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Abstract

This review aimed to specify different concepts that are essential to the development of medical devices
(MDs) with artificial intelligence (AI) (AI-based MDs) and shed light on how algorithm performance,
interpretability, and explainability are key assets. First, a literature review was performed to determine the
key criteria needed for a health technology assessment of AI-based MDs in the existing guidelines. Then,
we analyzed the existing assessment methodologies of the different criteria selected after the literature
review. The scoping review revealed that health technology assessment agencies have highlighted different
criteria, with 3 important ones to reinforce confidence in AI-based MDs: performance, interpretability, and
explainability. We give recommendations on how and when to evaluate performance on the basis of the
model structure and available data. In addition, should interpretability and explainability be difficult to
define mathematically, we describe existing ways to support their evaluation. We also provide a decision
support flowchart to identify the anticipated regulatory requirements for the development and assessment
of AI-based MDs. The importance of explainability and interpretability techniques in health technology
assessment agencies is increasing to hold stakeholders more accountable for the decisions made by AI-
based MDs. The identification of 3 main assessment criteria for AI-based MDs according to health tech-
nology assessment guidelines led us to propose a set of tools and methods to help understand how and
why machine learning algorithms work as well as their predictions.
ª 2023 THEAUTHORS. PublishedbyElsevier Inc onbehalf ofMayoFoundation forMedical Education andResearch. This is anopenaccess article under
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U nderstanding of algorithms in gen-
eral and in artificial intelligence (AI)
in healthcare has become an essential

criterion following the new regulation pro-
cesses for AI (AI Act), data (General Data Pro-
tection Regulation), and medical devices
(MDs) (Medical Device Regulation) in Europe.
Among these, the AI Act is the first regulation
to divide applications of AI into different risk
categories: (1) unacceptable risk, (2) high
risk, and (3) low or minimal risk.1

In medicine, AI can be used not only in
combination with an MD but also as an MD
by itself. In fact, MDs are defined in the
Mayo Clin Proc Digital Health n June 2
rg n ª 2023 THE AUTHORS. Published by Elsevier Inc on behalf of Ma

access article und
European Medical Device Regulation as “any
instrument, apparatus, appliance, software,
implant, reagent, material, or other article
intended by the manufacturer to be used,
alone or in combination, for human beings
for specific medical purposes.”2 Artificial
intelligenceebased MDs are health technolo-
gies employed to improve human capabilities
for several applications, including prediction
or identification of diseases, data classification
or analysis for disease outbreaks, optimization
of medical therapy, or disease diagnosis.2 The
Food and Drug Administration (FDA) in the
United States defines an AI-based MD as
023;1(2):120-138 n https://doi.org/10.1016/j.mcpdig.2023.02.004
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ARTICLE HIGHLIGHTS

d The level of confidence in artificial intelligence (AI)-based

medical devices relies on transparency (interpretability and

explainability of outputs) and ethics (in terms of trustworthiness

and regulation).

d To provide interpretability, we identified that metrics and

methodologies for “explainable AI” need to be associated with

ethical and legal analysis.

d Specific explainability and interpretability assessment by regu-

lators increased and led to stakeholders being increasingly held

accountable for the decisions made by AI-based medical devices.

d Acceptable standards for explainability are context-dependent

and reliant on the risks in the clinical scenario.

d Raising awareness about these concepts is essential for their

widespread adoption and to answer ethical questions.

ASSESSMENT OF AI-BASED MDS
“Software as a Medical Device” when the algo-
rithm is intended to prevent, diagnose, treat,
mitigate, or cure diseases.3

An increase in approved AI-based MDs has
been recorded, with 222 devices in the United
States and 240 devices in Europe between
2015 and 2020.4 Methodological frameworks
are designed by health technology assessment
(HTA) agencies to assess these technologies,
and these agencies aim to evaluate them using
a standardized method through multiple do-
mains, such as safety, clinical effectiveness,
costs and economic evaluation, organizational
aspects, patients, and social and legal aspects.5

The assessment of AI-based MDs is performed
by health technology agencies, such as Haute
autorité de santé (HAS) in France, the National
Institute for Health and Care Excellence in the
United Kingdom, or FDA in the United States.
In addition to the usual technical, clinical, and
health economics criteria used for MD assess-
ment, the need for specific criteria to assess
AI technologies in healthcare has been
highlighted.6

For instance, in France, HAS has defined
42 criteria, classified into 4 categories, to
assess AI-based MDs. The fourth category,
on functional characteristics, includes, in addi-
tion to algorithm performance, the criteria of
explainability and interpretability. In the
United States, FDA takes into account either
the real-world or the humaneAI team perfor-
mance, the latter of which relates to how inter-
pretable the model outputs are for humans,
with an emphasis on the performance of the
model. The performance of AI technology is
often prioritized; however, an inability to un-
derstand the algorithms raises serious con-
cerns in terms of fairness, ethics, and trust,
and both interpretability and explainability
refer to this capacity to understand algorithms.

From a healthcare perspective, the opacity
of some AI models led to a decline in adoption
by healthcare professionals. Several authors
have highlighted the need for making these
AI-based MDs more interpretable; however,
the authors have also insisted on the explain-
ability for trustworthy AI.7e9 On the contrary,
Ghassemi et al10 advocated the rigorous inter-
nal and external validation of AI models owing
to the lack of suitable explainability methods.
However, these notions seem to be important
Mayo Clin Proc Digital Health n June 2023;1(2):120-138 n https://d
www.mcpiqojournal.org
to develop trustworthy AI using several princi-
ples proposed by Hasani et al,11 such as trans-
parency, explainability, technical robustness,
or stakeholder involvement. Thus, there is a
growing need for appropriate assessment
methodologies for explainable and interpret-
able AI-based MDs.12

Therefore, the aim of this study was to
specify the different concepts that are essential
for the development of AI-based MDs and to
shed light on how performance, interpret-
ability, and explainability are key in the devel-
opment of health technology models.

To meet this objective, we aimed to
address these 3 fundamental aspects of the
evaluation of all criteria involved in the devel-
opment and use of such technologies. After
presenting AI ecosystems in healthcare with
a focus on HTA agencies (section 1: State of
the art of the assessment of AI-based MDs by
HTA agencies), we will examine how the per-
formance of AI-based MDs is measured (sec-
tion 2: How to measure the performance of
AI-based MDs?) and then provide elements
for integrating interpretability and explainabil-
ity issues into the core of algorithm develop-
ment (section 3: How can we evaluate
interpretability and explainability in AI health
technologies?). Finally, we will discuss the ma-
jor relevance of these notions for all stake-
holders and offer a decision-making tool to
oi.org/10.1016/j.mcpdig.2023.02.004 121
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TABLE 1. Identification of Key Specific Criteria for Artificial IntelligenceeBased Medical Device Assessment in the Reviewed Guidelines on Health Technology Assessment of Artificial
Intelligence Technologiesa

Country Guidelines (date) Criteriab Descriptionb Reference, yearc

Finland Digi-HTA: Health
technology assessment
framework for digital
healthcare services
(2019)

AI Capacity of the staff to understand
the operational logic of AI?
(interpretability)

Transparency of the conclusions and
decisions of the AI solution, that is,
understanding of medical staff about
the origin of the decisions
(explainability)

Haverinen et al, 201978

Technical stability The testing process and company’s process for
handling error messages

Cost Costs of using the product for a healthcare
customer

Effectiveness The product provides clinical benefits to the
end users by improving their behavior
related to their own health

Clinical safety Risks, possible side effects, or other undesirable
effects associated with using the product;
research evidence available related to clinical
safety

Data security Information security and data protection
requirements

Usability and accessibility The process of the company to continue to
evaluate and develop accessibility.

Product compatibility with usability guidelines
(if applicable)

Interoperability The product interfaces into the website and
software, the healthcare services, and
electronic patient records

Robotics Safety risks for healthcare personnel or
customers and the robot’s design to avoid
them

France Liste des produits et
prestations
remboursables (LPPR)
Guide: Dossier
submission to the
Medical Device and

Purpose Specify the benefit of the information provided
or decisions made by machine learning
processes

Haute autorité de sant,
202081

Data Describe samples used, input data involved for
initial model learning or relearning, and input
data involved in decision making

Continued on next page
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TABLE 1. Continued

Country Guidelines (date) Criteriab Descriptionb Reference, yearc

Health Technology
Evaluation Committee
(2020)

Model Describe training, validation, and testing before
and after MD deployment

Functional characteristics Performance and qualification, system
robustness and resilience, explainability,
and interpretability

Australia Clinician checklist for
assessing suitability of
machine learning
applications in
healthcare (2021)

Purpose Purpose of the algorithm Scott et al,63 2021
Data The quality of the data used to train the

algorithm: accurate and free of bias,
standardized and interoperable, and
sufficient quantity of data

Performance Algorithm performance
Algorithm transferability to new
clinical settings

Evidence generation related to the
algorithm’s impact on patient care
improvement and outcomes

Interpretability,
explainability, and
explicability

Clinically intelligible outputs of the
algorithm: interpretability and
explainability

Workflow Algorithm fitting into and complementing
current workflows

Patient harm Avoiding patient harm
Ethical, legal, and social Ethical, legal, or social concerns raised by the

algorithm

United States, Canada,
United Kingdom

Good Machine Learning
Practice for Medical
Device Development:
Guiding Principles

Product life cycle Understanding of a model’s intended
integration into clinical workflow
(interpretability and explicability)

Balance between desired benefits and
associated patient risks

Safety, effectiveness, and clinically
meaningful needs addressed over the
lifecycle of the device

Korean MinisUS Food and
Drug Administration,
Health Canada, and the
United Kingdom’s
Medicines and
Healthcare products
Regulatory Agency,
202182

Security practices Good software engineering practices, data
quality assurance, data management, and
cybersecurity practices

Clinical study participants and
datasets

Data collection: relevant characteristics of the
intended patient population sufficiently
represented in a sample of adequate size in
the clinical study and training and test

Continued on next page
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TABLE 1. Continued

Country Guidelines (date) Criteriab Descriptionb Reference, yearc

datasets, management of bias, promotion of
appropriate and generalizable performance
across the intended patient population

Training datasets/test sets Training and test datasets were selected and
maintained to be appropriately independent
of one another

Selected reference datasets Accepted, best available methods for
developing a reference dataset, accepted
reference datasets in model development
and testing that promote and demonstrate
model robustness and generalizability

Model design and intended use
of the device

A model design supporting mitigation of
known risks, such as overfitting,
performance degradation, and security risks.
Clinical benefits and risks are well
understood, used to derive clinically
meaningful performance goals for testing;
the product can safely achieve its intended
use

Performance of the
humaneAI team

Model as a “human in the loop,” consideration
of human factors and the human
interpretability of the model outputs are
addressed with emphasis on the
performance of the humaneAI team

Device performance Statistically sound test plans developed and
executed to generate clinically relevant
device performance information
independently of the training dataset

Clear and essential
information for users

Users are provided with ready access to clear,
contextually relevant information that is
appropriate for the intended audience (such
as healthcare providers or patients),
including the product’s intended use and
indications for use, performance of the
model for appropriate subgroups, user
interface interpretation (interpretability),
and clinical workflow integration of the
model.

Performance and retraining
risks

Capability to be monitored in “real-world” use
with a focus on maintained or improved
safety and performance

Continued on next page
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TABLE 1. Continued

Country Guidelines (date) Criteriab Descriptionb Reference, yearc

Europe (Greece) Presenting AI, DL, and
ML studies to clinicians
and healthcare
stakeholders: an
introductory reference
with a guideline and a
Clinical AI Research
checklist proposal
(2021)

Data Outcome imbalances/training and testing/
missing data/overfitting

Olczak et al, 202179

Performance Evaluation metrics
The confusion table
Measuring performance
Performance curves and AUC
Image segmentation or localization
Continuous measurements
Multiple measurements

Ethical considerations and
methodological biases

Data and privacy
Bias and fairness
Informed consent and autonomy
Safety and interpretability
Responsibility and liability

United States Study design Clarity of the design Norgeot et al, 202080Minimum information
about clinical artificial
intelligence modeling:
the MI-CLAIM checklist
(2020)

Characteristics of the cohorts (training and test
sets) and representativity of real-world
clinical settings

Comparator
Data and optimization Origin of the data, data quality, independence

between training and test sets, data quantity,
targeted population, input data type

Model performance Primary metric selected to evaluate
algorithm performance (eg, AUC,
F-score, etc)

Performance comparison between
baseline and proposed model with
the appropriate statistical
significance

Model examination/
assessment in clinical
practice

Explainability: clinically intelligible
outputs of the algorithm and
explainability of the algorithm

Algorithm fitting into and/or complementing
current clinical workflows

Ethical, legal, or social concerns raised by the
algorithm
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TABLE 1. Continued

Country Guidelines (date) Criteriab Descriptionb Reference, yearc

South Korea Guideline on Review and
Approval of Artificial
Intelligence (AI) and big
data-based Medical
Devices (For Industry)

Characteristics Medical device classification criteria Korean Ministry of Food
and Drug Safety, 202083Performance Validate the essential requirements

and clinical effectiveness
Clinical validation (clinical
performance and efficacy)

Cloud server Technical specification: cloud server operating
environment, cloud service type, security
standard

Data Output information, update cycle of training
data and accuracy of diagnosis results in the
main performance, data encryption and
decryption, and policy on anonymity in the
security specification

Version control Management of product structure and design
by a manufacturer and other management,
such as addition of training data and
interpretability

Management policy
on learning data

Policy on data management to maintain the
effectiveness of training data consistently
and the timing for updating training data/
data management organizations is required
to set the quality control items and scope
and criteria related to training data, and
assess the quality of product algorithm

aAI, artificial intelligence; AUC, area under the curve; DP, deep learning; HTA, health technology assessment; MD, medical device; ML, machine learning.
bThe lines highlighted in bold correspond to the specific criteria related to artificial intelligenceebased medical devices in each guideline.
cOur review selected 7 articles (out of 64), including guidelines on health technology assessment of artificial intelligenceebased medical devices from 8 countries. For each guideline, 3 criteria are highlighted in green: performance,
interpretability, and explainability.
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ASSESSMENT OF AI-BASED MDS
facilitate the HTA process (section 4: Discus-
sion: to what extent can the explainability
and interpretability of AI be as useful as per-
formance for HTA?).
STATE OF THE ART OF THE ASSESSMENT
OF AI-BASED MDS BY HTA AGENCIES
The AI ecosystem involves a large diversity of
stakeholders with heterogeneous compe-
tencies and knowledge essential to tackle the
development, validation, assessment, and
deployment of AI-based MDs. In addition to
those who usually contribute to the creation
of MDs and their assessment, the AI health
sector includes new stakeholders specialized
in data, information technology, and engin-
eering: AI public research institutes (Supple
mental Figure 1, available online at https://
www.mcpdigitalhealth.org/). The AI health-
care area gathers multiple actors from different
areas (health, information technology, ro-
botics, the tech industry, and ethics). There-
fore, a crucial step in assessing these
technologies is to identify the various stake-
holders and understand a common taxonomy
and the key notions to bridge the gap between
them, thereby guaranteeing a common basis
for assessments. Assessing the requirements
of different international HTA agencies related
to the evaluation of AI-based MDs shows that,
in addition to the usual HTA criteria, such as
performance and safety, the need for interpret-
ability is crucial for clinical diagnosis, preven-
tion, or treatment. The need for explainability
is also important to comply with the “right to
explanation” provided by the European Gen-
eral Data Protection Regulation.

The European guidelines for trustworthy
AI include the principles of explainability
and interpretability in addition to fairness
and prevention of harm.13
Objective and Methods
A literature review, following Preferred
Reporting Items for Systematic Reviews and
Meta-Analyses recommendations, was per-
formed to highlight the specific key criteria
needed for an HTA of AI-based MDs (review
protocol provided in Supplemental Material,
available online at https://www.mcpdigital
health.org/).
Mayo Clin Proc Digital Health n June 2023;1(2):120-138 n https://d
www.mcpiqojournal.org
Results
Of 64 articles, 7 were selected after full-text
screening. They included guidelines on HTA
of AI-based MDs from 8 countries. For each
guideline, the following 3 criteria were high-
lighted: performance, interpretability, and
explainability (Table 1). Nevertheless, no
methodology has been proposed to measure
these criteria.

On the one hand, some HTA agencies only
focus on interpretability. On the other hand,
other agencies, such as HAS in France, high-
light these notions as essential to be defined
in the reimbursement dossiers of AI-based
MDs that are submitted by companies. Inter-
pretability is an important criterion; assessors
ask for the parameters that influence the deci-
sion and for the methods used to identify
them. For explainability, this agency focuses
on understanding the factors that lead to the
decision-making process.

Even when there is no legal obligation, it is
important for HTA agencies and clinicians to
be able to justify their decision-making pro-
cess to patients.14e16 Explainability allows
comparisons of algorithms with current rec-
ommendations; however, explaining how the
predictions are derived can be a time-
consuming process and, hence, could be sug-
gested in specific situations. For AI-based MDs
with high risks for patient safety (for instance,
those that impact morbimortality), explana-
tions are vital. In addition, explanations can
be required when an algorithm’s clinical per-
formance has not yet been proven.17

Therefore, the next part of this study
focused on the methods and tools used to
assess performance, interpretability, and
explainability to answer the need in an HTA
process.
HOW TO MEASURE THE PERFORMANCE OF
AI-BASED MDS?
In this section, we outline which tools are
available for measuring the performance of
an algorithm and how to use them.
Definition
Performance measurement consists of evalu-
ating the error of the model (hence the reli-
ability) by assessing the difference between
predicted and observed data. It is usually
oi.org/10.1016/j.mcpdig.2023.02.004 127
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Deep learning (neural
networks)

Ensemble methods (random
forests, boosting, etc.),

support-vector machine

Intrinsically interpretable
(regression models,
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FIGURE 1. Tools to increase the interpretability and explainability of some well-known models.
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based on a score, an error metric for which
lower values indicate better results.

Tools for Measurement
Various metrics exist to evaluate the perfor-
mance of a model. Each meets different pur-
poses according to the global objective of the
modeling strategy (regression or classifica-
tion).18 The list of metrics presented in the
Supplemental Table (available online at
https://www.mcpdigitalhealth.org/) is not
exhaustive because the number of metrics is
currently exploding to meet the needs of
new applications. Some metrics are based on
mean differences between estimated and true
values (such as mean square-errors and R2-
like measures; this is called calibration. Be-
sides, discrimination describes the capacity of
algorithm estimates to distinguish between in-
dividual observations, which does not imply
to know whether the output is true.19 In any
case, all metrics are subject to some limitations
that should be outlined in the development of
AI-based MDs (for further literature, see the
online book from Biecek and Burzykowski20).

Evaluation
The goal is to learn an algorithm that best
maps input data to the outcome. The learning
Mayo Clin Proc Digital Health n June 2
process consists of 3 main components: the
space of assumptions, training data, and the
loss function. The space of assumptions de-
scribes the overall authorized set for the algo-
rithm. The training data include the set of
input data and outcome used by the learning
algorithm to adjust for the best parameters.
The loss function measures the error between
true and predicted outcomes. The relationship
between the complexity of the space of as-
sumptions, the size of the training data and
the generalization error of the learned algo-
rithm defines the bias-variance trade-off,
which is both a fundamental concept and a
key challenge. The generalization error is the
difference between the expected error of the
learned function on new data and the training
error on the data used to learn the function.
We assume in this section that training and
test data are independent and identically
distributed.

The Bias-Variance Trade-off. It is generally
accepted that evaluating the algorithm on the
same data it has learned on is a methodolog-
ical mistake.21,22 Overfitting is when a model
is able to predict perfectly well on fitted data
but not on yet unseen data. When a model
overfits, it typically leads to higher prediction
023;1(2):120-138 n https://doi.org/10.1016/j.mcpdig.2023.02.004
www.mcpiqojournal.org
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TABLE 2. Models with a High Interpretability Level

Algorithm
Linear

explanation
Monotone
relationship Task

Interpretable
coefficient

Examples in healthcare (specialty,
pathology, intended use of

algorithm)

Linear regression Yes Yes Linear Linear coefficient d Endocrinology, diabetes, predic-
tion of severity (Butt et al,
2021)84

d Genetics, prediction of gene
expression (Zeng et al, 2017)85

Logistic regression No Yes Classification Odds ratio d Gastroenterology, fatty liver,
prediction of disease in the
general population (Bedogni
et al, 2006)86

d Radiology, breast cancer,
computer-aided diagnostic sys-
tem (Nemat et al, 2018)87

Cox regression model Yes Yes Time to event Hazard ratios d Cardiology, heart failure, predic-
tion of mortality (Cheng et al,
2017)88

d Oncology, gastric cancer, prog-
nosis prediction (Wei et al,
2021)89

Decision trees No Yes All Nodes d Psychiatry, mental disorders, risk
prediction (Van Hoffen et al,
2020)90

d Cardiology, malignant ventricu-
lar arrhythmia, diagnosis predic-
tion (Mandala et al, 2020)91

ASSESSMENT OF AI-BASED MDS
errors because the model is too specific for the
data and is barely generalizable. Predictions for
individuals already in the database will ratio-
nally match with themselves, and therefore,
there will be no prediction error. However,
should there be small fluctuations in the
training data, some error would be introduced
by the sensitivity of the algorithm. This is
called variance, which is highly dependent on
small variations within the training sample.
High variance with great capacity in fitting
training data leads to overfit, whereas small
variance has a small capacity to fit the training
data and will underfit.

The opposite problem is bias, when error
is introduced by approximating a complex
problem using a simpler algorithm. High
bias has a small capacity to fit the training
data and will underfit, whereas low bias
with a great capacity in fitting training data
leads to overfit. The bias-variance trade-off
is the balance between these 2 sources of
Mayo Clin Proc Digital Health n June 2023;1(2):120-138 n https://d
www.mcpiqojournal.org
error. A good trade-off point is achieved
when the algorithm has low bias and low
variance, which corresponds to a good bal-
ance between fitting the training data and
generalizing to new data.

We have listed some best practices around
the bias-variance trade-off and summarized
them in Supplemental Figure 2 (available on-
line at https://www.mcpdigitalhealth.org/).

Which Data to Use, When, and How. A com-
mon practice to avoid overfitting is to evaluate
the algorithm on a random sample held
outside of the data used to train it.23 The
main idea is that the data on which the pre-
dictive model is applied, known as the test
data, should be different from the training
data. A systematic way to evaluate the afore-
mentioned trade-off is an iterative split called
cross-validation, in which the dataset is
divided into different subsets and the model’s
error is measured on each subset.24
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TABLE 3. Pros and Cons of Methods Serving Interpretability and Explainabilitya

Easy to understand

Computation
time Data type Limitations

Examples in healthcare
(specialty, pathology,

intended use of algorithm)
For

engineersb For end usersc

Feature
importance,
SHAP, LIME

Yes Intermediate,
rarely
shown

Low Image, text,
or tabular

Feature
importancedsensitive
to multicollinearity

SHAPdsensitive to
categorical variables and
feature interactions

LIMEddifficulty in setting
distance threshold

d Cardiology, cardiac
surgeryeassociated
acute kidney injury,
prediction (Tseng et al,
2020)92

d Computational neuro-
science, brain age pre-
diction (Lombardi et al,
2021)93

d Pediatric medicine, or-
gan transplantation, pre-
diction of posttransplant
health outcomes (Killian
et al, 2011)94

Counterfactual
explanations

Yes Yes High Image, text, and
mainly
tabular

Difficulty in generating
feasible and actionable
explanations. Causal
constraints

d Neurology, prediction
errors in the human
brain (Boorman et al,
2011)95

aLIME, Local Interpretable Model-agnostic Explanations; SHAP ¼ Shapley Additive exPlanations.
bThe engineers include, but are not limited to, developers, data scientists, and statisticians.
cThe end users include, but are not limited to, healthcare professionals, decision-makers, medical experts, and patients.
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Settings of the algorithm are commonly
called hyperparameters and drive the inherent
complexity in controlling the learning pro-
cess.25 Hyperparameter optimization hence al-
lows to find the optimal complexity of the
algorithm that performs best both on the
training and unseen data. The idea is to find
the hyperparameter combinations that opti-
mize the cross-validation metric. More inputs
on hyperparameter optimization are given in
the Supplemental Material (available online
at https://www.mcpdigitalhealth.org/).

The final evaluation can be performed
either on a test set previously held out or on
external data.
HOW CAN WE EVALUATE INTERPRET-
ABILITY AND EXPLAINABILITY IN AI
HEALTH TECHNOLOGIES?
The following methods are intended to pro-
vide an understanding of model prediction
and behavior as part of an evaluation dossier.
They do not cover how the methods can be
used to debug or improve a model. Therefore,
Mayo Clin Proc Digital Health n June 2
interpretability and explainability are ideals to
be achieved, rather than assets.
Definitions
Artificial intelligence raises numerous ques-
tions because of its opaque decision-making
process. Both interpretability and explainabil-
ity aim to help understand algorithms and
answer user-based questions regarding AI’s
input, output, and performance (such as
why, how, what if, and why not).26

Existing definitions for explainability and
interpretability have been previously and
widely discussed in the literature, and it seems
that there is no clear taxonomy of con-
cepts.17,26e28 Even though some authors
consider the 2 concepts to be similar, some
HTA agencies distinguish between them dur-
ing the evaluation process (Table 1).
Following are the definitions proposed by
Markus et al17 in 2021:

1. “An AI system is explainable if the task
model is intrinsically interpretable or if
the non-interpretable task model is
023;1(2):120-138 n https://doi.org/10.1016/j.mcpdig.2023.02.004
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AI-based MD
assessment

process

Is the AI-based
MD performant?*

Performance

Yes

Yes

No

No

Interpretability
How does the AI-based MD work?

Is it aligned with the clinical
practice?

Explainability

Why does the AI-based
MD give such results?

Review technical
and clinical

validation process

Review technical and
clinical validation

process

Is it
interpretable

Is it
interpretable

High-risk MD?
Implantable MD, or with

impact on safety,
morbimortality

Low-risk MD?

MD without impact on
morbimortality, safety

Explainability
is not

necessary

Explainability
is mandatory

Expected evaluation level for
explainability and interpretability

High Medium Low

Application-
grounded

Human-
grounded

Functional-
based

Health technology accessment process completed for the evaluation of the AI-based MD

by design?
by post hoc

process?

FIGURE 2. Flowchart summarizing the recommendations relative to the type of assessment tool that could be used depending on
each criterion analyzed in our article, that is, performance, interpretability, and explainability for technology assessment of artificial
intelligence (AI)-based medical devices (MDs). *Assuming the concomitant evaluation of other health technology assessment criteria,
such as safety.
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complemented with an interpretable and
faithful explanation.”

2. “An explanation is interpretable if the
explanation is unambiguous, i.e., it pro-
vides a single rationale that is similar for
similar instances, and if the explanation is
not too complex, i.e., it is presented in a
compact form.”

If a task model is interpretable, it is hence
very likely to be explainable.
Tools for Measurement
Interpretability is difficult to define mathemat-
ically. Although there are many different ma-
chine learning (ML) algorithms, not all of
them are explainable straightforwardly. How-
ever, 3 levels of interpretability (high, me-
dium, and low ) have been identified. We
extended the figure proposed by Dam et al29

(2018) by including existing tools that can in-
crease the interpretability of the most well-
known models while taking into account
that black-box algorithms do not necessarily
lead to higher performance (Figure 1).30

Figure 1 was not generated from any real
data, and the y-axis has no quantification.

Interpretable by Design. Some models are
interpretable by design under specific con-
straints, such as monotonicity, causality, and
additivity (Table 2).31 They indeed already
include internal functioning ready for inter-
pretation, that is, they are intrinsically inter-
pretable. Table 2 also provides relevant
examples of application in the healthcare
sector. Regression models are tangible equa-
tions with interpretable coefficients that can be
read as linear coefficients with linear models,
odds ratios for logistic regressions, and hazard
ratios in Cox models to handle time-to-event
data.32 Decision trees include interpretable
rules and are greatly adapted to human
thinking.33,34 Such methods should be the
accepted baseline owing to their simple and
fast processing and are highly preferable to any
extremely complex model.30

Post Hoc Explanations. Ensemble methods
(such as random forests or boosting),
support-vector machines, or deep neural net-
works are uninterpretable algorithms. Post hoc
explanations can either be global or local.
Mayo Clin Proc Digital Health n June 2
Global explanations relate to the algorithm’s
overall behavior, typically considering the
overall importance of the covariates or fea-
tures, and provide insight into how the algo-
rithm makes predictions on a general basis.
Conversely, local explanations refer to expla-
nations at the scale of specific data points,
detailing the reasons why the model chose
these particular outcomes. Many toolkits and
classifications are available in the literature to
better describe how such post hoc explana-
tions work.35e38

In this section, we decided to list only the
most well-known approaches of post hoc
explanation. Because there is a growing need
for interpretability to manage the exponential
growth of the number of parameters in
models, many approaches have been devel-
oped recently, and several typologies exist to
classify them.39e41 Model-specific methods
will not be discussed here because they
depend highly on the model used for the pre-
diction (such as gradient-based saliency maps,
which are typically used for neural networks
and imagery and providing each pixel’s impor-
tance). The main advantage of model-agnostic
methods is that they can be applied in a post
hoc manner to any kind of ML model.

Advantages and disadvantages for each
method as well as relevant examples in health-
care are provided in Table 3. Overall, any
element that can help understand the choices
made by the AI algorithm are very welcome
(eg, the study by Selvaraju et al42). Methods
are yet to be made readily accessible to all
stakeholders, from the developer to the end
user. Work is currently underway to address
this matter.43e46

Evaluation of Performance, Interpretability,
and Explainability
According to Ossa et al,47 in some cases, fewer
explanations are acceptable if the risk-to-
benefit ratio is clearly defined. Low-stakes de-
cisions can tolerate less explainable AI as long
as the mortality and morbidity risks are
limited. In contrast, the diagnosis of a fatal dis-
ease requires that the AI algorithm provide
doctors and patients with a complete under-
standing of its decision. The conceptualization
of explainability in healthcare seems to be
driven by and should focus on the context of
clinical implementation. To date, no
023;1(2):120-138 n https://doi.org/10.1016/j.mcpdig.2023.02.004
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consensual approach exists for the evaluation
of interpretability. However, Doshi-Velez and
Kim48 have performed rigorous evaluation of
interpretability and explainability, and their
findings are outlined in the following sections.

Evaluations Involving Humans. First,
application-grounded evaluation ensures that
the algorithm performs the task for which it is
designed by conducting human experiments.
The principle is to involve end users (eg,
physicians or radiologists) and show them
explanations provided by the algorithm. The
second step is to ask them what the machine
would do and then present them with the
actual output of the machine, working
through a real-world example. By giving such
tasks, you can quantitatively assess the differ-
ence in the performances of the humans and
the model. Including both outliers and false
assumptions in the algorithm also helps in
spotting the expected outcomes. This consti-
tutes a straightforward way of validating the
objective, and, hence, the success of the al-
gorithm’s performance. Application-level
evaluations are yet to be deployed in
healthcare.49e51

Second, human-grounded evaluation is
similar to application-grounded evaluation
but provides a simpler framework. The people
involved are not experts anymore but lay peo-
ple. Such experiments are typically recom-
mended when objectives are wider than the
assessment of interpretability/explainability of
an algorithm. They are also cheaper because
they do not require the involvement of high-
level experts.

Evaluations Not Involving Humans. Func-
tionally grounded evaluation does not involve
human intervention. The aim is to formalize
the algorithm’s components as an indicator
of the quality of the explanation, favoring
ease of use and simplicity. For example, a
tree with a small depth is preferable to another
with a large depth. Easy to formalize, function-
based evaluation helps and is a valuable
addition to human-based strategies.

Numerous measures to evaluate interpret-
ability and explainability are emerging in the
literature, including stability, simplicity, and
faithfulness.41,52e56 Further guidance is also
available elsewhere in the literature.17,39
Mayo Clin Proc Digital Health n June 2023;1(2):120-138 n https://d
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Notably, the authors agree on the impossibility
of fulfilling all properties for “good” explana-
tions. However, human-based experiments
are highly recommended whenever possible.

DISCUSSION: TO WHAT EXTENT CAN THE
EXPLAINABILITY AND INTERPRETABILITY
OF AI BE AS USEFUL AS PERFORMANCE
FOR HTA?
To sum up the HTA process of AI-based MDs,
we established a flowchart that maps our rec-
ommendations toward the type of assessment
tool that could be used depending on each cri-
terion analyzed in the present article
(Figure 2). We assumed that concomitant
evaluation of other HTA criteria, such as
safety, would be undertaken at the same
time. Performance and interpretability should
be evaluated for each category of AI-based
MDs, whereas explainability might not be
mandatory for low-risk AI-based MDs (in
contrast to high-risk MDs), that is, devices
with no impact on morbimortality or safety.

Complex Trade-off Between Performance
and Interpretability and Explainability
The predictive performance of AI systems is a
key issue. However, the importance of
explainability depends on the specific AI and
its intended use. If explainability is not impor-
tant and if a black-box model could be accept-
able, the model with the best predictive
performance is more interesting because ex-
planations can be expensive. When a model
has a high level of explainability, the selection
of explainable AI methods could be
considered.8,9,57,58 It is difficult to satisfy all
properties of explainability. Holzinger et al59

suggested a brief overview of 17 explainable
AI methods, including Local Interpretable
Model-agnostic Explanations, Anchors, Graph
Local Interpretable Model Explanations, Shap-
ley Flow, Textual Explanations of Visual
Models, Integrated Gradients, Causal Models,
or Meaningful Perturbations. For instance,
Arras et al60 proposed to adapt the Layer-
wise Relevance Propagation technique used
for explaining the predictions of feed-forward
networks to the Long Short Term Memory ar-
chitecture used for sequential data modeling in
healthcare. Thus, as the developer of an AI
system, it is important to establish the relative
importance of explainability compared with
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predictive performance and what is desired by
end users of the AI system.

Performance, Interpretability, and Explain-
ability: Key Requirements for a Trustworthy
AI
At an international level, healthcare profes-
sionals seem to have difficulties trusting AI-
based MDs. A study by Oh et al61 highlighted
that only 5.9% of Korean doctors reported
having good familiarity with AI. Among 999
Japanese physicians interviewed, only 44.7%
expressed an intention to use AI-driven medi-
cine.62 Another study showed that companies
require more data, funding, and regulatory
certainty, and clinicians and patients insist
on trustworthy AI-based MDs.63

There are several issues that can decrease
physicians’ trust in AI in their clinical practice,
such as the low number of randomized clinical
trials assessing the performance of AI-based
MDs, the lack of transparency within these
technologies, the risk of inequity introduced
by AI biases, and insufficient regulatory
clarity.12 The need for trustworthy AI expo-
nentially increased in the healthcare ecosystem
with the several considerations in medical im-
aging, as Hasani et al11 highlighted with a
proposition of 14 core principles to promote
trustworthy AI-based MDs in medical imaging,
such as transparency, explainability, technical
robustness, or stakeholders involvement. Hol-
zinger et al64 insisted on bridging the gap be-
tween research and practical applications in
the context of future trustworthy medical AI
with human-centered AI design methods.

According to Ossa et al,47 explainability
needs to be sufficient but not exhaustive for
doctors and patients. The acceptable standards
for explainability are context-dependent and
rely on the risks of the clinical scenario, and
factors that form part of AI’s explainability
include usefulness and uncertainty, risk of
bias, responsibility attribution, and the AI’s
involvement in decision making.

To provide interpretability, methodologies
for explainable AI need to be associated with
ethical and legal analysis.65e69 For instance,
Currie et al70 confirmed the need of address-
ing the ethical and legal challenge of AI in nu-
clear medicine. Naik et al71 showed that as we
rely more on AI for decision making, it
Mayo Clin Proc Digital Health n June 2
becomes important to ensure that they are
made ethically and free from unjust biases to
tackle the responsible AI notion with devices
that are transparent, explainable, and
accountable.

A Regulatory Need Toward Responsible AI
The 3 notions that we covered in this article
are also part of the process of creating confi-
dence in AI in healthcare. The level of confi-
dence in an algorithm in fact relies heavily
on transparency (interpretability and explain-
ability of outputs) and ethics (in terms of trust-
worthiness and regulation).72

The work by Liao et al26 led to the identi-
fication of diverse motivations based on AI
users’ needs, such as gaining further insights
for decision making, appropriately evaluating
algorithm capability, and highlighting the
ethical responsibilities of AI products. The
lack of explanation for some “black-box” algo-
rithms raises ethical questions, particularly in
healthcare.27 Closely related concepts are fair-
ness and ethical AI. Fairness refers to the idea
that an algorithm should make predictions
that are unbiased and do not discriminate
against any group of individuals.73 Ethical AI
describes the use and design of an algorithm
that are in line with human values and the
rights and well-being of individuals.65 The
relationship between such concepts is that
interpretability and explainability can help to
strive toward fairness and ethical AI. Providing
interpretability and explainability for an algo-
rithm’s predictions typically means bringing
forward transparency and accountability by
detecting (and addressing) potential biases or
ethical issues (even though some explanations
can hide unfairness, as underlined by Dima-
nov et al74 and Slack et al75). In this way,
stakeholders can better understand how the
algorithm works and can evaluate whether
fair and unbiased decisions are made.76 The
aim of transparency and explainability of AI-
based MDs hence contributes to fair and
accountable algorithmic decision-making
processes.77

For these reasons, initiatives are awaited
from institutions. For instance, the Confian-
ce.ai program was launched in July 2021
and gathers 13 private and public institutes.
Together, they aim to build a trusted AI in
023;1(2):120-138 n https://doi.org/10.1016/j.mcpdig.2023.02.004
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the industry to ensure the reliability, security,
and certification of AI-based systems.

CONCLUSION
After the identification of 3 main assessment
criteria for AI-based MDs according to HTA
guidelines, we provided a set of tools and
methods to help understand how and why
ML algorithms work as well as their predic-
tions. We also highlighted the increase in the
importance of explainability and interpret-
ability techniques for HTA agencies to hold
stakeholders more accountable for the deci-
sions made by AI-based MDs given how
crucial such understanding is in high-stakes
decisions. Finally, we believe that raising
awareness of these concepts is essential for
their widespread adoption and confidence.
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