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Abstract
Backpropagation algorithms on recurrent artificial neural networks require an unfolding of
accumulated states over time. These states must be kept in memory for an undefined period of time
which is task-dependent and costly for edge devices. This paper uses the reservoir computing
paradigm where an untrained recurrent pool of neurons is used as a preprocessor for temporally
structured inputs and with a limited number of training data samples. These so-called reservoirs
usually require either extensive fine-tuning or neuroplasticity. We propose a new local and
unsupervised plasticity rule named P-CRITICAL designed for automatic reservoir tuning that
translates well to physical and digital neuromorphic processors. The spiking neuronal architecture
implementation is simulated on the Loihi research chip from Intel and on a conventional CPU.
Comparisons on state-of-the-art machine learning datasets are given. Improved performance on
visual and auditory tasks are observed. There is no need to a priori tune the reservoir when
switching between tasks, making this approach suitable for physical implementations.
Furthermore, such plastic behaviour of the reservoir is a key to end-to-end energy-efficient
neuromorphic-based machine learning on edge devices.

1. Introduction

Reservoir computing (RC), brought by both Jaeger [1] and Maass et al [2] respectively as the echo state network
(ESN) and the liquid state machine (LSM), have been successful on various complex tasks. Initially formulated
from computational neurosciences and machine learning approaches, the concept of reservoir has attracted a
large interest from neuromorphic engineers, and in particular from the emerging nanodevices community [3].
First, the apparent simple three-layer structure of the reservoir (input layer, reservoir and output layer) is very
attractive from a hardware implementation perspective. Indeed, only the last layer is trained with supervised
methods, making this architecture efficient in training time while reducing the complexity of weight learning
to a single perceptron problem. Secondly, the reservoir layer in itself is used to project input signals onto a large
dimensional space with some fading memory effect, which should ensure spatiotemporal separability of data.
This second aspect also appears very interesting for emerging hardware implementation since nanodevices
present most of the time complex dynamics that could be used for temporal reservoir engineering and are
prone to high-density integration, thus allowing for the implementation of large dimensionality physical space.

1.1. Physical reservoir limitations
The development of physical reservoirs (i.e., based on physical hardware substrates) are now facing drawbacks
such as scalability of the reservoir to complex problems (i.e., requiring to increase drastically the dimension-
ality) and ability of reservoirs to be adapted to various problems (i.e., finding a generic hardware implemen-
tation applicable to various tasks). Moreover, novel reservoir implementations with emerging nanodevices,
which rely on intrinsic device physics for reproducing neuronal and synaptic behaviour, are limited in the
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tuning capability of the various network parameters. Solving these major issues requires to bridge in more
detail the fundamentals of RC with the constraints and opportunities bear by the hardware implementation
and physics of nanodevices. Additionally, implementations based on emerging technologies often face unde-
sired behaviour, such as device-to-device variability. Ideally, a reservoir computer should be either immune or
enhanced by these variations.

1.2. Software-based solutions
Similarly, in neurocomputing, the major cost of the reservoir architecture is that the reservoir’s connectivity, or
topology, alongside its weights must be chosen carefully during initialization. Failure to do so results in a huge
variability in the performance of the network. The topology choice and the various parameters of the network
constitute a search space and therefore, optimization of these parameters is often mandatory to achieve an
adequate performance.

To maximize the performance obtainable by a reservoir, this search space must be navigated using a heuris-
tic. There exist three categories of heuristics to evaluate the effectiveness of a reservoir. The first and most
straightforward category is simply post training accuracy. The second type of heuristic consists of a posteri-
ori methods [4–7] that require some simulation time without the need for training the network on a dataset,
e.g., computing the separation distance of closely inputs using the Lyapunov exponent [4]. Lastly, the a priori
category encompasses methods that can create reservoirs without the need of simulation [8, 9] by algorithmi-
cally creating the reservoir from a mathematical definition. The reservoir’s parameters can then be searched
[10–14] and compared using one of these heuristic. More resources spent on optimization typically yield bet-
ter reservoir performance. Yet, this idea conflicts with the premise of having fast trainable networks, both for
software and hardware implementations of reservoir networks.

1.3. P-CRITICAL for hardware-aware reservoir computing
We propose in this work a hardware-friendly solution that helps to define the three main basic ingredients of
a reservoir: (i) topology of the reservoir (number of neurons and connectivity map), (ii) neurons parameters
and (iii) synaptic weight definition.

First, we present a novel topology initialization scheme that belongs in the a priori category of heuristics.
Our topology is optimized in the hyperparameter space of small-world graphs, with respect to the aver-
age eigenvalues spectrum of connectomes [15]. This new technique offers a valuable performance boost at
a low computational cost while remaining task independent. The fixed task-independent network topology
can be embedded into any hardware device, in lieu of complex reconfigurable topology using addressable
neuron/synapse as is done in digital or mixed digital/analog neuromorphic devices.

Second, we present P-CRITICAL, a plasticity rule for neuromorphic applications that removes most of
the need for reservoir parameter tuning, such as the number of neurons, their parameters, and a bad set of
initial synaptic weights. This simple plasticity rule is based on the concept of criticality, as used in [16–18],
with a focus on neuromorphic hardware. Unlike hyperparameter optimization using heuristics, P-CRITICAL
tries to continuously adapt the weights inside a reservoir such that the performance of the reservoir becomes
less dependent on the initial values of the parameters or the behaviours of the underlying devices. Moreover,
P-CRITICAL uses the same equations for neurons and for adaptation, which can simplify future hardware
implementations. We benchmarked P-CRITICAL on well-known machine learning classification tasks and
observed increased performance when compared to LSMs with fixed random weights.

We emphasize the importance of the many hardware constraints on the design and choices behind our
approach. In this work, some of these constraints are set by the design choices of a modern neuromorphic pro-
cessor, namely Intel’s Loihi research test chip [19]. The major limitation is the inability of drastically changing
the neuron model inside the neurocores, which we circumvent by combining neurons in a novel way. More-
over, resources are better distributed on Loihi when the network is sparse and not fully connected, for both
energy and time efficiency. While these limitations exist on Loihi, they are typical of most neuromorphic hard-
ware architectures where neuronal and synaptic memory is limited or with fixed analog or physical neurons
and synapses. Additionally, our approach further showcases the applicability of reservoirs for other physical
devices as we constraints ourselves with realistic hardware limitations.

We contribute to the research effort, which consists in editing the weights of a reservoir network using
synaptic plasticity, and provide a model that is more hardware-friendly. In summary, the key contributions of
this paper are:

(a) A new scheme to initialize the network connectivity (decide which neurons connect to which neurons) of
a reservoir that is task-independent and sparse.
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(b) Followed by P-CRITICAL, a plasticity rule which dynamically modifies the values of the connection
weights to maintain the reservoir at an operating point which is optimal for the targeted task while adapt-
ing to the fact that the characteristics of the neurons (RC, threshold, etc) are unknown and can be decided
by external factors (i.e., from a target hardware device).

We present results from a CPU/GPU implementation using PyTorch [20] and with Intel’s Loihi.

2. Related works

The ESN and the LSM are mostly distinguished by their respective neuron models. ESNs use perceptron-
like neurons with non-linear activation functions such as sigmoid or tanh [1], while LSMs use biologically
inspired spiking neurons, often leaky-integrate-and-fire (LIF) or integrate-and-fire (IF) neurons [2]. These
architectures comprise three layers: an input layer WI, a reservoir layer WR and an output layer WO. Both WI

and WR are not trained with supervised methods such as backpropagation, although the many parameters
of these layers and even in the neuron model is often optimized with one of the aforementioned heuristics.
Many LSM users implement a non-spiking readout layer WO using machine learning methods [13, 21–24] or
even n-layers formal neural networks [25]. In this work, we use a single formal layer with a softmax activation
function as the output layer as we focus on the reservoir component of the LSM.

2.1. Optimization of the reservoir
While WR is not trained, many authors include unsupervised neuroplasticity rules [22, 23, 26–28] as a way
to either keep biological realism or to provide a higher computational performance. Similarly, several studies
looked at the initialization of WR in combination with various topologies such as small-world [27, 29–31] and
scale-free networks [31, 32]. Furthermore, by using an orthogonal matrix for WR in the context of ESNs, Hajnal
and Lrincz [9] reduce the dimension of the reservoir hyperparameters search space, yielding an increased
probability of finding a valid reservoir configuration. Our work uses state of the art topological and plastic
reservoir enhancements to increase the computational power of our network with a focus on efficiency and
hardware implementation.

2.1.1. Echo state property
Reservoirs are typically prone to two major problems as WR is recurrent: the explosion or the fading of the
internal states during recursion. In both cases, the information will be lost, albeit the explosion problem is
worst as it can create uncontrollable noise (similar to chaotic behaviour [33]). That explosion can be solved
for the ESN if WR is diagonally Schur stable; this is known as the echo state property (ESP) [8]. As explained in
Yildiz et al [8], a simple recipe for generating WR that satisfies the ESP is to create a positive random matrix W,
scale it down using the spectral radius ρ of W, and convert any ratio of connections into inhibitory connections
by changing the sign of the weights wij, considering W = (wij). This is, of course, equivalent to creating a
random matrix and scaling it with ρ(|wij|):

WR :=
WR

ρ(|wR
ij |)

(1)

Although equivalents of equation (1) are widely used in the ESN literature, these methods do not translate
to LSMs [25, 34] as they are insufficient as the sole a priori heuristic for reservoir performance [5, 34, 35]. We
will further demonstrate the inability of the ESP to tune LSMs in section 4.2.1 in comparison to our plastic
approach.

2.1.2. Dynamical optimization
Other metrics have been explored to quantify performance based on a posteriori dynamic analysis such as the
Lyapunov exponent [4], the average state entropy [5], the dynamic profile of the Jacobian of WR [6] or the
approximate state space model [7]. These methods allow for a more guided search on a reservoir’s parameters.
The most common approach is to use an evolutionary based search algorithm [10–13]. Similarly, Tian et al
[14] showed improvements with a neural architecture search designed for LSM. Unfortunately, iterating over
some extensive search space goes against the rationale of low-energy NC since simulation-based hyperparam-
eter search is an energy-intensive operation. This is especially true when we consider that most optimization
schemes are task-dependent. Indeed, the scaling of the weights inside the reservoir must somewhat match the
amplitude of the input for adequate memory fading in the context of LSMs. If WR is fixed and tuned to account
for high frequency spiking inputs, the reservoir will not respond correctly for sparser input activity and the
information will die out quickly. For the ESN, one typically normalizes the input to maximize what is inserted
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in the reservoir. Unlike the ESN, spike trains with binary spikes have a fixed amplitude and normalizing the fre-
quency is not possible for real-time systems without prior knowledge of the task. A possible solution is a plastic
reservoir, since it can minimize the necessity of hyperparameter optimization for different input frequencies.

The reservoir should adapt its own parameters without requiring information about its output-layer per-
formance nor an iterative search space. Hebbian STDP-like plasticity rules do not help in this regard as they
aim to increase correlation of spike-timing, which can still happen during chaotic behaviour. There are few
proposed models that help by tuning what is called the branching factor σ of WR. For npre, the number of
pre-synaptic spikes for a neuron and npost, the number of post-synaptic spikes for the same neuron:

σ =
npre

npost
(2)

We define σ̄ as the mean branching factor of the neurons in WR. There are three defined regimes for σ̄
known as subcritical when σ̄ < 1, critical when σ̄ = 1 and supercritical when σ̄ > 1 [36]. For the latter, the
aforementioned problem of unconstrained activity rises up. These regimes are similar to what can be expressed
by the ESP [8] or the Lyapunov exponent [4]. A σ̄ slightly below 1.0 can offer sufficient fading memory prop-
erties for a reservoir while being close to reproducing in vivo spike avalanches [37]. As such, a few models
have been proposed for locally tuning σ in a reservoir of spiking neurons [16–18]. Kello and Mayberry’s [16]
algorithm is memory-less in the sense that the branching factor is only considered in consecutive time steps
(at t and t + 1). Stepp et al [18] tunes biologically inspired STDP rules to exhibit criticality behaviours. It is
believed that branching factor tuning algorithms may increase computational power by bringing a network to
the edge-of-chaos [16–18, 36]. Regardless, the reservoir dynamics must be adapted to σ̄ ≈ 1 − ε—or slightly
subcritical—in order to maintain readable states with adequate memory decay.

To sum up, it remains computationally expensive to adjust the hyperparameters inside the reservoir, and
optimization may be restrictive or even not possible depending on the target hardware. Most search methods
are limited and reservoirs often require task-specific optimizations; some type of self-adaptation is therefore
necessary. As illustrated in this work, branching-factor algorithms could be the answer to that problem.

2.2. Eigenvalues spectrum
Ideally, the reservoir’s connectivity—or topology—should be as sparse as possible to reduce the computational
cost. Choosing a topology that can work with any given task is still an open problem.

Many authors empirically verified that biologically inspired topologies perform better than their com-
pletely random counterparts. Manevitz and Hazan [31] showed that scale-free networks are more robust to
noisy neuron models in the context of RC. Similarly, [27, 29, 30, 32, 38] presented improvements on various
tasks with either small-world or scale-free topologies. Wijesinghe et al [39] introduced the concept of liquid
ensembles, which can be thought as a small-world topology with disjoint inner networks. This idea allowed
them to speedup computation while still observing the increased performance of small-worlds.

Recent studies [15, 40] looked at the patterns in the eigenvalues spectrum, or rather in the probabilistic
distribution of the eigenvalues of the normalized Laplacian of unweighted and undirected biological connec-
tomes. In mammalian brains, this distribution seems to be consistent intraspecies, and bifurcations from said
distribution are linked to improperly developed brains [40]. In summary, years of evolution seem to lead to a
fairly consistent topology. We propose to use the available data for adjusting the hyperparameters of a topology,
thus using a computationally inexpensive and convenient way of choosing the topology that does not rely on
simulated dynamics. Moreover, a task-independent topology can translate well to hardware implementations
as the routing can be embedded instead of using more expensive dynamic routing options or fully connected
crossbar-like architectures.

3. Proposed approach

First, we present a topology optimization scheme in section 3.1. We then present P-CRITICAL, a synaptic
plasticity rule in section 3.3.

3.1. Eigenvalues spectrum inspired topology
Topology is an important aspect of a reservoir. It is known that some topologies are better than others for
various tasks [27, 29–32, 38, 39]. But even within a choice of topology, some hyperparameters have to be
searched. We therefore propose a simple method of choosing an adequate set of topology parameters that is
task independent and biologically inspired. This aspect is particularly important when considering the added
complexity of topological optimization in physical implementations. Our topology is a small-world with a
distance-based connectivity. We first create a three-dimensional Cartesian grid lattice of {x, y, z} positioned
neurons. Each neuron is equally separated by distance s with its neighbours. Furthermore, every group of j
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Figure 1. Tridimensional representation of the small-world topology with excitatory connections in green and inhibitory
connections in red. 20% of the neurons are chosen to be inhibitory with all their outgoing connections being inhibitory. Once the
neurons are positioned, all pairs of neurons can create a connection with a Euclidean distance-based probability, except with
themselves. The mini-reservoirs of size j3 = 64 neurons are separated by distance p. Each neuron is separated by distance s with its
neighbours.

neurons in all orthogonal directions are separated by distance p. The tridimensional distances and connectivity
ratios are illustrated in figure 1. This results in n

j,3
mini-reservoirs of size j3 neurons, assuming WR ∈ Rn,n and

n ≡ 0 mod j3. In order to achieve non-cubic mini-reservoirs, j can also be represented as a vector j ∈ R3 where
jk is the number of neurons j used for the kth dimension.

The undirected adjacency matrix A, with aij = aji = 1 if neuron i is connected to neuron j and aij = 0
otherwise, can be generated by randomly connecting neurons based on their Euclidean distance D, as done in
[2]. The probability P of connection between neuron a and neuron b is given by:

P = C · e−
D(a,b)

λ ,

where C is the maximum connection probability and λ is a control parameter which we refer to as an Euclidean
distance divisor.

By looking at the eigenvalues spectrum of the macaque as presented in Lange et al [15], we manually tuned
the parameters of a small-world topology to minimize the Kullback–Leibler divergence with the topology’s
eigen spectrum. We obtained a good approximation with values s = 40, p = 1460, C = 0.11 and λ = 635.
From a topological perspective, our reservoir will yield a more similar macroscopic structure to what is seen in
the brain. Therefore, this method uses millions of years of evolution in connectomes to enhance our reservoir’s
topology.

3.2. Input and output layers
The input matrix WI is simply a permutation matrix4 multiplied by a constant weight wI

ij. The value is chosen
such that every pre-synaptic spike in the input layer causes a post-synaptic spike in the reservoir. By doing
so, we remove any need to consider the input weights distribution. We therefore consider the input neurons
to be within the reservoir and plastic connections can act immediately. 1 to n connections can be created by
changing n − 1 zeros into ones in each row of WI before the permutation operation5.

For classification tasks, we bin the reservoir spikes from all the neurons into Routput by counting the spikes in
multiple fixed slices of time and train a weight matrix WO. WO is trained with backpropagation using PyTorch’s
cross entropy loss function. We use a batch normalization layer bn [41] in between the reservoir output and
the single layer classifier. Accuracies are calculated from labels y with

∑
(y = argmax(bn(Routput)WO)).

4 A permutation matrix can be created by randomly permuting the rows of the identity matrix. This is equivalent to connecting each input
neuron to a unique reservoir neuron (one-for-one).
5 Only a 10k samples subset of N-MNIST was used (+10k in testing).
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3.3. Branching-factor adaptation of reservoirs with weight updates
3.3.1. Prior work
Brodeur and Rouat [17] introduced a neuron ensemble with a plasticity rule called CRITICAL that adapts the
synaptic weights in a time-dependent manner. The locality of this plasticity rule incorporates new recorded
states from the pre and post-synaptic neurons, referred to as pre and post-synaptic contributions or cout and cin

respectively. These two extra variables are stored inside each neuron and are updated on pre and post-synaptic
spikes. Let ni be a pre-synaptic neuron spiking at time tni and nj be a post-synaptic neuron spiking at time tnj ,
then the CRITICAL plasticity is:

dcin

dt
= wij · δ(t − tni ) (3)

dcout

dt
=

wij

cin
δ(t − tnj )e

−Δtij
τ (4)

dw

dt
= lr(σ − cout)δ(t − tni ), (5)

where lr is a learning rate and σ is the target branching factor. δ represents the Dirac delta function with
δ(t = 0) = 1 otherwise δ(t �= 0) = 0. In equation (4), Δtij = |tnj − tni | contributes to the weight evolution
with a Hebbian STDP-like window by taking into account the relative timing between the pre and post neurons.
cin and cout are local variables to the neurons, but shared in between the synaptic connections of these neurons.
Finally, cin and cout are reset during post and pre-synaptic spikes respectively.

Unfortunately, neuromorphic chips, such as Loihi, typically work with a fixed neuron model since it is
embedded in the circuitry. Adding new states in the neuron model is therefore not possible.

3.3.2. Regulation neurons
We were able to translate the intended behaviour of CRITICAL by recreating the adaptation with regulation
neurons or n′

i. Each regulation neuron n′
i is associated with a neuron ni and integrates its post-synaptic activ-

ity using transposed connections from WT
R , i.e., projecting nj to n′

i. When the branching factor of neuron
ni is above the targeted branching factor, n′

i fires, causing a depreciation of all synaptic connections with ni

as the presynaptic neuron. This design choice comes at the cost of doubling the number of neurons inside
the reservoir. Furthermore, the nature of the unsigned and unweighted spike communication between the
regulation neurons n′

i and the synaptic connections of ni on Loihi forces a single direction in the branching
factor estimation i.e. a synapse can receive information that the branching factor is too high or too low, but
not both. An overview of this concept can be visualized in figure 2 and equation (6). We name this model P-
CRITICAL, since every reservoir neuron now comes in pair with its regulation neuron. This regulation neuron
concept also simplifies future physical or hardware implementations of reservoirs, as the neuron block can be
reused as-is.

dwij

dt
= β − αδ(t − tn′i

)e
−Δtij

τ (6)

α and β are two learning rates for depression and potentiation. The neuron n′
i estimates the output contri-

bution of neuron ni, similar to cout in the critical rule. When the regulation neuron n′
i spikes, the outgoing

connections of ni are reduced by a ratio of α. w is constantly increasing by a small factor β to provide a way
for the reservoir to come back from sub-criticality if ever the depression caused by α is too strong, e.g. during
a change in input spike frequency. Consequently, it is important to keep the relation α > β > 0. Addition-
ally, a decaying exponential is added to enforce causality between pre and post-synaptic spikes and weight
changes, similar to short-term facilitation rules with constant τ in Hebbian-like plasticity or in the CRITICAL
equation (4). The exponential can be approximated using a numerically decaying synaptic trace.

3.3.3. Validation of the model
The P-CRITICAL concept is first simulated using the PyTorch [20] python library. The reservoir is initialized
with a WR where the connectivity is decided with a distanced-based small-world topology, similar to [17].
We then connect the reservoir to the regulation reservoir using weight tensor WT

R —the transpose of WR. By
doing so, every post-synaptic neuron of ni is projecting to n′

i. Neurons are chosen to be inhibitory or excita-
tory at initialization, such that all their outgoing weights are either positive or negative. Inhibitory connections
do not have the same definition of branching factor, since they cannot create post-synaptic spikes. Therefore,
inhibitory connections are not learned. For all simulated reservoirs, 20% of the neurons are randomly cho-
sen inhibitory. For synapses coming from excitatory neurons, the initial weights are sampled from a uniform
random distribution in range [0.2, 0.5[ and [−0.3, −0.1[ for synapses coming from inhibitory neurons.

Regulation neurons n′
i have the same LIF model as neurons ni. The voltage threshold vth of the regulation

neuron can be decreased or increased further to target a different branching factor for the reservoir. Finally, the
amplitude of all the weights are clipped between zero and one after plasticity WR = sign(WR) ◦ clip(|WR|, 0, 1)
with ◦ as the Hadamard product.
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Figure 2. In this new adaptation rule, every neuron ni projecting to neurons nj and nj+1 is associated with its regulation neuron
n′

i. n′
i approximates the branching factor of ni and generates spikes to decrease the weights of all outgoing connections of ni when

super-criticality is reached.

By design, we can translate P-CRITICAL easily on Intel’s Loihi using their on-chip local learning rules. All
weights are scaled from PyTorch’s 23 bits mantissas (32 bits floating point implementation) to Loihi’s 8 bits (+1
sign bit). As such, we converted the± [0, 1 [possible weight range to ± [0, 256 [. The only remaining constraint
is that α and β must be chosen to minimally affect the least significant bit of all weights while maintaining
α > β. This constraint adds a slight noise in the convergence of the weights for Loihi. The significance of this
noise is discussed further in section 4.1.

4. Experiments and results

We first tested our method empirically to validate the behaviour of the plasticity rule. We then tested our
method against two well-known datasets of the machine learning and spiking neural network community:
N-MNIST [42] and N-TIDIGITS [43]. Both of these datasets were created using event-based sensors from
previously recorded data. N-MNIST comes from the saccadic presentation of the well-known handwritten
digit recognition dataset MNIST to the event-based camera ATIS sensor [44]. N-TIDIGITS was recorded from
TIDIGITS, an audio representation of spoken digits, using the spiking silicon cochlea sensor CochleaAMS1b
[43, 45]. Successful training on these datasets could be a significant step to end to end training of low energy
event-based hardware. As mentioned, the main goal of P-CRITICAL is to tune a reservoir to the input spike
train representation as to offer stability. Many publications present optimized reservoir parameters for the
task at hand. We demonstrate that P-CRITICAL can compensate for untuned sets of initial parameters and
to some extent an initialization that is not suited for a specific task. This reduces the total training time, as
the hyperparameters of the network do not require fine-tuning. Fixed initial parameters are also common in
physical neuron implementations, as the neurons may be difficult to parameterize and have some untunable
variability. All parameters for the various experiments are attached in appendix A and the code is available
online at https://github.com/NECOTIS/PCRITICAL.

4.1. Validity of the model
To test the behaviour of the P-CRITICAL model, we connected 170 input neurons with a Poisson-distributed
spiking activity to a reservoir of 512 neurons. The input neurons are connected in a one-to-one fashion to the
reservoir. We vary the random input frequency from 10 to 50 Hertz. We aim for the reservoir to have a mean
branching factor σ̄ = 1. The small-world topology constant j = 4 (figure 1). Results are shown in figure 3. As
expected, the weights of the reservoir converge according to the input frequency to maintain a steady activity
in the reservoir. For higher-frequency inputs, the average weight should be smaller to maintain a constant
activity and bigger for a smaller input frequency. Similarly, we re-created the experiment on the Loihi chip
and, as expected, we obtained similar results with the P-CRITICAL rule.

We compared the real branching factor with the theoretical and targeted branching factor similarly as
Stepp et al [18]. We first subtract the input spike train, mapped to the reservoir’s dimension by WI, from
the reservoir’s spike train. This way, we ensure that the branching factor computation methods only consider
the self-induced activity within the reservoir. We compute a local branching factor estimation where every
neuron’s post-synaptic activity is summed and divided by its pre-synaptic activity in terms of spike count. We
then average this value for every excitatory neurons in the reservoir. This topology-aware method will over-
shoot slightly the global branching factor as post-synaptic spikes can be counted multiple times by pre-synaptic
neurons. We then estimate the global branching factor with the total number of spikes at t + 1 divided by the
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Figure 3. Autoregulation of the weights using the P-CRITICAL plasticity rule with random input and a target branching factor of
1. The average weight is shown as a function of time. There are 170 neurons in the 1 s input spike train with a one-to-one
connectivity to the 512 reservoir neurons. The input spike train was sampled from a Poisson distribution of labelled frequencies.
It is observed that P-CRITICAL is regulating the weights in function of the spiking input frequency. Results are presented for both
Loihi and PyTorch implementations.

total number of spikes at time t for excitatory neurons. For these tests, we use 5 s of continuous activity ran-
domly sampled from the N-TIDIGITS dataset. After a small adaptation period, both methods revealed a fairly
consistent branching factor of 1 with the P-CRITICAL plasticity rule. Spike activity and branching factor esti-
mations are given in figure 4. The branching factor estimations are filtered for visualization purposes with:

BF(t) = BFmeasured(t) ∗ N (σ = 0.7),

where ∗ is the convolution operation between the measured branching factor (BF) and a 1D Gaussian
kernel N (σ = 0.7).

Finally, we also compare the time-binned spike counts from the self-induced activity in a Poincaré plot
in figure 5. We once again used 5 s of activity from the N-TIDIGITS datasets where features were randomly
connected to two reservoir neurons each. We removed the first 2.5 s of the spike train to be sure that the
reservoir had converged to the target branching factor of one. We then compute the spike counts using 5 ms
bins and plot these counts for consecutive time periods. We compare this with a model of slope one, which
represents a σ̄ = 1. We observe that the P-CRITICAL enabled reservoir can adequately maintain a branching
factor of one.

4.2. Real-world tasks
We then compare randomly initialized reservoirs with P-CRITICAL on N-TIDIGITS and N-MNIST. All exper-
iments are averaged over 5 executions using different random seeds and the standard deviation is presented.
We also use identical LIF parameters (leak constants, membrane potential thresholds) for both experiments as
we would expect in a generic reservoir-based NC chip, even though they come from different sensory repre-
sentations. The learning rates of P-CRITICAL, the initial random distribution of the weights, the time-binning
constants and the network topology are also fixed. All parameters are given in appendix A.

4.2.1. Speaker-independent audio digit classification
For the N-TIDIGITS classification task, we used a 512 neurons reservoir with small-world topology and con-
stant j set to 4. For comparison, we run the same sets of experiments with no plasticity and no tuning of the
initial parameters and we also use the spectral radius ρ normalization from equation (1). We run our model
for 10 epochs, and we use a batch size of 32 samples when training the output layer. As mentioned, the output
layer is a single feed-forward matrix WO with softmax activation function. Only the single digit samples of
the dataset were used for training. At each epoch, the data passes through the untrained input and reservoir

8



Neuromorph. Comput. Eng. 2 (2022) 024007 I Balafrej et al

Figure 4. Spike activity for 5 s of randomly chosen samples from the N-TIDIGITS dataset. Plot (A) shows the sum of all spike
counts after the input layer, as received by the 512 neurons reservoir. Plot (B) shows the sum of spike counts for the reservoir
neurons with the input spike counts subtracted, therefore showing the self-induced activity inside the reservoir. Plot (C) shows
the branching factor, estimated over the self-induced reservoir activity with two different methods as done in [18]: the total spike
count and a topology-aware method. This branching factor estimation is Gaussian filtered over time with constant σ = 0.7. The
total spike count method consists of dividing the total spike count at t + 1 by the total spike count at t. The topology-aware
method works similarly, but spike counts are computed for every neuron and the resulting branching factors are averaged over all
neurons in the reservoir. Both estimation methods are presented for excitatory neurons only.

Figure 5. Poincaŕe visualization of the spike count time-binned with Tbins = 5 milliseconds. A slope of one was added as a
comparison for a model with σ̄ = 1. The spikes come from the self-induced reservoir activity after presentation of the
N-TIDIGITS dataset. We first tuned the reservoir over 2500 milliseconds of continuous input. We then simulate the model for
another 2500 milliseconds, which resulted in the presented spike counts. We used a small-world reservoir of 512 neurons with
constant j = 4.

layers. After a batch of data has passed through, we use the Adam [46] optimizer with a learning of 10−3 to
learn the weights of the output layer. As expected, reservoirs that were tuned using spectral radius normal-
ization outperformed random reservoirs. We observe, however, an increased accuracy on the test set with all
experiments where P-CRITICAL plasticity was enabled. We obtained with P-CRITICAL an average accuracy
of 71.26 ± 0.92% (figure 6) with the five different random seeds after 10 iterations of training each. Using the
optimized eigenvalues spectrum offered all reservoirs running on the CPU with or without P-CRITICAL plas-
ticity a mean accuracy boost of 16.77% on N-TIDIGITS at no task-specific optimization cost. When executing
the exact same reservoir experiment on the Loihi research chip, we observed a 64.1% accuracy when running
for 20 epochs and using a weight decay of 10−2.
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Figure 6. Test accuracy as a function of the number of epochs for the N-TIDIGITS classification task. No reservoir
hyperparameters were tuned for this task. Classification results are sampled five times for each method with different initial
random parameters of the same distributions. All initialization constants are presented in appendix A. The spectral radius ρ
normalization of the weights has an expected improved accuracy versus a completely random initialization. However,
P-CRITICAL enabled reservoirs surpassed all other methods.

We compared the same reservoir topology but with the original CRITICAL plasticity rule [17] running on
the Brian2 simulator [47] and obtained an accuracy of 63.48 ± 0.86% on the task. We note, however, that the
neuron model in the CRITICAL reservoir has an optional adaptative threshold that did not affect performance.
This adaptative threshold is modeled as a local threshold to each neuron, with an incremental value of 0.1 at
every spike and an exponential decay back to its rest value of 1.0.

This work is one of the first LSM-based reported accuracy for the N-TIDIGITS dataset. In comparison,
[48] obtained an accuracy of 87.65% using a deep non-spiking CNN, while [43] obtained 86.4% for a simi-
lar network and 82.82% using a non-spiking GRU RNN. All presented spiking methods uses a time-binning
readout to convert the spikes from each audio sample into real-valued vectors for classification.

4.2.2. Handwritten digit classification
For N-MNIST, we use a 8640 neurons reservoir (with j =

[
4 4 3

]
) with PyTorch. Once again, we make no

assumption on the difficulty of the task when choosing the number of reservoir neurons, as we focus solely
on increasing the dimensionality of the problem. Specifically for N-MNIST, a lot of background neurons are
inactive during the experiment and the reservoir size could have been reduced to what is more common in the
literature which, however, would have biased our choice of parameters to the task at hand. We were unable to
outperform other unoptimized reservoirs from the literature when using more neurons without a plasticity
rule, as unoptimized reservoirs are very dependent on the initial state and parameters which are random. This
emphasis the prior need in literature for many of the reservoir optimization schemes. Moreover, many physical
reservoir implementations possess a constant number of neurons, which requires the reservoir to adapt to the
task and not vice versa (i.e., by optimizing the number of neurons).

Only the ON polarity of the input spike trains as available in the N-MNIST dataset was kept. For the
readout layer, we used the Adam optimizer with amsgrad [52], a learning rate of 1e − 5 and a batch size of 10.
We observe a 95.22 ± 0.09% accuracy on the test data. As N-MNIST is more substantial in the amount of data,
only 1 epoch through the whole dataset was necessary to learn the readout layer and achieve these results.

We conducted a second faster experiment with only 1156 neurons in the reservoir. To do so, the 3D input
spike train of shape 34 × 34 × time was split into sub-spike-trains, or quadrants, of shape 17 × 17 × time.
We refer to this second experiment as the quadrant method. Figure 7 demonstrates this idea using a MNIST
digit. We ran the experiment on the Loihi chip with P-CRITICAL and obtained an accuracy of 88.61%. The
quadrant method allows for a smaller-sized input and reservoir (1156 instead of 8640 neurons), which was
needed to mitigate the required communication bandwidth of the Loihi chip. We compare our method with
other mostly unsupervised approaches on N-MNIST in table 1.
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Figure 7. Quadrant representation of a MNIST digit. While this work uses the N-MNIST dataset, a MNIST digit is used for
visualization purposes. Using a smaller representation of the digit in both height and width reduces the size of the reservoir and
therefore the required bandwidth in and out of the Loihi research chip.

Table 1. Comparison of several models benchmarked on N-MNIST. All except [49] are based on the LSM architecture. These models
combine preprocessing layers with either plastic adaptation or fixed-weights combined with a fully trained readout layer(s). Some
software optimized reservoirs methods are shown as a comparison, although this work compares itself in the realm of unoptimized
reservoirs and outperform contenders in this category.

Model Reservoir size Details Accuracy (%)

Iranmehr et al [50] 625 Unoptimized reservoir 91.48

Iranmehr et al [50] 625 Optimized reservoir 92.56

Iranmehr et al [50] 625 Optimized reservoir with a 120 neurons hidden fully connected layer 98.38

Guo et al [51] 1000 This work focus on input compression for smaller reservoirs 91.67

Thiele et al [49] — This work uses an unsupervised STDP trained CNN 95.77

CRITICAL (this work) 8640 Task-independent unoptimized reservoir with CRITICAL plasticity 96.17

P-CRITICAL (this work) 8640 Task-independent unoptimized reservoir with P-CRITICAL plasticity 95.22

P-CRITICAL (this work, on-chip) 1156 Task-independent unoptimized reservoir with the quadrant method 88.61

The input layer and the reservoir are mapped directly in the neurocores of Loihi using the Nx SDK version
0.9.5. Time-binning is done on one of the available on-chip ×86 processor before being transmitted to another
computer for readout-layer classification and training.

The experiment was recreated using instead the original CRITICAL plasticity rule which inspired this
work, with all the exact same parameters. An accuracy of 96.17 ± 0.08% on the test dataset was obtained. P-
CRITICAL was able to achieve comparable results as CRITICAL, and surpass other unoptimized reservoir-like
methods. As mentioned, no task-specific hyperparameters optimization was done and the number of neurons
was selected on the assumption that the size of the reservoir had to be larger than the number of input features.
This constraint greatly reduces the total training time of our reservoir approach, while providing guidelines for
future physical reservoir implementation who may have limitations in the fine-tuning of network parameters
with added physical variability.

4.3. Neuromorphic efficiency
We benchmarked P-CRITICAL with a network of 64 input neurons connected to a 512 neurons reservoir.
The input neurons possess a current bias causing a fixed 40 Hz spiking input. This set-up is comparable to
the number of spikes in the N-TIDIGITS experiment, without the added computational and energy cost of
I/O. A 512 neurons reservoir with P-CRITICAL only takes about 2 to 3 neurocores on Loihi depending on
the connectivity, out of a possible 128 cores per chip. The reservoir is running on 2 neurocores on Loihi. We
compare the same network running on a chosen power-efficient CPU: an Intel i7-9750H. The CPU ran the
PyTorch implementation. Such a network takes on average 0.88 ms per timestep to run on PyTorch. This model
is therefore 1.13 times faster than our simulated timestep of 1 ms on PyTorch. In comparison, the same reservoir
takes 17.52μs on Loihi. We also benchmarked power efficiency for both implementations. The PyTorch version
consumes 46 W of dynamical power. In comparison, the Loihi implementation only takes 17.3 mW. Table 2
shows a breakdown of energy and time consumption of both implementations.

We then scaled the reservoir to all 128 cores of a single Loihi chip (64 × 512 neurons reservoirs). The
required time to simulate was only increased to 19.75 μs because of the parallel nature of the chip. All
efficiency experiments used the Nx SDK version 0.9.5 on a Nahuku 32 board ncl-ext-ghrd-01 with power
probing.
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Table 2. Comparison of energy consumption and speed of P-CRITICAL implementations for a 512
neurons reservoir. The CPU’s efficiency was measured using Intel SoC Watch on Linux with kernel
version 5.4.0-7634, Python 3.8.1 and PyTorch 1.4.0. Loihi’s efficiency was measured using the power
probes of the Nx SDK version 0.9.5 on Nahuku 32 board ncl-ext-ghrd-01. Spikes were generated using
input neurons with a bias current to simulate a 40 Hz input frequency on Loihi to avoid I/O latency.
Intel’s Loihi research chip has shown major improvements in both power and time efficiency for
P-CRITICAL when compared to a conventional CPU.

Power (mW)

Time
Timestep (μs) Energy

Timestep (μJ)Static (Idle) Dynamic Total

Loihi neurocores 0.91 ± 0.10 18.3 ± 0.1 19.2 ± 0.2 17.52 0.336 ± 0.004

Intel i7-9750H 5380 ± 40 46 000 ± 2000 51 000 ± 2000 880 45 000 ± 2000

5. Discussion

In terms of efficiency, running our model on Loihi is 50 times faster and three orders of magnitude more
power efficient than our PyTorch implementation running on CPU. Indeed, the asynchronous nature of Loihi
and the event-based communication enable a fast and efficient simulation of spiking neural networks. Loihi,
like most neuromorphic processors, is limited in the neuronal model. This design choice allows an efficient
implementation of spiking neural networks. In is therefore valuable to design algorithms such as P-CRITICAL
with this hardware design choice in mind.

Another interesting aspect of our reservoir approach is the near independence of scaling the number of
neurons to the simulation time on Loihi. Indeed, the neurons can be parallelized to a vast number of cores
easily. The small-world topology choice that we made is efficient for this kind of architecture as it is more
likely for neurons to communicate with their close-by neighbours, yet every neuron still has access to the whole
networks in a few number of hops. Optimizing the parameters of this small-world topology with available brain
data was simple yet effective. This new approach could help reduce the hardware design choices in supporting
many types of topologies. Indeed, the neuromorphic processor would no longer have to support many reservoir
topologies for different tasks, but rather a single one that works with many tasks.

While this new plasticity model did not stem from biological replication, we note an interesting rela-
tion between the engineering requirements of the regulation neurons and astrocytes in the brain. Our work
showed that regulation mechanisms are easier to implement as their own entity in neuromorphic processors,
suggesting that the brain could have developed astrocytes for similar reasons. In terms of physical reservoir
implementation, reusing neuron blocks as-is for the adaptation of the network also helps reduce the imple-
mentation complexity. As many emergent nano-devices showcase neuron-like behaviour, the same devices
could be reused as reservoir-regulating astrocytes, as it is done digitally in our work.

6. Conclusion

We proposed P-CRITICAL, a local plasticity rule that uses a mechanism that includes the use of astrocyte-like
neurons and automatically adapts the neural network to operating points that are close to criticality [16–18].
Indeed, it is known that the control of this dynamic allows the reservoir to be more stable while having a faster
and more efficient response. Without this type of control, a randomly configured reservoir might not work
properly (chaotic, no activity, etc).

P-CRITICAL achieved its goal by tuning the branching factor of various reservoirs. The plasticity rule was
able to offer a stable activity when connected to various raw input spike trains. As figure 4 demonstrated, even
with a sparse input, the reservoir can maintain a fairly constant activity. By doing so, the reservoir will not suffer
from sub or super criticality. Furthermore, this branching factor model should allow edge of chaos behaviour,
maximizing the computing power and memory retention of the reservoir [16]. The plasticity rule was able to
increase the test accuracy of initially unoptimized reservoirs for various high-level tasks coming from different
sensory inputs that were captured with event-based sensors. We aim for P-CRITICAL to extend current RC
methods such that they can be implemented on a neuromorphic processor and offer low-power edge devices
the ability to train without requiring extensive computation or cloud server access.

RC is a good alternative to RNNs for faster training times. Plasticity-enabled reservoirs are well suited for
neuromorphic engineering applications, as both information transmission and learning is sparse. This new
model was compared between a CPU following the von Neumann architecture and the Loihi neuromorphic
research chip. Both in time and power efficiency, Loihi was able to outperform its counterpart by many orders
of magnitude.
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Table A1. Current-leaky-integrate-and-fire generic constants.

Symbol PyTorch Loihi Description

τ v 30 ms Membrane potential decay constant

τ i 5 ms Membrane current decay constant

vreset 0 Membrane reset voltage

vthreshold 1.0 256 Membrane threshold voltage

Trefractory 2 ms Refractory period

Furthermore, we created a new topology optimization scheme that is task independent and based on the
eigenvalues spectrum of connectomes. This approach is a simple way of tuning the topology-related hyperpa-
rameters while avoiding fully connected reservoirs. We observed that the approach enhanced the performance
of the reservoir by a significant margin when compared to an arbitrary choice of hyperparameters. Further
work is needed to quantify the performance gains, both theoretically and empirically.

The independence of the network parameters in our LSM model allows the network to be scaled more eas-
ily, as the total training time is drastically reduced since hyperparameters optimization is unnecessary. Other
physical or analog devices can be targeted with this approach, as any variability coming from the devices
can be incorporated into the network behaviour and self-autocorrected by the plasticity rule. The parame-
ter independence of reservoirs is not a subject studied thoroughly, even more so in physical implementation
of reservoirs, yet this aspect is crucial for their relevance. Moreover, the task-independent topology can be
embedded into a physical device as it requires no additional optimization. This contrasts to more generic dig-
ital and reprogrammable routing of the network that is done in devices such a Loihi. It is also sparser than
other approaches, such as memristor memory arrays, that are analogous to fully connected reservoirs. Task-
independent physical reservoirs can be implemented more efficiently when reprogrammability is unnecessary,
such that a self-adapting reservoir could be suitable for very low energy and close-to-sensor applications.

In conclusion, we presented P-CRITICAL, a plasticity rule created for the autoregulation of reservoirs that
tunes the branching factor to a target value. The plasticity rule was designed and adapted from recent literature
[17] with Intel’s Loihi as a target platform. With the hardware constraints in mind, we developed a plastic-
ity rule able to successfully increase the computational power of reservoirs in LSMs. This approach will give
future hardware implementation guidelines to create more efficient reservoirs. This will increase the impact of
hardware reservoirs on real functional applications. We believe that this will be a key component for end-to-
end energy-efficient machine learning algorithms on edge devices. In future works, we hope to combine our
reservoir-plasticity method with state-of-the-art LSM readout layers [53] that can account for spike dynamics.
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Appendix A. Parameters

All simulations were executed with a numeric differential step size dt = 1 ms in both PyTorch and Loihi.
Although similar in most cases, both PyTorch and Loihi values are presented (Tables A1–A4).
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Table A2. Small-world topology constants.

Symbol PyTorch Loihi Description

s 40 Distance between neurons

p 1460 Distance increment between small-worlds

C 0.11 Maximum probability connection

λ 635 Euclidean distance divisor constant

WE
R ∼ [0.2, 0.5[ [51.2, 128[ Uniform distribution range of excitatory weights

W I
R ∼ [0.1, 0.3[ [25.6, 75.8[ Uniform distribution range of inhibitory weights

Table A3. P-CRITICAL constants.

Symbol PyTorch Loihi Description

α 1 × 10−2 2 Learning rate

β 1 × 10−5 0.25 Increment constant

τ ′
v 5 ms Membrane potential decay constant for regulation neurons

τ ′
i 0 ms Membrane current decay constant for regulation neurons

Table A4. Time-binned read-out layer constants.

Symbol PyTorch Loihi Description

Tbins 60 ms Size of the time bins
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