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Efficient estimation for stochastic differential
equations driven by a stable Lévy process
ALEXANDRE BROUSTE1,a, LAURENT DENIS1,b and THI-BAO-TRÂM NGÔ1,c

1 Le Mans Université, Laboratoire Manceau de Mathématiques, Avenue Olivier Messiaen, 72085 Le Mans Cedex
09, France aAlexandre.Brouste@univ-lemans.fr, bLaurent.Denis@univ-lemans.fr,
cThi_Bao_Tram.Ngo@univ-lemans.fr

The joint parametric estimation of the drift coefficient, the scale coefficient and the jump activity in stochastic
differential equations driven by a symmetric stable Lévy process is considered, based on high-frequency obser-
vations. Firstly, the LAMN property for the corresponding Euler-type scheme is proved and lower bounds for the
estimation risk in this setting are deduced. When the approximation scheme experiment is asymptotically equiv-
alent to the original one, these bounds can be transferred. Secondly, a one-step procedure is proposed which is
shown to be fast and asymptotically efficient. The performances in terms of asymptotical variance and computa-
tion time on samples of finite size are illustrated with simulations.

Keywords: Lévy process, stable process; stochastic differential equation; LAMN property; parametric estimation,
one-step procedure

1. Introduction

Local Asymptotic Mixed Normality (LAMN) provides a powerful framework under which the asymp-
totical optimality of estimators can be studied. More precisely, for a statistical experiment satisfying the
LAMN property, minimax theorems can be applied and a lower bound for the variance of the estimators
can be derived (see e.g. Jeganathan (1982)).

The LAMN property of the likelihoods has been of great interest by many authors. It was established
for the estimation of the parameters of the drift and the diffusion coefficient for R𝑑-valued solutions
of diffusion processes observed at high-frequency (infill asymptotics) in Gobet (2001). This result
confirmed that the estimators elicited in Genon-Catelot and Jacod (1993) were asymptotically efficient.
Recently, the LAMN property has been extended to the solution of stochastic differential equations
driven by stable Lévy processes in the high-frequency setting for the parameter of a general drift but
with constant scale coefficient in Clément and Gloter (2015) and for the parameters in drift and scale in
Clément, Gloter and Nguyen (2019). In these works, the stability index was supposed to be known. For
an unknown stability index, the LAN property with a non-singular Fisher information matrix was set in
Brouste and Masuda (2018) using a nondiagonal rate matrix for a stable Lévy process with drift. Later
on, quasi-likelihood estimation procedures were proposed to estimate jointly drift parameter, scale
parameter and stability index in Clément and Gloter (2020) but the asymptotic efficiency remains an
open question in the general setting. The present paper gives an answer for the asymptotic efficiency, in
some particular cases, in the joint parametric estimation (drift, scale and stability index) for stochastic
differential equations driven by stable Lévy processes in the high-frequency setting.

Precisely, in this work, the LAMN property of the likelihoods is established for the statistical exper-
iment of observing a generalized Euler scheme of the stochastic differential equations driven by stable
Lévy processes. This asymptotic property is obtained for both multiplicative and non-multiplicative
scale coefficients. For some specific scale coefficients, it can be shown theoretically with the results
in Clément (2023) that this statistical experiment used here is asymptotically equivalent (see Shiryaev
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and Spokoiny (2000) and the reference therein) to the high-frequency observation of the solution of the
considered stochastic differential equation. In this case, an alternative Le Cam’s one-step procedure is
proposed (see Le Cam (1956)) since the maximum likelihood estimator (MLE), which is asymptoti-
cally efficient, can be time-consuming for large samples. It is based on an initial guess estimator which
is a combination of generalized variations of the trajectory for the scale and index parameters and a
maximum likelihood type estimator for the drift parameter. Since the Fisher information matrix can
be expressed explicitly, the initial guess estimation is corrected by a single step of the Fisher scoring
method on the log-likelihood function. This new estimator is fast to be computed and is shown to be
asymptotically efficient.

The rest of this paper is organized as follows. Section 2 is dedicated to the notations and the as-
sumptions made. The main results on the LAMN property of the likelihoods for the aforementioned
statistical experiment and the asymptotical efficiency of the one-step procedure are shown in Section 3.
Numerical simulations in Section 4 illustrate the performance of the procedure on samples of finite size
in terms of asymptotic variance and computation time. The proofs for LAMN properties are postponed
in Section 5 and the accompanying paper.

2. Assumptions and settings

We consider the stochastic differential equation driven by a stable Lévy process as follows

𝑋𝑡 = 𝑥0 +
∫ 𝑡

0
𝑏(𝑋𝑠 , 𝜇)𝑑𝑠 +

∫ 𝑡

0
𝑎(𝑋𝑠− , 𝜎)𝑑𝐽𝑠 , 𝑡 ∈ [0,𝑇], (2.1)

where (𝐽𝑡 ) denotes the standard symmetric 𝛽-stable Lévy process whose characteristic function is

E𝜃 (𝑒𝑖𝑢𝐽1 ) = 𝑒−|𝑢 |𝛽 , 𝑢 ∈ R.

The distribution of (𝑋𝑡 ) associated with parameter 𝜃 = (𝜇, 𝜎, 𝛽) ∈ R × (0,∞) × (0,2) is denoted P𝜃
and the expectation under P𝜃 is denoted E𝜃 .

Without loss of generality, we assume that 𝑇 = 1. We observe the process (𝑋𝑡𝑛
𝑖
)0≤𝑖≤𝑛 on the time

grid 𝑡𝑛
𝑖
= 𝑖/𝑛 for 𝑖 ∈ {0,1, . . . , 𝑛} that solves (2.1) for the parameter value 𝜃0 = (𝜇0, 𝜎0, 𝛽0) ∈ Θ where

Θ is an open subset of R × (0,∞) × (0,2). The unknown parameter 𝜃0 is to be estimated.
In addition, we make the following assumption on the coefficient functions. Note that from now on,

we denote by 𝐶 and 𝑝 some generic positive constants whose value may change from line to line.

(A) We assume that 𝑥 ↦→ 𝑎(𝑥, 𝜎0) is C2 on R and that there exists a neighborhood 𝑉𝜇0 × 𝑉𝜎0 of
(𝜇0, 𝜎0), such that 𝑏 is C3 on R ×𝑉𝜇0 and

sup
𝑥
( sup
𝜇∈𝑉𝜇0

|𝜕𝑥𝑏(𝑥, 𝜇) | + |𝜕𝑥𝑎(𝑥, 𝜎0) |) ≤ 𝐶,

max
2≤ℓ≤3

sup
𝜇∈𝑉𝜇0

|𝜕ℓ𝑥𝑏(𝑥, 𝜇) | + |𝜕2
𝑥𝑎(𝑥, 𝜎0) | ≤ 𝐶 (1 + |𝑥 |𝑝),

∀𝑥 ∈ R,∀𝜎 ∈ 𝑉𝜎0 , 𝑎(𝑥, 𝜎) > 0 and sup
𝜎∈𝑉𝜎0

1
𝑎(𝑥, 𝜎) ≤ 𝐶 (1 + |𝑥 |𝑝).

We also assume that for any 𝑥 ∈ R, 𝜇 ↦→ 𝑏(𝑥, 𝜇) and 𝜎 ↦→ 𝑎(𝑥, 𝜎) are C4 and

sup
(𝜇,𝜎) ∈𝑉𝜇0×𝑉𝜎0

max
1≤ℓ≤4

( |𝜕ℓ𝜇𝑏(𝑥, 𝜇) | + |𝜕ℓ𝜎𝑎(𝑥, 𝜎) |) ≤ 𝐶 (1 + |𝑥 |𝑝),
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sup
𝜇∈𝑉𝜇0

|𝜕𝑘𝑥 𝜕ℓ𝜇𝑏(𝑥, 𝜇) | ≤ 𝐶 (1 + |𝑥 |𝑝), for 𝑘 ∈ {2,3}, (𝑘, ℓ) ≠ (2,2) .

Under the boundedness assumption on the derivative with respect to 𝑥, the coefficients 𝑎 and 𝑏 are
globally Lipschitz and equation (2.1) admits a unique solution. However, it is difficult to deal with
transition density ratio of 𝑋 due to the lack of its explicit form. Now, to solve this problem, on the same
probability space for (𝑋𝑡 ), we define the alternative scheme for (2.1) (proposed in Clément and Gloter
(2019)) on the time grid 𝑡𝑛

𝑖
= 𝑖/𝑛 for 𝑖 ∈ {0,1, . . . , 𝑛},

𝑋 𝑡𝑛
𝑖+1

= 𝜉𝑡𝑛
𝑖+1−𝑡

𝑛
𝑖
(𝑋 𝑡𝑛

𝑖
, 𝜇) + 𝑎(𝑋 𝑡𝑛

𝑖
, 𝜎) (𝐽𝑡𝑛

𝑖+1
− 𝐽𝑡𝑛

𝑖
) (2.2)

where (𝜉𝑡 (𝑥, 𝜇)) solves the ODE

𝜉𝑡 (𝑥, 𝜇) = 𝑥 +
∫ 𝑡

0
𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇)𝑑𝑠, 𝑡 ≥ 0.

To help analyse the asymptotic properties for the statistical experiment using the observations (𝑋𝑡𝑛
𝑖
), we

work with the observation (𝑋 𝑡𝑛
𝑖
) that solves (2.2) with 𝜃0. In some particular cases, it can be deduced

(see Section 3) that the estimation based on (𝑋 𝑡𝑛
𝑖
) has the same asymptotic properties as estimation

based on (𝑋𝑡𝑛
𝑖
). Let

𝑧𝑛 (𝑥, 𝑦, 𝜃) =
𝑦 − 𝜉1/𝑛 (𝑥, 𝜇)
𝑛−1/𝛽𝑎(𝑥, 𝜎)

.

Note that (𝑧𝑛 (𝑋 𝑡𝑛
𝑖
, 𝑋 𝑡𝑛

𝑖+1
, 𝜃0))𝑖 are i.i.d. 𝛽0-stable random variables. Consequently, the log-likelihood

function based on the observations (𝑋 𝑡𝑛
𝑖
)0≤𝑖≤𝑛 has an explicit form and is given by

ℓ𝑛 (𝜃) =
𝑛−1∑︁
𝑖=0

log(𝑛1/𝛽𝑎(𝑋 𝑡𝑛
𝑖
, 𝜎)−1

𝜙𝛽 (𝑧𝑛 (𝑋 𝑡𝑛
𝑖
, 𝑋 𝑡𝑛

𝑖+1
, 𝜃))), (2.3)

where 𝜙𝛽 denotes the density of 𝐽1.
In order to prove the LAMN property for (𝑋 𝑡𝑛

𝑖
)0≤𝑖≤𝑛, we use the Taylor’s formula with the help

of our law of large number (see Theorem 5.2) and the explicit expression of the probability density
functions which allows us to avoid the need of Malliavin calculus. Let 𝜑𝑛 (·) a scale such that 𝜑𝑛 (𝜃)
is a sequence of 3 × 3 non-singular matrices satisfying ∥𝜑𝑛 (𝜃)∥ → 0 as 𝑛→∞. In what follows, by
Taylor’s expansion, for arbitrary bounded 𝑢 ∈ R3, there exists 0 < 𝜀𝑛 < 1 such that

ℓ𝑛 (𝜃 + 𝜑𝑛 (𝜃)𝑢) − ℓ𝑛 (𝜃)

= 𝑢⊤Δ𝑛 (𝜃) −
1
2
𝑢⊤J𝑛 (𝜃)𝑢 +

1
3!

((𝜑𝑛 (𝜃)𝑢)⊤ · 𝜕𝜃I𝑛 (𝜃 + 𝜀𝑛𝜑𝑛 (𝜃)𝑢) · (𝜑𝑛 (𝜃)𝑢))⊤ (𝜑𝑛 (𝜃)𝑢) (2.4)

where Δ𝑛 (𝜃) := 𝜑𝑛 (𝜃)⊤𝜕𝜃ℓ𝑛 (𝜃),

I𝑛 (𝜃) := − 𝜕2
𝜃ℓ𝑛 (𝜃) and J𝑛 (𝜃) := 𝜑𝑛 (𝜃)⊤I𝑛 (𝜃)𝜑𝑛 (𝜃).
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For any ℎ ∈ R3 and �̃� ∈ Θ, we use the notation ℎ⊤ · 𝜕𝜃I𝑛 (�̃�) · ℎ =
©«
ℎ⊤𝜕𝜇I𝑛 (�̃�)ℎ
ℎ⊤𝜕𝜎I𝑛 (�̃�)ℎ
ℎ⊤𝜕𝛽I𝑛 (�̃�)ℎ

ª®¬ ∈ R3.

Also, we note that

𝜕𝜇𝑧𝑛 = −𝑛1/𝛽 𝜕𝜇𝜉1/𝑛 (𝑥, 𝜇)
𝑎(𝑥, 𝜎) , , 𝜕𝜎𝑧𝑛 = −𝜕𝜎𝑎

𝑎
𝑧𝑛, 𝜕𝛽𝑧𝑛 = − log𝑛

𝛽2 𝑧𝑛. (2.5)

To simplify the notations, as in Clément and Gloter (2020), we introduce the functions

ℎ𝛽 (𝑧) =(𝜕𝑧𝜙𝛽/𝜙𝛽) (𝑧) 𝑘𝛽 (𝑧) = 1 + 𝑧ℎ𝛽 (𝑧),

𝑞𝛽 (𝑧) =𝑧𝜕𝑧𝑘𝛽 (𝑧), 𝑟𝛽 (𝑧) = 𝑧𝜕𝛽ℎ𝛽 (𝑧), 𝑓𝛽 (𝑧) = (𝜕𝛽𝜙𝛽/𝜙𝛽) (𝑧).

From these notations, we easily see that 𝜕𝑧𝑘𝛽 (𝑧) = ℎ𝛽 (𝑧) + 𝑧𝜕𝑧ℎ𝛽 (𝑧) and 𝜕𝑧 𝑓𝛽 (𝑧) = (𝜕𝛽ℎ𝛽) (𝑧).

3. Main results

First, we state in Section 3.1 the main results on the LAMN property which differs depending on the
form of the scale coefficient, namely the non-multiplicative (NM) and multiplicative case (M). Then,
we recall in Section 3.2 the asymptotic equivalence between the discrete time observations of the
solution of the SDE (2.1) and the corresponding approximation scheme (2.2) and the possible transfer
of the lower bounds for estimation risk. Third, a one-step procedure is described and shown to be
asymptotically efficient in Section 3.3.

3.1. LAMN properties

Here, we assume that (A) holds and now present our main results, namely LAMN property for (𝑋 𝑡𝑛
𝑖
)

in two cases the non-multiplicative (NM) and multiplicative (M) cases. The proofs of these results are
postponed in Section 5. We define the sequence (𝑃𝜃0

𝑛 ) as distribution of (𝑋 𝑡𝑛
𝑖
).

3.1.1. Non-multiplicative case

Here, we assume in addition of (A):

• 𝑠 ↦→ 𝜕𝜎𝑎
𝑎

(𝑋𝑠 , 𝜎0) is almost surely non constant.
• Almost surely, ∃𝑡 ∈ (0,1), such that 𝜕𝜇𝑏(𝑋𝑡 , 𝜇0) ≠ 0, where (𝑋𝑡 )𝑡∈[0,1] solves (2.1) for the pa-

rameter value 𝜃0.

Theorem 3.1. Let 𝑋 be the solution of (2.1) with the parameter value 𝜃0. For our non-multiplicative

case, we take 𝜑𝑛 (𝜃0) =
©«
𝑛1/2−1/𝛽0 0 0

0 𝑛−1/2 0
0 0 1

log𝑛
√
𝑛

ª®®¬. Then, under assumption (A), the family (𝑃𝜃0
𝑛 ) satis-

fies the LAMN property. More precisely, we have the following convergences under P𝜃0 :����ℓ𝑛 (𝜃0 + 𝜑𝑛 (𝜃0)𝑢) − ℓ𝑛 (𝜃0) −
(
𝑢⊤Δ𝑛 (𝜃0) −

1
2
𝑢⊤J𝑛 (𝜃0)𝑢

)���� P𝜃0−→ 0
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for any 𝑢 ∈ R3, and (Δ𝑛 (𝜃0),J𝑛 (𝜃0))
𝑠𝑡𝑎𝑏𝑙𝑦
=⇒ (Δ(𝜃0),I(𝜃0)) where Δ(𝜃0) = I(𝜃0)1/2N with N a stan-

dard Gaussian variable independent of I(𝜃0) and I(𝜃0) is the random asymptotic information of the
statistical model

I(𝜃0) =
( ∫ 1

0
𝜕𝜇𝑏 (𝑋𝑠 ,𝜇0 )2

𝑎 (𝑋𝑠 ,𝜎0 )2 𝑑𝑠E𝜃0 (ℎ2
𝛽0
(𝐽1)) 0

0 I(𝜃0)

)
(3.1)

with I(𝜃0) =
©«

∫ 1
0
𝜕𝜎𝑎 (𝑋𝑠 ,𝜎0 )2

𝑎 (𝑋𝑠 ,𝜎0 )2 𝑑𝑠E𝜃0 (𝑘2
𝛽0
(𝐽1)) 1

𝛽2
0

∫ 1
0
𝜕𝜎𝑎 (𝑋𝑠 ,𝜎0 )
𝑎 (𝑋𝑠 ,𝜎0 ) 𝑑𝑠E𝜃0 (𝑘2

𝛽0
(𝐽1))

1
𝛽2

0

∫ 1
0
𝜕𝜎𝑎 (𝑋𝑠 ,𝜎0 )
𝑎 (𝑋𝑠 ,𝜎0 ) 𝑑𝑠E𝜃0 (𝑘2

𝛽0
(𝐽1)) 1

𝛽4
0
E𝜃0 (𝑘2

𝛽0
(𝐽1))

ª®®¬ .
Moreover, there exists a local maximum �̂�𝑛 of ℓ𝑛 with probability tending to 1, for which

𝜑𝑛 (𝜃0)−1 (�̂�𝑛 − 𝜃0)
𝑠𝑡𝑎𝑏𝑙𝑦
=⇒ I(𝜃0)−1/2N .

Remark 3.2. Note that the matrix I(𝜃0) is invertible a.s. since

1
𝛽4

0

E𝜃0 (𝑘2
𝛽0
(𝐽1))

(∫ 1

0

𝜕𝜎𝑎(𝑋𝑠 , 𝜎0)2

𝑎(𝑋𝑠 , 𝜎0)2 𝑑𝑠 −
(∫ 1

0

𝜕𝜎𝑎(𝑋𝑠 , 𝜎0)
𝑎(𝑋𝑠 , 𝜎0)

𝑑𝑠

)2)
> 0, 𝑎.𝑠.

3.1.2. Multiplicative case

Here, we assume in addition of (A):

• 𝑎(𝑥, 𝜎) = 𝜎�̄�(𝑥) for all 𝑥.
• Almost surely, ∃𝑡 ∈ (0,1), such that 𝜕𝜇𝑏(𝑋𝑡 , 𝜇0) ≠ 0, where (𝑋𝑡 )𝑡∈[0,1]solves (2.1) for the param-

eter value 𝜃0.

Theorem 3.3. Let 𝑋 be the solution of (2.1) with the parameter value 𝜃0. For our multiplicative case,

we take 𝜑𝑛 (𝜃0) = 1√
𝑛

©«
𝑛1−1/𝛽0 0 0

0 𝜑11,𝑛 (𝜃0) 𝜑12,𝑛 (𝜃0)
0 𝜑21,𝑛 (𝜃0) 𝜑22,𝑛 (𝜃0)

ª®¬, where


𝜑11,𝑛 (𝜃0) 1

𝜎0
+ 𝜑21,𝑛 (𝜃0) log𝑛

𝛽2
0

→ 𝜑11, 𝜑12,𝑛 (𝜃0) 1
𝜎0

+ 𝜑22,𝑛 (𝜃0) log𝑛
𝛽2

0
→ 𝜑12,

𝜑21,𝑛 (𝜃0) → 𝜑21, 𝜑22,𝑛 (𝜃0) → 𝜑22,

𝜑11𝜑22 − 𝜑12𝜑21 > 0

.

Then, under assumption (A), the family (𝑃𝑛𝜃0
) satisfies the LAMN property with asymptotic score func-

tion Δ(𝜃0) and random asymptotic information matrix I(𝜃0) where Δ(𝜃0) = I(𝜃0)1/2N with N a
standard Gaussian variable independent of I(𝜃0) and

I(𝜃0) =
( ∫ 1

0
𝜕𝜇𝑏 (𝑋𝑠 ,𝜇0 )2

𝑎 (𝑋𝑠 ,𝜎0 )2 𝑑𝑠E𝜃0 (ℎ2
𝛽0
(𝐽1)) 0

0 𝜑⊤I(𝜃0)𝜑

)
(3.2)
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with 𝜑 =

(
𝜑11 𝜑12
𝜑21 𝜑22

)
and I(𝜃0) =

(
E𝜃0 (𝑘2

𝛽0
(𝐽1)) −E𝜃0 ((𝑘𝛽0 𝑓𝛽0 ) (𝐽1))

−E𝜃0 ((𝑘𝛽0 𝑓𝛽0 ) (𝐽1)) E𝜃0 ( 𝑓 2
𝛽0
(𝐽1))

)
.

Moreover, there exists a local maximum �̂�𝑛 of ℓ𝑛 with probability tending to 1, for which

𝜑𝑛 (𝜃0)−1 (�̂�𝑛 − 𝜃0)
𝑠𝑡𝑎𝑏𝑙𝑦
=⇒ I(𝜃0)−1/2N , under P𝜃0

3.2. Asymptotic equivalence

Let us first recall the definition of total variation (see e.g. Strasser (1985))

Definition 3.4. The total variation between two probabilities measures 𝑃 and 𝑄 on (Ω,F ) dominated
by 𝜈 is defined by

𝑑𝑇𝑉 (𝑃,𝑄) = sup
𝐴∈F

|𝑃(𝐴) −𝑄(𝐴) | = 1
2

∫ ����𝑑𝑃𝑑𝜈 − 𝑑𝑄

𝑑𝜈

���� 𝑑𝜈.
Now, let us consider the two experiments as follows.

• Experiment E𝑛 with 𝑃𝑛
𝜃0

distribution of (𝑋𝑡𝑛
𝑖
)𝑖∈{0,...,𝑛} .

• Experiment E𝑛 with 𝑃
𝑛

𝜃0
distribution of (𝑋 𝑡𝑛

𝑖
)𝑖∈{0,...,𝑛} .

For any subset 𝐾 ⊆ Θ containing 𝜃0, the Le Cam distance, Δ, (see Le Cam (1964)) is bounded by

Δ(E𝑛,E𝑛;𝐾) ≤ sup
𝜃∈𝐾

𝑑𝑇𝑉 (𝑃𝑛𝜃 , 𝑃
𝑛

𝜃 ).

Let 𝑤 : R3 → R+ be any non-constant continuous bounded subconvex loss function. The minimax
estimation risk for the statistical experiment G𝑛 is defined by

R(G𝑛, 𝑤;𝐾) = inf
𝑇𝑛

sup
𝜗∈𝐾
E𝜗

(
𝑤

(
𝜑−1
𝑛 (𝜃0) (𝑇𝑛 − 𝜗)

))
,

where the infimum is taken over all the estimator 𝑇𝑛 of 𝜃0. From Theorem 3.1 and Theorem 3.3,
combined with (Höpfner, 2014, Sections 1.11 and 7.12), we have

lim
𝑛→∞

R(E𝑛, 𝑤;𝐾) ≥ E(𝑤(I(𝜃0)−1/2N)).

From (Shiryaev and Spokoiny, 2000, Theorem 2.1), it can be shown that if lim
𝑛→∞

Δ(E𝑛,E𝑛;𝐾) = 0, then

lim
𝑛→∞

R(E𝑛, 𝑤;𝐾) = lim
𝑛→∞

R(E𝑛, 𝑤;𝐾). (3.3)

In addition, by (Shiryaev and Spokoiny, 2000, Section 2.1.3), it turns out that for the unbounded loss
functions 𝑤(𝜑−1

𝑛 (𝜃0) (𝑇𝑛 −𝜗)) = ∥𝜑−1
𝑛 (𝜃0) (𝑇𝑛 −𝜗)∥𝑝 , 𝑝 > 0 typically used in estimation problems, the

assertion (3.3) remains valid.
Consequently, the statistical inference in experiment E𝑛 inherits the same asymptotic properties as in
E𝑛 (see e.g. (Clément, 2023, Remark 4.3)). Hence, for instance, we deduce the following result.
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Theorem 3.5. Let 𝐾1 ⊂ R be compact and 𝐾2 be a compact subset of (0,2) such that 𝐾 = 𝐾1× (0,∞)×
𝐾2 ⊆ Θ, we assume that the function 𝑎(𝑥, 𝜎) = 𝜎 constant for any 𝑥 ∈ R, (A) holds with further

sup
𝜇∈𝐾1
𝑥∈R

( |𝜕𝑥𝑏(𝑥, 𝜇) | + |𝜕2
𝑥𝑏(𝑥, 𝜇) |) ≤ 𝐶

then, the experiments are asymptotically equivalent in Le Cam sense since

lim
𝑛→∞

Δ(E𝑛,E𝑛;𝐾) = 0.

Proof. This is direct from (Clément, 2023, Theorem 4.1 (i)) that

𝑑𝑇𝑉 (𝑃𝑛𝜃 , 𝑃
𝑛

𝜃 ) ≤ 𝐶 (𝜎, 𝑏, 𝛽) max
{

1
√
𝑛
,

1
𝑛4𝛽/(𝛽+2)

}
where 𝐶 (𝜎, 𝑏, 𝛽) has exponential growth in ∥𝜕𝑥𝑏∥∞ and polynomial growth in ∥𝜕2

𝑥𝑏∥∞, 1/𝜎, 𝜎, 1/𝛽
and 1/(𝛽 − 2).

Remark 3.6. From Theorem 3.5, when 𝑎 is constant, we have the asymptotic equivalence between the
two experiments E𝑛 and E𝑛. Then, thanks to the LAMN property proven above, the quasi-likelihood
estimator proposed in Clément and Gloter (2020) for the original experiment E𝑛 is consequently ef-
ficient in the sense of the Convolution Theorem and attains the local asymptotic minimax bound (see
e.g (Höpfner, 2014, Theorems 7.10 & 7.12)). For the general form of the function 𝑎, the equivalence
between these two experiments remains an open question.

3.3. One-step statistical procedure

We present in this section the construction of the one-step procedure when the asymptotic equivalence
between the two experiments E𝑛 and E𝑛 and the result on asymptotic efficiency hold. It is based on
an initial guess estimation which is corrected by a single step of the Fisher scoring method on the
log-likelihood function.

3.3.1. Moment estimator

For the one-step procedure, our initial estimators is built with the ratio of generalized 𝑝-variations (see
Todorov (2013)). Namely, denoting Δ𝑛

𝑖
𝑋 = 𝑋𝑡𝑛

𝑖
− 𝑋𝑡𝑛

𝑖−1
,

𝑉1
𝑛 (𝑝, 𝑋) =

𝑛∑︁
𝑖=2

|Δ𝑛𝑖 𝑋 − Δ𝑛
𝑖−1𝑋 |

𝑝 and 𝑉2
𝑛 (𝑝, 𝑋) =

𝑛∑︁
𝑖=4

|Δ𝑛𝑖 𝑋 − Δ𝑛
𝑖−1𝑋 + Δ𝑛

𝑖−2𝑋 − Δ𝑛
𝑖−3𝑋 |

𝑝 ,

we define

𝛽0
𝑛 =

𝑝 log 2
log(𝑉2

𝑛 (𝑝, 𝑋)/𝑉1
𝑛 (𝑝, 𝑋))

1{𝑉2
𝑛 (𝑝,𝑋)≠𝑉1

𝑛 (𝑝,𝑋) }

and �̂�0
𝑛 which satisfies

𝑛

𝑝

𝛽0
𝑛

−1
𝑉1
𝑛 (𝑝, 𝑋) = 𝜇𝑝 (𝛽0

𝑛)
∫ 1

0
|𝑎(𝑋𝑠 , �̂�0

𝑛) |𝑝𝑑𝑠. (3.4)
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For the multiplicative case where 𝑎(𝑋𝑠 , �̂�0
𝑛) = �̂�0

𝑛 𝑎(𝑋𝑠), we get the form explicit of

�̂�0
𝑛 =

[
𝑛

𝑝

𝛽0
𝑛

−1
𝑉1
𝑛 (𝑝, 𝑋)

(
𝜇𝑝 (𝛽0

𝑛)
∫ 1

0
|𝑎(𝑋𝑠) |𝑝𝑑𝑠

)−1]1/𝑝

where 𝜇𝑝 (𝛽0
𝑛) = 2𝑝/𝛽

0
𝑛

2𝑝Γ ( 𝑝+1
2 )Γ (1−𝑝/𝛽0

𝑛 )√
𝜋Γ (1−𝑝/2) . The parameter 𝜇0 is estimated by maximizing the log-

likelihood function ℓ𝑛
(
𝜇, �̂�0

𝑛 , 𝛽
0
𝑛

)
with respect to 𝜇. Therefore,

�̂�0
𝑛 = (𝜇0

𝑛, �̂�
0
𝑛 , 𝛽

0
𝑛). (3.5)

Remark 3.7. We have from (Todorov, 2013, Corollary 1, Theorem 3 and (21)) that if 𝑝 takes its values
in

(
|𝛽0−1 |

2(𝛽0∧1) ,
𝛽0
2

)
and provided 𝛽0 > 2/3, we have that

√
𝑛(𝛽0

𝑛 − 𝛽0) is tight for both multiplicative

(M) and non-multiplicative (NM) cases and that (
√
𝑛/log𝑛) (�̂�0

𝑛 − 𝜎0) is tight for the multiplicative
(M) case. For the non-multiplicative case (NM), the tightness of 𝑛1/2

log𝑛 (�̂�
0
𝑛 − 𝜎0) is proved in the next

Lemma 3.8.

The next Lemma 3.8 and Theorem 3.9 are proven in the supplementary document.

Lemma 3.8. Let us assume that 𝛽0
𝑛

P→ 𝛽0, (A) holds and that 𝑎 and 𝜕𝜎𝑎 are non-singular and positive.
Then �̂�0

𝑛 defined in (3.4) satisfies that 𝑛
1/2

log𝑛 (�̂�
0
𝑛 − 𝜎0) is tight.

For this choice of �̂�0
𝑛, we get in the following theorem the global uniqueness of 𝜇0

𝑛 under some further
assumptions on 𝛽0 and the coefficient function 𝑏.

Theorem 3.9. Assume that (A) holds and further 𝜇 ∈ 𝑖𝑛𝑡 (𝐴) (the interior of 𝐴) for 𝐴 a compact subset
of R, 𝛽0 > 1 and

sup
𝜇∈𝑖𝑛𝑡 (𝐴)
𝑥∈R

( |𝜕𝑥𝑏(𝑥, 𝜇) | + |𝜕𝜇𝑏(𝑥, 𝜇) | + |𝜕2
𝜇𝑏(𝑥, 𝜇) |) ≤ 𝐶.

Let us denote

𝐺𝑛 (𝜇) = 𝑛1−2/𝛽0
𝑛𝜕𝜇ℓ𝑛 (𝜇, �̂�0

𝑛 , 𝛽
0
𝑛)

where (
√
𝑛/log𝑛) (�̂�0

𝑛 − 𝜎0, 𝛽
0
𝑛 − 𝛽0) is tight. Then, any sequence (𝜇0

𝑛, 𝑛 ≥ 1) that solves 𝐺𝑛 (𝜇) = 0 is
consistent and eventually unique. Moreover, we have 𝑛1/𝛽0−1/2

(log𝑛)2 (𝜇0
𝑛 − 𝜇0) is tight.

3.3.2. Asymptotic efficiency

The one-step estimator �̂�1
𝑛 is defined by

�̂�1
𝑛 = �̂�

0
𝑛 + (𝜑𝑛 (�̂�0

𝑛)−1⊤I(�̂�0
𝑛)𝜑𝑛 (�̂�0

𝑛)−1)−1𝜕𝜃ℓ𝑛 (�̂�0
𝑛). (3.6)

Theorem 3.10. Suppose that (A) holds and ( 𝑛1/𝛽0−1/2

(log𝑛)2 (𝜇0
𝑛 − 𝜇0), (

√
𝑛/log𝑛) (�̂�0

𝑛 − 𝜎0),
√
𝑛(𝛽0

𝑛 − 𝛽0))
is tight and 𝛽0 in a compact subset of (0,2), under the LAMN property and sufficiently regular Fisher
information matrix, the sequence (�̂�1

𝑛, 𝑛 ≥ 1) is asymptotically efficient.
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Proof. With a choice of initial estimator satisfying the tightness assumption, the asymptotic efficiency
of the one-step estimation depends on the form of 𝜑𝑛 (𝜃0) defined in the LAMN property. More pre-
cisely, if the initial estimator �̂�0

𝑛 is such that

𝜑𝑛 (𝜃0)−1 (�̂�0
𝑛 − 𝜃0) = O𝑃 (1), (3.7)

then we say that it has a good rate of convergence and the proof of efficiency for the corresponding one-
step estimation is straight-forward by (Höpfner, 2014, Theorem 7.19 (a)&(c)). Otherwise, we need to
prove its efficiency using some classical techniques and the help of Theorem 5.2. Here and in the sequel,
O𝑃 (𝑛−𝑐) and 𝑜𝑃 (𝑛−𝑐) mean that 𝑛𝑐O𝑃 (𝑛−𝑐) is bounded in probability and 𝑛𝑐𝑜𝑃 (𝑛−𝑐) converges in
probability, i.e., for any 𝜀 > 0, there exists 𝐶 > 0 such that

P𝜃0 (𝑛𝑐 |O𝑃 (𝑛−𝑐) | > 𝐶) ≤ 𝜀 and lim
𝑛→∞

P𝜃0 (𝑛𝑐 |𝑜𝑃 (𝑛−𝑐) | ≥ 𝜀) = 0.

Now, let us have a closer look into our two cases:
• For the non-multiplicative (NM) case, its initial estimator does not possess a good rate of conver-
gence for the estimation of 𝜃0. Precisely, we only have that 𝜈−1

𝑛 (𝜃0) (�̂�0
𝑛 − 𝜃0) is tight for 𝜈𝑛 (𝜃0) =

𝑑𝑖𝑎𝑔( (log𝑛)2

𝑛1/𝛽0−1/2 ,
log𝑛√
𝑛
, 1√
𝑛
). Here, we need to prove that for 𝜑𝑛 (𝜃0) = 𝑑𝑖𝑎𝑔( 1

𝑛1/𝛽0−1/2 ,
1√
𝑛
, 1

log𝑛
√
𝑛
), the

one-step estimator defined in (3.6) satisfies

𝜑−1
𝑛 (𝜃0) (�̂�1

𝑛 − 𝜃0)
L−→I−1/2 (𝜃0)N ,

with N a standard Gaussian variable independent of I(𝜃0). First, from (3.6) and Taylor’s formula,

𝜑−1
𝑛 (𝜃0) (�̂�1

𝑛 − 𝜃0) = 𝜑−1
𝑛 (𝜃0) (�̂�0

𝑛 − 𝜃0) + I−1 (�̂�0
𝑛)𝜑𝑛 (𝜃0)𝜕ℓ𝑛 (�̂�0

𝑛)

=𝜑−1
𝑛 (𝜃0) (�̂�0

𝑛 − 𝜃0) + I−1 (�̂�0
𝑛)𝜑𝑛 (𝜃0) [𝜕ℓ𝑛 (𝜃0) + 𝜕2ℓ𝑛 (𝜃𝑛) (�̂�0

𝑛 − 𝜃0)]

=I−1 (�̂�0
𝑛)𝜑𝑛 (𝜃0)𝜕ℓ𝑛 (𝜃0) + I−1 (�̂�0

𝑛) [I(�̂�0
𝑛) + 𝜑𝑛 (𝜃0)𝜕2ℓ𝑛 (𝜃𝑛)𝜑𝑛 (𝜃0)]𝜑−1

𝑛 (𝜃0) (�̂�0
𝑛 − 𝜃0)

=I−1 (�̂�0
𝑛)𝜑𝑛 (𝜃0)𝜕ℓ𝑛 (𝜃0) + I−1 (�̂�0

𝑛) [I(�̂�0
𝑛) − I(𝜃0)]𝜑−1

𝑛 (𝜃0) (�̂�0
𝑛 − 𝜃0)

+ I−1 (�̂�0
𝑛) [I(𝜃0) + 𝜑𝑛 (𝜃0)𝜕2ℓ𝑛 (𝜃𝑛)𝜑𝑛 (𝜃0)]𝜑−1

𝑛 (𝜃0) (�̂�0
𝑛 − 𝜃0)

where 𝜃𝑛 is some value between �̂�0
𝑛 and 𝜃0. From this, the asymptotic normality of the first term

I−1 (�̂�0
𝑛)𝜑𝑛 (𝜃0)𝜕ℓ𝑛 (𝜃0) is obtained from the LAMN property. Next, by Asumption (A) and approxi-

mation (5.5) with 𝛽0 in a compact set, we have

|I(�̂�0
𝑛) − I(𝜃0) | ≤ 𝐶 (1 + sup

𝑠∈[0,1]
|𝑋𝑠 |𝑝) |�̂�0

𝑛 − 𝜃0 | = O𝑃 (𝜈𝑛 (𝜃0)), for some 𝑝 > 0,

and since 𝜈𝑛 (𝜃0)𝜑−1
𝑛 (𝜃0)𝜈𝑛 (𝜃0) → 0, the second term

I−1 (�̂�0
𝑛) [I(�̂�0

𝑛) − I(𝜃0)]𝜑−1
𝑛 (𝜃0) (�̂�0

𝑛 − 𝜃0)
P𝜃0−→ 0.

Considering the last term, since 𝜑−1
𝑛 (𝜃0)𝜈𝑛 (𝜃0) = O𝑃 ((log𝑛)2), we have

I−1 (�̂�0
𝑛) [I(𝜃0) + 𝜑𝑛 (𝜃0)𝜕2ℓ𝑛 (𝜃𝑛)𝜑𝑛 (𝜃0)]𝜑−1

𝑛 (𝜃0) (�̂�0
𝑛 − 𝜃0)

=I−1 (�̂�0
𝑛) [I(𝜃0) + 𝜑𝑛 (𝜃0)𝜕2ℓ𝑛 (𝜃𝑛)𝜑𝑛 (𝜃0)]O𝑃 ((log𝑛)2)𝜈−1

𝑛 (𝜃0) (�̂�0
𝑛 − 𝜃0)
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Since ∥𝜈−1
𝑛 (𝜃0) (𝜃𝑛 − 𝜃0)∥ ≤ 𝐶, one can follow the arguments in (Clément and Gloter, 2020, The proof

of Theorem 3.1), combined with our Theorem 5.2 to get that

I(𝜃0) + 𝜑𝑛 (𝜃0)𝜕2ℓ𝑛 (𝜃𝑛)𝜑𝑛 (𝜃0) = 𝑜𝑃 (𝑛−𝜀).

Finally, we obtain that

𝜑−1
𝑛 (𝜃0) (�̂�1

𝑛 − 𝜃0) =I−1 (�̂�0
𝑛)𝜑𝑛 (𝜃0)𝜕ℓ𝑛 (𝜃0) + 𝑜𝑃 (1).

Then by (Höpfner, 2014, Theorem 7.11), �̂�1
𝑛 is regular and efficient at 𝜃0.

• For the multiplicative (M) case, the initial estimator possesses a good rate for 𝜎0 and 𝛽0 but not for
𝜇0. Thanks to the diagonal and the block-diagonal forms of 𝜑𝑛 (𝜃0) and the Fisher information matrix
respectively, we can consider the estimation of 𝜇0 separately from the one of pair (𝜎0, 𝛽0). Then, the
asymptotic efficiency of the estimation is immediate for 𝜎0 and 𝛽0 by (Höpfner, 2014, Theorem 7.19)
and is obtainable for 𝜇0 by similar arguments as in NM case above.

Remark 3.11. The explicit observed information matrices (3.1) and (3.2) can not be computed since
the trajectory of 𝑋 which is only observed discretely. In practice, the integrals are replaced by Riemann
sums based on the discrete observations. Under regularity conditions, the proof of Theorem 3.10 can
be rewritten.

4. Numerical simulations

In this section, the performances in terms of asymptotic variance and computational time on samples
of finite size are illustrated for the moment estimator (ME), the one-step estimator (OS) from Section
3.3 and the maximum likelihood estimator (MLE) from Theorems 3.1 and 3.3 considering two cases
discussed above: multiplicative (M) and non-multiplicative (NM). It is important to note that here
our numerical test results are obtained by using the statistical experiment E𝑛 corresponding to the
observations on the true trajectory (𝑋𝑡 ), instead of the experiment E𝑛 as considered in the theoretical
Section 3.1. The OS performs quite similarly to the MLE in terms of variance but it reduces significantly
the computational time.

All the models have linear drift 𝑏(𝑥, 𝜇) = 𝜇𝑥. For these choices, we can easily obtain the explicit
solution of the ordinary differential equation 𝜉1/𝑛 (𝑥, 𝜇) = 𝑥𝑒𝜇/𝑛. Moreover, the conditions of Theorem
3.9 are satisfied which affirm the uniqueness of the initial estimator for the drift. Note that for the
more complicated form of drift where the exact solution can not be found, the quantity 𝜉1/𝑛 (𝑥, 𝜇) can
be replaced by its Euler approximation 𝜉1/𝑛 (𝑥, 𝜇) ≃ 𝑥 + 𝑏(𝑥, 𝜇)/𝑛. Indeed, as shown in (Clément and
Gloter, 2020, Remark 3.2), they state that when 𝛽 > 2/3, the quality of estimation is the same when
using the approximation of 𝜉1/𝑛 (𝑥, 𝜇) as when using its true value.

Here, we generate the vector of observations (𝑋𝑡𝑛
𝑖
)0≤𝑖≤𝑛 by sub-sampling a refined simulation of the

process (𝑋𝑡 )𝑡≥0 (by an Euler scheme with time-step (1000𝑛)−1).

4.1. Multiplicative case

Here, we take

𝜑𝑛 (𝜃0) =
1
√
𝑛

©«
𝑛1−1/𝛽0 0 0

0 1 −𝛽−2
0 𝜎0 log𝑛

0 0 1

ª®¬
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which yield 𝜑11 = 𝜎
−1
0 , 𝜑12 = 𝜑21 = 0 and 𝜑22 = 1.

We emphasize that, as the asymptotic law of 𝜇𝑛 is mixed normal, the estimation error 𝜇𝑛 − 𝜇0 is
re-scaled by a factor involving the random quantity

𝑈𝜇0 =

∫ 1

0

𝜕𝜇𝑏(𝑋𝑠 , 𝜇0)2

𝑎(𝑋𝑠 , 𝜎0)2 𝑑𝑠

that we approximate, in practice, by the Riemann sum based on the observations (𝑋𝑡𝑛
𝑖
)0≤𝑖≤𝑛.

From this, following the theoretical results obtained by using the statistical experiment E𝑛 in Section
3, we can easily deduce the following asymptotic properties. In particular, using Theorem 3.3, the
re-normalized error by maximum likelihood estimation converges to a Gaussian limit and the mixed
normal form at the limit is eliminated, namely,

𝜑𝑛 (𝜃0)−1 (�̂�𝑛 − 𝜃0)
𝑠𝑡𝑎𝑏𝑙𝑦
=⇒ N(0, Ĩ (𝜃0)−1),

where

𝜑𝑛 (𝜃0) =
1
√
𝑛

©«
𝑈

− 1
2

𝜇0 𝑛
1−1/𝛽0 0 0
0 1 −𝛽−2

0 𝜎0 log𝑛
0 0 1

ª®®¬ ,
Ĩ (𝜃0) =

©«
E𝜃0 (ℎ2

𝛽0
(𝐽1)) 0 0

0 1
𝜎2

0
E𝜃0 (𝑘2

𝛽0
(𝐽1)) − 1

𝜎0
E𝜃0 (𝑘𝛽0 (𝐽1) 𝑓𝛽0 (𝐽1))

0 − 1
𝜎0
E𝜃0 (𝑘𝛽0 (𝐽1) 𝑓𝛽0 (𝐽1)) E𝜃0 ( 𝑓 2

𝛽0
(𝐽1))

ª®®®¬ non random.

Considering our one-step procedure, we take the moment estimators described in (3.5) as the initial
estimators. In this case, from Theorem 3.3 and Remark 3.7 we have that 𝜑𝑛 (𝜃0)−1 (�̂�0

𝑛 − 𝜃0) is tight and
from Theorem 3.10

𝜑𝑛 (𝜃0)−1 (�̂�1
𝑛 − 𝜃0)

𝑠𝑡𝑎𝑏𝑙𝑦
=⇒ N(0, Ĩ (𝜃0)−1).

In what follows, we show the numerical simulations based on these re-normalized statistical errors but
using instead the statistical experiment E𝑛. For this multiplicative case (M), we consider two kinds of
models: the Ornsteins-Uhlenbeck (O-U) model

𝑋𝑡 =

∫ 𝑡

0
𝜇𝑋𝑠𝑑𝑠 + 𝜎𝐽𝑡 , 𝑡 ∈ [0,1] . (4.1)

and the square root model (SR)

𝑋𝑡 =

∫ 𝑡

0
𝜇𝑋𝑠𝑑𝑠 + 𝜎

∫ 𝑡

0

√︃
1 + 𝑋2

𝑠−𝑑𝐽𝑠 , 𝑡 ∈ [0,1] . (4.2)

Figures 1-3, we plot the histograms of the re-scaled errors of estimation together with the density
of their Gaussian limits in red lines for the O-U model. In each panel, this solid line represents the
asymptotic normal distribution with an efficient variance. The implementations of the likelihood, the
score and Fisher information for computing the sequences of the MLE and the OS are based on the
techniques of Matsui and Takemura (2004). From here, we can observe that the histograms of the
ME are far from the efficient asymptotic normal distributions, whereas both of the MLE and the OS
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sequences show much better performances. For the second model, the comparison between the three
methods is shown in Table 1 by analyzing their renormalized mean squared errors. Almost the same as
the first model, it is shown that MLE and OS have similar performance in terms of asymptotic variance
and but OS consumes much less time for the computations than MLE.
In the figures 1-3 and Table 1, the asymptotically efficient variance is 1/E𝜃0 (ℎ2

𝛽0
(𝐽1)) for the estimation

of 𝜇0 and is

E𝜃0 (𝑘2
𝛽0
(𝐽1))

E𝜃0 ( 𝑓 2
𝛽0
(𝐽1))E𝜃0 (𝑘2

𝛽0
(𝐽1)) − (E𝜃0 (𝑘𝛽0 (𝐽1) 𝑓𝛽0 (𝐽1)))2

(4.3)

for the estimations of 𝜎0 and 𝛽0 (see e.g. the calculations in (Brouste and Masuda, 2018, (9) and (10))).
Now, we present in details our simulation results.

For the O-U model (4.1), we simulated 2000 Monte-Carlo samples of 𝑛 = 210 random variables
Δ 𝑗𝑋 = 𝑋𝑡𝑛

𝑗+1
− 𝑋𝑡𝑛

𝑗
with 𝜇0 = −0.7, 𝜎0 = 1 and 𝛽0 = 1.3, 𝑝 = 0.55.

Remark 4.1. The O-U model is the simplest model that satisfies the conditions in the (M) case. Since
the coefficient function 𝑎 is constant, theoretically from Theorem 3.5, we do have the equivalence
between the estimation based on (𝑋𝑡𝑛

𝑖
) and the estimation based on (𝑋 𝑡𝑛

𝑖
).

Remark 4.2. Here, for this O-U model, the computational time of MLE is 594459 secs while the one
by one-step estimation is 55590 secs. This means that the estimation by one-step procedure is about
10 times faster than the maximum likelihood estimation, but gives similar approximation as shown in
Figure 3 and 2.
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Figure 1: Distributions of the re-scaled errors of moment estimation (ME) and comparison with the
asymptotic normal distribution with efficient variance given by (4.3)
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Figure 2: Distributions of the re-scaled errors of one-step estimation (OS) and comparison with their
theoretical Gaussian limits
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Figure 3: Distributions of the re-scaled errors ofthe maximum likelihood estimation (MLE) and com-
parison with their theoretical Gaussian limits

For the SR model (4.2), we simulated 2000 Monte-Carlo samples of 𝑛 = 210 random variables Δ 𝑗𝑋 =

𝑋𝑡𝑛
𝑗+1

− 𝑋𝑡𝑛
𝑗

with 𝜇0 = −0.5, 𝜎0 = 0.5 and 𝛽0 = 1.5, 𝑝 = 0.7. Our numerical results are summarized in
the following table.

MSE of �̂� MSE of �̂� MSE of 𝛽 Computational time

Initial estimation (ME) 2.36 6.80 6.34 20749 secs
One-step 2.36 2.97 2.53 87060 secs

MLE 2.34 2.71 2.39 487063 secs
Efficient variance 2.33 2.38 2.38

Table 1. Comparison on the truncated re-normalized mean squared errors and on the computational times between
the three methods of estimation ME, OS and MLE for the model (4.2).
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Remark 4.3. The scale coefficient 𝑎 of the SR model is not constant, then, it is clear that the Theorem
3.5 can not be applied in this case. The equivalence between the estimation based on (𝑋𝑡𝑛

𝑖
) and the

estimation based on (𝑋 𝑡𝑛
𝑖
) remains as an open theoretical question. However, from the numerical point

of view, it is shown in Table 1 that the asymptotic efficiency of the OS and MLE estimations using the
experiment E𝑛 is ensured. Once again, the one-step estimation appears to be fast and efficient.

4.2. Non-multiplicative case

Comparing to multiplicative case (M), the rate of estimation in the non-multiplicative case (NM) is
faster for both 𝜎0 and 𝛽0 by a factor of log𝑛. Here, the rate is 𝑛1/𝛽0−1/2 for 𝜇0,

√
𝑛 for 𝜎0 and

√
𝑛 log𝑛

for 𝛽0. Similarly as the second model of case (M) above, first, we recall the theoretical results from
the alternative Euler scheme, then, we do some numerical tests but using the observations on the true
trajectory. To begin with, the asymptotic law of the estimation error is mixed Gaussian by Theorem 3.1.
Therefore, we define re-scaled errors of estimation that have Gaussian laws. First of all, we define

𝑈𝜇0 =

∫ 1

0

𝜕𝜇𝑏(𝑋𝑠 , 𝜇0)2

𝑎(𝑋𝑠 , 𝜎0)2 𝑑𝑠

𝑈𝜎0 =

∫ 1

0

𝜕𝜎𝑎(𝑋𝑠 , 𝜎0)2

𝑎(𝑋𝑠 , 𝜎0)2 𝑑𝑠 −
(∫ 1

0

𝜕𝜎𝑎(𝑋𝑠 , 𝜎0)
𝑎(𝑋𝑠 , 𝜎0)

𝑑𝑠

)2

𝑈𝛽0 =𝑈𝜎0

(
𝛽4

0

∫ 1

0

𝜕𝜎𝑎(𝑋𝑠 , 𝜎0)2

𝑎(𝑋𝑠 , 𝜎0)2 𝑑𝑠

)−1

.

Then, from the stable convergence result of Theorem 3.1, we have

𝑈
1/2
𝜇0 𝑛

1/𝛽0−1/2 (𝜇𝑛 − 𝜇0)
𝑠𝑡𝑎𝑏𝑙𝑦
=⇒ N(0, (E𝜃0ℎ

2
𝛽0
(𝐽1))−1)

𝑈
1/2
𝜎0

√
𝑛(�̂�𝑛 − 𝜎0)

𝑠𝑡𝑎𝑏𝑙𝑦
=⇒ N(0, (E𝜃0 𝑘

2
𝛽0
(𝐽1))−1)

𝑈
1/2
𝛽0

√
𝑛 log𝑛(𝛽𝑛 − 𝛽0)

𝑠𝑡𝑎𝑏𝑙𝑦
=⇒ N(0, (E𝜃0 𝑘

2
𝛽0
(𝐽1))−1).

For our one-step procedure, we take the moment estimators described in (3.5) as the initial estimators.
In this case, the rates of convergence for �̂�0

𝑛 −𝜎0 and 𝛽0
𝑛 − 𝛽0 are worse than the ones in the formula of

𝜑𝑛 (𝜃0) chosen. Despite of this obstacle, from Theorem 3.10, we still have that

𝑈
1/2
𝜇0 𝑛

1/𝛽0−1/2 (𝜇1
𝑛 − 𝜇0)

𝑠𝑡𝑎𝑏𝑙𝑦
=⇒ N(0, (E𝜃0ℎ

2
𝛽0
(𝐽1))−1)

𝑈
1/2
𝜎0

√
𝑛(�̂�1

𝑛 − 𝜎0)
𝑠𝑡𝑎𝑏𝑙𝑦
=⇒ N(0, (E𝜃0 𝑘

2
𝛽0
(𝐽1))−1)

𝑈
1/2
𝛽0

√
𝑛 log𝑛(𝛽1

𝑛 − 𝛽0)
𝑠𝑡𝑎𝑏𝑙𝑦
=⇒ N(0, (E𝜃0 𝑘

2
𝛽0
(𝐽1))−1).

We consider the following model

𝑋𝑡 = 1 +
∫ 𝑡

0
𝜇𝑋𝑠𝑑𝑠 +

∫ 𝑡

0
exp (𝜎 sin2 (𝑋𝑠))𝑑𝐽𝑠 , 𝑡 ∈ [0,1] . (4.4)
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For this model, we simulated 2000 Monte-Carlo samples of 𝑛 = 210 random variables Δ 𝑗𝑋 = 𝑋𝑡𝑛
𝑗+1

−𝑋𝑡𝑛
𝑗

with 𝜇0 = −0.5, 𝜎0 = 1 and 𝛽0 = 1.5, 𝑝 = 0.7. Our numerical results for one-step estimations are shown
in the following histograms.

Remark 4.4. Here, for this model, the computational time of MLE is 207328 secs while the one by
one-step estimation is 37063 secs. This means that the estimation by one-step procedure is about 5
times faster than the maximum likelihood estimation, but gives similar approximation as shown in
Figure 3 and 2.
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Figure 4: Histograms of the re-scaled errors of one-step estimation and comparison with their theoret-
ical Gaussian limits

5. Proofs of Theorems 3.1 and 3.3

We start from the Taylor’s expansion (2.4), we rewrite

Δ𝑛 (𝜃0) = − 𝜑𝑛 (𝜃0)⊤
𝑛−1∑︁
𝑖=0

©«
𝑔1 (𝑋 𝑡𝑛

𝑖
, 𝑋 𝑡𝑛

𝑖+1
, 𝜃0)

𝑔2 (𝑋 𝑡𝑛
𝑖
, 𝑋 𝑡𝑛

𝑖+1
, 𝜃0)

𝑔3 (𝑋 𝑡𝑛
𝑖
, 𝑋 𝑡𝑛

𝑖+1
, 𝜃0)

ª®®¬ and I𝑛 (𝜃0) =
𝑛−1∑︁
𝑖=0

©«
𝜕𝜃𝑔

1 (𝑋 𝑡𝑛
𝑖
, 𝑋 𝑡𝑛

𝑖+1
, 𝜃0)⊤

𝜕𝜃𝑔
2 (𝑋 𝑡𝑛

𝑖
, 𝑋 𝑡𝑛

𝑖+1
, 𝜃0)⊤

𝜕𝜃𝑔
3 (𝑋 𝑡𝑛

𝑖
, 𝑋 𝑡𝑛

𝑖+1
, 𝜃0)⊤

ª®®¬ .
For any 𝜃 ∈ Θ, it can be addressed to (Clément and Gloter, 2020, formulas (2.6)-(2.8)) for the explicit
expressions of 𝑔𝑘 (𝑥, 𝑦, 𝜃) and (Clément and Gloter, 2020, formulas (3.6)-(3.9)) for all elements of
𝜕𝜃𝑔

𝑘 (𝑥, 𝑦, 𝜃). Here, we recall that

𝑔1 (𝑥, 𝑦, 𝜃) = 𝑛1/𝛽
𝜕𝜇𝜉

𝑥
1/𝑛 (𝜇)

𝑎(𝑥, 𝜎)
𝜕𝑧𝜙𝛽

𝜙𝛽
(𝑧𝑛 (𝑥, 𝑦, 𝜃))

𝑔2 (𝑥, 𝑦, 𝜃) = 𝜕𝜎𝑎(𝑥, 𝜎)
𝑎(𝑥, 𝜎) (1 + 𝑧𝑛 (𝑥, 𝑦, 𝜃)

𝜕𝑧𝜙𝛽

𝜙𝛽
(𝑧𝑛 (𝑥, 𝑦, 𝜃)))

𝑔3 (𝑥, 𝑦, 𝜃) = log𝑛
𝛽2 (1 + 𝑧𝑛 (𝑥, 𝑦, 𝜃)

𝜕𝑧𝜙𝛽

𝜙𝛽
(𝑧𝑛 (𝑥, 𝑦, 𝜃)) −

𝜕𝛽𝜙𝛽

𝜙𝛽
(𝑧𝑛 (𝑥, 𝑦, 𝜃)).

By denoting

𝑧𝑖𝑛 (𝜃) = 𝑧𝑛 (𝑋 𝑡𝑛𝑖 , 𝑋 𝑡𝑛𝑖+1
, 𝜃) (5.1)
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and the elements of I𝑛 (𝜃) can be expressed as follows

I1,1
𝑛 (𝜃 ) = 𝑛1/𝛽

𝑛−1∑︁
𝑖=0

𝜕2
𝜇 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, 𝜇)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

ℎ𝛽 (𝑧𝑖𝑛 (𝜃 ) ) − 𝑛2/𝛽
𝑛−1∑︁
𝑖=0

(𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, 𝜇) )2

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)2

𝜕𝑧ℎ𝛽 (𝑧𝑖𝑛 (𝜃 ) )

I2,2
𝑛 (𝜃 ) =

𝑛−1∑︁
𝑖=0

𝜕𝜎
©«
𝜕𝜎𝑎 (𝑋𝑡𝑛

𝑖
, 𝜎)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

ª®¬ 𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) ) − ©«
𝜕𝜎𝑎 (𝑋𝑡𝑛

𝑖
, 𝜎)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

ª®¬
2

𝑧𝑖𝑛 (𝜃 )𝜕𝑧𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) )


I3,3
𝑛 (𝜃 ) = −

𝑛−1∑︁
𝑖=0

[
𝜕𝛽 𝑓𝛽 (𝑧𝑖𝑛 (𝜃 ) ) − 2

log𝑛
𝛽2

𝑧𝑖𝑛 (𝜃 ) (𝜕𝛽ℎ𝛽 ) (𝑧𝑖𝑛 (𝜃 ) ) + 2
log𝑛
𝛽3

𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) ) +
(log𝑛)2

𝛽4
𝑧𝑖𝑛 (𝜃 )𝜕𝑧𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) )

]

I1,2
𝑛 (𝜃 ) = I2,1

𝑛 (𝜃 ) = −𝑛1/𝛽
𝑛−1∑︁
𝑖=0

𝜕𝜎𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)2

𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, 𝜇)𝜕𝑧𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) )

I1,3
𝑛 (𝜃 ) = I3,1

𝑛 (𝜃 ) = 𝑛1/𝛽
𝑛−1∑︁
𝑖=0

𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, 𝜇)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

[
− log𝑛
𝛽2

𝜕𝑧𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) ) + 𝜕𝑧 𝑓𝛽 (𝑧𝑖𝑛 (𝜃 ) )
]

I2,3
𝑛 (𝜃 ) = I3,2

𝑛 (𝜃 ) =
𝑛−1∑︁
𝑖=0

𝜕𝜎𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

[
− log𝑛
𝛽2

𝑧𝑖𝑛 (𝜃 )𝜕𝑧𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) ) + 𝑧𝑖𝑛 (𝜃 ) (𝜕𝛽ℎ𝛽 ) (𝑧𝑖𝑛 (𝜃 ) )
]
.

Let us first remark that in both cases, the multiplicative (M) and non-multiplicative (NM) ones, the
convergence of the score function and of the information matrix has been established in (Clément
and Gloter, 2020, Theorems 3.1 and 3.2) using observations (𝑋𝑡𝑛

𝑖
). For us, since we use instead the

observations (𝑋 𝑡𝑛
𝑖
), similar results can be obtained by similar analyses. It just remains to prove from

equality (2.4) that the term

((𝜑𝑛 (𝜃0)𝑢)⊤ · 𝜕𝜃I𝑛 (𝜃0 + 𝜀𝑛𝜑𝑛 (𝜃0)𝑢) · (𝜑𝑛 (𝜃0)𝑢))⊤ (𝜑𝑛 (𝜃0)𝑢)

tends to zero in probability. To do so, we denote M𝑛 (𝜃) = 𝜕𝜃I𝑛 (𝜃), for any 𝜃 ∈ Θ, we have the explicit
elements of the matrix M𝑛 (𝜃) as follows

M1,1,1
𝑛 (𝜃 ) =𝑛1/𝛽

𝑛−1∑︁
𝑖=0

©«
𝜕3
𝜇 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, 𝜇)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

ℎ𝛽 (𝑧𝑖𝑛 (𝜃 ) ) +
𝜕2
𝜇 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, 𝜇)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

𝜕𝑧ℎ𝛽 (𝑧𝑖𝑛 (𝜃 ) )𝜕𝜇𝑧𝑖𝑛 (𝜃 )
ª®¬

− 𝑛2/𝛽
𝑛−1∑︁
𝑖=0

©«
2(𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, 𝜇) )𝜕2

𝜇 𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, 𝜇)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)2

𝜕𝑧ℎ𝛽 (𝑧𝑖𝑛 (𝜃 ) ) +
(𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, 𝜇) )2

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)2

𝜕2
𝑧ℎ𝛽 (𝑧𝑖𝑛 (𝜃 ) )𝜕𝜇𝑧𝑖𝑛 (𝜃 )

ª®¬
M2,2,2
𝑛 (𝜃 ) =

𝑛−1∑︁
𝑖=0

𝜕2
𝜎

©«
𝜕𝜎𝑎 (𝑋𝑡𝑛

𝑖
, 𝜎)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

ª®¬ 𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) ) + 𝜕𝜎 ©«
𝜕𝜎𝑎 (𝑋𝑡𝑛

𝑖
, 𝜎)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

ª®¬𝜕𝑧𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) )𝜕𝜎 𝑧𝑖𝑛 (𝜃 )
−2 ©«

𝜕𝜎𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

ª®¬𝜕𝜎 ©«
𝜕𝜎𝑎 (𝑋𝑡𝑛

𝑖
, 𝜎)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

ª®¬𝑞𝛽 (𝑧𝑖𝑛 (𝜃 ) ) − ©«
𝜕𝜎𝑎 (𝑋𝑡𝑛

𝑖
, 𝜎)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

ª®¬
2

𝜕𝑧𝑞𝛽 (𝑧𝑖𝑛 (𝜃 ) )𝜕𝜎 𝑧𝑖𝑛 (𝜃 )


M3,3,3
𝑛 (𝜃 ) = −

𝑛−1∑︁
𝑖=0

[
(𝜕2
𝛽 𝑓𝛽 ) (𝑧

𝑖
𝑛 (𝜃 ) ) + 4

log𝑛
𝛽3

𝑟𝛽 (𝑧𝑖𝑛 (𝜃 ) ) − 2
log𝑛
𝛽2

(𝜕𝑧𝑟𝛽 (𝑧𝑖𝑛 (𝜃 ) )𝜕𝛽 𝑧𝑖𝑛 (𝜃 ) + (𝜕𝛽𝑟𝛽 ) (𝑧𝑖𝑛 (𝜃 ) ) )

−6
log𝑛
𝛽4

𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) ) + 2
log𝑛
𝛽3

(𝜕𝑧𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) )𝜕𝛽 𝑧𝑖𝑛 (𝜃 ) + (𝜕𝛽𝑘𝛽 ) (𝑧𝑖𝑛 (𝜃 ) ) ) − 4
(log𝑛)2

𝛽5
𝑞𝛽 (𝑧𝑖𝑛 (𝜃 ) )

+ (log𝑛)2

𝛽4
(𝜕𝑧𝑞𝛽 (𝑧𝑖𝑛 (𝜃 ) )𝜕𝛽 𝑧𝑖𝑛 (𝜃 ) + (𝜕𝛽𝑞𝛽 ) (𝑧𝑖𝑛 (𝜃 ) ) )

]
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M1,2,1
𝑛 (𝜃 ) =M1,1,2

𝑛 (𝜃 ) = M2,1,1
𝑛 (𝜃 )

= − 𝑛1/𝛽
𝑛−1∑︁
𝑖=0

𝜕𝜎𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)2

(𝜕2
𝜇 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, 𝜇)𝜕𝑧𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) ) + 𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, 𝜇)𝜕2

𝑧 𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) )𝜕𝜇𝑧𝑖𝑛 (𝜃 ) )

M2,1,2
𝑛 (𝜃 ) =M2,2,1

𝑛 (𝜃 ) = M1,2,2
𝑛 (𝜃 )

= − 𝑛1/𝛽
𝑛−1∑︁
𝑖=0

𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, 𝜇)

𝜕𝜎 ©«
𝜕𝜎𝑎 (𝑋𝑡𝑛

𝑖
, 𝜎)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)2

ª®¬𝜕𝑧𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) ) +
𝜕𝜎𝑎 (𝑋𝑡𝑛

𝑖
, 𝜎)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)2

𝜕2
𝑧 𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) )𝜕𝜎 𝑧𝑖𝑛 (𝜃 )


M3,1,2
𝑛 (𝜃 ) =M1,2,3

𝑛 (𝜃 ) = M2,3,1
𝑛 (𝜃 ) = M3,2,1

𝑛 (𝜃 ) = M2,1,3
𝑛 (𝜃 ) = M1,3,2

𝑛 (𝜃 )

= −𝑛1/𝛽
𝑛−1∑︁
𝑖=0

𝜕𝜎𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)2

𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, 𝜇)

[
− log𝑛
𝛽2

𝜕𝑧𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) ) + 𝜕2
𝑧 𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) )𝜕𝛽 𝑧𝑖𝑛 (𝜃 ) + (𝜕𝛽𝜕𝑧𝑘𝛽 ) (𝑧𝑖𝑛 (𝜃 ) )

]

M1,3,1
𝑛 (𝜃 ) =M1,1,3

𝑛 (𝜃 ) = M3,1,1
𝑛 (𝜃 ) = 𝑛1/𝛽

𝑛−1∑︁
𝑖=0

𝜕2
𝜇 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, 𝜇)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

[
− log𝑛
𝛽2

𝜕𝑧𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) ) + 𝜕𝑧 𝑓𝛽 (𝑧𝑖𝑛 (𝜃 ) )
]

+ 𝑛1/𝛽
𝑛−1∑︁
𝑖=0

𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, 𝜇)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

[
− log𝑛
𝛽2

𝜕2
𝑧 𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) )𝜕𝜇𝑧𝑖𝑛 (𝜃 ) + 𝜕2

𝑧 𝑓𝛽 (𝑧𝑖𝑛 (𝜃 ) )𝜕𝜇𝑧𝑖𝑛 (𝜃 )
]

M3,1,3
𝑛 (𝜃 ) =M3,3,1

𝑛 (𝜃 ) = M1,3,3
𝑛 (𝜃 ) = − log𝑛

𝛽2
𝑛1/𝛽

𝑛−1∑︁
𝑖=0

𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, 𝜇)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

[
− log𝑛
𝛽2

𝜕𝑧𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) ) + 𝜕𝑧 𝑓𝛽 (𝑧𝑖𝑛 (𝜃 ) )
]

+ 𝑛1/𝛽
𝑛−1∑︁
𝑖=0

𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, 𝜇)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

[
2

log𝑛
𝛽3

𝜕𝑧𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) ) −
log𝑛
𝛽2

(𝜕2
𝑧 𝑘𝛽 (𝑧𝑖𝑛 (𝜃 ) )𝜕𝛽 𝑧𝑖𝑛 (𝜃 ) + (𝜕𝛽𝜕𝑧𝑘𝛽 ) (𝑧𝑖𝑛 (𝜃 ) ) )

+𝜕2
𝑧 𝑓𝛽 (𝑧𝑖𝑛 (𝜃 ) )𝜕𝛽 𝑧𝑖𝑛 (𝜃 ) + (𝜕𝛽𝜕𝑧 𝑓𝛽 ) (𝑧𝑖𝑛 (𝜃 ) )

]
M2,3,2
𝑛 (𝜃 ) =M2,2,3

𝑛 (𝜃 ) = M3,2,2
𝑛 (𝜃 ) =

𝑛−1∑︁
𝑖=0

𝜕𝜎𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

[
− log𝑛
𝛽2

𝜕𝑧𝑞𝛽 (𝑧𝑖𝑛 (𝜃 ) )𝜕𝜎 𝑧𝑖𝑛 (𝜃 ) + 𝜕𝑧𝑟𝛽 (𝑧𝑖𝑛 (𝜃 ) )𝜕𝜎 𝑧𝑖𝑛 (𝜃 )
]

+
𝑛−1∑︁
𝑖=0

𝜕𝜎
©«
𝜕𝜎𝑎 (𝑋𝑡𝑛

𝑖
, 𝜎)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

ª®¬
[
− log𝑛
𝛽2

𝑞𝛽 (𝑧𝑖𝑛 (𝜃 ) ) + 𝑟𝛽 (𝑧𝑖𝑛 (𝜃 ) )
]

M3,2,3
𝑛 (𝜃 ) =M3,3,2

𝑛 (𝜃 ) = M2,3,3
𝑛 (𝜃 )

=

𝑛−1∑︁
𝑖=0

𝜕𝜎𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

𝑎 (𝑋𝑡𝑛
𝑖
, 𝜎)

[
2

log𝑛
𝛽3

𝑞𝛽 (𝑧𝑖𝑛 (𝜃 ) ) −
log𝑛
𝛽2

(𝜕𝑧𝑞𝛽 (𝑧𝑖𝑛 (𝜃 ) )𝜕𝛽 𝑧𝑖𝑛 (𝜃 ) + (𝜕𝛽𝑞𝛽 ) (𝑧𝑖𝑛 (𝜃 ) ) )

+𝜕𝑧𝑟𝛽 (𝑧𝑖𝑛 (𝜃 ) )𝜕𝛽 𝑧𝑖𝑛 (𝜃 ) + (𝜕𝛽𝑟𝛽 ) (𝑧𝑖𝑛 (𝜃 ) )
]
.

The next Proposition, whose proof is given in the supplementary document, is widely used.

Proposition 5.1. Under the Assumption (A), we have


sup𝜇∈𝑉𝜇0

|𝜕𝜇𝜉1/𝑛 (𝑥, 𝜇) − 1
𝑛
𝜕𝜇𝑏(𝑥, 𝜇) | ≤ 𝐶 (1 + |𝑥 |𝑝)/𝑛2,

sup𝜇∈𝑉𝜇0
|𝜕2
𝜇𝜉1/𝑛 (𝑥, 𝜇) − 1

𝑛
𝜕2
𝜇𝑏(𝑥, 𝜇) | ≤ 𝐶 (1 + |𝑥 |𝑝)/𝑛2,

sup𝜇∈𝑉𝜇0
|𝜕3
𝜇𝜉1/𝑛 (𝑥, 𝜇) − 1

𝑛
𝜕3
𝜇𝑏(𝑥, 𝜇) | ≤ 𝐶 (1 + |𝑥 |𝑝)/𝑛2,

for some 𝑝 > 0. (5.2)
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The next Theorem, which is a modified version of (Clément and Gloter, 2020, Theorem 4.2), plays an
important role in the sequel. It is also proved in the accompanying document of this paper.

Theorem 5.2. Under the Assumption (A), let 𝑓 be a continuous function such that

| 𝑓 (𝑥, 𝜇, 𝜎) − 𝑓 (𝑦, 𝜇0, 𝜎0) | ≤ 𝐶 (1 + |𝑥 |𝑝 + |𝑦 |𝑝) ( |𝜇 − 𝜇0 | + |𝜎 − 𝜎0 | + |𝑥 − 𝑦 |),

and let (𝑧, 𝛽) ↦→ 𝑔𝛽 (𝑧) be a C1 function (with respect to (𝑧, 𝛽)) such that 𝜕𝑧𝑔𝛽 is bounded (uniformly
in 𝛽 on a compact subset of (0,2)) and

|𝑔𝛽 (𝑧) | + |𝜕𝛽𝑔𝛽 (𝑧) | ≤ 𝐶 (1 + (log (1 + |𝑧 |))𝑝), 𝑝 > 0.

Then, for 𝜀 <
(

1
𝛽0

− 1
2

)
∧ 1

2 and 𝜂 > 0, we have the convergence in probability under P𝜃0 :

sup
𝜃∈𝑉 (𝜂)

𝑛 (𝜃0 )
𝑛𝜀

�����1𝑛 𝑛−1∑︁
𝑖=0

𝑓 (𝑋 𝑡𝑛
𝑖
, 𝜇, 𝜎)𝑔𝛽 (𝑧𝑖𝑛 (𝜃)) −

∫ 1

0
𝑓 (𝑋𝑠 , 𝜇0, 𝜎0)𝑑𝑠E𝜃0 (𝑔𝛽0 (𝐽1))

����� −→𝑛→∞
0, (5.3)

where 𝑉 (𝜂)
𝑛 (𝜃0) = {𝜃 : ∥𝑑𝑖𝑎𝑔( 𝑛1/𝛽0−1/2

(log𝑛)2 ,
𝑛1/2

log𝑛 ,
𝑛1/2

log𝑛 ) (𝜃 − 𝜃0)∥ ≤ 𝜂} and 𝑧𝑖𝑛 (𝜃) is defined by (5.1). More-
over, if E𝜃0 (𝑔𝛽0 (𝐽1)) = 0, the following convergence in probability under P𝜃0 holds:

sup
𝜃∈𝑉 (𝜂)

𝑛 (𝜃0 )

�����𝑛𝜀−1/𝛽0

𝑛−1∑︁
𝑖=0

𝑓 (𝑋 𝑡𝑛
𝑖
, 𝜇, 𝜎)𝑔𝛽 (𝑧𝑖𝑛 (𝜃))

����� −→𝑛→∞
0 (5.4)

Proof of Theorem 3.1. First of all, similarly as in (Clément and Gloter, 2020, Remark 3.3), one can
easily follow the proof of Theorem 2.10 in Masuda (2015) and Theorems 1 and 2 in Sweeting (1980) to
prove the last assertion.
Now, to obtain LAMN property, we only need to prove the convergence to zero in probability of the last

term in the Taylor’s expansion (2.4). To do so, for 𝜃𝑛 = 𝜃0 + 𝜀𝑛𝜑𝑛 (𝜃0)𝑢 , we use (Clément and Gloter,
2020, Proof of Theorem 4.2) for the convergence to zero of the elements of the following matrices

H1
𝑛 (𝜃𝑛) =𝑛1/2−1/𝛽0𝜑⊤𝑛 (𝜃0)𝜕𝜇I𝑛 (𝜃𝑛)𝜑𝑛 (𝜃0) =

©«
M1,1,1

𝑛 (𝜃𝑛 )
𝑛3/𝛽0−3/2

M1,1,2
𝑛 (𝜃𝑛 )
𝑛2/𝛽0−1/2

M1,1,3
𝑛 (𝜃𝑛 )

𝑛2/𝛽0−1/2 log𝑛
M1,1,2

𝑛 (𝜃𝑛 )
𝑛2/𝛽0−1/2

M1,2,2
𝑛 (𝜃𝑛 )
𝑛1/𝛽0+1/2

M1,2,3
𝑛 (𝜃𝑛 )

𝑛1/𝛽0+1/2 log𝑛
M1,1,3

𝑛 (𝜃𝑛 )
𝑛2/𝛽0−1/2 log𝑛

M1,2,3
𝑛 (𝜃𝑛 )

𝑛1/𝛽0+1/2 log𝑛
M1,3,3

𝑛 (𝜃𝑛 )
𝑛1/𝛽0+1/2 (log𝑛)2

ª®®®®®¬
,

H2
𝑛 (𝜃𝑛) =𝑛−1/2𝜑⊤𝑛 (𝜃0)𝜕𝜎I𝑛 (𝜃𝑛)𝜑𝑛 (𝜃0) =

©«
M2,1,1

𝑛 (𝜃𝑛 )
𝑛2/𝛽0−1/2

M2,1,2
𝑛 (𝜃𝑛 )
𝑛1/𝛽0+1/2

M2,1,3
𝑛 (𝜃𝑛 )

𝑛1/𝛽0+1/2 log𝑛
M2,1,2

𝑛 (𝜃𝑛 )
𝑛1/𝛽0+1/2

M2,2,2
𝑛 (𝜃𝑛 )
𝑛3/2

M2,2,3
𝑛 (𝜃𝑛 )
𝑛3/2 log𝑛

M2,1,3
𝑛 (𝜃𝑛 )

𝑛1/𝛽0+1/2 log𝑛
M2,2,3

𝑛 (𝜃𝑛 )
𝑛3/2 log𝑛

M2,3,3
𝑛 (𝜃𝑛 )

𝑛3/2 (log𝑛)2

ª®®®®®¬
,

H3
𝑛 (𝜃𝑛) =

1
√
𝑛 log𝑛

𝜑⊤𝑛 (𝜃0)𝜕𝛽I𝑛 (𝜃𝑛)𝜑𝑛 (𝜃0) =
©«

M3,1,1
𝑛 (𝜃𝑛 )

𝑛2/𝛽0−1/2 log𝑛
M3,1,2

𝑛 (𝜃𝑛 )
𝑛1/𝛽0+1/2 log𝑛

M3,1,3
𝑛 (𝜃𝑛 )

𝑛1/𝛽0+1/2 (log𝑛)2

M3,1,2
𝑛 (𝜃𝑛 )

𝑛1/𝛽0+1/2 log𝑛
M3,2,2

𝑛 (𝜃𝑛 )
𝑛3/2 log𝑛

M3,2,3
𝑛 (𝜃𝑛 )

𝑛3/2 (log𝑛)2

M3,1,3
𝑛 (𝜃𝑛 )

𝑛1/𝛽0+1/2 (log𝑛)2
M3,2,3

𝑛 (𝜃𝑛 )
𝑛3/2 (log𝑛)2

M3,3,3
𝑛 (𝜃𝑛 )

𝑛3/2 (log𝑛)3

ª®®®®®¬
.
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First, it is followed from the series expansion of the density (see e.g. (Sato, 2000, Remark 14.18) or
Masuda (2015)) that for any non-negative integers 𝑘 and 𝑘 ′,

|𝜕𝑘𝑧 𝜕𝑘
′
𝛽 𝜙𝛽 (𝑧) | ∼𝐶𝑘,𝑘′ ,𝛽 (log |𝑧 |)𝑘′ |𝑧 |−𝛽−1−𝑘 , |𝑧 | →∞, (5.5)

for some positive constant 𝐶𝑘,𝑘′ ,𝛽 . From this, since 𝜕𝑧𝜙𝛽 (𝑧) = ℎ𝛽 (𝑧)𝜙𝛽 (𝑧), it is easy to get thanks to
the Leibniz formula:

|𝜕𝑘𝑧 𝜕𝑘
′
𝛽 ℎ𝛽 (𝑧) | ∼𝐶

′
𝑘,𝑘′ ,𝛽 (log |𝑧 |)𝑘′ |𝑧 |−𝑘−1, |𝑧 | →∞, (5.6)

for some positive constant 𝐶′
𝑘,𝑘′ ,𝛽 .

From (Clément and Gloter, 2020, Proof of Theorem 3.1), this equivalence (5.5) permits to deduce that
ℎ𝛽 , 𝜕𝑧ℎ𝛽 , 𝑘𝛽 , 𝜕𝑧𝑘𝛽 , 𝜕𝑧 𝑓𝛽 (= 𝜕𝛽ℎ𝛽) and 𝑞𝛽 are bounded, and |𝑟𝛽 (𝑧) | = | (𝜕𝛽𝑘𝛽) (𝑧) | = |𝑧(𝜕𝛽ℎ𝛽) (𝑧) | ≤
𝐶 log |𝑧 |, | 𝑓𝛽 (𝑧) | ≤ 𝐶 log |𝑧 | and that | (𝜕𝛽 𝑓𝛽) (𝑧) | ≤ 𝐶 (log |𝑧 |)2. We also have from the symmetry of 𝜙𝛽
and the integration by part formula, E𝜃 (ℎ𝛽 (𝐽1)) = 0.

Similarly, it is easy to see from (5.6) that 𝜕𝛽𝜕𝑧ℎ𝛽 , 𝑧𝜕𝛽𝜕𝑧ℎ𝛽 , 𝑧2𝜕𝛽𝜕𝑧ℎ𝛽 , 𝜕2
𝑧 ℎ𝛽 , 𝜕𝛽𝜕2

𝑧 ℎ𝛽 𝑧𝜕𝛽𝜕
2
𝑧 ℎ𝛽 ,

𝑧2𝜕𝛽𝜕
2
𝑧 ℎ𝛽 , 𝜕3

𝑧 ℎ𝛽 , 𝑧𝜕𝑧ℎ𝛽 , 𝑧𝜕2
𝑧 ℎ𝛽 , 𝑧2𝜕2

𝑧 ℎ𝛽 , 𝑧𝜕3
𝑧 ℎ𝛽 and 𝑧2𝜕3

𝑧 ℎ𝛽 are also bounded. This leads to

𝜕2
𝑧 𝑘𝛽 (𝑧) = 2𝜕𝑧ℎ𝛽 (𝑧) + 𝑧𝜕2

𝑧 ℎ𝛽 (𝑧), 𝑧𝜕2
𝑧 𝑘𝛽 , 𝑧2𝜕2

𝑧 𝑘𝛽 ,

𝜕𝑧𝑟𝛽 (𝑧) = (𝜕𝛽𝜕𝑧𝑘𝛽) (𝑧) = (𝜕𝛽ℎ𝛽) (𝑧) + 𝑧(𝜕𝛽𝜕𝑧ℎ𝛽) (𝑧), 𝑧𝜕𝑧𝑟𝛽 ,

𝜕2
𝑧 𝑟𝛽 (𝑧) = 2(𝜕𝑧𝜕𝛽ℎ𝛽) (𝑧) + 𝑧(𝜕𝛽𝜕2

𝑧 ℎ𝛽) (𝑧), 𝜕𝑧 (𝑧𝜕𝑧𝑟𝛽) (𝑧) = 𝑧(𝜕2
𝑧 𝑟𝛽) (𝑧) + (𝜕𝑧𝑟𝛽) (𝑧),

(𝜕𝛽𝑞𝛽) (𝑧) = 𝑧(𝜕𝛽𝜕𝑧𝑘𝛽) (𝑧) = 𝑧(𝜕𝑧𝑟𝛽) (𝑧), (𝜕𝑧𝑞𝛽) (𝑧) = 𝑧(𝜕2
𝑧 𝑘𝛽) (𝑧) + (𝜕𝑧𝑘𝛽) (𝑧), 𝑧𝜕𝑧𝑞𝛽 ,

(𝜕2
𝑧 𝑞𝛽) (𝑧) = 𝑧(𝜕3

𝑧 𝑘𝛽) (𝑧) + 2(𝜕2
𝑧 𝑘𝛽) (𝑧), 𝑧𝜕2

𝑧 𝑞𝛽 ,

𝜕𝑧 (𝑧𝜕𝑧𝑞𝛽) (𝑧) = 𝑧(𝜕2
𝑧 𝑞𝛽) (𝑧) + (𝜕𝑧𝑞𝛽) (𝑧), (𝜕𝑧𝜕𝛽𝑞𝛽) (𝑧) = 𝑧(𝜕𝛽𝜕2

𝑧 𝑘𝛽) (𝑧) + (𝜕𝛽𝜕𝑧𝑘𝛽) (𝑧),

(𝜕𝛽𝜕2
𝑧 𝑘𝛽) (𝑧) = 2(𝜕𝛽𝜕𝑧ℎ𝛽) (𝑧) + 𝑧(𝜕𝛽𝜕2

𝑧 ℎ𝛽) (𝑧), 𝑧𝜕𝛽𝜕
2
𝑧 𝑘𝛽 ,

𝜕3
𝑧 𝑘𝛽 (𝑧) = 3𝜕𝑧ℎ𝛽 (𝑧) + 𝑧𝜕3

𝑧 ℎ𝛽 (𝑧), 𝑧𝜕3
𝑧 𝑘𝛽 (𝑧), 𝜕𝑧 (𝑧𝜕2

𝑧 𝑘𝛽) (𝑧) = 𝑧𝜕3
𝑧 𝑘𝛽 (𝑧) + 𝜕2

𝑧 𝑘𝛽 (𝑧)

are bounded. Moreover, on the one hand, we also have 𝜕2
𝛽
𝜕𝑧𝑘𝛽 , 𝜕𝑧𝜕𝛽𝑟𝛽 , 𝜕2

𝑧 𝑓𝛽 , 𝑧𝜕2
𝑧 𝑓𝛽 , 𝜕𝛽 (𝑧𝜕2

𝑧 𝑓𝛽),
𝜕3
𝑧 𝑓𝛽 , 𝜕𝛽𝜕𝑧 𝑓𝛽 , 𝜕2

𝛽
𝜕𝑧 𝑓𝛽 , 𝜕𝛽𝜕2

𝑧 𝑓𝛽 and 𝜕𝑧 (𝑧𝜕2
𝑧 𝑓𝛽) are bounded. On the other hand, we have 𝜕𝛽 (𝑧𝜕𝑧𝑞𝛽),

𝜕𝛽 (𝑧𝜕𝑧𝑟𝛽), 𝜕2
𝛽
𝑞𝛽 , 𝜕𝛽𝑟𝛽 , 𝜕2

𝛽
𝑟𝛽 , 𝜕2

𝛽
𝑓𝛽 and 𝜕3

𝛽
𝑓𝛽 bounded by logarithm. All these analyses make sure that

we are in good conditions for applying the Theorem 5.2 in the following.
Concerning the elements of the matrix H1

𝑛 (𝜃𝑛): Applying the formulas in (2.5) for the M1,1,1
𝑛 (𝜃𝑛),

by some basic calculations, we easily have the following inequality

|M1,1,1
𝑛 (𝜃𝑛 ) |
𝑛3/𝛽0−3/2

≤ 𝑛3/2−3/𝛽0+1/𝛽𝑛 ©«
������𝑛−1∑︁
𝑖=0

1
𝑛𝜕

3
𝜇𝑏 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 )

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )

ℎ
𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) )

������ + 𝑛−1∑︁
𝑖=0

������𝜕
3
𝜇 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 ) − 1

𝑛𝜕
3
𝜇𝑏 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 )

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )

ℎ
𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) )

������ª®¬
+ 𝑛3/2−1/𝛽0+2(1/𝛽𝑛−1/𝛽0 )

𝑛−1∑︁
𝑖=0

������ (𝜕
2
𝜇 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 ) − 1

𝑛𝜕
2
𝜇𝑏 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 ) )𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 )

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )2

𝜕𝑧ℎ𝛽𝑛
(𝑧𝑖𝑛 (𝜃𝑛 ) )

+ ©«
1
𝑛𝜕

2
𝜇𝑏 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 ) (𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 ) − 1

𝑛𝜕𝜇𝑏 (𝑋𝑡𝑛𝑖 , �̂�𝑛 ) )

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )2

+
1
𝑛2 𝜕

2
𝜇𝑏 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 )𝜕𝜇𝑏 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 )

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )2

ª®¬𝜕𝑧ℎ𝛽𝑛 (𝑧𝑖𝑛 (𝜃𝑛 ) )
������
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+ 𝑛3/2−1/𝛽0+2(1/𝛽𝑛−1/𝛽0 )
𝑛−1∑︁
𝑖=0

������2(𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 ) − 1

𝑛𝜕𝜇𝑏 (𝑋𝑡𝑛𝑖 , �̂�𝑛 ) )𝜕
2
𝜇 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 )

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )2

𝜕𝑧ℎ𝛽𝑛
(𝑧𝑖𝑛 (𝜃𝑛 ) )

+ ©«
2
𝑛𝜕𝜇𝑏 (𝑋𝑡𝑛𝑖 , �̂�𝑛 ) (𝜕

2
𝜇 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 ) − 1

𝑛𝜕
2
𝜇𝑏 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 ) )

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )2

+
2
𝑛2 𝜕𝜇𝑏 (𝑋𝑡𝑛𝑖 , �̂�𝑛 )𝜕

2
𝜇𝑏 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 )

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )2

ª®¬𝜕𝑧ℎ𝛽𝑛 (𝑧𝑖𝑛 (𝜃𝑛 ) )
������

+ 𝑛3/2+3(1/𝛽𝑛−1/𝛽0 )
𝑛−1∑︁
𝑖=0

������ (𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 ) − 1

𝑛𝜕𝜇𝑏 (𝑋𝑡𝑛𝑖 , �̂�𝑛 ) +
1
𝑛𝜕𝜇𝑏 (𝑋𝑡𝑛𝑖 , �̂�𝑛 ) )

3

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )3

𝜕2
𝑧ℎ𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) )

������ .
Then, thanks to the inequalities in (5.2) and Assumption (A), the first sum in the upper bound of
|M1,1,1

𝑛 (𝜃𝑛 ) |
𝑛3/𝛽0−3/2 above verifies the hypotheses of Theorem 5.2 and the other sums are bounded by the

convenient terms that enable us to use the result from Theorem 5.2. More precisely, we have

|M1,1,1
𝑛 (𝜃𝑛 ) |
𝑛3/𝛽0−3/2

≤ 𝑛1/2−1/𝛽0+1/𝛽𝑛−1/𝛽0
1

𝑛1/𝛽0


������𝑛−1∑︁
𝑖=0

𝜕3
𝜇𝑏 (𝑋𝑡𝑛

𝑖
, �̂�)

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )

ℎ
𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) )

������ + 𝑛−1∑︁
𝑖=0

𝐶

𝑛
(1 + |𝑋𝑡𝑛

𝑖
| 𝑝 ) |ℎ

𝛽𝑛
(𝑧𝑖𝑛 (𝜃𝑛 ) ) |


+ 𝑛1/2−1/𝛽0+2(1/𝛽𝑛−1/𝛽0 ) 1

𝑛

𝑛−1∑︁
𝑖=0

𝐶 (1 + |𝑋𝑡𝑛
𝑖
| 𝑝 ) (1 + 1/𝑛) |𝜕𝑧ℎ𝛽𝑛 (𝑧

𝑖
𝑛 (𝜃𝑛 ) ) |

+ 𝑛−1/2+3(1/𝛽𝑛−1/𝛽0 ) 1
𝑛

𝑛−1∑︁
𝑖=0

𝐶 (1 + |𝑋𝑡𝑛
𝑖
| 𝑝 ) (1 + 1/𝑛) |𝜕2

𝑧ℎ𝛽𝑛
(𝑧𝑖𝑛 (𝜃𝑛 ) ) |.

(5.7)

Now, using the fact that (𝜃𝑛)𝑛 converges to 𝜃0 and applying Theorem 5.2, the convergence to zero
in probability of the first sum and the remaining sums in the r.h.s. of the above inequality (5.7) are
obtained respectively by (5.4) since E𝜃0 (ℎ𝛽0 (𝐽1)) = 0 and by (5.3) as 𝑛 tends to infinity. Similarly, the
convergences to zero of other elements of H1

𝑛 (𝜃𝑛) since we have that

|M1,1,2
𝑛 (𝜃𝑛 ) |
𝑛2/𝛽0−1/2

≤ 𝑛1/2−2/𝛽0+1/𝛽𝑛
𝑛−1∑︁
𝑖=0

������𝜕𝜎𝑎 (𝑋𝑡𝑛𝑖 , �̂�𝑛 )𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )2

������
����(𝜕2

𝜇 𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 ) −

1
𝑛
𝜕2
𝜇𝑏 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 ) ) +

1
𝑛
𝜕2
𝜇𝑏 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 )

���� |𝜕𝑧𝑘𝛽𝑛 (𝑧𝑖𝑛 (𝜃𝑛 ) ) |
+ 𝑛1/2−2/𝛽0+2/𝛽𝑛

𝑛−1∑︁
𝑖=0

������𝜕𝜎𝑎 (𝑋𝑡𝑛𝑖 , �̂�𝑛 )𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )3

������ (𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 ) −

1
𝑛
𝜕𝜇𝑏 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 ) +

1
𝑛
𝜕𝜇𝑏 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 ) )2 |𝜕2

𝑧 𝑘𝛽𝑛
(𝑧𝑖𝑛 (𝜃𝑛 ) ) |

≤ 𝑛−1/2−1/𝛽0+1/𝛽𝑛 1

𝑛1/𝛽0

𝑛−1∑︁
𝑖=0

𝐶 (1 + |𝑋𝑡𝑛
𝑖
| 𝑝 ) |𝜕𝑧𝑘𝛽𝑛 (𝑧

𝑖
𝑛 (𝜃𝑛 ) ) |

+ 𝑛−1/2−2(1/𝛽0−1/𝛽𝑛 ) 1
𝑛

𝑛−1∑︁
𝑖=0

𝐶 (1 + |𝑋𝑡𝑛
𝑖
| 𝑝 ) |𝜕2

𝑧 𝑘𝛽𝑛
(𝑧𝑖𝑛 (𝜃𝑛 ) ) | , (5.8)

|M1,1,3
𝑛 (𝜃𝑛 ) |

𝑛2/𝛽0−1/2 log𝑛
≤ 𝑛1/2−2/𝛽0+1/𝛽𝑛

log𝑛

𝑛−1∑︁
𝑖=0

|𝜕2
𝜇 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 ) − 1

𝑛𝜕
2
𝜇𝑏 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 ) ) + 1

𝑛𝜕
2
𝜇𝑏 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 ) |

|𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 ) |

×
�����− log𝑛

𝛽2
𝑛

𝜕𝑧𝑘𝛽𝑛
(𝑧𝑖𝑛 (𝜃𝑛 ) ) + 𝜕𝑧 𝑓𝛽𝑛 (𝑧

𝑖
𝑛 (𝜃𝑛 ) )

�����
+ 𝑛

1/2−2/𝛽0+2/𝛽𝑛

log𝑛

𝑛−1∑︁
𝑖=0

(𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 ) − 1

𝑛𝜕𝜇𝑏 (𝑋𝑡𝑛𝑖 , �̂�𝑛 ) +
1
𝑛𝜕𝜇𝑏 (𝑋𝑡𝑛𝑖 , �̂�𝑛 ) )

2

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )2
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×
�����− log𝑛

𝛽2
𝑛

𝜕2
𝑧 𝑘𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) ) + 𝜕2
𝑧 𝑓𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) )
�����

≤ 𝑛−1/2−1/𝛽0+1/𝛽𝑛 1

𝑛1/𝛽0

𝑛−1∑︁
𝑖=0

𝐶 (1 + |𝑋𝑡𝑛
𝑖
| 𝑝 )

(
1
𝛽𝑛

|𝜕𝑧𝑘𝛽𝑛 (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) | +

1
log𝑛

|𝜕𝑧 𝑓𝛽𝑛 (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) |

)

+ 𝑛−1/2−2(1/𝛽0−1/𝛽𝑛 ) 1
𝑛

𝑛−1∑︁
𝑖=0

𝐶 (1 + |𝑋𝑡𝑛
𝑖
| 𝑝 )

(
1

𝛽2
𝑛

|𝜕2
𝑧 𝑘𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) ) | +
1

log𝑛
|𝜕2
𝑧 𝑓𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) ) |
)
, (5.9)

|M1,2,2
𝑛 (𝜃𝑛 ) |
𝑛1/𝛽0+1/2

≤ 𝑛1/𝛽𝑛−1/𝛽0−1/2
𝑛−1∑︁
𝑖=0

|𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 ) −

1
𝑛
𝜕𝜇𝑏 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 ) +

1
𝑛
𝜕𝜇𝑏 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 ) |

×

������𝜕𝜎 ©«
𝜕𝜎𝑎 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 )

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )2

ª®¬𝜕𝑧𝑘𝛽𝑛 (𝑧𝑖𝑛 (𝜃𝑛 ) ) +
(𝜕𝜎𝑎 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 ) )2

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )3

𝑧𝑖𝑛 (𝜃𝑛 )𝜕2
𝑧 𝑘𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) )

������
≤ 𝑛−1/2−1/𝛽0+1/𝛽𝑛 1

𝑛

𝑛−1∑︁
𝑖=0

𝐶 (1 + |𝑋𝑡𝑛
𝑖
| 𝑝 )

(
|𝜕𝑧𝑘𝛽𝑛 (𝑧

𝑖
𝑛 (𝜃𝑛 ) ) | + |𝜕2

𝑧 𝑘𝛽𝑛
(𝑧𝑖𝑛 (𝜃𝑛 ) ) |

)
, (5.10)

|M1,2,3
𝑛 (𝜃𝑛 ) |

𝑛1/𝛽0+1/2 log𝑛
≤ 𝑛1/𝛽𝑛−1/𝛽0−1/2

log𝑛

𝑛−1∑︁
𝑖=0

������𝜕𝜎𝑎 (𝑋𝑡𝑛𝑖 , �̂�𝑛 )𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )2

������ |𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 ) −

1
𝑛
𝜕𝜇𝑏 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 ) +

1
𝑛
𝜕𝜇𝑏 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 ) |

×
����� log𝑛

𝛽2
𝑛

𝜕𝑧𝑘𝛽𝑛
(𝑧𝑖𝑛 (𝜃𝑛 ) ) +

log𝑛

𝛽2
𝑛

𝑧𝑖𝑛 (𝜃𝑛 )𝜕2
𝑧 𝑘𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) ) − (𝜕𝛽𝜕𝑧𝑘𝛽𝑛 ) (𝑧
𝑖
𝑛 (𝜃𝑛 ) )

�����
≤ 𝑛−1/2−1/𝛽0+1/𝛽𝑛

log𝑛
1
𝑛

𝑛−1∑︁
𝑖=0

𝐶 (1 + |𝑋𝑡𝑛
𝑖
| 𝑝 )

(
log𝑛

𝛽2
𝑛

( |𝜕𝑧𝑘𝛽𝑛 (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) |

+|𝑧𝑖𝑛 (𝜃𝑛 )𝜕2
𝑧 𝑘𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) ) | ) + | (𝜕𝛽𝜕𝑧𝑘𝛽𝑛 ) (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) |

)
, (5.11)

|M1,3,3
𝑛 (𝜃𝑛 ) |

𝑛1/𝛽0+1/2 (log𝑛)2
≤ 𝑛1/𝛽𝑛−1/𝛽0−1/2

𝛽2
𝑛 log𝑛

𝑛−1∑︁
𝑖=0

|𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 ) − 1

𝑛𝜕𝜇𝑏 (𝑋𝑡𝑛𝑖 , �̂�𝑛 ) +
1
𝑛𝜕𝜇𝑏 (𝑋𝑡𝑛𝑖 , �̂�𝑛 ) |

|𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 ) |

×
�����− log𝑛

𝛽2
𝑛

𝜕𝑧𝑘𝛽𝑛
(𝑧𝑖𝑛 (𝜃𝑛 ) ) + 𝜕𝑧 𝑓𝛽𝑛 (𝑧

𝑖
𝑛 (𝜃𝑛 ) )

�����
+ 𝑛

1/𝛽𝑛−1/𝛽0−1/2

(log𝑛)2

𝑛−1∑︁
𝑖=0

|𝜕𝜇 𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 ) − 1

𝑛𝜕𝜇𝑏 (𝑋𝑡𝑛𝑖 , �̂�𝑛 ) +
1
𝑛𝜕𝜇𝑏 (𝑋𝑡𝑛𝑖 , �̂�𝑛 | )

|𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 ) |

×
�����2 log𝑛

𝛽3
𝑛

𝜕𝑧𝑘𝛽𝑛
(𝑧𝑖𝑛 (𝜃𝑛 ) ) −

log𝑛

𝛽2
𝑛

( (𝜕𝛽𝜕𝑧𝑘𝛽𝑛 ) (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) −

log𝑛

𝛽2
𝑛

𝑧𝑖𝑛 (𝜃𝑛 )𝜕2
𝑧 𝑘𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) ) )

− log𝑛

𝛽2
𝑛

𝑧𝑖𝑛 (𝜃𝑛 )𝜕2
𝑧 𝑓𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) ) + (𝜕𝛽𝜕𝑧 𝑓𝛽𝑛 ) (𝑧
𝑖
𝑛 (𝜃𝑛 ) )

�����
≤ 𝑛1/𝛽𝑛−1/𝛽0−1/2

𝛽2
𝑛 log𝑛

1
𝑛

𝑛−1∑︁
𝑖=0

𝐶 (1 + |𝑋𝑡𝑛
𝑖
| 𝑝 )

[
log𝑛

𝛽2
𝑛

|𝜕𝑧𝑘𝛽𝑛 (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) | + |𝜕𝑧 𝑓𝛽𝑛 (𝑧

𝑖
𝑛 (𝜃𝑛 ) ) |

]

+ 𝑛
1/𝛽𝑛−1/𝛽0−1/2

(log𝑛)2
1
𝑛

𝑛−1∑︁
𝑖=0

𝐶 (1 + |𝑋𝑡𝑛
𝑖
| 𝑝 )

[
2

log𝑛

𝛽3
𝑛

|𝜕𝑧𝑘𝛽𝑛 (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) | +

log𝑛

𝛽2
𝑛

( | (𝜕𝛽𝜕𝑧𝑘𝛽𝑛 ) (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) |

+ log𝑛

𝛽2
𝑛

|𝑧𝑖𝑛 (𝜃𝑛 )𝜕2
𝑧 𝑘𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) ) | ) +
log𝑛

𝛽2
𝑛

|𝑧𝑖𝑛 (𝜃𝑛 )𝜕2
𝑧 𝑓𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) ) | + | (𝜕𝛽𝜕𝑧 𝑓𝛽𝑛 ) (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) |

]
. (5.12)
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Concerning the elements of the matrix H2
𝑛 (𝜃): By symmetricity of this matrix, we have

M2,1,1
𝑛 (𝜃𝑛)

𝑛2/𝛽0−1/2
=
M1,1,2
𝑛 (𝜃𝑛)
𝑛2/𝛽−1/2

,
M2,1,2
𝑛 (𝜃𝑛)
𝑛1/𝛽0+1/2

=
M1,2,2
𝑛 (𝜃𝑛)
𝑛1/𝛽0+1/2

,
M2,1,3
𝑛 (𝜃𝑛)

𝑛1/𝛽0+1/2 log𝑛
=

M1,2,3
𝑛 (𝜃𝑛)

𝑛1/𝛽0+1/2 log𝑛
,

then, the proof of their convergences are treated as above. For the rest elements, we rewrite as follows

|M2,2,3
𝑛 (𝜃𝑛 ) |
𝑛3/2 log𝑛

≤ 1

𝑛3/2 log𝑛

𝑛−1∑︁
𝑖=0

©«
𝜕𝜎𝑎 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 )

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )

ª®¬
2 ����� log𝑛

𝛽2
𝑛

𝑧𝑖𝑛 (𝜃𝑛 )𝜕𝑧𝑞𝛽𝑛 (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) − 𝑧𝑖𝑛 (𝜃𝑛 )𝜕𝑧𝑟𝛽𝑛 (𝑧

𝑖
𝑛 (𝜃𝑛 ) )

�����
+ 1

𝑛3/2 log𝑛

𝑛−1∑︁
𝑖=0

𝜕𝜎
©«
𝜕𝜎𝑎 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 )

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )

ª®¬
�����− log𝑛

𝛽2
𝑛

𝑞
𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) ) + 𝑟𝛽𝑛 (𝑧
𝑖
𝑛 (𝜃𝑛 ) )

�����
≤ 1

𝑛1/2 log𝑛

1
𝑛

𝑛−1∑︁
𝑖=0

𝐶 (1 + |𝑋𝑡𝑛
𝑖
| 𝑝 )

[
log𝑛

𝛽2
𝑛

( |𝑧𝑖𝑛 (𝜃𝑛 )𝜕𝑧𝑞𝛽𝑛 (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) | + |𝑞

𝛽𝑛
(𝑧𝑖𝑛 (𝜃𝑛 ) ) | )

+|𝑧𝑖𝑛 (𝜃𝑛 )𝜕𝑧𝑟𝛽𝑛 (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) | + |𝑟

𝛽𝑛
(𝑧𝑖𝑛 (𝜃𝑛 ) ) |

]
, (5.13)

|M2,2,2
𝑛 (𝜃𝑛 ) |
𝑛3/2

≤ 1

𝑛3/2

𝑛−1∑︁
𝑖=0

������𝜕2
𝜎

©«
𝜕𝜎𝑎 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 )

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )

ª®¬ 𝑘𝛽𝑛 (𝑧𝑖𝑛 (𝜃𝑛 ) ) −
𝜕𝜎𝑎 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 )

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )

𝜕𝜎
©«
𝜕𝜎𝑎 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 )

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )

ª®¬ 𝑧𝑖𝑛 (𝜃𝑛 )𝜕𝑧𝑘𝛽𝑛 (𝑧𝑖𝑛 (𝜃𝑛 ) )
−2 ©«

𝜕𝜎𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )

ª®¬𝜕𝜎 ©«
𝜕𝜎𝑎 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 )

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )

ª®¬𝑞𝛽𝑛 (𝑧𝑖𝑛 (𝜃𝑛 ) ) + ©«
𝜕𝜎𝑎 (𝑋𝑡𝑛

𝑖
, �̂�𝑛 )

𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )

ª®¬
3

𝑧𝑖𝑛 (𝜃𝑛 )𝜕𝑧𝑞𝛽𝑛 (𝑧
𝑖
𝑛 (𝜃𝑛 ) )

�������
≤ 1

𝑛1/2
1
𝑛

𝑛−1∑︁
𝑖=0

𝐶 (1 + |𝑋𝑡𝑛
𝑖
| 𝑝 ) ( |𝑘

𝛽𝑛
(𝑧𝑖𝑛 (𝜃𝑛 ) ) | + |𝑧𝑖𝑛 (𝜃𝑛 )𝜕𝑧𝑘𝛽𝑛 (𝑧

𝑖
𝑛 (𝜃𝑛 ) ) | + |𝑞

𝛽𝑛
(𝑧𝑖𝑛 (𝜃𝑛 ) ) | + |𝑧𝑖𝑛 (𝜃𝑛 )𝜕𝑧𝑞𝛽𝑛 (𝑧

𝑖
𝑛 (𝜃𝑛 ) ) | ) ,

(5.14)

|M2,3,3
𝑛 (𝜃𝑛 ) |

𝑛3/2 (log𝑛)2
≤ 1

𝑛3/2 (log𝑛)2

𝑛−1∑︁
𝑖=0

������𝜕𝜎𝑎 (𝑋𝑡𝑛𝑖 , �̂�𝑛 )𝑎 (𝑋𝑡𝑛
𝑖
, �̂�𝑛 )

������
�����2 log𝑛

𝛽3
𝑛

𝑞𝛽 (𝑧𝑖𝑛 (𝜃𝑛 ) ) −
log𝑛

𝛽2
𝑛

(− log𝑛

𝛽2
𝑛

𝑧𝑖𝑛 (𝜃𝑛 )𝜕𝑧𝑞𝛽𝑛 (𝑧
𝑖
𝑛 (𝜃𝑛 ) )

+(𝜕𝛽𝑞𝛽𝑛 ) (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) ) −

log𝑛

𝛽2
𝑛

𝑧𝑖𝑛 (𝜃𝑛 )𝜕𝑧𝑟𝛽𝑛 (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) + (𝜕𝛽𝑟𝛽𝑛 ) (𝑧

𝑖
𝑛 (𝜃𝑛 ) )

�����
≤ 1

𝑛1/2 (log𝑛)2
1
𝑛

𝑛−1∑︁
𝑖=0

𝐶 (1 + |𝑋𝑡𝑛
𝑖
| 𝑝 )

[
log𝑛

𝛽3
𝑛

|𝑞𝛽 (𝑧𝑖𝑛 (𝜃𝑛 ) ) | +
log𝑛

𝛽2
𝑛

( log𝑛

𝛽2
𝑛

|𝑧𝑖𝑛 (𝜃𝑛 )𝜕𝑧𝑞𝛽𝑛 (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) |

+( |𝜕𝛽𝑞𝛽𝑛 ) (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) ) | +

log𝑛

𝛽2
𝑛

|𝑧𝑖𝑛 (𝜃𝑛 )𝜕𝑧𝑟𝛽𝑛 (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) | + | (𝜕𝛽𝑟𝛽𝑛 ) (𝑧

𝑖
𝑛 (𝜃𝑛 ) ) |

]
. (5.15)

Then, by similar arguments as above, we also obtain their convergences to zero using Theorem 5.2.

Concerning the elements of the matrix H3
𝑛 (𝜃): Since from symmetricity of this matrix

M3,1,1
𝑛 (𝜃𝑛)

𝑛2/𝛽0−1/2 log𝑛
=

M1,1,3
𝑛 (𝜃𝑛)

𝑛2/𝛽0−1/2 log𝑛
,

M3,1,2
𝑛 (𝜃𝑛)

𝑛1/𝛽0+1/2 log𝑛
=

M1,2,3
𝑛 (𝜃𝑛)

𝑛1/𝛽0+1/2 log𝑛
,
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M3,1,3
𝑛 (𝜃𝑛)

𝑛1/𝛽0+1/2 (log𝑛)2
=

M1,3,3
𝑛 (𝜃𝑛)

𝑛1/𝛽0+1/2 (log𝑛)2
,

M3,2,2
𝑛 (𝜃𝑛)
𝑛3/2 log𝑛

=
M2,2,3
𝑛 (𝜃𝑛)
𝑛3/2 log𝑛

,
M3,2,3
𝑛 (𝜃𝑛)

𝑛3/2 (log𝑛)2
=

M2,3,3
𝑛 (𝜃𝑛)

𝑛3/2 (log𝑛)2
,

the proof of their convergences are treated as above. For the element resting, we rewrite as follows

|M3,3,3
𝑛 (𝜃𝑛 ) |

𝑛3/2 (log𝑛)3
≤ 1

𝑛3/2 (log𝑛)3

𝑛−1∑︁
𝑖=0

�����(𝜕2
𝛽 𝑓𝛽𝑛

) (𝑧𝑖𝑛 (𝜃𝑛 ) ) + 4
log𝑛

𝛽3
𝑛

𝑟
𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) ) − 2
log𝑛

𝛽2
𝑛

(− log𝑛

𝛽2
𝑛

𝑧𝑖𝑛 (𝜃𝑛 )𝜕𝑧𝑟𝛽𝑛 (𝑧
𝑖
𝑛 (𝜃𝑛 ) )

+(𝜕𝛽𝑟𝛽𝑛 ) (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) ) − 6

log𝑛

𝛽4
𝑛

𝑘
𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) ) + 2
log𝑛

𝛽3
𝑛

(− log𝑛

𝛽2
𝑛

𝑧𝑖𝑛 (𝜃𝑛 )𝜕𝑧𝑘𝛽𝑛 (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) + (𝜕𝛽𝑘𝛽𝑛 ) (𝑧

𝑖
𝑛 (𝜃𝑛 ) ) )

−4
(log𝑛)2

𝛽5
𝑛

𝑞
𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) ) +
(log𝑛)2

𝛽4
𝑛

(− log𝑛

𝛽2
𝑛

𝑧𝑖𝑛 (𝜃𝑛 )𝜕𝑧𝑞𝛽𝑛 (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) + (𝜕𝛽𝑞𝛽𝑛 ) (𝑧

𝑖
𝑛 (𝜃𝑛 ) ) )

�����
≤ 1

𝑛1/2 (log𝑛)3
1
𝑛

𝑛−1∑︁
𝑖=0

𝐶

[
| (𝜕2

𝛽 𝑓𝛽𝑛
) (𝑧𝑖𝑛 (𝜃𝑛 ) ) | +

log𝑛

𝛽3
𝑛

|𝑟
𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) ) | +
log𝑛

𝛽2
𝑛

( log𝑛

𝛽2
𝑛

|𝑧𝑖𝑛 (𝜃𝑛 )𝜕𝑧𝑟𝛽𝑛 (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) |

+| (𝜕𝛽𝑟𝛽𝑛 ) (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) ) | +

log𝑛

𝛽4
𝑛

|𝑘
𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) ) | +
log𝑛

𝛽3
𝑛

( log𝑛

𝛽2
𝑛

|𝑧𝑖𝑛 (𝜃𝑛 )𝜕𝑧𝑘𝛽𝑛 (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) | + | (𝜕𝛽𝑘𝛽𝑛 ) (𝑧

𝑖
𝑛 (𝜃𝑛 ) ) | )

+ (log𝑛)2

𝛽5
𝑛

|𝑞
𝛽𝑛

(𝑧𝑖𝑛 (𝜃𝑛 ) ) | +
(log𝑛)2

𝛽4
𝑛

( log𝑛

𝛽2
𝑛

|𝑧𝑖𝑛 (𝜃𝑛 )𝜕𝑧𝑞𝛽𝑛 (𝑧
𝑖
𝑛 (𝜃𝑛 ) ) | + | (𝜕𝛽𝑞𝛽𝑛 ) (𝑧

𝑖
𝑛 (𝜃𝑛 ) ) | )

]
. (5.16)

Thus, by similar arguments as above, we obtain their convergences to zero.

Proof of Theorem 3.3. Now, here again we can follow (Masuda, 2015, Proof of Theorem 2.10) and
(Sweeting, 1980, Theorems 1 and 2) to prove the last assertion.
To obtain LAMN property, we only need to prove the convergence to zeros in probability of the last

term in the Taylor’s expansion above. To do so, for 𝜃𝑛 = 𝜃0 + 𝜀𝑛𝜑𝑛 (𝜃0)𝑢 , we use some inequalities in
the proof of Theorem 3.1 for the convergence to zero of the elements of the following matrices

H1
𝑛 (𝜃𝑛 ) =𝑛1/2−1/𝛽0 𝜑⊤𝑛 (𝜃0 )𝜕𝜇I𝑛 (𝜃𝑛 )𝜑𝑛 (𝜃0 )

=

©«

M1,1,1
𝑛 (𝜃𝑛 )
𝑛3/𝛽0−3/2

𝜑11,𝑛M
1,1,2
𝑛 (𝜃𝑛 )+𝜑21,𝑛M

1,1,3
𝑛 (𝜃𝑛 )

𝑛2/𝛽0−1/2
𝜑12,𝑛M

1,1,2
𝑛 (𝜃𝑛 )+𝜑22,𝑛M

1,1,3
𝑛 (𝜃𝑛 )

𝑛2/𝛽0−1/2

𝜑11,𝑛M
1,1,2
𝑛 (𝜃𝑛 )+𝜑21,𝑛M

1,1,3
𝑛 (𝜃𝑛 )

𝑛2/𝛽0−1/2
Q𝑛,1 (𝜃𝑛 )
𝑛1/𝛽0+1/2

K𝑛,1 (𝜃𝑛 )
𝑛1/𝛽0+1/2

𝜑12,𝑛M
1,1,2
𝑛 (𝜃𝑛 )+𝜑22,𝑛M

1,1,3
𝑛 (𝜃𝑛 )

𝑛2/𝛽0−1/2
K𝑛,1 (𝜃𝑛 )
𝑛1/𝛽0+1/2

P𝑛,1 (𝜃𝑛 )
𝑛1/𝛽0+1/2

ª®®®®®®¬
,

H2
𝑛 (𝜃𝑛 ) =𝑛−1/2 (𝜑11,𝑛 + 𝜑12,𝑛 )𝜑⊤𝑛 (𝜃0 )𝜕𝜎I𝑛 (𝜃𝑛 )𝜑𝑛 (𝜃0 )

=

©«

(𝜑11,𝑛+𝜑12,𝑛 )M
2,1,1
𝑛 (𝜃𝑛 )

𝑛2/𝛽0−1/2
𝜑11,𝑛M

2,1,2
𝑛 (𝜃𝑛 )+𝜑21,𝑛M

2,1,3
𝑛 (𝜃𝑛 )

(𝜑11,𝑛+𝜑12,𝑛 )−1𝑛1/𝛽0+1/2
𝜑12,𝑛M

2,1,2
𝑛 (𝜃𝑛 )+𝜑22,𝑛M

2,1,3
𝑛 (𝜃𝑛 )

(𝜑11,𝑛+𝜑12,𝑛 )−1𝑛1/𝛽0+1/2

𝜑11,𝑛M
2,1,2
𝑛 (𝜃𝑛 )+𝜑21,𝑛M

2,1,3
𝑛 (𝜃𝑛 )

(𝜑11,𝑛+𝜑12,𝑛 )−1𝑛1/𝛽0+1/2
Q𝑛,2 (𝜃𝑛 )

(𝜑11,𝑛+𝜑12,𝑛 )−1𝑛3/2
K𝑛,2 (𝜃𝑛 )

(𝜑11,𝑛+𝜑12,𝑛 )−1𝑛3/2

𝜑12,𝑛M
2,1,2
𝑛 (𝜃𝑛 )+𝜑22,𝑛M

2,1,3
𝑛 (𝜃𝑛 )

(𝜑11,𝑛+𝜑12,𝑛 )−1𝑛1/𝛽0+1/2
K𝑛,2 (𝜃𝑛 )

(𝜑11,𝑛+𝜑12,𝑛 )−1𝑛3/2
P𝑛,2 (𝜃𝑛 )

(𝜑11,𝑛+𝜑12,𝑛 )−1𝑛3/2

ª®®®®®®®®¬
,

H3
𝑛 (𝜃𝑛 ) =𝑛−1/2 (𝜑21,𝑛 + 𝜑22,𝑛 )𝜑⊤𝑛 (𝜃 )𝜕𝛽I𝑛 (𝜃𝑛 )𝜑𝑛 (𝜃 )

=

©«

(𝜑21,𝑛+𝜑22,𝑛 )M
3,1,1
𝑛 (𝜃𝑛 )

𝑛2/𝛽0−1/2
𝜑11,𝑛M

3,1,2
𝑛 (𝜃𝑛 )+𝜑21,𝑛M

3,1,3
𝑛 (𝜃𝑛 )

(𝜑21,𝑛+𝜑22,𝑛 )−1𝑛1/𝛽0+1/2
𝜑12,𝑛M

3,1,2
𝑛 (𝜃𝑛 )+𝜑22,𝑛M

3,1,3
𝑛 (𝜃𝑛 )

(𝜑21,𝑛+𝜑22,𝑛 )−1𝑛1/𝛽0+1/2

𝜑11,𝑛M
3,1,2
𝑛 (𝜃𝑛 )+𝜑21,𝑛M

3,1,3
𝑛 (𝜃𝑛 )

(𝜑21,𝑛+𝜑22,𝑛 )−1𝑛1/𝛽0+1/2
Q𝑛,3 (𝜃𝑛 )

(𝜑21,𝑛+𝜑22,𝑛 )−1𝑛3/2
K𝑛,3 (𝜃𝑛 )

(𝜑21,𝑛+𝜑22,𝑛 )−1𝑛3/2

𝜑12,𝑛M
3,1,2
𝑛 (𝜃𝑛 )+𝜑22,𝑛M

3,1,3
𝑛 (𝜃𝑛 )

(𝜑21,𝑛+𝜑22,𝑛 )−1𝑛1/𝛽0+1/2
K𝑛,3 (𝜃𝑛 )

(𝜑21,𝑛+𝜑22,𝑛 )−1𝑛3/2
P𝑛,3 (𝜃𝑛 )

(𝜑21,𝑛+𝜑22,𝑛 )−1𝑛3/2

ª®®®®®®®®¬
.
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where for convenience 𝜑𝑖 𝑗 ,𝑛 signifies 𝜑𝑖 𝑗 ,𝑛 (𝜃0), 𝑖, 𝑗 ∈ {1,2} and for 𝑖 ∈ {1,2,3},

K𝑛,𝑖 (𝜃𝑛) = 𝜑11,𝑛𝜑12,𝑛M𝑖,2,2
𝑛 (𝜃𝑛) + (𝜑11,𝑛𝜑22,𝑛 + 𝜑21,𝑛𝜑12,𝑛)M𝑖,2,3

𝑛 (𝜃𝑛) + 𝜑21,𝑛𝜑22,𝑛M𝑖,3,3
𝑛 (𝜃𝑛),

Q𝑛,𝑖 (𝜃𝑛) = 𝜑2
11,𝑛M

𝑖,2,2
𝑛 (𝜃𝑛) + 2𝜑11,𝑛𝜑21,𝑛M𝑖,2,3

𝑛 (𝜃𝑛) + 𝜑2
21,𝑛M

𝑖,3,3
𝑛 (𝜃𝑛),

P𝑛,𝑖 (𝜃𝑛) = 𝜑2
12,𝑛M

𝑖,2,2
𝑛 (𝜃𝑛) + 2𝜑12,𝑛𝜑22,𝑛M𝑖,2,3

𝑛 (𝜃𝑛) + 𝜑2
22,𝑛M

𝑖,3,3
𝑛 (𝜃𝑛).

First, from our choice of 𝜑𝑛 (𝜃0) above, |𝜑𝑖 𝑗 ,𝑛 (𝜃0) | ≤ 𝐶 (1 + log𝑛), 𝑖, 𝑗 ∈ {1,2}. This deduces that

𝑣𝑛 (𝜃0)√
𝑛

−→
𝑛→∞

04×4 (5.17)

where 𝑣𝑛 (𝜃0) = (𝑣𝑖 𝑗 ,𝑛 (𝜃0))𝑖, 𝑗∈{1,...,4} = ( 𝜑11,𝑛 𝜑12,𝑛 𝜑21,𝑛 𝜑21,𝑛 )⊤ ( 𝜑11,𝑛 𝜑12,𝑛 𝜑21,𝑛 𝜑21,𝑛 ).
Now, since 𝛽𝑛 = 𝛽0 + 𝜀𝑛√

𝑛
(𝑢2𝜑21,𝑛 (𝜃0) + 𝑢3𝜑22,𝑛 (𝜃0)), we have

𝑛1/𝛽𝑛−1/𝛽0 = exp

(
log𝑛
𝛽0

(
1

1 + 𝜀𝑛√
𝑛
(𝑢2𝜑21,𝑛 (𝜃0) + 𝑢3𝜑22,𝑛 (𝜃0))

− 1

))
∼ exp

(
− log𝑛
𝛽0

𝜀𝑛√
𝑛
(𝑢2𝜑21,𝑛 (𝜃0) + 𝑢3𝜑22,𝑛 (𝜃0))

)
−→
𝑛→∞

1.

Thus, combined with the previous analyses for the NM case, we can obtain easily the convergence in

probability of the considering terms. In particular, from (5.7), M1,1,1
𝑛 (𝜃𝑛 )
𝑛3/𝛽0−3/2 −→

𝑛→∞
0. And from (5.8), (5.9),

(5.10), (5.11), (5.12), (5.13), (5.15), (5.14) and (5.16), respectively we get that

𝑣𝑖 𝑗 ,𝑛 (𝜃0 )√
𝑛

√
𝑛
M1,1,2
𝑛 (𝜃𝑛 )
𝑛2/𝛽0−1/2

,
𝑣𝑖 𝑗 ,𝑛 (𝜃0 ) log𝑛

√
𝑛

√
𝑛

M1,1,3
𝑛 (𝜃𝑛 )

𝑛2/𝛽0−1/2 log𝑛
,
𝑣𝑖 𝑗 ,𝑛 (𝜃0 )√

𝑛

√
𝑛
M1,2,2
𝑛 (𝜃𝑛 )
𝑛1/𝛽0+1/2

,

𝑣𝑖 𝑗 ,𝑛 (𝜃0 ) log𝑛
√
𝑛

√
𝑛

M1,2,3
𝑛 (𝜃𝑛 )

𝑛1/𝛽0+1/2 log𝑛
,
𝑣𝑖 𝑗 ,𝑛 (𝜃0 ) (log𝑛)2

√
𝑛

√
𝑛

M1,3,3
𝑛 (𝜃𝑛 )

𝑛1/𝛽0+1/2 (log𝑛)2
,
𝑣𝑖 𝑗 ,𝑛 (𝜃0 ) log𝑛

√
𝑛

√
𝑛
M2,2,3
𝑛 (𝜃𝑛 )
𝑛3/2 log𝑛

,

𝑣𝑖 𝑗 ,𝑛 (𝜃0 ) (log𝑛)2
√
𝑛

√
𝑛
M2,3,3
𝑛 (𝜃𝑛 )

𝑛3/2 (log𝑛)2
,
𝑣𝑖 𝑗 ,𝑛 (𝜃0 )√

𝑛

√
𝑛
M2,2,2
𝑛 (𝜃𝑛 )
𝑛3/2

,
𝑣𝑖 𝑗 ,𝑛 (𝜃0 ) (log𝑛)3

√
𝑛

√
𝑛
M3,3,3
𝑛 (𝜃𝑛 )

𝑛3/2 (log𝑛)3

are convergent to zero as 𝑛 tends to infinity for any 𝑖, 𝑗 ∈ {1, . . . ,4} thanks to (5.37).
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Proofs of some technical results

Proof of Proposition 5.1. The first two inequalities are recalled from Clément and Gloter (2020), here,
we only need to prove the last one. First, we note that

𝜕𝜇𝜉1/𝑛 (𝑥, 𝜇) =
∫ 1/𝑛

0
𝜕𝑥𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇)𝜕𝜇𝜉𝑠 (𝑥, 𝜇)𝑑𝑠 +

∫ 1/𝑛

0
(𝜕𝜇𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇)𝑑𝑠,

𝜕2
𝜇𝜉1/𝑛 (𝑥, 𝜇) =

∫ 1/𝑛

0
𝜕𝑥𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇)𝜕2

𝜇𝜉𝑠 (𝑥, 𝜇)𝑑𝑠 +
∫ 1/𝑛

0
𝜕2
𝑥𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇) (𝜕𝜇𝜉𝑠 (𝑥, 𝜇))2𝑑𝑠

+ 2
∫ 1/𝑛

0
(𝜕𝜇𝜕𝑥𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇)𝜕𝜇𝜉𝑠 (𝑥, 𝜇)𝑑𝑠 +

∫ 1/𝑛

0
(𝜕2
𝜇𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇)𝑑𝑠,

𝜕3
𝜇𝜉1/𝑛 (𝑥, 𝜇) =

∫ 1/𝑛

0
𝜕𝑥𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇)𝜕3

𝜇𝜉𝑠 (𝑥, 𝜇)𝑑𝑠 +
∫ 1/𝑛

0
𝜕2
𝑥𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇)𝜕2

𝜇𝜉𝑠 (𝑥, 𝜇)𝑑𝑠

+
∫ 1/𝑛

0
(𝜕𝜇𝜕𝑥𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇)𝜕2

𝜇𝜉𝑠 (𝑥, 𝜇)𝑑𝑠 +
∫ 1/𝑛

0
𝜕3
𝑥𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇) (𝜕𝜇𝜉𝑠 (𝑥, 𝜇))3𝑑𝑠

+ 3
∫ 1/𝑛

0
(𝜕𝜇𝜕2

𝑥𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇) (𝜕𝜇𝜉𝑠 (𝑥, 𝜇))2𝑑𝑠

+ 3
∫ 1/𝑛

0
(𝜕2
𝜇𝜕𝑥𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇) (𝜕𝜇𝜉𝑠 (𝑥, 𝜇))𝑑𝑠 +

∫ 1/𝑛

0
(𝜕3
𝜇𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇)𝑑𝑠.

Therefore, we get

|𝜕3
𝜇𝜉1/𝑛 (𝑥, 𝜇) −

1
𝑛
𝜕3
𝜇𝑏(𝑥, 𝜇) | ≤

∫ 1/𝑛

0
|𝜕𝑥𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇) | |𝜕3

𝜇𝜉𝑠 (𝑥, 𝜇) −
1
𝑛
𝜕3
𝜇𝑏(𝑥, 𝜇) |𝑑𝑠 + |R𝑛 (𝜇) |,

where

R𝑛 (𝜇)
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=
1
𝑛
𝜕3
𝜇𝑏(𝑥, 𝜇)

∫ 1/𝑛

0
𝜕𝑥𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇)𝑑𝑠 +

∫ 1/𝑛

0
𝜕2
𝑥𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇)𝜕2

𝜇𝜉𝑠 (𝑥, 𝜇)𝑑𝑠

+
∫ 1/𝑛

0
(𝜕𝜇𝜕𝑥𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇)𝜕2

𝜇𝜉𝑠 (𝑥, 𝜇)𝑑𝑠 +
∫ 1/𝑛

0
𝜕3
𝑥𝑏(𝜉𝑠 (𝑥, 𝜇), 𝜇) (𝜕𝜇𝜉𝑠 (𝑥, 𝜇))3𝑑𝑠

+ 3
∫ 1/𝑛

0
(𝜕𝜇𝜕2

𝑥𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇) (𝜕𝜇𝜉𝑠 (𝑥, 𝜇))2𝑑𝑠 + 3
∫ 1/𝑛

0
(𝜕2
𝜇𝜕𝑥𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇) (𝜕𝜇𝜉𝑠 (𝑥, 𝜇))𝑑𝑠

+
∫ 1/𝑛

0
[(𝜕3

𝜇𝑏) (𝜉𝑠 (𝑥, 𝜇), 𝜇) − 𝜕3
𝜇𝑏(𝑥, 𝜇)]𝑑𝑠.

Now, for some 𝑠 ∈ (0,1/𝑛), since 𝑏(.) is Lipschitz, we have

|𝜉𝑠 (𝑥, 𝜇) | =|𝑥 +
∫ 𝑠

0
𝑏(𝜉𝑣 (𝑥, 𝜇), 𝜇)𝑑𝑣 | ≤ |𝑥 | +

∫ 𝑠

0
𝐶 (1 + |𝜉𝑣 (𝑥, 𝜇) |)𝑑𝑣,

|𝜉𝑠 (𝑥, 𝜇) − 𝑥 | =|
∫ 𝑠

0
𝑏(𝜉𝑣 (𝑥, 𝜇), 𝜇)𝑑𝑣 | ≤ 𝐶 ( |𝑥 | + 1)𝑠 +

∫ 𝑠

0
𝐶 |𝜉𝑣 (𝑥, 𝜇) − 𝑥 |𝑑𝑣.

By Gronwall’s lemma

|𝜉𝑠 (𝑥, 𝜇) | ≤ (|𝑥 | +𝐶𝑠)𝑒𝐶𝑠 , and |𝜉𝑠 (𝑥, 𝜇) − 𝑥 | ≤ 𝐶 ( |𝑥 | + 1)𝑠𝑒𝐶𝑠 , 𝑠 ∈ (0,1/𝑛). (5.18)

Then, from Assumption (A) and Gronwall’s lemma again, we have

sup
𝜇∈𝑉𝜇0

sup
𝑘∈{1,2,3}

𝜕𝑘𝜇𝜉1/𝑛 (𝑥, 𝜇) ≤ 𝐶 (1 + |𝑥 |𝑝)/𝑛 (5.19)

for some 𝑝 > 0. Thus, from Assumption (A) and Jensen’s inequality for convex function 𝑥 ∈ [1,∞) ↦→
𝑥𝑚,𝑚 > 1, we easily deduce that sup𝜇∈𝑉𝜇0

|R𝑛 (𝜇) | ≤ 𝐶 (1+ |𝑥 |𝑝)/𝑛2 for some 𝑝 > 0. Finally, combined
with Gronwall’s lemma, we then obtain (5.2).

Proof of Theorem 5.2. First of all, we introduce for any 𝑞 > 0

𝐽
𝑞
𝑡 = 𝐽𝑡 −

∑︁
𝑠≤𝑡

Δ𝐽𝑠1{ |Δ𝐽𝑠 |>𝑞} ,

𝑇𝑞 = inf{𝑡 > 0 : |Δ𝐽𝑡 | ≥ 𝑞}.

and 𝑋𝑞 the solution of the following SDE:

𝑋
𝑞
𝑡 = 𝑥0 +

∫ 𝑡

0
𝑏(𝑋𝑞𝑠 , 𝜇0)𝑑𝑠 +

∫ 𝑡

0
𝑎(𝑋𝑞𝑠− , 𝜎0)𝑑𝐽𝑞𝑠 , 𝑡 ≥ 0, (5.20)

In a natural way, we denote by 𝑋
𝑞

the associate scheme, for any 𝑖 ∈ {0,1, . . . , 𝑛 − 1}, we denote

𝑋
𝑞

𝑡𝑛
𝑖+1

= 𝜉𝑡𝑛
𝑖+1−𝑡

𝑛
𝑖
(𝑋𝑞𝑡𝑛

𝑖
, 𝜇) + 𝑎(𝑋𝑞𝑡𝑛

𝑖
, 𝜎) (𝐽𝑞

𝑡𝑛
𝑖+1

− 𝐽𝑞
𝑡𝑛
𝑖

). (5.21)

Let 𝑞 > 1 and 𝑝 ≥ 2 be fixed. It is standard that

E( sup
𝑡∈[0,1]

|𝑋𝑞𝑡 |𝑝) < +∞. (5.22)
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Concerning the scheme, we also have for any 𝑞 > 1 and 𝑛

E( sup
𝑖∈{0,1, · · · ,𝑛}

|𝑋𝑞𝑡𝑛
𝑖
|𝑝) ≤ 𝐶𝑞,𝑝 . (5.23)

Indeed, let 𝑛 ≥ 1 and 𝑖 ∈ {1,2, · · · , 𝑛 − 1} then we have

𝑋
𝑞

𝑡𝑛
𝑖+1

= 𝑋
𝑞

𝑡𝑛
𝑖
+
∫ 1

𝑛

0
𝑏(𝜉𝑠 (𝑋

𝑞

𝑡𝑛
𝑖
, 𝜇0), 𝜇0)𝑑𝑠 + 𝑎(𝑋

𝑞

𝑡𝑛
𝑖
, 𝜎0) (𝐽𝑞𝑡𝑛

𝑖+1
− 𝐽𝑞

𝑡𝑛
𝑖

)

= 𝑥0 +
∫ 𝑡𝑛

𝑖+1

𝑡𝑛
𝑖

𝑏(𝜉𝑢−𝜂𝑛 (𝑢) (𝑋
𝑞

𝜂𝑛 (𝑢) , 𝜇0), 𝜇0) 𝑑𝑢 +
∫ 𝑡𝑛

𝑖+1

𝑡𝑛
𝑖

𝑎(𝑋𝑞𝜂𝑛 (𝑢) , 𝜎0)𝑑𝐽𝑞𝑢

Let us now introduce the process 𝑍 defined by

∀𝑡 ∈ [0,1], 𝑍𝑡 = 𝑥0 +
∫ 𝑡

0
𝑏(𝜉𝑢−𝜂𝑛 (𝑢) (𝑋

𝑞

𝜂𝑛 (𝑢) , 𝜇0), 𝜇0) 𝑑𝑢 +
∫ 𝑡

0
𝑎(𝑋𝑞𝜂𝑛 (𝑢) , 𝜎0)𝑑𝐽𝑞𝑢

so that for any 𝑖, 𝑍𝑡𝑛
𝑖
= 𝑋

𝑞

𝑡𝑛
𝑖

and so

∀𝑡 ∈ [0,1], 𝑍∗𝑡 = sup
𝑠∈[0,𝑡 ]

|𝑍𝑠 | ≥ sup
𝑖

|𝑋𝑞𝑡𝑛
𝑖
|. (5.24)

Following for example Protter (1992) Section I.4, we know that 𝐽𝑞 admits the following decomposition:

𝐽
𝑞
𝑡 = 𝑀

𝑞
𝑡 + 𝐴𝑞𝑡 , (5.25)

with 𝑀
𝑞
𝑡 =

∫ 𝑡
0

∫
|𝑧 | ≤𝑞 𝑧�̃� (𝑑𝑠, 𝑑𝑧), where �̃� is the compensated Poisson measure with Lévy measure

1
|𝑧 |1+𝛽 1[−𝑞,𝑞 ] (𝑧)𝑑𝑧. 𝑀𝑞 is a martingale belonging to all the 𝐿𝑝 spaces and 𝐴𝑞 is a finite variation
process such that its total variation satisfies

𝑑 |𝐴|𝑡 ≤
(
2
∫ 𝑞

1

𝑧

𝑧1+𝛽 𝑑𝑧

)
𝑑𝑡.

Then since coefficients 𝑎 and 𝑏 are Lipschitz w.r.t. variable 𝑥 and thanks to estimates (5.18) and (5.24),
we have:

|𝑍∗𝑡 |𝑝 ≤𝐶
(
|𝑥0 |𝑝 +

(∫ 𝑡

0
(𝑍∗𝑢 +𝐶/𝑛)𝑒𝐶/𝑛 𝑑𝑢

) 𝑝
+

(∫ 𝑡

0
(1 + 𝑍∗𝑢) 𝑑𝑢

) 𝑝
+ sup
𝑠∈[0,𝑡 ]

����∫ 𝑠

0
𝑎(𝑋𝑞𝜂𝑛 (𝑢) , 𝜎0)𝑑𝑀𝑞

𝑢

����𝑝) , (5.26)

where constant 𝐶 above but also below denotes a constant which may vary from line to line but does
not depend on 𝑛. Using (Jacod and Protter, 2012, Inequality (2.1.36) in Lemma 2.1.5) (see also (Kunita,
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2004, Theorem A.3)) we have:

E𝜃0

(
sup

𝑠∈[0,𝑡 ]

����∫ 𝑠

0
𝑎 (𝑋𝑞

𝜂𝑛 (𝑢) , 𝜎0 )𝑑𝑀
𝑞
𝑢

����𝑝)

≤ 𝐶 ©«E𝜃0


(∫ 𝑡

0

∫
|𝑧 | ≤𝑞

|𝑎 (𝑋𝑞
𝜂𝑛 (𝑢) , 𝜎0 ) |2

𝑧2

|𝑧 |1+𝛽
𝑑𝑧𝑑𝑠

) 𝑝/2 + E𝜃0

[∫ 𝑡

0

∫
|𝑧 | ≤𝑞

|𝑎 (𝑋𝑞
𝜂𝑛 (𝑢) , 𝜎0 ) | 𝑝

𝑧𝑝

|𝑧 |1+𝛽
𝑑𝑧𝑑𝑠

]ª®¬
≤ 𝐶

(
E𝜃0

[(∫ 𝑡

0
|𝑎 (𝑋𝑞

𝜂𝑛 (𝑢) , 𝜎0 ) |2𝑑𝑠
) 𝑝/2

]
+ E𝜃0

[∫ 𝑡

0
|𝑎 (𝑋𝑞

𝜂𝑛 (𝑢) , 𝜎0 ) | 𝑝𝑑𝑠
])

≤ 𝐶E𝜃0

[∫ 𝑡

0
|𝑎 (𝑋𝑞

𝜂𝑛 (𝑢) , 𝜎0 ) | 𝑝𝑑𝑢
]
≤ 𝐶

(
1 + E𝜃0

[∫ 𝑡

0
(𝑍∗
𝑢 ) 𝑝𝑑𝑢

] )
(5.27)

From this we easily get that

∀𝑡 ∈ [0,1], E𝜃0 [(𝑍∗𝑡 )𝑝] ≤ 𝐶 (1 +
∫ 𝑡

0
E𝜃0 [(𝑍∗𝑠 )𝑝] 𝑑𝑠)

which ensures by Gronwall’s Lemma that E𝜃0 [(𝑍∗1)
𝑝] ≤ 𝐶𝑞,𝑝 .

Clearly, on 𝑁𝑞 = {𝑇𝑞 > 1}, 𝑋𝑡 = 𝑋𝑞𝑡 a.s. for all 𝑡 ∈ [0,1] and 𝑋 = 𝑋
𝑞

. As lim𝑞→+∞ P𝜃0 (𝑇𝑞 ≤ 1) = 0, we
only need to prove that for any 𝑞 > 0,

sup
𝜃∈𝑉 (𝜂)

𝑛 (𝜃0 )
𝑛𝜀

�����1𝑛 𝑛−1∑︁
𝑖=0

𝑓 (𝑋𝑞𝑡𝑛
𝑖
, 𝜇, 𝜎)𝑔𝛽 (𝑧𝑖𝑛 (𝜃)) −

∫ 1

0
𝑓 (𝑋𝑞𝑠 , 𝜇0, 𝜎0)𝑑𝑠E𝜃0 (𝑔𝛽0 (𝐽1))

�����1𝑁𝑞
−→
𝑛→∞

0, (5.28)

in probability under P𝜃0 . This is implied by the following convergences in probability,

sup
𝜃∈𝑉 (𝜂)

𝑛 (𝜃0 )
𝑛𝜀

����� 1
𝑛

𝑛−1∑︁
𝑖=0

[ 𝑓 (𝑋𝑞
𝑡𝑛
𝑖
, 𝜇, 𝜎) − 𝑓 (𝑋𝑞

𝑡𝑛
𝑖
, 𝜇0, 𝜎0 ) ]𝑔𝛽 (𝑧𝑖𝑛 (𝜃 ) )

�����1𝑁𝑞

P𝜃0−→
𝑛→∞ 0, (5.29)

sup
𝜃∈𝑉 (𝜂)

𝑛 (𝜃0 )
𝑛𝜀

����� 1
𝑛

𝑛−1∑︁
𝑖=0

𝑓 (𝑋𝑞
𝑡𝑛
𝑖
, 𝜇0, 𝜎0 ) [𝑔𝛽 (𝑧𝑖𝑛 (𝜃 ) ) − 𝑔𝛽0 (𝑧

𝑖
𝑛 (𝜃0 ) ) ]

�����1𝑁𝑞

P𝜃0−→
𝑛→∞ 0, (5.30)

𝑛𝜀

����� 1
𝑛

𝑛−1∑︁
𝑖=0

𝑓 (𝑋𝑞
𝑡𝑛
𝑖
, 𝜇0, 𝜎0 ) [𝑔𝛽0 (𝑧

𝑖
𝑛 (𝜃0 ) ) − E𝜃0 (𝑔𝛽0 (𝐽1 ) ) ]

����� P𝜃0−→
𝑛→∞ 0, (5.31)

𝑛𝜀

����� 1
𝑛

𝑛−1∑︁
𝑖=0

𝑓 (𝑋𝑞
𝑡𝑛
𝑖
, 𝜇0, 𝜎0 ) −

1
𝑛

𝑛−1∑︁
𝑖=0

𝑓 (𝑋𝑞
𝑡𝑛
𝑖

, 𝜇0, 𝜎0 )
����� P𝜃0−→
𝑛→∞ 0. (5.32)

𝑛𝜀

����� 1
𝑛

𝑛−1∑︁
𝑖=0

𝑓 (𝑋𝑞
𝑡𝑛
𝑖

, 𝜇0, 𝜎0 ) −
∫ 1

0
𝑓 (𝑋𝑞𝑠 , 𝜇0, 𝜎0 )𝑑𝑠

����� P𝜃0−→
𝑛→∞ 0. (5.33)

We remark then that

𝑧𝑖𝑛 (𝜃0) =𝑛1/𝛽0 (𝐽𝑡𝑛
𝑖+1

− 𝐽𝑡𝑛
𝑖
),

𝑧𝑖𝑛 (𝜃) =
𝑛1/𝛽

𝑎(𝑋 𝑡𝑛
𝑖
, 𝜎)

[𝜉1/𝑛 (𝑋 𝑡𝑛
𝑖
, 𝜇0) + 𝑎(𝑋 𝑡𝑛

𝑖
, 𝜎0) (𝐽𝑡𝑛

𝑖+1
− 𝐽𝑡𝑛

𝑖
) − 𝜉1/𝑛 (𝑋 𝑡𝑛

𝑖
, 𝜇)]
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and that if 𝜃 ∈ 𝑉 (𝜂)
𝑛 (𝜃0), then

|𝜇 − 𝜇0 | ≤ 𝜂 𝑛1/2−1/𝛽0 (log𝑛)2, |𝜎 − 𝜎0 | ≤ 𝐶 𝜂 𝑛−1/2 log𝑛 and |𝛽 − 𝛽0 | ≤ 𝐶 𝜂 𝑛−1/2 log𝑛. (5.34)

For (5.29) we remark that

E𝜃0
©« sup
𝜃∈𝑉 (𝜂)

𝑛 (𝜃0 )
𝑛𝜀

�����1𝑛 𝑛−1∑︁
𝑖=0

[ 𝑓 (𝑋𝑞𝑡𝑛
𝑖
, 𝜇, 𝜎) − 𝑓 (𝑋𝑞𝑡𝑛

𝑖
, 𝜇0, 𝜎0)]𝑔𝛽 (𝑧𝑖𝑛 (𝜃))

�����1𝑁𝑞

ª®¬
≤ E𝜃0

(
𝐶 (1 + sup

𝑖

|𝑋𝑞𝑡𝑛
𝑖
|𝑝) (log𝑛)2 (𝑛1/2−1/𝛽0+𝜀 + 𝑛−1/2+𝜀) |𝑔𝛽 (𝑧𝑖𝑛 (𝜃) |1𝑁𝑞

)
≤ 𝐶 (1 + E𝜃0 (sup

𝑖

|𝑋𝑞𝑡𝑛
𝑖
|2𝑝))1/2 (1 + E𝜃0 ( sup

𝜃∈𝑉 (𝜂)
𝑛 (𝜃0 )

|𝑧𝑖𝑛 (𝜃) |2𝜅1𝑁𝑞
))1/2 (log𝑛)2 (𝑛1/2−1/𝛽0+𝜀 + 𝑛−1/2+𝜀)

≤ 𝐶 (log𝑛)2 (𝑛1/2−1/𝛽0+𝜀 + 𝑛−1/2+𝜀) −→
𝑛→+∞

0,

where 𝜅 may be chosen in ]0, 𝛽/2[ thanks to the assumptions made on 𝑔𝛽 . The last line is followed
from (Clément and Gloter, 2020, the proof of (4.11)) that E𝜃0 ( |𝑧𝑖𝑛 (𝜃0) |𝑘 |F𝑡𝑛

𝑖
) ≤ 𝐶, for any 𝑘 < 𝛽0 and

sup
𝜃∈𝑉 (𝜂)

𝑛 (𝜃0 )
|𝑧𝑖𝑛 (𝜃) − 𝑧𝑖𝑛 (𝜃0) |1𝑁𝑞

≤ 𝐶 (1 + |𝑋𝑞𝑡𝑛
𝑖
| 𝑗 ) (1 + |𝑧𝑖𝑛 (𝜃0) |) (log𝑛)2/

√
𝑛, for some 𝑗 > 0.

To prove (5.30), we proceed similarly by splitting the difference 𝑔𝛽 (𝑧𝑖𝑛 (𝜃)) − 𝑔𝛽0 (𝑧𝑖𝑛 (𝜃0)) into two
parts: 𝑔𝛽 (𝑧𝑖𝑛 (𝜃)) − 𝑔𝛽0 (𝑧𝑖𝑛 (𝜃)) and 𝑔𝛽0 (𝑧𝑖𝑛 (𝜃)) − 𝑔𝛽0 (𝑧𝑖𝑛 (𝜃0)) using the fact that 𝑓 is Lipschitz w.r.t.
variable 𝑥.
For (5.31), let 𝜉𝑛

𝑖
= 𝑛𝜀−1 𝑓 (𝑋𝑞𝑡𝑛

𝑖
, 𝜇0, 𝜎0) [𝑔𝛽0 (𝑧𝑖𝑛 (𝜃0)) − E𝜃0 (𝑔𝛽0 (𝐽1))], we simply use the fact that

𝑧𝑖𝑛 (𝜃0) = 𝑛1/𝛽0 (𝐽𝑡𝑛
𝑖+1

− 𝐽𝑡𝑛
𝑖
) L
= 𝐽1, using one more time the fact that 𝑓 is Lipschitz we have:

𝑛E𝜃0 (𝜉𝑛𝑖 |F𝑡𝑛𝑖 ) = 0, 𝑛E𝜃0 ((𝜉𝑛𝑖 )
2 |F𝑡𝑛

𝑖
) = 𝑛2𝜀−1 𝑓 (𝑋𝑞𝑡𝑛

𝑖
, 𝜇0, 𝜎0)2𝑉𝑎𝑟𝜃0 (𝑔𝛽0 (𝐽1)) → 0.

we then conclude that
∑𝑛
𝑖=1 𝜉

𝑛
𝑖

tends to 0 in probability using the results in Jacod and Protter (2012),
Section (2.2.4) for triangular array. For (5.32), we note that

𝑋
𝑞

𝑡𝑛
𝑖
− 𝑋𝑞

𝑡𝑛
𝑖

=𝑍𝑡𝑛
𝑖
− 𝑋𝑞

𝑡𝑛
𝑖

=

∫ 𝑡𝑛
𝑖

0
(𝑏(𝜉𝑢−𝜂𝑛 (𝑢) (𝑋

𝑞

𝜂𝑛 (𝑢) , 𝜇0), 𝜇0) − 𝑏(𝑋𝑞𝑢 , 𝜇0)) 𝑑𝑢

+
∫ 𝑡𝑛

𝑖

0
(𝑎(𝑋𝑞𝜂𝑛 (𝑢) , 𝜎0) − 𝑎(𝑋𝑞𝑢− , 𝜎0))𝑑𝐽𝑞𝑢 .

Then, we separate the first integral in the r.h.s. into three parts concerning the differences

𝑏(𝜉𝑢−𝜂𝑛 (𝑢) (𝑋
𝑞

𝜂𝑛 (𝑢) , 𝜇0), 𝜇0) − 𝑏(𝑋
𝑞

𝜂𝑛 (𝑢) , 𝜇0)

𝑏(𝑋𝑞𝜂𝑛 (𝑢) , 𝜇0) − 𝑏(𝑋𝑞𝜂𝑛 (𝑢) , 𝜇0)

𝑏(𝑋𝑞
𝜂𝑛 (𝑢) , 𝜇0) − 𝑏(𝑋𝑞𝑢 , 𝜇0)

and we shall do similarly for the second integral. Now, thanks to the Lipschitz property of the coefficient
functions 𝑥 ↦→ 𝑎(𝑥, 𝜎0) and 𝑥 ↦→ 𝑏(𝑥, 𝜇0), we can easily recycle the arguments from (5.26) to obtain

E𝜃0 ( sup
𝑠∈[0,1]

|𝑋𝑞𝑠 − 𝑋
𝑞
𝑠 |2) = O(𝑛−1).
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Finally, using Lipschitz assumption on 𝑓 and Cauchy-Schwarz inequality, we have

E

(
𝑛𝜀

�����1𝑛 𝑛−1∑︁
𝑖=0

𝑓 (𝑋𝑞𝑡𝑛
𝑖
, 𝜇0, 𝜎0) −

1
𝑛

𝑛−1∑︁
𝑖=0

𝑓 (𝑋𝑞
𝑡𝑛
𝑖

, 𝜇0, 𝜎0)
�����
)

−→
𝑛→+∞

0.

For (5.33), we rewrite the considering error as follows

𝑛𝜀
����∫ 1

0
( 𝑓 (𝑋𝑞

𝜂𝑛 (𝑠) , 𝜇0, 𝜎0) − 𝑓 (𝑋𝑞𝑠 , 𝜇0, 𝜎0))𝑑𝑠
����

and its convergence to zero in probability is directly using a part of the arguments for (5.32).

Proof of Lemma 3.8. To begin with, we denote

𝐹𝑛 (𝜎) = 𝑛𝛽
0
𝑛−1𝑉1

𝑛 (𝑝, 𝑋) − 𝜇𝑝 (𝛽0
𝑛)

∫ 1

0
|𝑎(𝑋𝑠 , 𝜎) |𝑝𝑑𝑠.

We prove that if (
√
𝑛/log𝑛)𝐹𝑛 (𝜎0) is tight which is true from (Todorov, 2013, (21)), then, any sequence

(�̂�0
𝑛 , 𝑛 ≥ 1) belonging to 𝑉𝜎0 (a neighborhood of 𝜎0 defined in assumption (A)) that solves 𝐹𝑛 (𝜎) = 0

is consistent and eventually unique. To do so, using (Jacod and Sorensen, 2017, Theorem 2.7.a), since
𝐹𝑛 (𝜎0) converges to zero in probability, we need to verify the following two conditions:

(i) There exists 𝐹 defined on 𝐴 compact subset of𝑉𝜎0 , continuously differentiable, such that 𝐹 (𝜎0) =
0 and 𝜎0 is the unique root of 𝐹 (𝜎) = 0.

(ii) The following convergence in probability holds

sup
𝜎∈𝐴

|𝜕𝜎𝐹𝑛 (𝜎) − 𝜕𝜎𝐹 (𝜎) | → 0,

and 𝜕𝜎𝐹 (𝜎) is non-singular with probability one.

For this proof, we choose

𝐹 (𝜎) = −𝑝𝜇𝑝 (𝛽0)
∫ 𝜎

𝜎0

∫ 1

0

𝜕𝜎𝑎

𝑎1−𝑝 (𝑋𝑠 , 𝑢)𝑑𝑠𝑑𝑢.

For this choice, the criteria (ii) is straightforward from the fact that 𝛽0
𝑛

P→ 𝛽0. Considering (i), it is
obvious that 𝐹 (𝜎0) = 0 and 𝜎0 is the unique solution of 𝐹 (𝜎) = 0 since from those assumptions on the
function 𝑎, ∫ 𝜎

𝜎0

∫ 1

0

𝜕𝜎𝑎

𝑎1−𝑝 (𝑋𝑠 , 𝑢)𝑑𝑠𝑑𝑢 = 0 ⇔ 𝜎 = 𝜎0.

Now, from this, we prove that 𝑛
1/2

log𝑛 (�̂�
0
𝑛 − 𝜎0) is tight. From Taylor’s formula, we have

𝐹𝑛 (𝜎0) = −𝑝𝜇𝑝 (𝛽0
𝑛)

∫ 1

0

𝜕𝜎𝑎

𝑎1−𝑝 (𝑋𝑠 , �̃�𝑛)𝑑𝑠 (�̂�
0
𝑛 − 𝜎0)

where �̃�𝑛 lies between �̂�0
𝑛 and 𝜎0. Then, using the consistency of �̂�0

𝑛 proven above and the tightness of
(
√
𝑛/log𝑛)𝐹𝑛 (𝜎0), we complete the proof.
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Proof of Theorem 3.9. Inspired by the work in Bayraktar and Clément (2023), using (Jacod and
Sorensen, 2017, Theorem 2.7.a)), for the consistency and uniqueness, we need to verify the follow-
ing two conditions:

(i) There exists 𝐺 defined on 𝐴, continuously differentiable, such that 𝐺𝑛 (𝜇0) converges to zero in
probability, 𝐺 (𝜇0) = 0 and 𝜇0 is the unique root of 𝐺 (𝜇) = 0.

(ii) The following convergence in probability holds

sup
𝜇∈𝐴

|𝜕𝜇𝐺𝑛 (𝜇) − 𝜕𝜇𝐺 (𝜇) | → 0,

and 𝜕𝜇𝐺 (𝜇) is non-singular with probability one.

For some 𝜂 > 0, we set

𝑊
(𝜂)
𝑛 =

{
(𝜎, 𝛽) :

 √
𝑛

log𝑛

(
𝜎 − 𝜎0
𝛽 − 𝛽0

) ≤ 𝜂} .
First, we prove the second assertion (𝑖𝑖) by setting

𝐺 (𝜇) =
∫ 𝜇

𝜇0

∫ 1

0

𝜕𝜇𝑏(𝑋𝑠 , 𝑧)2

𝑎(𝑋𝑠 , 𝜎0)2 𝑑𝑠𝑑𝑧 E(ℎ
2
𝛽0
(𝐽1)).

Since (�̂�0
𝑛 , 𝛽

0
𝑛) ∈ 𝑊

(𝜂)
𝑛 , we know that 𝛽0

𝑛 > 1 a.s. for any 𝑛 large enough. We have 𝜕𝜇𝐺𝑛 (𝜇) =
−𝑛1−2/𝛽0

𝑛I1,1
𝑛 (𝜇, �̂�0

𝑛 , 𝛽
0
𝑛) where

I1,1
𝑛 (𝜇, �̂�0

𝑛 , 𝛽
0
𝑛)

=𝑛1/𝛽0
𝑛

𝑛−1∑︁
𝑖=0

𝜕2
𝜇𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, 𝜇)

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)

ℎ𝛽 (𝑧𝑖𝑛 (𝜇, �̂�0
𝑛 , 𝛽

0
𝑛)) − 𝑛2/𝛽0

𝑛

𝑛−1∑︁
𝑖=0

(𝜕𝜇𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, 𝜇))2

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)2

𝜕𝑧ℎ𝛽 (𝑧𝑖𝑛 (𝜇, �̂�0
𝑛 , 𝛽

0
𝑛)).

We rewrite 𝜕𝜇𝐺𝑛 (𝜇) − 𝜕𝜇𝐺 (𝜇) = 𝐴𝑛 (𝜇) + 𝐵𝑛 (𝜇), where

𝐴𝑛 (𝜇) =𝑛
𝑛−1∑︁
𝑖=0

(𝜕𝜇𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, 𝜇))2

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)2

𝜕𝑧ℎ𝛽 (𝑧𝑖𝑛 (𝜇, �̂�0
𝑛 , 𝛽

0
𝑛)) −

∫ 1

0

𝜕𝜇𝑏(𝑋𝑠 , 𝜇)2

𝑎(𝑋𝑠 , 𝜎0)2 𝑑𝑠 E(ℎ2
𝛽0
(𝐽1)),

𝐵𝑛 (𝜇) = − 𝑛1−1/𝛽0
𝑛

𝑛−1∑︁
𝑖=0

𝜕2
𝜇𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, 𝜇)

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)

ℎ𝛽 (𝑧𝑖𝑛 (𝜇, �̂�0
𝑛 , 𝛽

0
𝑛)).

Our aim is to prove that sup𝜇∈𝐴 |𝐴𝑛 (𝜇) |
P→ 0 and sup𝜇∈𝐴 |𝐵𝑛 (𝜇) |

P→ 0. To do so, we first prove that

sup
𝜇∈𝐴

|𝜕𝜇𝜉1/𝑛 (𝑥, 𝜇) −
1
𝑛
𝜕𝜇𝑏(𝑥, 𝜇) | ≤ 𝐶 (1 + |𝑥 |𝑝)/𝑛2,

sup
𝜇∈𝐴

|𝜕2
𝜇𝜉1/𝑛 (𝑥, 𝜇) −

1
𝑛
𝜕2
𝜇𝑏(𝑥, 𝜇) | ≤ 𝐶 (1 + |𝑥 |𝑝)/𝑛2.

Indeed, under our assumptions on the regularity of the coefficient function 𝑏(.), the proof is classic and
can be obtained by Gronwall’s lemma, similarly to the proof of Proposition 5.1. Thanks to these results,
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we can replace 𝜕𝑘𝜇𝜉1/𝑛 (𝑥, 𝜇) by 1
𝑛
𝜕𝑘𝜇𝑏(𝑥, 𝜇) for 𝑘 ∈ {1,2} in the expressions of 𝐴𝑛 (𝜇) and 𝐵𝑛 (𝜇), the

error for this replacement is negligible.
For 𝐴𝑛 (𝜇): We rewrite this term as the sum of the two following terms

𝐴𝑛,1 (𝜇) =
1
𝑛

𝑛−1∑︁
𝑖=0

(𝜕𝜇𝑏(𝑋𝑡𝑛
𝑖
, 𝜇))2

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)2

(𝜕𝑧ℎ𝛽 (𝑧𝑖𝑛 (𝜇, �̂�0
𝑛 , 𝛽

0
𝑛)) − 𝜕𝑧ℎ𝛽0 (𝑧𝑖𝑛 (𝜃0))),

𝐴𝑛,2 (𝜇) =
1
𝑛

𝑛−1∑︁
𝑖=0

(𝜕𝜇𝑏(𝑋𝑡𝑛
𝑖
, 𝜇))2

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)2

𝜕𝑧ℎ𝛽0 (𝑧𝑖𝑛 (𝜃0)) −
∫ 1

0

𝜕𝜇𝑏(𝑋𝑠 , 𝜇)2

𝑎(𝑋𝑠 , 𝜎0)2 𝑑𝑠 E(ℎ2
𝛽0
(𝐽1)).

The convergence to zero of sup𝜇∈𝐴 |𝐴𝑛,2 (𝜇) | can be deduced using the assumptions on the regular-
ity of functions 𝑎 and 𝑏 and similar arguments as for (5.29) and (5.31). Here, we only take into ac-
count the term 𝐴𝑛,1 (𝜇). For this, we separate the difference into two parts: 𝜕𝑧ℎ𝛽 (𝑧𝑖𝑛 (𝜇, �̂�0

𝑛 , 𝛽
0
𝑛)) −

𝜕𝑧ℎ𝛽0 (𝑧𝑖𝑛 (𝜇, �̂�0
𝑛 , 𝛽

0
𝑛)) and 𝜕𝑧ℎ𝛽0 (𝑧𝑖𝑛 (𝜇, �̂�0

𝑛 , 𝛽
0
𝑛)) − 𝜕𝑧ℎ𝛽0 (𝑧𝑖𝑛 (𝜃0)). First, since 𝜕𝛽𝜕𝑧ℎ𝛽 (𝑧) is bounded

for any values of 𝛽 and 𝑧 large enough, by intermediate value theorem, we have

|𝜕𝑧ℎ𝛽 (𝑧𝑖𝑛 (𝜇, �̂�0
𝑛 , 𝛽

0
𝑛)) − 𝜕𝑧ℎ𝛽0 (𝑧𝑖𝑛 (𝜇, �̂�0

𝑛 , 𝛽
0
𝑛)) | ≤ 𝐶

log𝑛
√
𝑛
. (5.35)

Second, since 𝜕2
𝑧 ℎ𝛽 (𝑧) is bounded for any values of 𝛽 and 𝑧, again by intermediate value theorem,

𝑧𝑖𝑛 (𝜇, �̂�0
𝑛 , 𝛽

0
𝑛) − 𝑧𝑖𝑛 (𝜃0) =

(
𝑛1/𝛽0

𝑛−1/𝛽0
𝑎(𝑋𝑡𝑛

𝑖
, 𝜎0)

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)

− 1

)
𝑧𝑖𝑛 (𝜃0) + 𝑛1/𝛽0

𝑛

𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, 𝜇0) − 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, 𝜇)

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)

and assumption (A), we have

|𝜕𝑧ℎ𝛽0 (𝑧𝑖𝑛 (𝜇, �̂�0
𝑛 , 𝛽

0
𝑛)) − 𝜕𝑧ℎ𝛽0 (𝑧𝑖𝑛 (𝜃0)) | ≤ 𝐶 |𝑧𝑖𝑛 (𝜇, �̂�0

𝑛 , 𝛽
0
𝑛) − 𝑧𝑖𝑛 (𝜃0) |

≤ 𝐶
(�����𝑛1/𝛽0

𝑛−1/𝛽0
𝑎(𝑋𝑡𝑛

𝑖
, 𝜎0)

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)

− 1

����� |𝑧𝑖𝑛 (𝜃0) | + 𝑛1/𝛽0
𝑛

�����𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, 𝜇0) − 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, 𝜇)

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)

�����
)

≤ 𝐶

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)

(���(𝑛1/𝛽0
𝑛−1/𝛽0 − 1)𝑎(𝑋𝑡𝑛

𝑖
, 𝜎0) + 𝑎(𝑋𝑡𝑛

𝑖
, 𝜎0) − 𝑎(𝑋𝑡𝑛

𝑖
, �̂�0
𝑛)

��� |𝑧𝑖𝑛 (𝜃0) |

+𝑛1/𝛽0
𝑛

�����𝜉1/𝑛 (𝑋𝑡𝑛
𝑖
, 𝜇0) − 𝜉1/𝑛 (𝑋𝑡𝑛

𝑖
, 𝜇)

𝑎(𝑋𝑡𝑛
𝑖
, �̂�0
𝑛)

�����
)

≤ 𝐶 (1 + |𝑋𝑡𝑛
𝑖
|𝑝)

(
(log𝑛)2
√
𝑛

|𝑧𝑖𝑛 (𝜃0) | + 𝑛1/𝛽0
𝑛−1

)
,

(5.36)

for some 𝑝 > 0. The last inequality is obtained by 𝑛1/𝛽0
𝑛−1/𝛽0 − 1 ∼ |𝛽0

𝑛−𝛽0 |
𝛽0𝛽

0
𝑛

, the assumption (A), the
intermediate value theorem using the Lipchitz property of 𝑎 and (5.19). Therefore, under our assump-
tions on the regularity of 𝑎 and 𝑏, using the techniques in Jacod and Protter (2012) for triangular array
combined with the fact that E𝜃0 ( |𝑧𝑖𝑛 (𝜃0) | 𝛿 |F𝑡𝑛

𝑖
) ≤ 𝐶 for 𝛿 < 𝛽0 (similar arguments as for (5.29)), the

convergence to zero of sup𝜇∈𝐴 |𝐴𝑛,1 (𝜇) | is guaranteed from (5.35) and (5.36).
For 𝐵𝑛 (𝜇): Since ℎ𝛽 (𝑧) is bounded for any values of 𝛽 and 𝑧 big enough, from our assumptions on the
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regularity of the coefficient functions, we have

sup
𝜇∈𝐴

|𝐵𝑛 (𝜇) | ≤ 𝐶𝑛−1−1/𝛽0
𝑛

𝑛−1∑︁
𝑖=0

(1 + |𝑋𝑡𝑛
𝑖
|𝑝′ ) P→ 0.

Thus, we obtain (ii). Considering the assertion (𝑖), by the definition of 𝐺, we see immediately that
𝐺 (𝜇0) = 0. In addition, 𝜇0 is the unique solution of 𝐺 (𝜇) = 0 thanks to the assumption non degeneracy

that there exists 𝑠 ∈ [0,1] such that 𝜕𝜇𝑏(𝑋𝑠 , 𝜇) ≠ 0. Now, it rests to prove that 𝐺𝑛 (𝜇0)
P→ 0. To do so,

by Taylor’s expansion, we have

𝐺𝑛 (𝜇0) = 𝑛1−2/𝛽0𝜕𝜇ℓ𝑛 (𝜇0, 𝜎0, 𝛽0)

+ 𝑛1−2/𝛽0

∫ 1

0

(
I1,2
𝑛 (𝜇0, 𝜎0 + 𝑡 (�̂�0

𝑛 − 𝜎0), 𝛽0 + 𝑡 (𝛽0
𝑛 − 𝛽0))

I1,3
𝑛 (𝜇0, 𝜎0 + 𝑡 (�̂�0

𝑛 − 𝜎0), 𝛽0 + 𝑡 (𝛽0
𝑛 − 𝛽0))

)⊤ (
�̂�0
𝑛 − 𝜎0

𝛽0
𝑛 − 𝛽0

)
𝑑𝑡.

(5.37)

From this, on the one hand, from (Clément and Gloter, 2020, section 3.2.1.), 𝑛1−2/𝛽0𝜕𝜇ℓ𝑛 (𝜇0, 𝜎0, 𝛽0) is
tight and converges to zero in probability. On the other hand, from (Clément and Gloter, 2020, section
3.2.2.), we have

sup
(𝜎,𝛽) ∈𝑊 (𝜂)

𝑛

 1
𝑛1/𝛽 log𝑛

(
I1,2
𝑛 (𝜇0, 𝜎, 𝛽)
I1,3
𝑛 (𝜇0, 𝜎, 𝛽)

)
is tight and since

sup
(𝜎,𝛽) ∈𝑊 (𝜂)

𝑛

𝑛1/𝛽 log𝑛
𝑛2/𝛽−1

(
𝜎 − 𝜎0
𝛽 − 𝛽0

) ≤𝐶 (log𝑛)2

𝑛1/𝛽0−1/2
sup

(𝜎,𝛽) ∈𝑊 (𝜂)
𝑛

𝑛
1
𝛽0

− 1
𝛽

≤𝐶 (log𝑛)2

𝑛1/𝛽0−1/2
exp ((log𝑛)2/

√
𝑛) −→
𝑛→∞

0,

the second term in the Taylor’s expansion above converges to zero.
Now, for the tightness of 𝑛1/𝛽0−1/2

(log𝑛)2 (𝜇0
𝑛 − 𝜇0), we proceed as follows. Since 𝐺𝑛 (𝜇0

𝑛) = 0, by Taylor’s
expansion, we get

𝐺𝑛 (𝜇0) = −𝑛1−2/𝛽0
𝑛

∫ 1

0
𝜕2
𝜇ℓ𝑛 (𝜇0 + 𝑡 (𝜇0

𝑛 − 𝜇0), �̂�0
𝑛 , 𝛽

0
𝑛)𝑑𝑡 (𝜇0

𝑛 − 𝜇0).

Then, reusing the decomposition of𝐺𝑛 (𝜇0) in (5.37) and its arguments for its convergence above, com-
bined with 𝜇0-consistency of 𝜇0

𝑛 proven above and the fact that 𝑛1−2/𝛽0𝜕2
𝜇ℓ𝑛 (𝜇0 + 𝑡 (𝜇0

𝑛 − 𝜇0), �̂�0
𝑛 , 𝛽

0
𝑛)

converges to non-singular I1,1 (𝜃0) in probability uniformly from (Clément and Gloter, 2020, section
3.2.2.), the proof is completed.
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