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ABSTRACT

Stereo matching is one of the low-level visual perception
tasks. Currently, two-stage 2D-3D networks and three-stage
recurrent networks dominate deep stereo matching. These
methods build a cost volume with low-resolution stereo fea-
ture maps, which splits the network into a feature net and a
matching net. However, the 2D feature map is not uncontrol-
lable, and the low-resolution feature map has lost important
matching information. To overcome these problems, we pro-
pose the first one-stage 2D-3D deep stereo network, named
StereoOne. It has an efficient module that builds a cost vol-
ume at image resolution in real-time. The feature extraction
and matching are learned in a single 3D network. Accord-
ing to the experiments, the new network can easily surpass
the 2D-3D network baseline and it can achieve competitive
performance with the state-of-the-art.

Index Terms— Stereo Matching, Depth Estimation,
Deep Learning

1. INTRODUCTION & RELATED WORKS

As one of the most important computer vision tasks, stereo
matching has experienced several stages of development, in-
cluding traditional algorithms (e.g., SGM [1]), early convolu-
tional networks (e.g., MC-CNN [2]), two-stage 2D-3D stereo
networks (e.g., PSMNet [3]), and three-stage recurrent stereo
networks [4, 5]. In the age of deep learning techniques, state-
of-the-art stereo matching methods have been dominated by
deep stereo matching networks. Among them, the most suc-
cessful solutions are the two-stage 2D-3D CNN methods [3,
6]. Even the newest state-of-the-art recurrent stereo networks
[5] highly rely on the two-stage stereo networks [3].

The two-stage methods were proposed in [7] and [3]. The
original two-stage stereo networks consist of a 2D feature ex-
traction network and a 3D matching network. Since then,
many methods have been proposed based on this two-stage
architecture, such as [6] and [8].

More recently, three-stage recurrent stereo networks have
achieved state-of-the-art accuracy performance [5, 4, 9].
These methods perform well on high-resolution stereo im-
ages, but their inference speed is affected by the time-
consuming design of recurrent GRU units. Recurrent stereo

networks are also based on the two-stage stereo network [5].
The previous methods build the cost volume on the low-

resolution feature maps. The important matching information
has been lost because the stereo matching is performed at a
low-resolution. This is an primary problem for the 2D-3D
networks [3] or recurrent networks [9]. Besides the spatial
resolution, the disparity resolution in cost volume also affects
the stereo matching.

In addition, the stereo 2D feature maps are not optimal
in the previous methods [3, 10]. The 2D-3D network meth-
ods optimize the feature network and the matching network
by minimizing the loss between the ground truth disparity
and the prediction. The optimization goal is to minimizing
the matching cost, instead of extracting high-quality feature
maps. There are some methods [10] have shown that the ex-
tracted 2D feature maps are not suitable to build a single peak
cost volume. They propose a constraint loss after the 2D fea-
ture network to reduce this effect.

Instead, if the stereo cost volume is built at the raw image
resolution and the feature extraction and the feature matching
are learned in one 3D network, the matching information lost
can be reduced and the conflict of the optimal goal between
the feature network and the matching network can be avoided.

In this paper, we propose the first one-stage 3D stereo net-
work, namely StereoOne. StereoOne build the stereo cost
volume on the raw stereo images with a new image volume
module. We propose an efficient and real-time volume gener-
ation methods which is much faster than the previous meth-
ods [3, 9]. Furthermore, we introduce general 3D network
[11, 12] to learn the feature extraction and matching.

Furthermore, a disparity dense-sparse network is intro-
duced to maintain a high-resolution disparity in the cost vol-
ume. On the one hand, the disparity-dense network is low-
cost for high-resolution disparity. On another hand, the dense-
sparse design is easier to process different disparity range
scales of different samples.

This paper is organized as follows: In Section 1, we in-
troduce the background and motivation for our proposed one-
stage stereo matching network. In Section 2, we describe the
details of the proposed StereoOne. In Section 3, we present
our experimental results on popular stereo matching bench-
marks. Finally, we conclude our work and discuss future re-
search directions in Section 4.
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Fig. 1: The structure of two-stage 2D-3D stereo networks [7, 3], three-stage recurrent stereo network [4, 9, 5], one-stage 3D
stereo network (single branch) and one-stage 3D stereo network (dense-sparse).

2. METHOD

In this section, we describe the details of the proposed 3D
stereo network, namely StereoOne. The structure comparison
is shown in Fig. 1.

2.1. An Efficient Image Volume Module

As the cost volume V is built by enumerating all aligned
stereo images of different disparities.

V= ([L,f(R)Px+d ]c, ...,)
D−1
d=0 (1)

Where [L,R]c is the concatenating of left image L and
right image R on the channel dimension. Px is the x direction
image coordinate. f(.)Px+d is the d pixels image horizontal
shift.

The previous methods use two ways to build cost volume:
image warping [9, 10] or looping-index [3], as Eq. 2.

Warping : V= [L, W3D(R)(Px+d)D−1
d=0 ,Py

]c

Looping− index : V= ([L,R[:, 0 : W −d]]c f or d ∈ [0,D))
(2)

Where W3D is a 3D image warping. R[:, 0 : W − d] indexes
the aligned part of the R. Usually, They can not realize real-
time inference. Therefore, we propose an efficient volume
generation method (EffiVolume).

Before all algorithms launch, we first compute a index
matrix ID×W (Eq. 3) which indexes the disparity and image
horizontal dimension for right image. ID×W is only computed
once.

I =((0,1, ...,w)W−1
w=0 , ...)×D

− ((0, ...)×W , ...,(d, ...)×W )D−1
d=0

(3)

Then, the stereo images I and R and the index matrix I are
expanded to the size C×D×H ×W , denoted as L,R,I.
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Fig. 2: The efficient image volume index on disparity and
image width dimension.

With the index tensors, we can easily obtain the aligned
right image f(R) in one step (e.g. using torch.gather in py-
torch). This process is shown in Fig. 2.

Finally, the raw cost volume is generated by concatenating
them V = [L,R]c. Our method avoid the time-consuming
loop operation, and be much faster than the previous on both
CPU and GPU devices.

2.2. 3D Network

2.2.1. Overall

In StereoOne, the raw cost volume is built on raw stereo im-
ages. StereoOne network introduces a general 3D network
to process this image volume. In this way, the 3D network
not only learns the stereo features but also learns the feature
matching in one network. StereoOne is based on a general
3D network, which makes it to be flexible and easier to be
deployed. Specifically, the 3D network is an encoder-decoder
structure. For the encoder part, the general 3D encoder net-
works [13, 12] can be used. For the decoder part, we de-
signed a 3D feature pyramid network (FPN) based on 2D FPN
[14]. In the 3D FPN, feature maps of four stages are mapped
to the same channel size with FPN lateral connection layers,
which is a 3D convolution layer (kernel = (1,1,1),stride =
(1,1,1)). Then, these feature maps are summed from the top



Method KITTI2012(3pixel Error) KITTI2015
Out-Noc% Out-All/% Avg-All/px D1-fg

PSMNet 2018 8.36 10.18 1.6 4.62
ACVNet 2022 7.03 8.67 1.5 3.07

AcfNet 2020 6.93 8.52 1.9 3.80
CoEX 2021 6.83 8.63 1.4 3.41

SegStereo 2018 6.35 8.06 1.3 4.07
CREStereo 2022 6.27 7.27 1.4 2.86

GANet 2019 6.22 7.92 1.3 3.46
HITNet 2021 5.91 7.54 1.2 3.20

LEAStereo 2020 5.35 6.50 1.2 2.91
CFNet 2023 5.96 7.29 1.3 3.56

CroCo-Stereo 2023 - - - 2.65
Ours 2023 4.99 6.50 1.2 2.62

Table 1: The error results on the online benchmark
:::::::::
KITTI2012,

::::::::::
KITTI2015. The error metrics are described in benchmarks.

to the bottom. Each feature map is upsampled ×2 size. Fi-
nally, the bottom feature are mapped to channel = 1.

Same as the previous, with the learned cost volume, a soft
Argmin disparity prediction layer is used following the previ-
ous stereo networks [7, 3].

Furthermore, because the different images have different
disparity ranges, we propose a disparity dense-sparse encoder
network and a dense-sparse fusing module to learn a better
stereo cost volume.

2.2.2. Disparity Dense-sparse Encoder

Disp-Dense Branch: The dense disparity branch maintains a
high disparity resolution, it focuses on learning the matching
information. It has a shallow feature dimension to reduce the
computation cost, usually 1/8 of the sparse disparity branch.

Disp-Sparse Branch: In contrast, the sparse branch
focuses on learning the image’s spatial information and ex-
tracting better features. Each pixel on the predicted disparity
map is not independent, the spatial context information is
important for the disparity prediction, especially the homoge-
neous area [15]. Therefore, the sparse disparity branch keeps
a higher channel dimension but a low disparity resolution to
learn abundant image spatial information.

The Feature Connection From the Dense to the Sparse:
To better fuse dense-sparse information, the dense feature will
be fused into the sparse feature at the stage 1,2,3 of the en-
coder (four stages structure). We only use single-direction
connection according to the previous deep learning networks
[12, 14]. The single-direction connection has a similar per-
formance as the bi-direction connection but has a lower
computation cost.

The Dense-Sparse Fusing Module
To fuse the two volumes of the disparity dense and sparse

branches, we explore different ways to fuse dense and sparse
cost volumes. (i) Concatenate them across the disparity di-
mension. Then use a linear layer to transform the disparity

resolution to the original. (ii) Add up the two cost volumes.
Firstly transform them into the original disparity resolution,
then add up two volumes. (iii) Concatenate them across the
channel dimension. Firstly up-sample them to the original
disparity resolution, then concatenate them in the channel,
and finally transform it with a linear layer. With the exper-
iments, the third module has the best performance.

3. EXPERIMENTS

3.1. The Comparison with the State-of-the-art Methods

Method Error(EPE) Speed(FPS) FLOPS
PSMNet [3] 0.98 9 1.02T
Cascade-PSM [6] 0.93 23 1.37T
Cascade-Gwc [6] 0.81 19 1.49T
AcfNet [10] 0.87 9 1.02T
CREStereo [9] 0.78 5 2.27T
† Ours(ResNet18 [11, 12]) 0.73 12 1.48T

CoEX [16] 1.14 81 0.04T
StereoNet [17] 1.29 65 0.11T
CGIStereo [18] 1.51 48 0.06T
† Ours(ResNet8 [11, 12]) 1.22 50 0.09T
⋆ Ours(MobileNetv2 [19]) 0.89 28 0.05T

Table 2: The comparison with other methods on Scene Flow
data test set. The model code is from the official release, all
experiments use the same optimizer. Device: Nvidia A40
GPU. †: disparity dense-sparse network. ⋆: single branch.

We compare the StereoOne with the other methods on
three benchmarks: the large-scale SceneFlow data, KITTI2012,
2015 Stereo data. Firstly, as the Tab 2 shows, the StereoOne
achieves the lowest error compared with most recent methods.

Then we report the results on KITTI 2012, 2015 stereo
data as Tab. 1. It suggests that StereoOne can achieve compet-
itive results with state-of-the-art methods on real-world data.

https://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo&table=refl&error=3&eval=all
https://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo&eval_gt=all&eval_area=all


3.2. The Ablation Studies

3.2.1. Image Volume Module

Device Method time/ms memory/M
A40GPU Warping 323 14,154
A40GPU Looping 421 4,938
A40GPU Ours 18 7,244

2080TiGPU Warping 678 9,422
2080TiGPU Looping 1318 4,814
2080TiGPU Ours 20 7,118

CPU Warping 2181 5,068
CPU Looping 221 5,060
CPU Ours 204 5,066

Table 3: The performance of different volume generation
methods. GPU capability: A40(8.6), 2080Ti(7.5), CPU:
AMD EPYC 7413 24-Core.

As shown in Tab. 3, we compare three methods. The pro-
posed efficient volume method achieves much fastest infer-
ence speed and keep a low memory cost. Compared with the
simple looping-index operation or 3D image-warping opera-
tion, the proposed module is ×66 and ×34 faster than them on
2080Ti GPU. The results suggest that our method has robust
performance on different devices.

3.2.2. The Disparity Distribution

Fig. 3: The results on different disparity distributions on
SceneFlow dataset. The two-stage network is PSMNet [3].
Every pixel error is used to measure the predictions.

Further, we compare the results on different disparity dis-
tributions for the one-stage 3D and two-stage 2D-3D stereo
networks. Fig. 3 suggests that StereoOne with disparity
dense-sparse branches can solve the problem of different dis-
parity distribution as we claim, especially for high disparities.

3.2.3. Disparity Resolution

In this part, we explore different disparity resolutions for the
dense and sparse branches. We use 6,12,24 for the sparse
branch, 48,96,192 for the dense branch. The error results

Fig. 4: The predicted disparity
EPE errors with different dis-
parity resolution /D.

Fusion EPE 3PE D1
D-cat 0.932 0.046 0.044
Add 0.867 0.046 0.043
C-cat 0.752 0.044 0.042

Table 4: The disparity error
results of different fusion methods
for the dense and sparse costs vol-
umes. D-cat: concatenate the vol-
umes in disparity dimension. Add:
add up the volumes. C-cat: con-
catenate the volumes in channel di-
mension.

are shown in Fig. 4. Overall, the result is better with high
disparity resolution. This demonstrates the disparity-dense
and sparse structure. The result of 192 also suggests that the
dense/sparse ratio should not be too large.

3.2.4. Dense-Sparse Fusing Module

To fuse the dense and sparse cost volume efficiently, we con-
duct experiments of three kinds of modules as described in
Sec. 2.2.2. The results as recorded in Tab. 4. The Channel-
concatenating has the lowest errors on every-pixel-error,
3pixels-error, and D1 1 error metrics.

3.3. Details and Datasets

To evaluate the performance of StereoOne, we use the large-
scale dataset Scene Flow [20] and KITTI 2012/2015 bench-
marks [21]. In the experiments on Scene Flow datasets, we
use Lion optimizer with 1e-4 learning rate, and the optimizer
uses gradient clip norm with L2 norm, the max norm is 35 for
48k iterations. For the experiments on KITTI, a AdamW op-
timizer with learning rate 2e-4 is used for 20k iterations. The
gradient clip norm is also used. The batch size is 8 on two
GPUs for both of them.

4. CONCLUSION

By reviewing the previous stereo networks, we analyzed the
limitations of the previous. To realize the excellent disparity
prediction, we propose the first one-stage 3D stereo network.
In this paper, we use the simple ResNet [13] structure, more
advanced network structures can be explored in the future.
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1D1: Percentage of stereo disparity outliers in first frame
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