability of optical properties is mainly driven by phytoplank-
ton [6]. The ocean color (OC) chlorophyll-a models and related offspring algorithms [7,8]
are typically based on the use of a maximum band ratio in the blue–green domain of the
visible spectrum. Such algorithms have been widely validated over clear environments and
are now operationally used for deriving Chl-a in open ocean waters (e.g., [9–11]). Estimat-
ing Chl-a from space still, however, represents a challenging task in coastal waters (Case-2
waters, [5,12]). This is related to the high optical diversity of these environments [13] where
water optical properties are diversely driven by a variable contribution of phytoplank-
ton, suspended particulate matter (SPM), and colored dissolved organic matter (CDOM).
In high-CDOM and/or -SPM phytoplankton conditions, the co-occurrence of different
water constituents presents impacts on the reflectance signal, especially at the shortest
wavelengths of the visible range. This feature tends to impair the performance of classical
blue/green ratio-based inversion models [14–16].

For this reason and considering the crucial need to monitor Chl-a over turbid coastal
environments, specific Chl-a algorithms have been developed taking advantage of the
impacts of phytoplankton on the water optical properties in the red and near-infrared
(NIR) regions. These models rely on the negligible impacts of CDOM and SPM absorption
as well as the optical signature of phytoplankton absorption or chlorophyll fluorescence
over the red–NIR domain of the electromagnetic spectrum (e.g., [17–20]). Such red–NIR
approaches are, however, failing in clear waters, where the phytoplankton signal can
be masked in relationships to the high contribution of pure water absorption at higher
wavelengths [21,22].

Regional inversion models have been considered to be a convenient way for optimizing
ocean color products over a defined coastal area. Such approaches present, however,
numerous limitations being dependent on the representativeness of the dataset used and
are intrinsically limited in terms of spatial applicability [23]. Alternative approaches based
on the applications of a defined model on a pixel-per-pixel basis according to the water
optical characteristics have been shown to represent a valuable alternative for combining
different algorithms for estimating ocean color satellite products in coastal waters [23–25].
An extensive study by Neil et al. [26] has further illustrated the interest in an adaptive
framework for dynamically selecting and optimizing Chl-a inversion models in inland
waters based on optical water types (OWTs). With the main objective to provide ocean
color data users a simple way to evaluate the reliability of the Chl-a estimates derived from
blue/green and red/NIR inversion models, Lavigne et al. [12] developed quality control
tests for improving MERIS and OLCI Chl-a estimates in coastal waters. In addition to
these recent studies, new alternative approaches that rely on machine learning, which may
be more computing-time-consuming than standard reflectance ratios, are now developed
for deriving Chl-a over a large range of Chl-a contents and considering a variety of bio-
optical regimes in inland and coastal waters [27]. Although there were numerous efforts
performed during the last decades for accurately estimating Chl-a concentration from
the remote sensing reflectance using adapted inversion, there is still no consensus on
the algorithm or the set of algorithms to be applied for deriving Chl-a for large-scale
applications in coastal waters.

This study contributes to ongoing efforts to optimize the retrieval of Chl-a from
ocean color observations in coastal waters, with a specific focus on Sentinel-2/MSI and
Sentinel-3/OLCI observations. A comprehensive global in situ remote sensing reflectance
(Rrs)–Chl-a dataset (N = 1244) of samples collected in contrasted environments has been
gathered. This dataset was classified into five OWTs ranging from clear to ultra-turbid
waters. Using OWTs as a general framework, this work first aims at illustrating the
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limitations of historical band-ratio-based algorithms for deriving Chl-a and selecting the
most appropriate inversion models by evaluating novel formulations and state-of-the-art
algorithms adapted for different OWTs considered. This study further presents the interest
and requirements (e.g., compatibility of inversion algorithms to provide accurate Chl-a
estimates, discontinuities in the map when merging Chl-a models) of band-ratio-based
blending approaches to provide reliable Chl-a across diverse coastal environments. The
applicability of band-ratio-based approaches at a global scale, as well as possible future
improvements in Chl-a retrieval, especially in ultra-turbid environments, by exploiting the
potential of upcoming hyperspectral observations, is specifically discussed.

2. Materials and Methods

An overview of the study process, including the performed development and process-
ing, can be seen in the flow chart (Figure 1).
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Figure 1. Flow chart of the present study illustrating the general methodology for development and
validation of the combined Chl-a model.

2.1. In Situ Dataset

The in situ dataset (DS-W, N = 1244, mean Chl-a = 12.14 µg/L) combines concomi-
tant measurements of Chl-a and remote sensing reflectance (Rrs) collected between 1997
and 2016 in the frame of diverse worldwide distributed field campaigns in contrasted
coastal areas (European coastal waters [28–31], French Guiana [23,32], Eastern Viet Nam
Sea [15,33], South Shetland Islands, the US coastal waters, The Sea of Japan [34], Beaufort
Sea North Canada [35], and Brazil (Guanabara Bay, Rio de Janeiro) [36]) (Figure 2). This
dataset covers a wide range of Chl-a concentrations with values ranging over 4 orders of
magnitude (0.03–555.99 µg/L, Table 1) from oligotrophic waters (e.g., Mediterranean Sea,
clear polar waters) to ultra-eutrophic environments (Guanabara Bay, Rio de Janeiro; [36]).
The DS-W was further randomly split into a development dataset (DS-D, N = 831, mean
Chl-a = 13.63 µg/L) and a validation dataset (DS-V, N = 356, mean Chl-a = 9.45 µg/L),
representing 70 and 30% of the DS-W, respectively; these three datasets follow a similar
distribution (Figure 3). It is worth noting that the proportion of DS-D/DS-V partition was
performed excluding the points corresponding to OWT5 (N = 57), for which no band-ratio-
based model development has been performed (see Sections 3.2.1 and 3.3.1).
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Table 1. Description of the in situ dataset of Chl-a (µg/L) considered in the frame of this
study: number of samples (N), minimum (Min), maximum (Max), mean (Mean), and standard
deviation (StdDev).

Region Temporal
Coverage N Min Max Mean StdDev Reference

Vietnam 2011–2014 43 0.66 17.45 4.63 3.75 [15,33]

French
Guiana 2006–2016 108 0.41 22.65 6.40 5.45 [23,32]

Guanabara
Bay (Brazil) 2012–2015 161 1.03 555.99 76.06 101.46 [36]

Beaufort Sea 2014 40 0.03 3.52 0.32 0.64 [35]

Sea of Japan 1999–2001 41 0.13 2.89 0.73 0.64 [34]

USA 1999–2007 498 0.08 28.46 1.71 2.79 [34]

South
Shetland
Islands

2000–2007 82 0.03 4.01 0.86 0.81 [34]

Europe 1997–2012 271 0.05 33.33 3.69 5.42 [28–31]

Total 1997–2016 1244 0.03 555.99 12.14 44.13
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Figure 2. Spatial distribution of in situ Rrs-Chl-a measurements gathered within the DS-W dataset
(N = 1244) collected in (a) the Beaufort Sea, (b) the United States coastal waters, (c) the French Guiana
coastal waters, (d) Guanabara Bay, (e) the South Shetland Islands, (f) European coastal waters,
(g) Vietnamese coastal waters, and (h) the Sea of Japan: colors indicate the optical water types each
in situ sample is associated with (see Section 2.3).



Remote Sens. 2023, 15, 1653 5 of 26Remote Sens. 2023, 15, 1653 5 of 28 
 

 

 
Figure 3. Chl-a absolute frequency distribution for (a) the whole in situ dataset DS-W (N = 1244), (b) 
the development dataset (DS-D, N = 831), and the validation dataset (DS-V, N = 356). The number 
of data points corresponding to OWT 5 is not considered in the DS-D and DS-V. 

2.2. Satellite and Matchup Dataset 
Data in the DS-W have been acquired before the S2 and S3 time period (from June 

2015 and February 2016, respectively). An external and independent in situ dataset, which 
encompasses only Chl-a measurements, has been therefore considered in addition to the 
DS-W for validation purposes (Figure 4). In practice, Chl-a samples collected along the 
French coast are in the frame of the SOMLIT (Coastal Environment Observation Service, 
https://www.somlit.fr/, accessed on 15 June 2021) and REPHY (Observation and Monitor-
ing Network for Phytoplankton and Hydrology in coastal waters, 
https://www.seanoe.org/data/00361/47248/, accessed on 15 June 2021) French national 
survey programs. These long-lasting in situ datasets (e.g., continuous monthly data since 
1997 for SOMLIT) present the advantage of being acquired following a standardized pro-
tocol. 

 
Figure 4. Distribution of the REPHY and SOMLIT stations considered in the matchup dataset DS-
M. 

In practice, Satellite Sentinel2-MSI A/B (60 m resolution) and Sentinel3-OLCI A/B 
(300 m resolution) Rrs data have been extracted for both SOMLIT and REPHY Chl-a sam-
ples over the time periods from 7 September 2015 to 19 March 2021 and from 24 May 2016 
to 7 April 2021 for MSI and OLCI, respectively). Specifically, top-of-atmosphere Level 1 

Figure 3. Chl-a absolute frequency distribution for (a) the whole in situ dataset DS-W (N = 1244),
(b) the development dataset (DS-D, N = 831), and the validation dataset (DS-V, N = 356). The number
of data points corresponding to OWT 5 is not considered in the DS-D and DS-V.

The Chl-a/SPM ratio has been calculated for the whole dataset for providing rough
information on the relative importance of the Chl-a signal associated with the different
water masses considered in this study. Considering that the SPM concentration was not
available for all the in situ samples in the DS-W, SPM was estimated from the Rrs(665) using
the model by Han et al. [37], which has had a reliable performance illustrated from various
former studies in contrasted coastal waters (e.g., [38,39]).

2.2. Satellite and Matchup Dataset

Data in the DS-W have been acquired before the S2 and S3 time period (from June
2015 and February 2016, respectively). An external and independent in situ dataset, which
encompasses only Chl-a measurements, has been therefore considered in addition to the DS-
W for validation purposes (Figure 4). In practice, Chl-a samples collected along the French
coast are in the frame of the SOMLIT (Coastal Environment Observation Service, https:
//www.somlit.fr/, accessed on 15 June 2021) and REPHY (Observation and Monitoring
Network for Phytoplankton and Hydrology in coastal waters, https://www.seanoe.org/
data/00361/47248/, accessed on 15 June 2021) French national survey programs. These
long-lasting in situ datasets (e.g., continuous monthly data since 1997 for SOMLIT) present
the advantage of being acquired following a standardized protocol.
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In practice, Satellite Sentinel2-MSI A/B (60 m resolution) and Sentinel3-OLCI A/B
(300 m resolution) Rrs data have been extracted for both SOMLIT and REPHY Chl-a samples
over the time periods from 7 September 2015 to 19 March 2021 and from 24 May 2016
to 7 April 2021 for MSI and OLCI, respectively). Specifically, top-of-atmosphere Level 1
products have been processed considering three atmospheric correction schemes including
POLYMER (version 4.13, [40]), C2RCC [41], and ACOLITE [42]. The matchup extraction
was performed considering a 3 × 3 window around each in situ sampling point. Several
quality control criteria were then applied [43] considering the following: (1) the number of
valid pixels (at least 5 valid pixels among the 9 pixels extracted), (2) the spatial homogeneity
of the matchup subsets assessed from the variation coefficient within the subset window
(CV = standard deviation/mean. 100 < 30%), and (3) the time difference between in situ
and satellite measurements (lower than 3 h).

After the application of all these criteria, the final matchup dataset (DS-M) is then composed
of a maximal number of 194 matchup points for MSI and 362 for OLCI with Chl-a concentrations
ranging between 0.19 and 34.12 µg/L (mean = 2.48 µg/L, standard deviation = 3.79 µg/L) and
0.05 and 52.93 µg/L (mean = 2.52 µg/L, standard deviation = 3.7 µg/L), respectively. The Chl-a
statistic of the DS-M is further illustrated in Figure 5.

In addition to the Sentinel2 and Sentinel3 matchup dataset, the global MERIS Glob-
Coast dataset (monthly 1 km spatial resolution, [15,33]) was further considered for illustrat-
ing and discussing the potential applicability of the models selected with the frame of this
study with a global-scale perspective.

Remote Sens. 2023, 15, 1653 6 of 28 
 

 

products have been processed considering three atmospheric correction schemes includ-
ing POLYMER (version 4.13, [40]), C2RCC [41], and ACOLITE [42]. The matchup extrac-
tion was performed considering a 3 × 3 window around each in situ sampling point. Sev-
eral quality control criteria were then applied [43] considering the following: (1) the num-
ber of valid pixels (at least 5 valid pixels among the 9 pixels extracted), (2) the spatial 
homogeneity of the matchup subsets assessed from the variation coefficient within the 
subset window (CV = standard deviation/mean. 100 < 30%), and (3) the time difference 
between in situ and satellite measurements (lower than 3 h). 

After the application of all these criteria, the final matchup dataset (DS-M) is then 
composed of a maximal number of 194 matchup points for MSI and 362 for OLCI with 
Chl-a concentrations ranging between 0.19 and 34.12 µg/L (mean = 2.48 µg/L, standard 
deviation = 3.79 µg/L) and 0.05 and 52.93 µg/L (mean = 2.52 µg/L, standard deviation = 3.7 
µg/L), respectively. The Chl-a statistic of the DS-M is further illustrated in Figure 5. 

In addition to the Sentinel2 and Sentinel3 matchup dataset, the global MERIS Glob-
Coast dataset (monthly 1 km spatial resolution, [15,33]) was further considered for illus-
trating and discussing the potential applicability of the models selected with the frame of 
this study with a global-scale perspective. 

 
Figure 5. Box plot showing Chl-a range of the final matchup dataset (DS-M) regarding OLCI and 
MSI sensors. 

2.3. Optical Classification 
2.3.1. Optical Water Types Definition 

Optical water types (OWTs) were defined using the procedure defined in [23] ap-
plied to the DS-W Rrs dataset. In practice, normalized Rrs data were considered to cluster 
the reflectance data focusing on the shape of the spectra. The normalization was applied 
to multispectral Rrs data considering 6 wavelengths in the visible part of the spectrum 
(412, 443, 490, 510, 560, and 665 nm) centered on the OLCI bands. The normalized Rrs was 
determined by the ratio between its original value and the surface below the spectral 
shape as follows: 

Rrs
norm = 

Rrs λ)
Rrs λ)dλλ2

λ1

 (1)

where Rrs
norm represents the normalized remote sensing reflectance. 

An unsupervised classification was then applied to the Rrs
norm dataset using Ward’s 

clustering method [44], which presents the advantage of being less sensitive to outliers 
compared to other approaches [23]. 

This classification led to the definition of 5 optical water types showing different Rrs 
spectral shapes (Figure 6a). OWTs 1 and 2 (N = 269 and 185, respectively) are associated 
with clear oligotrophic to mesotrophic waters (mean Chl-a = 0.38 ± 0.36 and 0.96 ± 0.74 

Figure 5. Box plot showing Chl-a range of the final matchup dataset (DS-M) regarding OLCI and
MSI sensors.

2.3. Optical Classification
2.3.1. Optical Water Types Definition

Optical water types (OWTs) were defined using the procedure defined in [23] applied
to the DS-W Rrs dataset. In practice, normalized Rrs data were considered to cluster the
reflectance data focusing on the shape of the spectra. The normalization was applied to
multispectral Rrs data considering 6 wavelengths in the visible part of the spectrum (412,
443, 490, 510, 560, and 665 nm) centered on the OLCI bands. The normalized Rrs was
determined by the ratio between its original value and the surface below the spectral shape
as follows:

Rnorm
rs =

Rrs(λ)∫ λ2
λ1

Rrs(λ)dλ
(1)

where Rnorm
rs represents the normalized remote sensing reflectance.

An unsupervised classification was then applied to the Rnorm
rs dataset using Ward’s

clustering method [44], which presents the advantage of being less sensitive to outliers
compared to other approaches [23].
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This classification led to the definition of 5 optical water types showing different Rrs
spectral shapes (Figure 6a). OWTs 1 and 2 (N = 269 and 185, respectively) are associated with
clear oligotrophic to mesotrophic waters (mean Chl-a = 0.38 ± 0.36 and 0.96 ± 0.74 µg/L,
respectively) with Rrs spectra typically peaking in the blue part of the visible spectrum.
OWT 3 samples correspond to mesotrophic waters characterized by high Rrs in the green
part of the visible spectrum with an Rrs plateau ranging between 490 and 560 nm (N = 426,
mean Chl-a = 2.33 ± 3.09 µg/L). The Chl-a/SPM ratio for these 3 OWTs increases from
OWT 1 (2.25 × 10−3) to OWT 3 (4.04 × 10−3).
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Figure 6. (a) Average Rnorm
rs spectra corresponding to the optical water types defined from the

DS-W dataset (N = 1244); box plots illustrating the distribution of Chl-a (b) and Chl-a/SPM ratio
(c) associated with each optical class. While all the samples considered in DS-W are available for all
the visible wavelengths corresponding to Sentinel2−MSI and Sentinel3−OLCI bands, it is worth
noticing that the spectral coverage of the Rrs in situ dataset in the NIR part of the spectrum is unequal.
For most of the samples associated with OWTs 1, 2, and 3, little information was available in the
NIR (12.8% for OWTs 1, 2, and 3, respectively) while this information was present for most (98%)
of the samples associated with OWTs 4 and 5, for which red and NIR algorithms are devoted (see
Section 2.4).

OWTs 4 and 5 are associated with highly turbid/eutrophic coastal waters. OWT 4 corresponds
to high-Chl-a waters with an Rrs peak at 560 nm (N = 307, mean Chl-a = 43.72± 80.89 µg/L) and
shows the maximal Chl-a/SPM ratio among the different OWTs (Chl-a/SPM = 13× 10−3) related
to ultra-eutrophic for these samples. Conversely, OWT 5 samples (N = 57) are more likely associated
with turbid waters showing a higher proportion of non-algal particles (sediments and detritus)
when compared to OWT 4 as emphasized from the lower average Chl-a (7.15± 10.46 µg/L) and
the lowest Chl-a/SPM ratio (1.43× 10−3) found for these samples (Figure 6c).

2.3.2. Satellite Pixel Optical OWT Labeling, OWT Membership Calculation

The five OWTs defined in the previous section were used for labeling the satellite
Rrs spectra. This labeling consists of computing the OWT membership of an input Rrs
spectrum (e.g., satellite Rrs) to each of the OWTs defined from the in situ dataset, which are
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characterized by specific mean (µ) and covariance ( Σ) matrices [23,25]. The Mahalanobis
distance ∆2 applied to the log-transformed Rnorm

rs is then used to estimate the distance
between input spectrum x and a given OWT ic as follows:

∆2
ic(x) = (x − µic)

TΣ−1
ic (x − µ ic) (2)

where T indicates the matrix transpose.
The OWT membership of satellite pixels to each of the defined OWTs was then

estimated as in [23]. The probability density function (PDF), corresponding to each targeted
pixel associated with x = log(R rs

)
, is calculated based on its Mahalanobis distance (∆2

M) to
the distribution of OWT ic and can be expressed as below:

Pic(x) =
1

(2π)d/2|Σ|1/2 exp
[
−1

2
∆2

ic(x)
]

(3)

The computed probability values are then normalized (p*) so that the sum of OWT
memberships equals 1 by taking the ratio between P for ic OWT and the total P for all
OWTs considering such as follows [13]:

p∗ic =
Pic

∑Nc
ic=1 Pic

(4)

2.4. Chl-a Candidate Inversion Algorithms

A variety of empirical band-ratio-based bio-optical algorithms have been developed
for estimating Chl-a concentration from satellite ocean remote sensing observation. Here, a
selection of “standard” models based on different input Rrs data and formulations have
been performed among the number of different methods available considering models
whose performances have already been shown to be relevant to the diverse types of coastal
environments taking into account results provided from recent extensive intercomparison
exercises (e.g., [26]). In practice, historical models considered here can be split into two
categories: blue/green(Red) ratio-based models more likely adapted to clear to moderately
turbid waters [8,45] and red/NIR ratio-based methods specifically developed for turbid
environments [17,18,21,46].

It is important to mention that all the considered models (except the model OC5, [45])
have been considered in their original and tuned versions fitting the different formulations
to the DS-D data corresponding to the optical water types they have been designed for (see
Sections 3.2 and 3.3). These coefficients are here provided for each original model.

2.4.1. Blue/Green (Red) Band-Ratio-Based Models

Considering the radiometric resolution of Sentinel2-MSI and Sentinel3-OLCI sensors,
two models have been selected for clear to medium turbid waters. These models corre-
spond to the empirical NASA OC-family algorithms developed from the NOMAD dataset
extensively used to produce standard Chl-a products from satellite observation.

(1) OC6

This recent algorithm OC6 [8] corresponds to an adaptation of the OC4 model [7],
which includes additional bands at 412 and 665 nm to extend the applicability of this
approach, typically applied to open ocean waters, towards coastal waters. This model can
be described as follow:

Chl-a = 10 a0+a1 × R+a2 × R2+a3 × R3+a4 × R4
(5)

where

R = log10

{
max[Rrs(412), Rrs(443), Rrs(490), Rrs(510)]

mean[R rs(560), Rrs(665)]

}
(6)
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The original coefficients for this model are a0 = 0.2424, a1 = −2.2146, a2 = 1.5193,
a3 = −0.7702, and a4 = −0.4291

(2) OC3

The main equation of the OC3 model to compute Chl-a remains the same as in
Equation (5). However, this algorithm uses a different blue/green ratio input that is
established by 3 spectral bands in the visible part of the spectrum [8]. Such a ratio can be
expressed as below:

R = log10

{
max[(490), Rrs(490)]

Rrs(560)]

}
(7)

and the coefficients are a0 = 0.41712, a1 = −2.56402, a2 = 1.22219, a3 = 1.02751, and
a4 = −1.56804.

(3) OC5—Gohin

The five channels model by Gohin et al. [45] was developed in order to correct the
overestimation of the Chl-a estimated from the OC4 model in coastal waters presenting
moderate turbidity levels and highCDOM loads, based on sensor-specific LUTs empirically
developed from an extensive in situ dataset. It has been considered here using the LUTs
defined for MERIS.

2.4.2. Red–NIR Algorithms

(1) Gurlin11

The empirical model developed by Gurlin et al. [17] consists of a second-order polyno-
mial function based on the Rrs(709)/Rrs(665) band ratio:

Chl-a = a×
[

Rrs(709)
Rrs(665)

]2
+b ×

[
Rrs(709)
Rrs(665)

]
+c (8)

where a = 25.28; b = 14.85; c = −15.18.

(2) Gilerson10

The model proposed for MERIS by Gilerson et al. [18] is based on a linear relationship
between in situ Chl-a and the NIR/red ratio of MERIS, such as the following:

Chl-a = a ×
[

Rrs(709)
Rrs(665)

]
+b (9)

where a = 35.745; b = −19.295; c = 1.124.

(3) Gons08

The Chl-a inversion algorithm developed by Gons et al. [47] for turbid environments
is a semi-analytical approach considering IOPs information along with the red–NIR re-
flectance ratio and the reflectance at 779 nm. The version proposed in [21] is considered
here and is expressed as follows:

Chl-a =

{[
Rrs(709)
Rrs(665)

]
×
[
aw(709)+bb−aw(665)−bp

b

]}
a∗phy(665)

(10)

where aw(709) and aw(665), the water absorption coefficients at 709 nm and 665 nm, were
estimated as 0.7 m−1 and 0.4 m−1, respectively [48]. a∗phy(665) is the chlorophyll-specific

absorption that was defined as 0.016 m2 mg−1. The calculation of the back-scattering
coefficient bb is estimated from the water-leaving reflectance at 779 nm as follows:

bb =
1.61 × Rw(779)

0.082−0.6Rw(779)
(11)
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where Rw (779) is the water-leaving reflectance (Rw = Rrs × pi).

(4) Mishra12

The model proposed by Mishra and Mishra [46] is an empirical model developed for
application in estuarine and coastal waters. It is based on the calculation of the Normalized
Difference Chlorophyll Index (NDCI) as an input variable to derive Chl-a:

NDCI =
Rrs(709)−Rrs(665)
Rrs(709)+Rrs(665)

(12)

Chl-a = a + b × NDCI + c × NDCI2 (13)

where a = 42.197; b = 236.5; c = 314.97.

2.5. Statistical Indicators for Algorithm Performance Assessment

The performance of the considered Chl-a models was evaluated considering a set of
statistical descriptors including the following:

RMSD =


N

∑
i=1

[
log10

(
Chl-amod

i

)
− log10(Chl-a obs

i

)]2

N


1
2

(14)

MAPD = median


∣∣∣ log10

(
Chl-amod

i

)
− log10(Chl-a obs

i

)∣∣∣
log10

(
Chl-aobs

i

)
 × 100% (15)

MRAD =
1
N
×

N

∑
i=1

∣∣∣Chl-amod
i −Chl-aobs

i

∣∣∣
Chl-aobs

i
× 100% (16)

MB =
1
N
×

N

∑
i=1

∣∣∣ log10

(
Chl-amod

i

)
− log10(Chl-a obs

i

)∣∣∣ (17)

log10

(
Chl-amod

)
= m × log10

(
Chl-aobs

)
+c (18)

where Chl-aobs represents the in situ Chl-a observations and Chl-amod the Rrs-based
Chl-a estimates.

In addition, a linear regression between Chl-aobs and Chl-amod was performed for
each considered model leading to the estimation of a slope and coefficient of determination
(R2) as additional statistical descriptors.

Radar charts have been further used to compare the performance of the Chl-a inver-
sion algorithms. This graphical display allows the representation of multiple statistical
parameters summarized in the form of a two-dimensional chart [49]. Here, an overview of
the normalized MAPD, RMSD, MRAD, MB, slope, and R2 (Equations (14)–(18)) is provided,
and the normalization is computed as follows:

RMSDnorm(j) =
RMSD(j)

max(RMSD (j) , j = 1, k)
(19)

MAPDnorm(j) =
MAPD(j)

max(MAPD(j), j = 1, k)
(20)

MRADnorm(j) =
MRAD(j)

max(MRAD(j), j = 1, k)
(21)

MBnorm(j) =
MB(j)

max(MB(j), j = 1, k)
(22)



Remote Sens. 2023, 15, 1653 11 of 26

Slopenorm(j) =
|1− Slope(j)|

max(|1− Slope(j)| , j = 1, k)
(23)

R2norm(j) =
min(R 2(j) , j = 1, k)

R2(j)
(24)

where j represents each individual Chl-a model considered in a defined intercomparison
exercise.

In addition to a synthetic visual examination, radar plots were also used to compute
a unique statistical indicator outlining the general performance of the considered Chl-
a inversion methods. This consists in practice to compute the area associated with the
polygons linking the normalized indicators indicated from (19) to (24) as below:

Area = 1
2 ×

π
6 × [RMSD norm(j) ×MAPDnorm(j)+MAPDnorm(j) ×MRADnorm(j)+MRADnorm(j) ×

MBnorm(j)+MBnorm(j) × Slopenorm(j)+Slopenorm(j) × R2norm(j)+R2norm(j) × RMSDnorm(j)
] (25)

3. Results
3.1. Performances of Historical Models

The performances of the historical models described in Section 2.4 in their original ver-
sion were first illustrated considering the whole dataset (DS-W, Figures 7 and 8) gathering
a maximum of 1244 values considering the Rrs input wavelengths for the OC3, OC5, and
OC6 models (i.e., Rrs at 412, 443, 490, 510, 560, and 665 nm) and 470 values for the one used
in Gurlin11, Gilerson10, Mishra12, and Gons08 (i.e., Rrs at 665, 709, and 779 nm).

As already documented, models based on the use of the band ratios in the visible part
of the spectrum (OC6, OC3, and OC5, Figure 7a–c) provide reliable Chl-a estimates for
clear to medium turbid waters (OWTs 1, 2, and 3) with R2 values of 0.59, 0.61, and 0.57,
respectively (Figure 8). The models, however, show limitations for estimating Chl-a in the
most turbid environments (OWTs 4 and 5) as illustrated by the high scattering found in
Figure 7 as well as by the low R2 (<0.28) found for the OWT 4 samples when applying these
models (Figure 8). The OC5 model, which has been designed for moderately coastal waters
providing a correction of the overestimation generally provided from the OC4 algorithm,
also shows clear limitations for the OWT 4 (Figure 7) in agreement with the previous
studies [12,15]. Loisel et al. [15], for instance, documented an exponential increase in the
uncertainties related to OC5-derived Chl-a with increasing turbidity (i.e., SPM concentra-
tion > 60 mg·L−1). As expected, the OC3, OC4, and OC5 models (not based on the NIR
band) are totally saturated over the whole range of Chl-a for the OWT 5 samples generating
quasi-invariant Chl-a estimates.

Red–NIR-based approaches (Gurlin11, Gilerson10, Mishra12, and Gons08; Figure 7d–g)
are conversely showing poor performances for OWT 1, 2, and 3 samples with the R2 remaining
below 0.1 (see Figure 8) for these waters whatever the model considered. These models have,
however, not been developed for these waters with a relatively low level of turbidity. A
general better performance is, however, found for Gilerson10, Gurlin11, Mishra12, and Gons08
models for the OWT 4 samples. This confirms the reliable applicability of the latter methods
for estimating Chl-a over highly turbid and high-Chl-a waters [26]. These models, in their
original formulations, still, however, show limitations, more likely related to the data range
they have been developed. This is emphasized, for instance, by the saturation pattern found
for the lower-end Chl-a values for Mishra12 (Figure 7f) already pointed out by previous
studies [46]. The model of Gons08 while providing relatively good Chl-a estimates for
high Chl-a values (>10 g·L−1) tends to fail for low Chl-a for the OWT 4 samples, highly
underestimating the Chl-a value (Figure 7g), and further generates negative Chl-a (N = 287
vs. N = 299, 298, and 300 for Gurlin11, Gilerson10, and Mishra12, respectively) in agreement
with former studies (e.g., [12,21]).

None of the red–NIR models evaluated are able to produce reliable Chl-a estimates
for the ultra-turbid waters represented by the OWT 5 samples, due to the very low impact
of the Chl-a on the reflectance signal for these waters [12]. A clear saturation is found for
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Gilerson10, Gurlin11, and Mishra12 (Figure 7d–f) and low R2 values were obtained for these
models (Figure 8), emphasizing the limitation of these red–NIR-based methods towards
ultra-turbid waters. The model by Gons et al. [21] is globally able to reproduce the Chl-a
gradient found in OWT 5 data although it has an overall high uncertainty level as illustrated
by the scattering in Figure 7d for these samples. As previously mentioned for OWT 4, this
model tends to produce negative Chl-a values as illustrated by the lower estimated Chl-a
for the Gons08 model when compared to Gurlin11, Gilerson10, and Mishra12 algorithms
for OWT 5 (N = 35 and 57, 57, and 57, respectively).
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These results are confirming the relative limitations of the different band-ratio for-
mulations usually considered for estimating Chl-a over contrasted coastal environments.
Considering the performance of the considered models in their original formulations, an
optimization of historical models as well a development of a new formulation was further
performed, subsetting the in situ dataset into two groups: (1) one gathering oligotrophic to
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mesotrophic waters (OWTs 1, 2, 3) for which visible wavelengths have been considered
and (2) one gathering highly turbid/high-Chl-a samples corresponding to OWT 4.

Further considering that all the band-ratio-based evaluated methods were failing
for OWT 5 samples, no adaptation of these existing methods was performed for the
corresponding samples.
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Figure 8. Determination coefficient (R2) of the linear relationships between the in situ Chl-a and the
estimated Chl-a corresponding to each OWT subset in DS-W (Figure 6) for the different band-ratio-
based historical models considered in the frame of this study in their original versions (Section 2.4).

3.2. Chl-a Estimates for Clear to Medium Turbid Waters
3.2.1. Development of a New Algorithm for OWTs 1, 2, and 3

Considering the previous results, OC3 and OC6 models (OC3-Tuned and OC6-Tuned),
which are the most adapted for clear to medium turbid waters (OWTs 1, 2, and 3), have
been optimized on the DS-D dataset (N = 617, Table 2) using the QR decomposition method
where the input matrix of the regression problem can be presented as a product of the
orthogonal matrix (Q) and a triangular matrix (R). This optimization approach is available
as the “fitlm” function in Matlab version 2022a.

Table 2. Coefficients of the OC3 and OC6 models adapted to the DS-D dataset for OWTs 1, 2, and 3
(N = 617).

Models Tuned Coefficients Equations R2

OC3 a0 = 0.289; a1 = −2.997; a2 = 1.956; a3 = 2.189; a4 = −3.773 (5), (6) 0.63
OC6 a0 = 0.931; a1 = −2.710; a2 = −2.715; a3 = 8.873; a4 = −5.340 (5), (7) 0.60

In addition to these adapted historical formulations, an alternative model for olig-
otrophic to mesotrophic waters was developed by exploiting the DS-D dataset. This model
named MUBR is based on a combination of multiple band ratios, which have been shown
to provide the best performance for estimating Chl-a from DS-D (Figure 9). It is worth
noticing that the Rrs(412) was not considered in the development of the MUBR model
considering that this wavelength is not available for MSI and that this band is susceptible to
be affected by large uncertainties related to the atmospheric correction processes [50]. The
MUBR algorithm is in practice based on the combination of three band ratios using four
visible bands from the blue to the red available for both Sentinel2-MSI and Sentinel3-OLCI.
This formulation is expressed as follows:

ChlMuBR= 10a0 +a1R1+a2R2+a3R3 (26)
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where

R1 = log10

[
Rrs(490)
Rrs(443)

]
(27)

R2 = log10

[
Rrs(560)
Rrs(490)

]
(28)

R3 = log10

[
Rrs(665)
Rrs(560)

]
(29)

and where a0 = 0.665, a1 = −3.506, a2 = 3.590, and a3 = −0.019.
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3.2.2. Model Selection for Clear to Medium Turbid Waters

The intercomparison on the performance of the Chl-a estimates on clear to medium
turbid waters (OWTs 1, 2, and 3) was performed on the independent validation dataset
DS-V (N = 263) considering, in addition to the MUBR, classical clear waters band-ratio
models adapted on DS-D (OC3-Tuned and OC6-Tuned) as well as considering the model
OC5 in its original version. The results in Figure 10a–c show that the MUBR model provides
the best performance considering our validation dataset when compared to OC3-Tuned
and OC6-Tuned models with an overall lower dispersion (e.g., MRAD = 66.72% vs. 97.12%
and 86.24%, respectively) as well as with a general better estimation of Chl-a value over
the whole range of Chl-a for the considered subset (e.g., slope = 0.76 vs. 0.69 and 0.64,
respectively). We observed a similar performance of the OC5 original model in the clear
to medium turbid waters on the validation dataset (Figure 10c) to that obtained for OC3
(e.g., area of 2.109). The better performance for the MUBR model is further underlined in
the radar plot provided in Figure 10d where the area found for the MUBR, representing
a summary of the statistical parameters considered, is lower (1.24) than that for the other
three methods considering both their original and adapted versions (OC3-Tuned: 2.45 and
2.09, respectively; OC6-Tuned: 2.45 and 2.05, respectively). The lower performance of the
OC3 and OC6 methods on the DS-V subset for OWTs 1, 2, and 3 can be explained by an
overestimation of the very low Chl-a values as well as by a saturation of the Chl-a estimated
for the highest Chl-a values (Figure 10).
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Our results, therefore, tend to indicate that the model MUBR represents a valuable
alternative for estimating Chl-a focusing on the clear to moderate turbid waters gathered
using the dataset considered in the frame of the present study (OWTs 1, 2, and 3 data).
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Figure 10. Intercomparison of the performance of the Chl-a inversion models for the OWT 1, 2,
and 3 samples in the in situ validation dataset DS-V (N = 263): relationships between in situ vs.
estimated Chl-a applying (a–c) the OC3, OC6, and OC5−Gohin models adapted to the development
dataset DV−D and (d) for the MUBR model; (e) summary of the performance of the Chl-a inversion
models where the lowest area of the polygon associated with each model represented in the radar
plot corresponds to the best model. Note that the statistics for the original versions of OC3 and OC6
are also shown for completeness.

3.3. Chl-a Estimation in Turbid/high-Chl-a Waters (OWT 4)
3.3.1. Development of a New Algorithm

Considering the results of the previous section, a focus was performed to define the
model most adapted for estimating Chl-a over highly turbid/high-Chl-a waters correspond-
ing to OWT 4 samples only. This is also due to the fact that none of the adapted models
has been found to provide accurate Chl-a retrieval for OWT 5 samples (not shown). In
practice, the Red-NIR-based models by Gurlin11, Gilerson10, Mishra12, and Gons08 were
adapted to our dataset defining new coefficients for each model refitting the corresponding
formulation on the DS-D samples (not shown, Table 3).
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Table 3. The tuned coefficients for the Gurlin10, Gilerson11, Gons08, and Mishra12 models adapted
to the DS-D dataset for OWT 4 (N = 210).

Models Tuned Coefficients Equations R2

Gurlin11 a = 0.83; b = −11.398; c = 24.923 (8) 0.80
Gilerson10 a = 13.328; b = −6.373; c = 1.393 (9) 0.80

Gons08 a∗phy(665) = 0.0139; p = 1.0752 (10), (11) 0.79
Mishra12 a = 13.801; b = 111.673; c = 354.095 (12), (13) 0.82

In addition, a new formulation (referred to as the NDCI-based model) was developed
for OWT 4 samples (Figure 11) considering the saturation pattern towards low Chl-a values
already reported for models using the NDCI parameter as an input value [26,46,51] and is
expressed as follows:

Chl-a = 10a0+a1NDCI+a2NDCI2
(30)

where a0 = 1.179, a1 = 2.689, and a2 = −1.083.
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Figure 11. (a) Relationship between the in situ vs. estimated Chl-a from the NDCI-based model
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OWT 4 Chl-a in DS-D and for the Chl-a values estimated from the NDCI-based model.

3.3.2. Model Selection for Highly Turbid/High-Chl-a Waters

The relative performances of these red–NIR models were then evaluated on the DS-V
dataset for OWT 4 (Nmax = 90, Figure 12). Although very similar statistics are found for
all the tuned versions of the models evaluated, the new NDCI-based model presents the
best performances (area = 0.472, Figure 12f). As previously pointed out from the DS-W
dataset (Figure 7g), Gons08 tends to generate an underestimation of the lower-end Chl-a
concentration (i.e., Chl-a < 5 µg/L) in OWT 4, potentially leading to the generation of
negative values (Figure 12c, N = 86 for the original and tuned versions vs. N = 90 for
the other models). It is worth mentioning that the tuned version of Gons08 does not
provide better estimates than the original one, which is probably related to the difference
in the Chl-a range presented in our development dataset (1.37–556 µg/L) and the one
in [21] (0.37–131 µg/L) as the adapted coefficients and the performances corresponding
to different inversion models in the DS-V might vary according to Chl-a level. The tuned
versions of Gilerson10 and Gurlin11 (Figure 12a,b) globally show satisfactory performances
(area = 0.602 and 0.577, respectively), confirming the effectiveness of these models to
derive Chl-a in turbid environments [26]. Interestingly the tuned version of Mirshra12
(Figure 12d), although exhibiting a generally reliable performance, still shows a saturation
pattern towards the smallest Chl-a for the OWT 4 samples (<5 µg/L). Such a saturation
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pattern is not found when applying the modification of this model corresponding to the
NDCI-based formulation proposed here (Figure 12e).
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Figure 12. Intercomparison of the performance of the adapted versions of Red-NIR model on highly
turbid/high-Chl-a validation data corresponding to the OWT 4 samples in DS-V (N = 90): scatterplots
of the in situ Chl-a vs. the Chl-a estimated from (a) Gilerson10, (b) Gurlin11, (c) Gons08, (d) Mishra12,
and (e) NDCI-based models; a summary of the performance of the considered model for estimating
Chl-a is provided in the radar plot (f) where the performance of both original and tuned versions of
these 4 models is also provided for completeness.

This intercomparison exercise thus suggests that the NDCI-based model represents the
most adapted model for estimating Chl-a over highly turbid/high-Chl-a (OWT 4) waters
gathered in our in situ dataset.

3.4. Class-Based Combination of Multiple Chl-a Models for OWTs 1, 2, 3, and 4

The previous algorithm evaluation exercises clearly confirm the inability for a unique
simple band ratio to deliver reliable estimates over the whole range of Chl-a values found
in coastal waters [12,15,26]. We further illustrate the use of two band-ratio formulations
considering a first model combining band ratios in the visible domain for clear to medium
turbid waters (MUBR for OWTs 1, 2, 3) and a red–NIR model (NDCI-based) for highly
turbid/high-Chl-a waters (OWT 4).

Different methods can be used for producing Chl-a maps by applying different bio-
optical algorithms on a pixel-per-pixel basis. Diverse former studies have, for instance,
illustrated the interest of using a weighted average to provide smooth Chl-a gradients
in transition areas between different inversion algorithms. Such weighting approaches
were diversely based on the use of Chl-a values [52] or on the exploitation of the optical
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characteristics of the water masses provided from optical water types defined from the
reflectance spectra [25,26,53].

Such an optical-based weighted approach was considered in the frame of this study
using weights based on the belonging probability of each sampling point (in situ sample
or satellite pixel) to each optical group of optical water types to which a specific Chl-a
model should be applied (i.e., MUBR for OWTs 1, 2, and 3 and Mishra12-Tuned for OWT
4). The combination of algorithms from two groups of OWTs was performed following the
equation [23]:

Chl-a = (p ∗1+p∗2+p∗3) × Chl-a123+p∗4 × Chl-a4 (31)

where the terms are defined as follows:

• p∗1 , p∗2 , p∗3 , and p∗4 correspond to the normalized probability for OWTs 1, 2, 3, and 4,
respectively (Equation (4), [13]).

• Chl-a123 is the Chl-a estimated from MuBR designed for OWTs 1, 2, and 3. Chl4 is the
Chl-a estimated by using red/NIR models designed for OWT 4. The tuned coefficients
are used for the calculation of Chl-a123 and Chl-a4 (Equations (26) and (30)).

The evaluation of this weighted combination is provided in Figure 13. It is worth
mentioning that the number of points presented in Figure 13 (N = 147) corresponds to the
maximal number of points in DS-V with available information from the visible to the NIR
for samples corresponding to OWTs 1, 2, 3, and 4. An overall good performance is found
for the MUBR-NDCI-based combination (MAPD = 21.64%, RMSD = 0.25).
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Figure 13. Performance of the combined model between the MUBR model for clear/moderate turbid
waters (OWTs 1, 2, and 3) and the NDCI-based model on the DS-V (N = 147).

3.5. Matchup Exercise

The validation of the Chl-a estimates performed using the MUBR-NDCI-based com-
bination proposed in this study was performed through a matchup exercise based on the
DS-M dataset for both OLCI and MSI (Section 2.2). Our results emphasize a general ex-
pected degradation in the accuracy of the Chl-a estimates for these two sensors (Figure 14)
when compared to the performance of the Chl-a inversion performed using the in situ
validation dataset (Figure 13). Globally, the best performance is here found when applying
the MUBR-NDCI-based combination using satellite Rrs(λ) derived from the POLYMER
processing for both sensors. The Chl-a derived with POLYMER yields the highest number
of valid matchups for both OLCI (N = 358 vs. N = 184 and 225 for ACOLITE and C2RCC,
respectively) and MSI (N = 188 vs. N = 138 and 143 for ACOLITE and C2RCC, respectively).
This result is in agreement with former intercomparison exercises (e.g., [54]). Although it
has an overall high scattering level in the matchups, POLYMER globally provides better
estimates from the clear to the highly turbid waters with a better performance found for
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OLCI when compared to MSI (Figure 14b,e). For both sensors, ACOLITE processing tends
to generate an overestimation of the retrieved Chl-a also found for C2RCC, especially
for the OWT 4 samples, suggesting the probable need to improve atmospheric correction
in the NIR domain. The patterns depicted in Figure 13 remain globally valid when con-
sidering the common matchup points (not shown) for the three atmospheric correction
schemes applied to both sensors. A general better performance in retrieving Chl-a is still
found when applying the MUBR-NCDI-based combination to POLYMER data to OLCI
(e.g., MAPD = 114, 172, and 116% for POLYMER, ACOLITE, and C2RCC, respectively;
N = 214) and MSI (e.g., MAPD = 68, 149, and 148% for POLYMER, ACOLITE, and C2RCC,
respectively; N = 99) Rrs(λ).
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Figure 14. Chl-a matchup validation (DS-M dataset, Section 2.2) computed applying the MUBR-
Mishra12-Tuned combination (Section 3.4) on the Rrs(λ) generated applying three atmospheric correc-
tions schemes (ACOLITE, POLYMER, and C2RCC) for Sentinel3−OLCI (a–c) and Sentinel2−MSI
(d–f), respectively.

Our results therefore relatively differ from previous works [54] where POLYMER
was not found to provide the best performance when evaluating different atmospheric
correction schemes (and Chl-a models) for Landsat-8 and Sentinel-2 applications over lakes,
rivers, and coastal waters. However, this better performance might be related to the general
good performance of POLYMER when considering band ratios as illustrated from former
studies in coastal waters [50,55,56]. This might also be explained by the fact that the current
matchup dataset (DS-M) does not contain many very highly turbid or high-Chl-a waters
(max Chl-a = 34.12 µg/L and 52.93 µg/L for MSI and OLCI, respectively) underlining the
need to perform additional matchup exercises on a larger dataset. Investigating in more
detail the relative impact of the considered atmospheric correction schemes is out of the
scope of this study considering that the matchup dataset DS-D contains Chl-a data only.
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However, it should be mentioned that up to now no consensual atmospheric correction
scheme is currently recommended for Sentinel2-MSI and Sentinel3-OLCI applications in
coastal waters, as the performance of the different approaches is susceptible to vary widely
according to the wavelength as well as according to the water type considered [50,54,57].

4. Discussion
4.1. Chl-a Algorithms Combination

The results obtained in the previous sections have illustrated that the red–NIR formu-
lations globally demonstrated their ability to retrieve Chl-a values in highly turbid/high-
Chl-a waters with a satisfying accuracy (Figure 13). Our results further emphasize the
necessity to consider compatible models when applying weighting approaches, such as the
one depicted in Section 3.4, taking care of the applicability of the approaches to be merged
especially in transition areas. A limitation was, for instance, found for the formulation by
Gons et al. [21], which tends to generate negative Chl-a values for the low Chl-a levels
(<5 µg/L) for the OWT 4 waters. Such limitations might represent an issue when merging
multiple algorithms on a pixel-per-pixel basis. As a matter of fact, the application of a
combination based on MUBR and Gons08 will lead to a generation of bias or even create
negative Chl-a in the transition area between OWT 3 and OWT 4 (not shown) where pixels
can show relatively high OWT membership values for both OWTs.

To avoid such issues; a possible way would consist of considering other approaches than
the one based on the weighting methods based on pixel OWT membership (Equation (31))
for combining multiple bio-optical models. Lavigne et al. [12], for instance, recently proposed
pixel-per-pixel-based quality control tests (diversely based on the Chl-a as well as on thresholds
applied on different MERIS Rrs(λ)) for selecting the most appropriate models for estimating
Chl-a [8,21,45]. As mentioned by these authors, the main objective of such a quality-control-
based approach is more likely to provide the users with a way to evaluate the reliability of the
models applied to a defined area. These authors further illustrate the possibility to use this
selection procedure to eventually merge multiple algorithms although such an approach might
generate discontinuity in the Chl-a maps when switching from one algorithm to another.

The interest of using the OWT membership information to merge the two inver-
sion models considered here was further illustrated from a Sentinel2-MSI map in the
Vietnamese coastal waters close to the Mekong River and Nha Be River estuaries (East
Vietnam Sea, Figure 15a), which shows contrasted water masses ranging from clear
(OWT 2) to ultra-turbid (OWT 5) waters (Figure 15c). The MUBR-NDCI-based com-
bination was here applied considering for each pixel the best model according to the
pixel OWT (i.e., without weighting the models, not shown) as well as applying the
weighing approach described in Equation (31) (Figure 15d). The need to consider the
pixel OWT membership to combine MUBR- and NDCI-based models is illustrated in
Figure 15e where the relative difference between the Chl-a map produced without and
with a weighting function is shown. It appears that the simple juxtaposition of the most
pertinent model can generate significant discontinuities in the final Chl-a estimates. As
a matter of fact, maximum differences reaching 10% are observed in the transition areas
between OWTs 3 and 4. Such possible spatial artifacts induced using an unweighted
function can represent a significant issue when using high-spatial-resolution data, such
as from Sentinel2-MSI (or Landsat8-OLI), which are susceptible to capturing fine-scale
transition gradients in coastal waters [12,23].
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Figure 15. Illustration of the interest of using a weighting function based on the OWT membership
probability for blending multiple Chl-a from a Sentinel2−MSI (60 m, POLYMER processing) image
capturing the Vietnamese coastal waters: (a) Location of the Sentinel2 (Tile 48PYS) (b) true color image;
(c) optical water types distribution; (d) Chl-a estimated from the MUBR-NDCI-based combination
where masked gray areas are those belonging to OWT 5; (e) relative difference (%) in the Chl-a
estimated from the MUBR-NDCI-based combination with and without using pixel OWT belonging
probability as a weighting function (see Equation (31)).



Remote Sens. 2023, 15, 1653 22 of 26

4.2. Applicability of Band-Ratio-Based Chl-a Models at Global Scale and Current Limitations
and Perspectives

To summarize the results developed in the previous sections regarding the relative
performance of the different Chl-a inversion methods selected for the different optical OWTs
defined in the frame of this study, global monthly MERIS 1 km Rrs data were associated
with the five optical OWTs defined in this work. Figure 16 shows the most frequent OWTs
observed for each pixel over the MERIS time period. The coastal domain was here defined
considering a global mask proposed by Mélin and Vantrepotte [13] for characterizing the
optical diversity of coastal waters, which is based on the combination of criteria based
on bathymetry and distance to the coast. It appears that pixels corresponding to OWTs
1, 2, and 3 represent 63, 21, and 14% of the considered coastal domain, meaning that the
MUBR model can be applied in the vast majority (98%) of the considered waters. OWT 4
pixels, where the use of red/NIR models such as the NDCI-based model defined here are
the most suitable, represent only 2% of the whole domain, often corresponding to coastal
margins impacted by the dilution of terrestrial inputs, including waters offshore river
plume or mangrove areas, for instance. The OWT 5 waters, for which none of the tested
band-ratio-based Chl-a inversion methods provide accurate Chl-a estimates, represent 1%
of the global domain here considered. Focusing on moderate to ultra-turbid waters (OWTs
3, 4, and 5), our results indicate that Chl-a can be estimated with a satisfying accuracy
(OWTs 3 and 4) over 94% of the coastal margins and shelf waters.
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The main limitations in estimating Chl-a from ocean color observation are therefore
related to ultra-turbid waters corresponding to OWT 5, mainly associated with the proximal
part of most of the large rivers. Despite the restricted spatial extension of OWT-5 regions,
an accurate monitoring of the recent evolution of the biogeochemical quality of these water
masses is, however, essential considering their vulnerability to environmental changes
of a natural and anthropic origin impacting the transfer of matter along the land–sea
continuum [1]. Our results, however, clearly question the pertinence of considering Chl-a
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concentration as a relevant indicator for monitoring from satellite ocean color observation
such environments where the phytoplankton signal on the marine reflectance seems to be
too low for being detected considering band-ratio-based methods on both visible and NIR
wavelengths.

The present study only allows the pixels for which Chl-a estimates are not reliable,
considering the evaluated models to be dynamically identified using optical water types
information to potentially mask the corresponding areas. A possible way to overcome this
issue could consist of adopting alternative methods, for instance, taking advantage of the
new potential offered by upcoming hyperspectral satellite sensors (e.g., the NASA PACE
mission). Cheng et al. [58], for instance, documented the interest of an Rrs derivative-based
approach for estimating Chl-a in turbid inland waters. More specifically, these authors
demonstrated that the first Rrs derivative at 699 nm was a good proxy for estimating Chl-a
in turbid lakes. The pertinence of this approach was evaluated on the OWT 5 dataset
testing the best combination considering wavelengths ranging from 412 to 740 nm [58].
Our preliminary results show that the highest correlation with Chl-a (R2 = 0.40, N = 57) is
obtained when using the second derivative at 671 nm (R”

rs(671)); using Rrs(l) measurements
at X and Y nm, these two parameters follow a linear relationship indicated in Figure 17.

The derivative-based approach, although it has potential interest, will not fully allow
for the solving of the issue represented by the Chl-a inversion in ultra-turbid OWT 5
waters (Figure 17). Indeed, a clear overestimation of the Chl-a concentration is observed
for the low Chl-a samples in OWT 5 (<1 µg/L), for which the data correspond to samples
showing extremely to fairly low values for the Chl-a/SPM ratio (<3.9 × 10−5). However,
the performance of this latter model has proven a significant improvement in retrieving
Chl-a over such optically complex water when comparing the R2 value to that of the
traditional approaches (see Figure 8). It is also important to recognize that additional in situ
observations are required to further confirm the latter statement and deliver more robust
information on the current limitations of ocean-color-based observation for depicting Chl-a
in such ultra-turbid environments.
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5. Conclusions

This work aimed at evaluating the performance of band-ratio-based algorithms for
estimating Chl-a in coastal waters from Sentinel2-MSI and Sentinel3-OLCI observation
from an extensive in situ dataset covering a large spectrum of coastal environments in
terms of optical characteristics (from clear to ultra-turbid waters) and trophic status (from
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oligotrophic to ultra-eutrophic environments). The best combination found from our
dataset consists of mixing a visible band-ratio model (MUBR) for clear to medium turbid
waters (OWTs 1, 2, and 3) and an adapted version of the red–NIR model (NDCI-based) for
highly turbid/high-Chl-a waters. Such a combination can provide relevant Chl-a estimates
covering four orders of magnitude from oligotrophic to ultra-eutrophic waters covering
the vast part of the coastal domain. From our dataset, POLYMER processing was the
most adapted to derive Chl-a from the proposed approach although additional matchups
should be performed considering more data, especially towards higher turbidity/Chl-a
levels. While the methodology proposed in this work can be transposed to other sensors
(e.g., MERIS), future works should be performed for other sensors (e.g., MODIS) for which
less information is available in the NIR domain, which is, however, crucial for coastal
waters applications. Finally, classical band-ratio-based methods show clear limitations,
failing, whatever the model considered, for delivering Chl-a in ultra-turbid environments
(e.g., proximal part of main river plumes). While optical water types information could
allow for the dynamic flagging of the corresponding pixels, this work further emphasizes
the necessity to develop specific approaches for these waters (e.g., exploiting the potential
offered by future hyperspectral missions).
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