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Efficient estimation for stochastic differential
equations driven by a stable Lévy process

ALEXANDRE BROUSTE'#, LAURENT DENIS!? and THI-BAO-TRAM NGO'*

1 Le Mans Université, Laboratoire Manceau de Mathématiques, Avenue Olivier Messiaen, 72085 Le Mans Cedex
09, France ®Alexandre.Brouste @univ-lemans.fr, b1 aurent.Denis@ univ-lemans.fr,
CThi_Bao_Tram.Ngo @univ-lemans.fr

The joint parametric estimation of the drift coefficient, the scale coefficient and the jump activity in stochastic
differential equations driven by a symmetric stable Lévy process is considered, based on high-frequency obser-
vations. Firstly, the LAMN property for the corresponding Euler-type scheme is proved and lower bounds for the
estimation risk in this setting are deduced. When the approximation scheme experiment is asymptotically equiv-
alent to the original one, these bounds can be transferred. Secondly, a one-step procedure is proposed which is
shown to be fast and asymptotically efficient. The performances in terms of asymptotical variance and computa-
tion time on samples of finite size are illustrated with simulations.

Keywords: Lévy process, stable process; stochastic differential equation; LAMN property; parametric estimation,
one-step procedure

1. Introduction

Local Asymptotic Mixed Normality (LAMN) provides a powerful framework under which the asymp-
totical optimality of estimators can be studied. More precisely, for a statistical experiment satisfying the
LAMN property, minimax theorems can be applied and a lower bound for the variance of the estimators
can be derived (see e.g. Jeganathan (1982)).

The LAMN property of the likelihoods has been of great interest by many authors. It was established
for the estimation of the parameters of the drift and the diffusion coefficient for R%-valued solutions
of diffusion processes observed at high-frequency (infill asymptotics) in Gobet (2001). This result
confirmed that the estimators elicited in Genon-Catelot and Jacod (1993) were asymptotically efficient.
Recently, the LAMN property has been extended to the solution of stochastic differential equations
driven by stable Lévy processes in the high-frequency setting for the parameter of a general drift but
with constant scale coefficient in Clément and Gloter (2015) and for the parameters in drift and scale in
Clément, Gloter and Nguyen (2019). In these works, the stability index was supposed to be known. For
an unknown stability index, the LAN property with a non-singular Fisher information matrix was set in
Brouste and Masuda (2018) using a nondiagonal rate matrix for a stable Lévy process with drift. Later
on, quasi-likelihood estimation procedures were proposed to estimate jointly drift parameter, scale
parameter and stability index in Clément and Gloter (2020) but the asymptotic efficiency remains an
open question in the general setting. The present paper gives an answer for the asymptotic efficiency, in
some particular cases, in the joint parametric estimation (drift, scale and stability index) for stochastic
differential equations driven by stable Lévy processes in the high-frequency setting.

Precisely, in this work, the LAMN property of the likelihoods is established for the statistical exper-
iment of observing a generalized Euler scheme of the stochastic differential equations driven by stable
Lévy processes. This asymptotic property is obtained for both multiplicative and non-multiplicative
scale coefficients. For some specific scale coefficients, it can be shown theoretically with the results
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and Spokoiny (2000) and the reference therein) to the high-frequency observation of the solution of the
considered stochastic differential equation. In this case, an alternative Le Cam’s one-step procedure is
proposed (see Le Cam (1956)) since the maximum likelihood estimator (MLE), which is asymptoti-
cally efficient, can be time-consuming for large samples. It is based on an initial guess estimator which
is a combination of generalized variations of the trajectory for the scale and index parameters and a
maximum likelihood type estimator for the drift parameter. Since the Fisher information matrix can
be expressed explicitly, the initial guess estimation is corrected by a single step of the Fisher scoring
method on the log-likelihood function. This new estimator is fast to be computed and is shown to be
asymptotically efficient.

The rest of this paper is organized as follows. Section 2 is dedicated to the notations and the as-
sumptions made. The main results on the LAMN property of the likelihoods for the aforementioned
statistical experiment and the asymptotical efficiency of the one-step procedure are shown in Section 3.
Numerical simulations in Section 4 illustrate the performance of the procedure on samples of finite size
in terms of asymptotic variance and computation time. The proofs for LAMN properties are postponed
in Section 5 and the accompanying paper.

2. Assumptions and settings

We consider the stochastic differential equation driven by a stable Lévy process as follows

t t
X =xp +/ b(Xs, u)ds +/ a(Xs—,0)dJg, te][0,T], 2.1)
0 0
where (J;) denotes the standard symmetric B-stable Lévy process whose characteristic function is
Eg(e™/1) = e_lu‘ﬁ, ucR.

The distribution of (X;) associated with parameter 6 = (u, o, B) € R x (0, 00) x (0,2) is denoted Py
and the expectation under Py is denoted Eg.

Without loss of generality, we assume that 7 = 1. We observe the process (X;7)o<;<, on the time
grid 17" =i/n for i € {0,1,...,n} that solves (2.1) for the parameter value 6y = (,ulo, 00, Bo) € ® where
® is an open subset of R x (0, c0) X (0,2). The unknown parameter 6 is to be estimated.

In addition, we make the following assumption on the coefficient functions. Note that from now on,
we denote by C and p some generic positive constants whose value may change from line to line.

(A) We assume that x — a(x,0q) is C> on R and that there exists a neighborhood Vi X Vo, of
(1o, 00), such that b is C3 on R x Vi and

sup( sup [dxb(x, u)| +|0xa(x,00)]) < C,

X ye%m

max sup [95b(x, )| +[05a(x,00)| < C(1+|x|P),
203 yey,
Ho

VxeR,VoeVy, a(x,0)>0 and  sup <C(1+|x|P).
Je%mlﬂxﬂﬂ

We also assume that for any x € R, u > b(x, ) and o — a(x, o) are C* and

sup  max (05b(r. )| +105a(x. o)) < C(1+ [xl?),
(lu r‘r\EVHU Ve, o 1<<4




Effici mation for SDE driven I ble Lé 3

sup 105050 (x, )| < C(1+x|P), for k € {2,3}, (k,0) #(2,2) .

pEVHO

Under the boundedness assumption on the derivative with respect to x, the coefficients a and b are
globally Lipschitz and equation (2.1) admits a unique solution. However, it is difficult to deal with
transition density ratio of X due to the lack of its explicit form. Now, to solve this problem, on the same
probability space for (X;), we define the alternative scheme for (2.1) (proposed in Clément and Gloter
(2019)) on the time grid tlf' =i/nforie{0,1,...,n},

Yﬁ” =&m

i+l i+l

o (Xpp o ) +a(Xgn, ) (Jyn = Jym) (2:2)

where (&, (x, 1)) solves the ODE

£ (o) =x + /0 b(&s(vo ). p)ds, 12 0.

To help analyse the asymptotic properties for the statistical experiment using the observations (X, ), we
work with the observation (X,;») that solves (2.2) with 6. In some particular cases, it can be deduced

(see Section 3) that the estimation based on (X,;n) has the same asymptotic properties as estimation
based on (X;n). Let

Y =&1n(x, 1)

Zn(x,v,0) = .
n(x..6) n~YBa(x,o)

Note that (z (ftin,f,yil ,00)); are i.i.d. By-stable random variables. Consequently, the log-likelihood

function based on the observations (Ytl_n )o<i<n has an explicit form and is given by

n—1

£a(0) = > log(nBa(Xyp.0) " dp(ea(Xep. Xon .0))). (2.3)
i=0

where ¢g denotes the density of J;.

In order to prove the LAMN property for (X )o<i<n, we use the Taylor’s formula with the help
of our law of large number (see Theorem 5.2) and the explicit expression of the probability density
functions which allows us to avoid the need of Malliavin calculus. Let ¢, (-) a scale such that ¢, (6)
is a sequence of 3 X 3 non-singular matrices satisfying ||¢;,(8)|| — 0 as n — oco. In what follows, by
Taylor’s expansion, for arbitrary bounded u € R3, there exists 0 < &, < 1 such that

L (0 + @ (8)u) — £,(6)

=u'An(6) - %MTJZ(@)M + %((%(@WT <001, (0 + enpn(O)u) - (9n(O)u)) " (@ (O)u)  (2.4)

where An(0) := @n(0) T 006, (6),

1,(0) :=-3%6,(6) and  Fn(6) := 9 (0) T L,(0) 0 (6).




— B RT3y Ty (6)h
For any h € R? and 6 € ©, we use the notation 4" - 991, (0) - h=| hT 0,1, (6)h | € R3.
T g1, (8)h
Also, we note that
Oué1/n(x, 1) 0ga logn
1/g%usl/n g
@,zn =-n /’BW, ,ao-Zn = —%Zn, 8527, = —an. (2.5)

To simplify the notations, as in Clément and Gloter (2020), we introduce the functions

hp(2) =(0:¢p/9p)(2)  kp(z) =1+zhg(2),
qp(z) =20:kp(z), rp(z) =208hp(2), fp(2) = (9pdp/dp)(z).

From these notations, we easily see that d,kg(z) = hg(z) + 20, hg(z) and 9, fg(z) = (9ghg)(2).

3. Main results

First, we state in Section 3.1 the main results on the LAMN property which differs depending on the
form of the scale coefficient, namely the non-multiplicative (NM) and multiplicative case (M). Then,
we recall in Section 3.2 the asymptotic equivalence between the discrete time observations of the
solution of the SDE (2.1) and the corresponding approximation scheme (2.2) and the possible transfer
of the lower bounds for estimation risk. Third, a one-step procedure is described and shown to be
asymptotically efficient in Section 3.3.

3.1. LAMN properties

Here, we assume that (A) holds and now present our main results, namely LAMN property for (Ytin)
in two cases the non-multiplicative (NM) and multiplicative (M) cases. The proofs of these results are

postponed in Section 5. We define the sequence (F;)O) as distribution of (Ytl_n).

3.1.1. Non-multiplicative case

Here, we assume in addition of (A):

° 5> 677“ X, 00) is almost surely non constant.

o Almost surely, 3¢ € (0, 1), such that 8,b(X;, ug) # 0, where (X;);e(0,1] solves (2.1) for the pa-
rameter value 6.

Theorem 3.1. Let X be the solution of (2.1) with the parameter value 6. For our non-multiplicative
1/2=1/Bo 0
n

case, we take ¢, (0g) = 0 n2 0 | Then, under assumption (A), the family (1330) satis-
0 0
ognyn

fies the LAMN property. More precisely, we have the following convergences under Pg,:

]P’go
—0

£n (00 + @n(6o)u) — £a(6) — (MTAn(Qo) - %MTJn(@o)u)
| \ /1
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stabl
for any u € R3, and (A, (60), T (00)) ' =" (A(6o), T (60)) where A(6o) = I (80) /2N with N a stan-
dard Gaussian variable independent of I (8y) and I (6y) is the random asymptotic information of the
statistical model

1 8ub (Xs,p0)*

2
T = [ s dsEay (I, (1) 0

_ 3.1
0 1 (60)

1 1
Jo P dsBa (5, (1) g [ 25 s (k, (1)

. = Ta(Xs,00)? a(Xs,00)
with I(0g)= 1a
1 o a(Xs 1
,8_3/0 a(a)((s,cr:)r)())dSEQO(ké"(]])) B—gEoo(k[z;O(Jl))

Moreover, there exists a local maximum 0, of €, with probability tending to 1, for which
o~ stably _
¢n(60) ! (B —60) =" I(60)"'/°N.

Remark 3.2. Note that the matrix 7 () is invertible a.s. since

1 1 8pa(Xy, o) L opa(Xs,00)
e a2 /%d_(/ %d) 0. as.
,33 60 (kjg, ( 1))( ) a(Xe.o0)? s | TaXe.00) s | > a.s

3.1.2. Multiplicative case
Here, we assume in addition of (A):

e a(x,0)=o0d(x) for all x.
o Almost surely, 3t € (0, 1), such that 8, b(X;, uo) # 0, where (X;);¢[0,1]50lves (2.1) for the param-
eter value 6.

Theorem 3.3. Let X be the solution of (2.1) with the parameter value 6. For our multiplicative case,
1-1/Bo 0 0
n
we take ¢n(00) == 0 @11.4(00) $12,(00) |, where
0 @21,n(00) ¥22,1(60)

1 — 1 —
@11, (60) 5o + 9021,,1(90)% =%, e12,n(00) 55 + ‘P22,n(90)_(;§2n = P12
0 0

©21,0(00) = @21, ©22.0(60) = ¥,
P11$20 — PP >0

Then, under assumption (A), the family (ﬁzo) satisfies the LAMN property with asymptotic score func-

tion A(6y) and random asymptotic information matrix I (6g) where A(6y) = I (60)'2N with N a
standard Gaussian variable independent of I (6y) and

1 0ub(Xs, HO) 2
fO oo o0 B5Eay (hg (J1)) 0

0 ANAC)

I(6p)= (3.2)
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L —_ (@1 @1 — | Belkz (1) ~Ea,((kgoSf5) (1))
i = (£1 22 and 700 = (—an((kﬁofﬁo)(fl)) Eay (/2 (1)

Moreover, there exists a local maximum 6, of €, with probability tending to 1, for which

1,7 stably —1/2
©n(00) (6, —00) = I(60) '“N, underPg,

3.2. Asymptotic equivalence
Let us first recall the definition of total variation (see e.g. Strasser (1985))

Definition 3.4. The total variation between two probabilities measures P and Q on (Q, ¥ ) dominated
by v is defined by

dp_do| .

dv dv

1
drv(P.0)= sup |P(A) - Q)| = 5 [

Now, let us consider the two experiments as follows.

.....

For any subset K C © containing 6, the Le Cam distance, A, (see Le Cam (1964)) is bounded by

A(E",E";K) < sup drv (P, Pp).
0ecK

Let w : R> — R, be any non-constant continuous bounded subconvex loss function. The minimax
estimation risk for the statistical experiment G" is defined by

R(G",w3K) =ipf sup B (i ' (00) Ty = 9))).

where the infimum is taken over all the estimator 7, of 8y. From Theorem 3.1 and Theorem 3.3,
combined with (Hopfner, 2014, Sections 1.11 and 7.12), we have

lim R(E", wiK) = E(w(I (69)"*N)).

n—oo

From (Shiryaev and Spokoiny, 2000, Theorem 2.1), it can be shown that if lim A(S",gn; K) =0, then
n—oo

lim R(E",w;K) = lim R(E", w; K). (3.3)
n—oo n—oo

In addition, by (Shiryaev and Spokoiny, 2000, Section 2.1.3), it turns out that for the unbounded loss
functions w (@}, 1 (80) (T, —9)) = ll@;; ' (8) (T, —)||P, p > O typically used in estimation problems, the
assertion (3.3) remains valid.

Consequently, the statistical inference in experiment & inherits the same asymptotic properties as in
on P . . .

A Atne BN AP a we de a~ the
0 ment, 20 Remark 4 Hen or instan we dedu he following
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Theorem 3.5. Let K| C R be compact and K be a compact subset of (0,2) such that K = K| X (0, co0) X
K> C O, we assume that the function a(x, o) = o constant for any x € R, (A) holds with further

sup (|9xb (x, )| +102b(x, p)|) < C
HeK;
xeR

then, the experiments are asymptotically equivalent in Le Cam sense since

lim A(E",E";K) =0.

n—oo
Proof. This is direct from (Clément, 2023, Theorem 4.1 (i)) that

1

. 1
n " L 4B/(B+2)
drv (P}, Py) < C(c,b,p) max{\/ﬁ, n4B/(B+2) }

where C(o, b, B) has exponential growth in ||d,b|| and polynomial growth in ||6§b||oo, 1/o,0,1/B
and 1/(8-2). O

Remark 3.6. From Theorem 3.5, when a is constant, we have the asymptotic equivalence between the
two experiments &" and &". Then, thanks to the LAMN property proven above, the quasi-likelihood
estimator proposed in Clément and Gloter (2020) for the original experiment &" is consequently ef-
ficient in the sense of the Convolution Theorem and attains the local asymptotic minimax bound (see
e.g (Hopfner, 2014, Theorems 7.10 & 7.12)). For the general form of the function a, the equivalence
between these two experiments remains an open question.

3.3. One-step statistical procedure

We present in this section the construction of the one-step procedure when the asymptotic equivalence

between the two experiments &" and &" and the result on asymptotic efficiency hold. It is based on
an initial guess estimation which is corrected by a single step of the Fisher scoring method on the
log-likelihood function.

3.3.1. Moment estimator

For the one-step procedure, our initial estimators is built with the ratio of generalized p-variations (see
Todorov (2013)). Namely, denoting A’ X = X;n — X;n_,

1 n
Vip.X) = D IATX — AL XIP and VE(p. X)= D IAPX — A7 X+ AT X ~ AT X7,
i=2 i=4
we define
B‘o plog?2 L
= 5 1
" log(VA(p, X)/VE(p, X)) Vn(P-X0#Val(p-X))

and 70 which satisfies

L 1 1 _
nfr Vi p,X)=pp(BY) /0 la(Xs,GO)|Pds. (3.4)
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For the multiplicative case where a (X, 3,9 )= 5'2 a(Xy), we get the form explicit of

_11l/p

L _q 1
a’i=[nﬁ‘% v,l(p,X)(upu?Z) / IE(XQI%)
0

/B0 2PT (B3 (1-p/By)
Var(1-p/2)
likelihood function ¢, (,u, 5‘2 , ,52) with respect to u. Therefore,

where yp(,g(,)l) =2P

. The parameter pg is estimated by maximizing the log-

65 = (5,50, BY). (3.5)

Remark 3.7. We have from (Todorov, 2013, Corollary 1, Theorem 3 and (21)) that if p takes its values
in (%, 52—0) and provided By > 2/3, we have that \/5(59, — Bo) is tight for both multiplicative
(M) and non-multiplicative (NM) cases and that (y/n/logn)(c0 — o) is tight for the multiplicative

nl/2
logn

(M) case. For the non-multiplicative case (NM), the tightness of (3,9 — 0y) is proved in the next

Lemma 3.8.

The next Lemma 3.8 and Theorem 3.9 are proven in the supplementary document.

P
Lemma 3.8. Let us assume that 52 — Bo, (A) holds and that a and 0 ,a are non-singular and positive.
—~ . . 172~ Lo
Then G0 defined in (3.4) satisfies that I}Z)gn (0 — o) is tight.

For this choice of 52, we get in the following theorem the global uniqueness of ﬁg under some further

assumptions on Bgy and the coefficient function b.

Theorem 3.9. Assume that (A) holds and further u € int(A) (the interior of A) for A a compact subset
of R, Bo > 1 and
sup  (|0xb(x, )| +19,b (x, )| + 1356 (x, w)]) < C.

pecint (A)
xeR

Let us denote
_2/80 —~
Gn(u) =n'"2Pnd,t, (1,53, By)

where (\/n/logn) (32 - O'O,Bg — Bo) is tight. Then, any sequence (/72,11 > 1) that solves G,,(u) =0 is

. . 1/By-1/2 ..
consistent and eventually unique. Moreover, we have "(10;’1)2 (10 — o) is tight.

3.3.2. Asymptotic efficiency
The one-step estimator @n is defined by
T Cly—
O = O+ (e (@)™ T(O)@n(@))™") ™ 90 Lu(0)). (3.6)
nl/Bo-1/2

Theorem 3.10. Suppose that (A) holds and ( (Togm)? (70 = po), (Vn/logn) (T2 - 09), V(B2 = Bo))

is tight and By in a compact subset of (0,2), under the LAMN property and sufficiently regular Fisher
inf . 1l Z"*]3 > 1) ically effici
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Proof. With a choice of initial estimator satisfying the tightness assumption, the asymptotic efficiency
of the one-step estimation depends on the form of ¢, (6y) defined in the LAMN property. More pre-
cisely, if the initial estimator 52 is such that

@n(60) (85 - 69) = Op (1), (3.7)

then we say that it has a good rate of convergence and the proof of efficiency for the corresponding one-
step estimation is straight-forward by (Hopfner, 2014, Theorem 7.19 (a)&(c)). Otherwise, we need to
prove its efficiency using some classical techniques and the help of Theorem 5.2. Here and in the sequel,
Op(n=¢) and op(n™¢) mean that nOp(n™°) is bounded in probability and nop(n~¢) converges in
probability, i.e., for any & > 0, there exists C > 0 such that

Pg,(n°|0p(n~ )| > C) <egand lim Pg,(nlop(n~ )| = &) =0.
n—oo

Now, let us have a closer look into our two cases:
o For the non-multiplicative (NM) case, its initial estimator does not possess a good rate of conver-

gence for the estimation of . Precisely, we only have that v;l (00)(59, — 0p) is tight for v, (6y) =

. logn)? 1 .
dlag(n(l/ol;go'ﬂ/z, (i}gﬁ", #). Here, we need to prove that for ¢,(6g) = dzag(nl/ﬁéfl/z,\%, logi\m), the

one-step estimator defined in (3.6) satisfies

e (80) (Bl - 89) = T2 ()N,
with NV a standard Gaussian variable independent of 1 (). First, from (3.6) and Taylor’s formula,
0" (00) (8, — 00) = @, (80) (85 — 00) + T~ (8 0n (80)Ln (6)
=" (00) (8% = 00) + I~ (8%)@n (80) [ (B0) + 62 Ln (8) (65, - 60)]
=T (B n(00)0,(60) + I~ (@)L (87) + @n(00)0%€n (Bn) 0u (60) 15, (80) (8, — 6o)
=T (0%)@n(00)0,(80) + T~ (B0 [T (83) - 1 (80)] 0y, (80) (8 — 6p)

+ TN B2 [T (60) + 90 (00)8*6a(82) 00 (80) 1 @31 (60) (81 — 6o)

where 6, is some value between 52 and 6. From this, the asymptotic normality of the first term
71 (@2)4;7”(90)65”(90) is obtained from the LAMN property. Next, by Asumption (A) and approxi-
mation (5.5) with B in a compact set, we have

1Z(82) - T(60)| <C(1+ sup |Xs|P) |60 — 6ol = Op(va(6y)), for some p >0,
s€[0,1]

and since v, (8) ¢, (80) v, (60) — 0, the second term
— Py
TN @DIL(E)) =T (60)l¢y" (80) (6 — 60) — 0.
Considering the last term, since ¢, (60)v,(69) = Op ((logn)?), we have

T7HB2) 2 (80) + 9n(60)0%6n(81)0n (80) 197 (60) (8° — 6o)
=T 7100 [ (60) + 90 (00)0* € (8,) n (80)10p ((logn)?) vy (60) (65 — 6o)
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Since ||v,, 1(60)(6,, — 6p)|| < C, one can follow the arguments in (Clément and Gloter, 2020, The proof
of Theorem 3.1), combined with our Theorem 5.2 to get that

I(60) +n(00)0*€n(81) n(00) = 0p (n%).

Finally, we obtain that
@ (00) (8], — 00) =T ~1(62)n (60)3n (60) +0p(1).

Then by (Hopfner, 2014, Theorem 7.11), é\,ll is regular and efficient at 6.
o For the multiplicative (M) case, the initial estimator possesses a good rate for oy and S but not for
Ho. Thanks to the diagonal and the block-diagonal forms of ¢, (6p) and the Fisher information matrix
respectively, we can consider the estimation of p separately from the one of pair (ov,8y). Then, the
asymptotic efficiency of the estimation is immediate for oy and Sy by (Hopfner, 2014, Theorem 7.19)
and is obtainable for 1o by similar arguments as in NM case above. O

Remark 3.11. The explicit observed information matrices (3.1) and (3.2) can not be computed since
the trajectory of X which is only observed discretely. In practice, the integrals are replaced by Riemann
sums based on the discrete observations. Under regularity conditions, the proof of Theorem 3.10 can
be rewritten.

4. Numerical simulations

In this section, the performances in terms of asymptotic variance and computational time on samples
of finite size are illustrated for the moment estimator (ME), the one-step estimator (OS) from Section
3.3 and the maximum likelihood estimator (MLE) from Theorems 3.1 and 3.3 considering two cases
discussed above: multiplicative (M) and non-multiplicative (NM). It is important to note that here
our numerical test results are obtained by using the statistical experiment &" corresponding to the
observations on the true trajectory (X;), instead of the experiment &M as considered in the theoretical
Section 3.1. The OS performs quite similarly to the MLE in terms of variance but it reduces significantly
the computational time.

All the models have linear drift b(x, u) = ux. For these choices, we can easily obtain the explicit
solution of the ordinary differential equation &/, (x, u) = xeM/™ Moreover, the conditions of Theorem
3.9 are satisfied which affirm the uniqueness of the initial estimator for the drift. Note that for the
more complicated form of drift where the exact solution can not be found, the quantity &1, (x, u) can
be replaced by its Euler approximation &;,,(x, u) = x + b(x, ) /n. Indeed, as shown in (Clément and
Gloter, 2020, Remark 3.2), they state that when 8 > 2/3, the quality of estimation is the same when
using the approximation of &1/, (x, u) as when using its true value.

Here, we generate the vector of observations (X’i" )o<i<n by sub-sampling a refined simulation of the

process (X;);>0 (by an Euler scheme with time-step (1000r)~").

4.1. Multiplicative case

Here, we take

nl=1/Bo 0

! )
0 1-B,%0plogn

on(00) = —
\/ﬁ \ 0 0 ]

U
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which yleld al] = 0'0_1, ¢12 = 521 =0and 522 =1.
We emphasize that, as the asymptotic law of i, is mixed normal, the estimation error i, — ug is
re-scaled by a factor involving the random quantity

U _/1 aﬂb(X.hﬂO)zds
0 a(Xy,00)?

that we approximate, in practice, by the Riemann sum based on the observations (Xtin Yo<i<n-

From this, following the theoretical results obtained by using the statistical experiment &" in Section
3, we can easily deduce the following asymptotic properties. In particular, using Theorem 3.3, the
re-normalized error by maximum likelihood estimation converges to a Gaussian limit and the mixed
normal form at the limit is eliminated, namely,

— 1,5 stably ~ 1
®n(00)” (6 —6p) =" N(0,Z(6p) "),

where
_1
1 U TR0 0
on(6o) 2% 0 1 B0 logn |-
0 0 1
Eg, (hg, (J1)) 0 0
7(80) = 0 a-LgEHO(k/%?o (J1)) —ULOEOO(kBO(JI)fBo (/1)) | non random.
0 — a5 Bay (ko (1) f3, (J1) Eo, (f5,(1)

Considering our one-step procedure, we take the moment estimators described in (3.5) as the initial
estimators. In this case, from Theorem 3.3 and Remark 3.7 we have that @, (6¢) ! (52 —#6)) is tight and
from Theorem 3.10

— _ stabl ~ _
G (00)1 (8] — 09) =" N (0,7 (80)7").

In what follows, we show the numerical simulations based on these re-normalized statistical errors but
using instead the statistical experiment &". For this multiplicative case (M), we consider two kinds of
models: the Ornsteins-Uhlenbeck (O-U) model

t
X; =/ uXsds+aly, tel0,1]. “4.1)
0

and the square root model (SR)

t t
X,:/ uXSds+U/ J1+X2dls, te[0,1]. 4.2)
0 0

Figures 1-3, we plot the histograms of the re-scaled errors of estimation together with the density
of their Gaussian limits in red lines for the O-U model. In each panel, this solid line represents the
asymptotic normal distribution with an efficient variance. The implementations of the likelihood, the
score and Fisher information for computing the sequences of the MLE and the OS are based on the
techniques of Matsui and Takemura (2004). From here, we can observe that the histograms of the
ME are far from the efficient asymptotic normal distributions, whereas both of the M and the
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sequences show much better performances. For the second model, the comparison between the three
methods is shown in Table 1 by analyzing their renormalized mean squared errors. Almost the same as
the first model, it is shown that MLE and OS have similar performance in terms of asymptotic variance
and but OS consumes much less time for the computations than MLE.

In the figures 1-3 and Table 1, the asymptotically efficient variance is 1/Eg, (h[z].{0 (J1)) for the estimation
of up and is

Bay (K2, (/1))

(4.3)
Eoy (f5, (J1))Eey (kj, (J1)) = (Ba, (kgo (J1).fy (J1)))?

for the estimations of oy and S (see e.g. the calculations in (Brouste and Masuda, 2018, (9) and (10))).
Now, we present in details our simulation results.

For the O-U model (4.1), we simulated 2000 Monte-Carlo samples of n = 210 random variables
AjX= thr_lﬂ - Xt;‘l with ug =—-0.7, 0g =1 and By = 1.3, p =0.55.

Remark 4.1. The O-U model is the simplest model that satisfies the conditions in the (M) case. Since
the coefficient function a is constant, theoretically from Theorem 3.5, we do have the equivalence
between the estimation based on (X’i") and the estimation based on (Y,lﬁ).

Remark 4.2. Here, for this O-U model, the computational time of MLE is 594459 secs while the one
by one-step estimation is 55590 secs. This means that the estimation by one-step procedure is about
10 times faster than the maximum likelihood estimation, but gives similar approximation as shown in
Figure 3 and 2.

Vn

_1 ~ 20
(a) Uéon[%o % (ﬁg - uo) (b) fogn ((Tg - 0p) () Vn(By - Bo)

Figure 1: Distributions of the re-scaled errors of moment estimation (ME) and comparison with the
asymptotic normal distribution with efficient variance given by (4.3)




(&) - op) © V(B - Bo)

On

111 N
@ UZnPo "2 (k- o) ®) fogn

Figure 2: Distributions of the re-scaled errors of one-step estimation (OS) and comparison with their
theoretical Gaussian limits

o.0s

1.1 n o~
@ Upyn P07 (i - o) (b) 2 (G — o)

(©) \/E(En -Bo)

Figure 3: Distributions of the re-scaled errors ofthe maximum likelihood estimation (MLE) and com-
parison with their theoretical Gaussian limits

For the SR model (4.2), we simulated 2000 Monte-Carlo samples of n = 210 random variables A X =
th“ - X,;z with pg =-0.5, 09 =0.5 and By = 1.5, p =0.7. Our numerical results are summarized in

the following table.

‘ ‘ MSE of i | MSE of & | MSE of § ‘ Computational time

Initial estimation (ME) 2.36 6.80 6.34 20749 secs

One-step 2.36 2.97 2.53 87060 secs

MLE 2.34 2.71 2.39 487063 secs
Efficient variance 2.33 2.38 2.38

Table 1. Comparison on the truncated re-normalized mean squared errors and on the computational times between
the three methods of estimation ME, OS and MLE for the model (4.2).
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Remark 4.3. The scale coefficient a of the SR model is not constant, then, it is clear that the Theorem
3.5 can not be applied in this case. The equivalence between the estimation based on (X’i") and the

estimation based on (X, ) remains as an open theoretical question. However, from the numerical point
of view, it is shown in Table 1 that the asymptotic efficiency of the OS and MLE estimations using the
experiment &" is ensured. Once again, the one-step estimation appears to be fast and efficient.

4.2. Non-multiplicative case

Comparing to multiplicative case (M), the rate of estimation in the non-multiplicative case (NM) is
faster for both o and 3y by a factor of log n. Here, the rate is n'/£0=1/2 for 11, y/n for oy and vnlogn
for By. Similarly as the second model of case (M) above, first, we recall the theoretical results from
the alternative Euler scheme, then, we do some numerical tests but using the observations on the true
trajectory. To begin with, the asymptotic law of the estimation error is mixed Gaussian by Theorem 3.1.
Therefore, we define re-scaled errors of estimation that have Gaussian laws. First of all, we define

U _/1 3;417(Xs,/10)2ds
o a(Xs, 00)?

' dga(Xy,00) Voga(Xyo0) )
Ugy= —2ds - ————"ds
0 a(XSa 0-0) 0 a(XS7 0-0)
1 2\l
0ga(Xs,00)
Us =U 4 / Zo2\ 2820 g
Fo 7 (ﬁ() 0 a(XSa 0'0)2 ’

Then, from the stable convergence result of Theorem 3.1, we have

2 _ - stably _
U P 2 (= o) =" N0, (Bgyh2 (1))

UYPN(G = 00) "2 N (O, (Bayk, (7))

UL PNtogn(B, - o) "5 N (0. (Bay k(1) 7).

For our one-step procedure, we take the moment estimators described in (3.5) as the initial estimators.
In this case, the rates of convergence for oo — o and ,E?L — Bo are worse than the ones in the formula of]
©n(6p) chosen. Despite of this obstacle, from Theorem 3.10, we still have that

_ = stably _
Uy 0=V 2 (1, = o) "7 N(O, (Bgy i, (1)) ™)
stably

U Nn(G ) - 09) = N(0.(EgpkZ (J1))™)

Ull?(/)z‘/’;log n(By, - Bo) ey N0, (Eeokéo )7,

We consider the following model

t t
Xt=1+/ ,uXSdS+/ exp (o sin’(Xy))dJs, te€[0,1]. (4.4)
0 0
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For this model, we simulated 2000 Monte-Carlo samples of n = 2!° random variables A X=X T thr;
J+ s

with ug =-0.5, 09 =1and By = 1.5, p =0.7. Our numerical results for one-step estimations are shown
in the following histograms.

Remark 4.4. Here, for this model, the computational time of MLE is 207328 secs while the one by
one-step estimation is 37063 secs. This means that the estimation by one-step procedure is about 5
times faster than the maximum likelihood estimation, but gives similar approximation as shown in
Figure 3 and 2.

1

@ UZ, P02 ()~ o) ) U@~ ) © U,

Vrlogn (B - o)

Figure 4: Histograms of the re-scaled errors of one-step estimation and comparison with their theoret-
ical Gaussian limits

5. Proofs of Theorems 3.1 and 3.3

We start from the Taylor’s expansion (2.4), we rewrite

n-1[8 (Xt" Xz" ,00) -1 398 (Xt" Xz" 00) T
An(00) == @n(00)T )| 8% (Xyp. Xs .60) | and I, (60) = Z 908> (Xip, Xy ,60)"
=0\g (Xt" Xt" ,60) i=0 \ 9gg° (Xt" Xt" ,00) 7

For any 6 € 0, it can be addressed to (Clément and Gloter, 2020, formulas (2.6)-(2.8)) for the explicit
expressions of g¥(x,y,6) and (Clément and Gloter, 2020, formulas (3.6)-(3.9)) for all elements of
0o gk (x,y,0). Here, we recall that

1 Ot (W) 8.0

1 _
g (x’y’e)_n (.X 0_) ¢ﬁ ( n(x yae))
ey = 208D y,e) (zn(x ¥,6)))
a(x,O')
S0 = 2 (14 2, (x y&)z"’m 3.0 = B (o v.0))
bl ﬁ2 n bl ¢B n 9 ¢B n bl . .

By denoting

2(0) = 22 (Xpn, X ,6) (5.1)
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and the elements of 7,,(6) can be expressed as follows

nd Gy Xgp ) nd (Juéyyn Xy, 1))

79y = nllB e (2 _ 2B 9 hn(2l
n (0)=n 24 om0 5(2,(0)) —n 2 a0 (2, (0))
n-1 doa(Xn, o) dga(Xn, o) 2
1220)= 3 ||~ k(2] (0)) ~ | — | 2h(0)0:k (2 (0))
" = 7 a(i,in,O') pien a(ytin,(r) " 2B n
n—1
13 0)=- 5 |apfp(zicon -2 "g"z,,(axaﬁhﬁ)(zn(e)nz‘;f"kﬁ( 00+ U8 006k (2 0))
i=0

n-1 6,Ta(itn, o)
1

520y =15;1(0)=-n'/P a1 jn Xy 1)z kg (2(0))

i=0 a(itin’ 0')2

n-l 3;1‘51/;1(?5_",#) logn
i=0 a(itl."’ o) B2

713(0) = 13 (0) = n'IB azk,;(z,a<9)>+azfﬁ<z:;<o>)]

n-1 a(,a(im, o)
-

L (6)=1;2(6) = =
; a(X,l_n ,0)

logn
—
Let us first remark that in both cases, the multiplicative (M) and non-multiplicative (NM) ones, the

convergence of the score function and of the information matrix has been established in (Clément
and Gloter, 2020, Theorems 3.1 and 3.2) using observations (th) For us, since we use instead the

2(0)0:kg(z5(0)) + za(e><aﬁhﬁ>(zﬁl<0)>} :

observations (X r") similar results can be obtained by similar analyses. It just remains to prove from
equality (2.4) that the term

((n(B0)u) " - 8L (6o + £npn (B0)u) - (90 (80)u)) ™ (on(60)u)

tends to zero in probability. To do so, we denote M,,(0) = dg1,,(6), for any 6 € O, we have the explicit
elements of the matrix M, (6) as follows

3 Sl/n(th jo)] i §1/n(Xz" M) ) )
11,1 1/8 Gt T B GusinXapo k) o 4
Myt () =n Z( Xy o) 5 (21,(0)) + Ky 5 (2n(6)) uz,.w))
2(5y§1/n(X,n 1))33 §1/n(Xt" M) ) (O &t jn(Xyn m))? ) )
2 i i 2 i i
/B Z( a(X,_n,O')z azhﬁ(zn(g))+W6zhﬁ(zn({~)))aﬂzn((})
M2,2,2 ) n—1 82 300(?,{1,0’) . ; 0 P Bga(th o) ok Mo )
7 )—;) m (2, (6)) + 00 (X - ) e B(Zn( ))8025(0)

Ou-a(itin,(r) Ba-a(itl_n,cr) ; 60’“(Yti"’0') 2 ) ;
Pl T | Ta e | o0

Mi“(m——z[( fﬁ)(zn(é)))+4'3 r,;(z:;w))—2%(azrﬁ(zz<o>>apzz(0>+(aﬁr,;xz:;(o)))

logn

-6 logn
B

kg(z, n(9))+2

T 9k (2 (0))9pz5 (6) + (9pkg) (2,(0)) = 4(10§n)

ap(z},(0))

(log n)

(024 (24 (0)) Bz}, (0) + (35615)(Zn(9)))




]21(0) M1]2( ) = Mr2l,],1({_))

n-19q,a(Xn, o)
1/8 T 2 5 i % 2, i i
=-n a(Zom. )2 (0 &1 /n (Xyn, 1) 0zkp (2, () + 0 &1y (Xyn, )07 kp(2,(0)) 0z, (6))

i=0 s ' !

212(0) M221(0)_ 122(9)

au-a(X n, o)
7)32@(%(9))@01"(9)

a(thp, o

n-1
=—nl/k Z O yn Xy )
i=0

Bga(itn, o)
| —— 1~

Ao )azkmzn(am
ths

M 12(0) =My (0) = M1 (0) = M (0) = M1 (0) = M2 (0)

g Gra X @) logn >
=-n aufl/n(xz" ) —7azk/3(2n(9))+3 kﬂ(zn(é)))aﬁzn(e)+(6567k,3)(zn(9))]

i=0 “(Xti" > )

n-1 6;24‘f]/n(iti"»ﬂ)

i=0 a(ytl{l ,0)

logn

Mt () =My (0) = M (0) =0 P

5-0:kp(21,(0)) +3zfﬁ(zn(0))]

n=1 0ty K 1) [ logn
i=0 a(it;’l ,0) Bz

+n!/B kg (2(6))duzly (0) +3§f3(ZZ(9))5pZZ(9)]

10 ufl/n(xt" M) 10
M () =M (0) = My () = ‘/BZ en

Py a(X,n o) B2

azkﬁ<z:;<0>>+azf,e(z:;<e))]

n-l aﬂ‘fl/n<yl;”ﬂ) logn

+nl/P = S
i=0 a(Xzi",O') B

—== kg (2h(0)) - —(aZkﬁ<z£,<a>>apz:;(e> +(9pdzkp) (2h(6)))

+02 3 (21,(0))3pz}, (0) + (950 f3) (21 (6))

logn
_ 5

n—1 ﬁg—a(itin ,0) logn
+§)60—(W)[ 52 CIB(Zn(H))+rﬁ(zn(9))]

2,3,2 2,2,3 32,2 "l doa(Xpn, o)
MZP2(0) =MZ>3 (0) = MPPP(0)= Y — 1
77(0) =M (0) = M2 (0) ;0 o)

92qp(25(0))der 25 (0) + 0,15 (2h (0)) 00zl (6)

M2 (0) =My 2 (0) = M3 0)

s s

= al ,n o)

o-a(th o) log

5 ap(z 2 (0)) - (5zqﬁ(zn(9))3ﬁzn(9)+(55qﬁ)(zn(9)))
+0:7(21,(6)) 921y (0) + <aﬁrﬁ><z£,<a>>] :

The next Proposition, whose proof is given in the supplementary document, is widely used.
Proposition 5.1. Under the Assumption (A), we have

SUP e, 10ug1/n X, 1) = L8,b(x, )| < C(1+x|P)/n?,
SUPLeV, 021 /(X 11) = 202D (x, )| < C(1+ [x|P) /0%, for some p > 0. (5.2)
SUPLeV, 0381 /n (X, 1) = 233b(x, )| < C(1+ |x[P) /n?,
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The next Theorem, which is a modified version of (Clément and Gloter, 2020, Theorem 4.2), plays an
important role in the sequel. It is also proved in the accompanying document of this paper.

Theorem 5.2. Under the Assumption (A), let [ be a continuous function such that

|f (.. 07) = f(y: 0, 00)| < C(L+[x|P + |91P) (1 = ol + |- = oo + [x = y]),

and let (z,8) — gp(z) be a C! function (with respect to (z, B)) such that 0.8p is bounded (uniformly
in 3 on a compact subset of (0,2)) and

18 ()| +19pgp(2)] < C(1+ (log (1+z[))"),  p>0.

Then, for € < ( ,BLO - %) A % and n > 0, we have the convergence in probability under Pg,:

Zf(xtn,umgﬁ(zn(e)) /f(Xs,llo,Uo)dSEeo(gﬁo(Jl)) 0. 53

i=0

sup n®
0eVy" (6y)

nl/Bo-12 p1/2

where V( 7)(00) {0: ||diag(B—=% Togn)? * Togn” logn)(& 60)|| < n} and 7,(0) is defined by (5.1). More-
over, if Bg,(gg,(J1)) =0, the following convergence in probability under Pg, holds:

n—1
ne=1/Bo Zf(Xtin,,u,O')gﬁ(Zil(@)) — 0

i=0

sup
0eVA" (60)

(5.4)

Proof of Theorem 3.1. First of all, similarly as in (Clément and Gloter, 2020, Remark 3.3), one can
easily follow the proof of Theorem 2.10 in Masuda (2015) and Theorems 1 and 2 in Sweeting (1980) to
prove the last assertion.
Now, to obtain LAMN property, we only need to prove the convergence to zero in probability of the last

term in the Taylor’s expansion (2.4). To do so, for’ 0, =00+ wn(Bo)u ‘, we use (Clément and Gloter,
2020, Proof of Theorem 4.2) for the convergence to zero of the elements of the following matrices

M0 MEM0n) MR ()

n3/11302—3/2 nz;/foz-l/z nz/BO;:/zlogn
1 5 5 1 P

g\, 1/2-1/By, T A | M 7(6n) M7 (0,) M7 (6,)
Wn (gn) =n Pn (90)6[1-[}1(911)9011 (90) = n;//go_l/rzl n?/ﬁ0+]/; nl/ﬁr(l)+1/2 l:gn )

My (00) My (0n) My (0n)
nz/ﬁo_l/zlogn nl/ﬁ0+l/210gn nl//5’0+1/2(10gn)2

M6 M0 MR (6n)

W2P0-172 T plBotiE Bt P log
2(6,) =n~ 2T M22(0,) MEP2(6n) ME(6,)
7{n(en) =n (00)6 I (gn)‘pn(HO) = n?/BO'*']/; nn3/2 & ngl/zlogz

My (0n) M) My ()
nl/BOH/zlogn n3/210gn n3/2(10gn)2

M () M0 M (6y)

nz/B;)_'z/zlogn nl/530*2'12/210gn nl/B(J;"2/23(log:,rrl)2
T 5 | M0 M6 MEPP(6n)
$n (Oo)aﬁfn(gn)%z(@o) | AR Riogn n32logn 32 (logn)?2
M2 (0n) MR8 M (0w
n|/60+]/2(10gn)2 n3/2(10gn)2 n3/2(10gn)3

W 1
H (0,) =
n (On) Vnlogn
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First, it is followed from the series expansion of the density (see e.g. (Sato, 2000, Remark 14.18) or
Masuda (2015)) that for any non-negative integers k and k’,

0505 ¢ (2)| ~ Crper ploglz)¥ 121 P717F, 2] - oo, (5.5)

for some positive constant Cy r» 3. From this, since 0,¢g(z) = hg(z)pp(z), it is easy to get thanks to
the Leibniz formula:

10508 g (2)| ~ Cp 4o gloglz)¥ 257", |z — oo, (5.6)

for some positive constant C ,’( K,
From (Clément and Gloter, 2020, Proof of Theorem 3.1), this equivalence (5.5) permits to deduce that
hg, 8:hg, kg, 0:kp, 0, f3(= dghg) and gp are bounded, and |rg(z)| = [(9gkp)(2)| = |z2(dghp) ()| <
Clog|zl, | fg(z)] < Clog|z| and that |(dg fg)(z)| < C(log z])2. We also have from the symmetry of oF;
and the integration by part formula, Eg (sg(J1)) =0.

Similarly, it is easy to see from (5.6) that dpd.hg, 2030.hg, 7*0s0;hp, 02hp, 0g02hg 29302 hg,
z2aﬁa§hﬁ, 6z3h5, 20, hg, z@zzhﬁ, zzazzhﬁ, zaghﬁ and z2az3h,3 are also bounded. This leads to

azzkﬁ(z) =20,hp(z) + zazzhﬁ(z), zﬁgkﬁ, zzﬁgkﬁ,
0,78(z) = (080 kg)(z) = (Oghp)(z) + 2(0pd;hg)(z), 20;rg,
6Z2r5(z) =2(0,0ghg)(2) + z(Blgc')zzhlg)(z), 0,(20,rp)(2) = z(Bzzrﬁ)(z) +(0;rp)(2),
(Bpap)(2) = 2(9pd:kp) (2) = 2(02rp) (2),  (824p)(2) = 2(07kp) (2) + (kp) (2),  2024p,
(024p)(2) = 2(92kp) (2) +2(02kp) (2).  207qp.
9:(20:4p)(2) = 2(92qp) (2) + (9:4p)(2).  (8:9pqp)(2) = 2(9pd2kp) (2) + (3pd:kp) (2),
(0p02kp)(2) = 2(9pd. hp) (2) +2(3pd2he) (2), 20507 kg,
32 kp(2) =30:hp(2) +202hp(2), 203kg(2), 0. (20%kp)(2) =202 kp(2) + 32kp(2)
are bounded. Moreover, on the one hand, we also have 6;61165, 0,0prg, (312 Iss 1612 s 63(2612 8)
32 f5, 00 f3, 6[2382 15, 0502 fg and 9, (202 f3) are bounded. On the other hand, we have ds(z0,qp),
0p(20;1p), 6§qﬁ, Oprp, Bér/g, 6[% fp and 6; f bounded by logarithm. All these analyses make sure that

we are in good conditions for applying the Theorem 5.2 in the following.

Concerning the elements of the matrix 74! (6,,): Applying the formulas in (2.5) for the /\/I,ll’l’1 ),
by some basic calculations, we easily have the following inequality

My (60)

n3/Bo-3/2

n—1
+

i=0

nl 5 05b(Xin. ) Fp&1n Xy fin) = 5 OpbXn. fin)

a(}tin’ Gn)

< /273 1Po* 1 B ( g, (2 (6n)) g, (2 (6n))

i=0 a(X[l_",ﬁ'n)

(O &1/ Ky fin) = 305 Xy fin)) By (X fin)

a(itin’ OA—H)Z

. n—1
+n3/2=1Bo+2(1/Bn~1/Bo) Z chy, A
i=0

(,‘,af,b<><,;z,ﬁn><a,,§1/n(x¢,ﬁn) ~wOub X pn)) 5O (Xin. fin)Oub (X fin)
+ +

X = dzhs (zh(6 ‘
a(X,n, 61)2 a(Xn, 6n)? \] z ,Bn,(Z"( n))

/ |

\
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-1 X,n,fiy) — L X.n Qi 2 Xn i
+n3/2—1/,30+2(1//§n71/ﬁ0)n2 2B &1jn Xy in) = 500D Xy fin)) Oy &1y Xy fin)

i=0

hg, (2(0n))

a(yti" s é'n)2

FOub (X, fin) (0 &1/ Xy fin) = i ORb(Xyn, fin)) 5 0ub(Xyn . fin) Opb (X, fin) o
+ : : - + — : 6zh’gn(ziz(9n))

aXyn, on)? aXyn, on)?

(B 1/ Ky fin) = 55 0ub Xy fin) + 55 0ub (X un>>3

a(Xti"’ 0'11)3

+ 0325301 Bn=1/By) Z
i=0

02hg, (2 (0n))|.

Then, thanks to the inequalities in (5.2) and Assumption (A), the first sum in the upper bound of

L1,L1, 4
% above verifies the hypotheses of Theorem 5.2 and the other sums are bounded by the

convenient terms that enable us to use the result from Theorem 5.2. More precisely, we have

LLL g , n=103b(X;n,
WM > Ol 172-1/80+1/Bn=1/B0 L { Xip - 2)

o) [gn (ZZ(én))

n3/ﬁ0_3/2 - nl/ﬁ()

n—lC )
+ )Y —(1+|Xn|P)|hs (z(H
2 ay. o Z(]) — (14X, 17) g, (2 (0n)))]

. 1 n-1 _ o
+n1/2=1/Bo+2(1/Bn=1/By) - Z C(l+ IXti” 1P)(1+ 1/")|6zh,gn (Z5 (6]
i=0

. n-1 )
+n—”2+3“/ﬁ"—‘/’30>% DL CU+Xn|P)(1+1/n)182hg, (2 (6)]-
i=0 ‘
57

Now, using the fact that (6,,),, converges to 6 and applying Theorem 5.2, the convergence to zero
in probability of the first sum and the remaining sums in the r.h.s. of the above inequality (5.7) are
obtained respectively by (5.4) since Eq,(hg,(J1)) =0 and by (5.3) as n tends to infinity. Similarly, the

convergences to zero of other elements of 7—[% (6,,) since we have that

My (6,)]
n2/Bo-1/2

n-1

N a(Xn, 6
< n1/2-2/Bo+1/Bn DoaXyp. on)

‘(6 §1/n(th Iln)* *‘9 b(th Iln))"' Bzh(th lln) |az (Zn(gn))l

a(th_" 5

i=0

-1
+ n1/2-2/Bo+2/fn Z

i=0

aa—a(th o)
= i A (6ufl/n(Xt" fn) — ayb(Xt" fn) +— 6pb(Xt" fin)) |32 (Zn(gn))|

a(X[l!" ’ )

<n”2 ‘/BO”/ﬁn Z C(1+[Xun|P)|0zkg, (25 (0n))]

+n~12720/Bo= '/M—Zc<1+|X,n|I’)|a2 (2 (6n))1, (5.8)

IMLI3 6,y n1/2-2/Bo*1/Bn 2 |07 fl/n(Xt" fn) = 5 b(th fin)) + & b(iti",ﬁn”
<
n2/Bo=1121og n logn part |“(th.""7n)|

1
><_ogn

kg, (2h(0n)) + 0 f5, (2h(0n)

1112218042/ fn 1= B Ky fin) = 3 0ub Ky fin) + 530 Xy fin))?

logn 4 aXon, o)
13

=U
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! A .
_ O?Q”agkﬁn(zﬁl(on)Ha%fgn (z;(an))‘
n

<n”!2” “30“/’3" ZC<1+|xtn|f’>( 10k, (2 (n))] + 1= |azfﬁ <zn<en>>|)

n—1
~1/2-2(1/Bo=1/Bn) L e Lo g L os2e g
+n 0 n;)C<1+|X,p|">(ﬁ%|azkﬁn<zz(en>>|+logn|azf,3n(zz<9n)>| , (5.9)

(M2 (6] _

B < nl/Bn=1/Bo- 1/22|6”51/H(th Mn)—*('),ub(X,n fin) + — c'),,b(Xln fn)l

i=0

(6a'a(it." > é'n))

)6zkﬁn,<z:’,<én>>+‘z,.<en>62 (24 (0n))

X
a(Xm, )3
1

(aa'a(Xl,"’ &n)
6 L

7\ aXn.60)2
< n=1/2-1/Bo+1/n L Zc(1+|x,n|f“)(|6Z ﬁn(zn(en))|+laz ﬁn(z,’;(én))l), (5.10)

IML23(00) nVBr=1/Bo=1/2 n] 3061(?;;1,(%)
<

- 1 - 1 -
|ay§1/n(Xti’"/-ln) - ;Qub(xtl,"’,un) + ;ayb(xt["’ﬂn”

nl/Bo+tl/21ogn ~ logn = a(i,l_n,é'n)Q
1 1
x |20 ks (2l (0n)) + ‘;g"z,.wn)az (2 (0n)) = (9p0ks, ) (2h(0n))

n=1/2-1/Bo+1/Bn |
s ZC<1+|th|P>(B (10:kg, (21 (8n))]

logn
+zh (60)32kg (24 (On))]) +1(3pdzkg, ) (h(6n)))) (5.11)
MY (0] 11812 A 101y Ky i) = 505 Ko in) + 50 Ky )|
nl/Potl/2(logn)2 = BZlogn = |a(§,in,frn)|
logn

(Zn(Gn))+3zfﬁ (Zn(gn))‘

VB =11Bo=112 =1 18 &1/ Ky fin) = 55 0ub Xy fin) + 550 (X fin])

(logn)? & |a<i,in,rrn>|
logn
x |2 (Zn(Hn)) ((aﬁazk ) (2 (6n)) = Zn(Hn) k5., (z3,(6)))
B /3 7
logn

52 (0032 £, (2(00)) + (@015, (2 (6n))

1/ﬁn—|/,30 1/2 4
< -
B%logn

logn

- Zc<1+|xtn|l’> 0ok (2 (0n)  +10: <zn(en>>|}

nl/Bn=1/Bo-1/2 |

Gogn)? Zc<1+|xtn|p)

"3

" ks, (<h (0n)+ B2 " (1(9p0:kg, ) (2 (6)))

l‘l’fz”| 2 (8n) 02k (2h(Ba))]) + (;gzn|Zn(9n)3§flgn(zf1(én))|+|(3,Bazf'[§n)(2£l(én))|}~ (5.12)
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Concerning the elements of the matrix 72 (6): By symmetricity of this matrix, we have

M) _ MO0 ME O M O) MR ) M)
n2/Bo=1/2 " p2/B=1/2 7 plBe1/2 T pl/Bo+1/2 7 pl/Bet12]ogn  pl/Bo*1/21ogn’

then, the proof of their convergences are treated as above. For the rest elements, we rewrite as follows

M1 [(0ea Km0V |iogn ” »
< — 0,)0 0, On)o:rp o,
n3/2logn n3/2logn &4 a(X;n, 0n) B2 —z ) 2 (2 (1)) = 20 (0n) 27, (2n(6n))
n-1 (draXmn,6n)
1 o t logn
—_ Og| ——————||- 6 [2)
+"3/210g” i=0 a( a(X;n, &n) ) B a2 U (an )+, (@ (0n))
1 1
< iognn ZC(HlelIJ)[Og”<|zn<en>azqﬁ (zh(8m)1 + lag, (z5(6a))1)
n
Hzh (603, (2h(0a)) + Irg (G| (5.13)
IMz?2 (80)]
32

1

i

60‘&(?1_",6'11) 60-0(}1‘_11,6'”) o ao_a(Yt-n’é_n) 3 o o
-2 i i n i O, -t ’11 0,025 :1 6,
a(Xt”vé'n) qﬁn(zn( D+ a(Xzﬂ»é'n) an(6n) Zqﬁn (20 (6n))

aoa(iti",é'n) (60'61(Xt;’l,5'n>

)kﬁn@;’,(én))— )z:;(én)azkgn<z:;<én>)

(60'61(th_", on)

a(yti",é'n) a(iti",é'n) a(yti",é'n)

a(itl_"’é'n)

n-1
11 - o . . . . .
< Zn ;)C(l + X 1P) (Ikg, (20 (0n))| + 123 (0n) 2k, (23 (On)) 1+ lag, (zn(0n))] + 123 (0n)Dzqp, (20 (6n))1),
(5.14)
IM233(6,))] 1 n 6”“(Yt{1’6—") logn logn , logn ;
2 n)) — —5 (——5-2,(6n n{n
R ogm? = P (logn)? 5| aKp.om) || Ao 99 On)) = S (= e O dcag ()
+(9pag, )(Zn(gn)))_ B Zn(0n)3zr (20 (0n) + (Fprs, ) (2, ()
1 logn logn
<Wn2c<1+|x,n|"> ; % lqp (< (6a))] + 7 |2k ()2, (2 (8n)
icp logn, i 5 i i
+(19p4g,,) (2 (6))) | + 2 |21 (6n) 021, (2, (On)) ] +1(8pr, ) (2 (On))]| - (5.15)

Then, by similar arguments as above, we also obtain their convergences to zero using Theorem 5.2.

Concerning the elements of the matrix 7> (6): Since from symmetricity of this matrix

MG M6, My, MyP(6,)
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Mo (8n) _ M (6n)
n3/2(logn)?  n3/2(logn)?’

M2
n3/2logn

M (0,)
nl/ﬁo’r]/z(log n)z

M6
_nl/ﬁo+1/2(10g n)?2 ’

M
n32logn °

the proof of their convergences are treated as above. For the element resting, we rewrite as follows

My (00)] logn logn
Vl3/2(10gn)3 = ( f[g (Zn(gn))+4 BA3 8 (Zn(Qn)) (— '3 zn(gn)[)zr (Zn(gn))
1 1
+(9prg, ) (2 (6n))) -6 ;4 kﬁn(zn(en))+2 ‘;;"(_ OAanZ"(H")aZ ﬁn<Z"(9"))+(6ﬁ )(zn(an)))
1 P A 1 1
(o;sn) ﬁn(zh(ﬁn)n(og:) (- ogn 21 (0n)0zq5, (4 (0n)) + (Fpag, )(zn(gn)))‘
1 (S logn logn
< W; 2y C (9, fﬁn)(Zn(gn))“' A3 |r (Zn(gn))|+ n n )azr (Zn(gn))|
i A 1 i oA ! 1
+|(5ﬁrﬁn)(2;:(6’n)))|+%|k}l(z:1(9n))|+ ;ggn( oAg2n|z,,(e,l)aZ kg, (2 (60))1 +1(pkg, ) (23, (60))])

logn
ﬁAZ

(logn) (logn) (

Ba

lag,, (23, (0n)) |+ |z n(Gn)ﬁzqﬁ (Zn(9n))|+|(aﬁqﬁ )(Zn(en))l)} (5.16)

Thus, by similar arguments as above, we obtain their convergences to zero. 0

Proof of Theorem 3.3. Now, here again we can follow (Masuda, 2015, Proof of Theorem 2.10) and
(Sweeting, 1980, Theorems 1 and 2) to prove the last assertion.
To obtain LAMN property, we only need to prove the convergence to zeros in probability of the last
term in the Taylor’s expansion above. To do so, for | 8, = 0 + £, (60)u
the proof of Theorem 3.1 for the convergence to zero of the elements of the following matrices

, we use some inequalities in

HY (On) =n" 2~ VP0 o (00) O T (61) on (69)

My (6,) P M2 (0n)+ @21 My (00) 12 My (Br)+020.n My ()
3/;;0 32 2180172 2IBo-172
P11 nM (gn)""PZl M <9n Qn,](én) 7(n,](én)
n2/Bo=1/2 W1/Bo+1/2 W1 /Bo+1/72 ’
P12.n My l’z(én)+¢22,nMrlil’3(én) Kon.1 (6n) Pn.1(0n)
2Bo-172 B2 UByFI2
H2(6y) =n~11? T (00)00In (8 o
7 (On) =n" (11,0 + 12,n) n (00) 00 In (0n) pn (6p)
(1tnte12.0) My (6n) P My 2 () + @2 M (60) 12 M2 (Br)+020 0 My ()
n?/Po-172 s (@11 n+e12,) " 10l IP0¥1/2 (@11t @12,0) "0 1P0*1/2
e11,aM (Gn)""PZl My (6n) Q2(0n) Kin,2(6n)
(<p]|n+<p]2n) 1p1/Bo+1/2 (@11, n+e12,0) " 032 (P11,n+¢12,n) 1132 ?
1o M2 )02y ME 3 (60) K2 () P2 (0n)
(@11.n+1.n) " InlPo+1/2 (P11 n+e12,0) " 1032 (P11,n+e12,0) " 032

Ho (0n) =02 (021 0+ ©22,0) 01 (03 L (0n) @ (6)

L1,
(P21,nt922, )My (On) Plln

M2 () 4031 a M

3,1.3,5
n (6n) P12.n

1.2, 5
Myt (Hn)+4P22,n,M;3{

" (0n)

n?/Bo=172 (@21.n+20,n) " ' /F0¥1/2 (P21.n+920,0) ' [F0*1/2
@11, M (9n)+9021 WME13(6,) Q, 3(6n) K3 (On)
(P21,n+922,1n) 7" 1/50“/2 (#21,n+#22,n) " 1032 (21,n+922,n) 10312
P My "2 (0n)+ 62 n Miy > (8) Kin.3(On) Pp3(0n)
(@21,nte22 n)_lnl/ﬂOH/Z (‘/’21,n+‘P22,n)71”3/2 (<p21’n+<p22’,,)’ln3/2
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where for convenience ¢;; ,, signifies ¢;;j (6o), i,/ € {1,2} and for i € {1,2,3},

Kon,i (0n) = 01100 12.aM572 (00) + (011 20220 + 021 0P 12.)MED (B0) + 021 0P22 M (8),
Qu.i(bn) =3, nM:f’%én) + 2¢11,n¢21,nM£; P (00) + 03 M (B0),
pnz(Gn) 9012 an22(9 )+2‘P12 n9022n (9 )+ ¥, nM133(9n)

First, from our choice of ¢, (6g) above, |¢;; »(0g)| < C(1+logn), i,j € {1,2}. This deduces that

v (6o)
_——
\/ﬁ n—oo

where v, (6p) = (vij, n(90))z ell.., = (@11,n P12.0 P21,0 P21,0) T (@110 P12,0 P210 P21,0)-
Now, since B, = By + <& I (U221, n(90) +u3¢22,1(00)), we have

O4x4 (5.17)

nl/Bn=1/B0 _ exp | 102 ! 1
Bo \1+ —(szl n(80) +u3¢22 1 (60))

~ exp (_k’ﬁi%(u2¢21 n(00) + U302, n(90)))

Thus, combined with the previous analyses for the NM case, we can obtain easily the convergence in

L1, 5
probability of the considering terms. In particular, from (5.7), % — 0. And from (5.8), (5.9),
n—oo

(5.10), (5.11), (5.12), (5.13), (5.15), (5.14) and (5.16), respectively we get that

vijn(60) - MEV2(8,) vijn(60)logn m MY (6,)  vijn(60) - ME22(6,)
\m Z/BO 1/2 ’ \ﬁ nz/ﬁo_l/zlogn’ \m l/ﬁ()+1/2 ’
vij.n(6p)logn - MEZ3(0,)  vijn(6p) (logn)? - MLE338,) vij.n(6p)logn nM,2,’2’3(én)
n W Bt 2 1o’ N nl/Bo*1/2 (log )2’ NG n3/21ogn
vij.n(60) (logn)? nMﬁ*3’3(én) vij.n(6o) nMg,z,z(én) vij.n(6p) (logn)? - ME33(0,)
Vn n3/2(logn)2”  n n32 Vn n3/2(logn)3
are convergent to zero as n tends to infinity for any i, j € {1,...,4} thanks to (5.37). O
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Supplementary Material

The proofs of the technical results (Proposition 5.1, Lemma 3.8, Theorem 3.9 and Theorem 3.10) are
shown in the supplementary material.
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Proofs of some technical results

Proof of Proposition 5.1. The first two inequalities are recalled from Clément and Gloter (2020), here,
we only need to prove the last one. First, we note that

1/n 1/n
Byt (1) = /0 Db (&5 (. 1), 1) ey (s ) s + /0 (05) (&5 (x. ), ) ds,

1/n 1/n
Opétjn(x, 1) = /0 Oxb (&5 (x, 1), 1) O (x, p)ds + /0 O3b (&5 (x, 1), 1) (D5 (x, 1)) dis

1/n

2 o 0,0,b 0 d 9%b d
+ /0 (D000 (5 (. 1), 1)y (6, 1) s+/0 (820) (&5 (x, ). ) ds,

1/n 1/n
Opé1jn (X, ) = /0 Db (&5 (x, 1), ) D (x, pr)ds + /0 Ozb (&5 (x, 1), ) Dgés (x, p)ds

1/n

1/n
+ [ @) E ) e s + [ SR (0,6 . 0) s
0 0

1/n
+3 /0 (Bu03b) (&5 (x, 1), 1) (B (x, 1)) dls

1/n

3 v d20.b d d a3b d
+ /O (D20.5) (&5 (6, 1), 1) Dy (v, 12) s+/O (83b) (& (x, 1), ).

Therefore, we get

1 1/n 1
10aé1/n (3, 1) = =~ Fb(x, )] < /0 10xb (&5 (x, ), IGE5 (. p1) =~ b (x, )l ds + IR ()],

where

R ()
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1 1/n 1/n
=;82b(x’,u)‘/0' axb(fs(x’ﬂ)’ﬂ)ds""/o' a)%b(‘fé(xvﬂ)’ﬂ)alzlé:s(x’,u)ds

1/n

1/n
+ [ @0 E ) e s + [ () ) (046 () s
0 0
1/n 1/n
+3 [ (0,020 € ) 0 5 s 43 [ G0 E (0,10 0 )

1/n
o [ 1R E g0 = 3. o,

Now, for some s € (0, 1/n), since b(.) is Lipschitz, we have

16 (. 0)] =l + /0 b(& (x. ) ) dv] < Jx] + /0 C(1+16 (6, ),

16 (o) — x| =] /0 b(&y (v, ). p)dv] < C(Jx| + D)s + /O Cléy (e, ) —x]dv.

By Gronwall’s lemma
&5 (e )| < (x| + C9)e®*,  and |£,(x, ) — x| < C(|x| + 1)se*,  s€(0,1/n). (5.18)
Then, from Assumption (A) and Gronwall’s lemma again, we have

sup  sup  Gj1yn(x ) < C(1+x|P)/n (5.19)
MEVLOke{LZA}

for some p > 0. Thus, from Assumption (A) and Jensen’s inequality for convex function x € [1, o) -
K™, m > 1, we easily deduce that SUPLeV, |R, ()| < C(1+]x|P)/n? for some p > 0. Finally, combined
with Gronwall’s lemma, we then obtain (5.2). O]

Proof of Theorem 5.2. First of all, we introduce for any g > 0

JE=00= ) ML (ias g

s<t

T, =inf{r > 0: |AJ;| > ¢}.

and X9 the solution of the following SDE:

t t
th =Xxp +/ b(XZ, uo)ds +/ a(XL,o0)dJ?, t>0, (5.20)
0 0
In a natural way, we denote by X7 the associate scheme, for any i € {0,1,...,n— 1}, we denote
Xin =& —an Ko ) + a(Xp ) Uy =T (5.21)

Let g > 1 and p > 2 be fixed. It is standard that

E( sup |X/|P) < +oo. (5.22)
tel0,1]
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Concerning the scheme, we also have for any ¢ > 1 and n

E( sup  [Xin|P) <Cyp. (5.23)
i€{0,1,---,n} '

Indeed, letn > 1 andi € {1,2,---,n— 1} then we have

1

V4 V4 n V4 ~v4

th =Xt.”+/0 b(é:s(Xt_"’NO)a,UO)ds+a(Xz,"’O'O)(Jan1 _thn)
i i i i+ i

i+l

e — a
=xo+/ b(fu—n,,(u)(X?,n(u),ﬂo),#o) du+/ a(XZn(u),O'o)dfg
"

n
ti

Let us now introduce the process Z defined by
! 4 " o—q
vVt e [0,1], Z; =xo+‘/0 b(gufnn(u)(Xnn(u)’/‘l())’:u()) du+/0 a(an(u)’O'O)thZ

so that for any i, Z;» = Y?n and so

Vi€ [0,1],Z; = sup |Zs| > sup|Xinl. (5.24)

s€[0,t] i
Following for example Protter (1992) Section 1.4, we know that J4 admits the following decomposition:

JE=MT + A9, (5.25)

with Mtq = fot /Iz\ <q ZzN (ds,dz), where N is the compensated Poisson measure with Lévy measure
|z|++ﬁ31[—q341(z)dz' M4 is a martingale belonging to all the L? spaces and A9 is a finite variation
process such that its total variation satisfies

7 z

Then since coefficients a and b are Lipschitz w.r.t. variable x and thanks to estimates (5.18) and (5.24),
we have:

t P t P
|Z:|P SC(|x0|p+(/ (z:;+C/n)eC/"du) +(/ (1+z;;)du)
0 0

p)
where constant C above but also below denotes a constant which may vary from line to line but does
not depend on ing e nequali 6) in Lemma ee also (Kunita

(5.26)

+ sup
s€[0,¢]

A
/O a(Xy, () 00)dM;!




Effici mation for SDE driven I ble Lé 29

2004, Theorem A.3)) we have:
)

1 — 5 22 pl2
'/O/lz‘gqla(xnn(u)’o—())l |Z|1+dedb

N ) r/2
(/[; |a(X]]n(u),0'0)| ds)

t
SC(1+E90 [/ (ZE)Pdu
0

Eg,

s —
sup /Oa(X(f]n(u),o—O)dM,Z

s€[0,7]

E ' x? P2 4a
+56, [/0 ./\z|5q|a( Tln(u)’(TO)l |z|1+8 was

t Ja—
+Eg, [/O |a(X‘f]n(u), 0'0)|pds])

)

< C(Ego

<C

Eg,

t —
< CEq, UO |a(XZn(u),0'0)|pdu
(5.27)

From this we easily get that
t
Vee 0,11, Ba [Z)") < €O+ [ Ba[(Z)7)d

which ensures by Gronwall’s Lemma that Eg, [ (Z])7] < Cy,p-
Clearly, on Ny = {T, > 1}, X, = X; as. forall # € [0,1] and X = X7, As limg 400 Pg, (Ty < 1) =0, we
only need to prove that for any g > 0,

sup n® In, — 0, (5.28)
n—oo

0eVA™ (60)

n—-1 1
o F R (Gh(@) = [ XS 0,000 s (g5 (1)
= 0

in probability under Pg,. This is implied by the following convergences in probability,

|10 o w4 i Fo
sup 0| S L (X 0) = f (K 10, 00) 18 (5 (6))] Ly =30, (5.29)
0V (69) i=0 ! '
RIS i i Fay
wp |- 2 Kl 0. 00) 185 (21 (0)) = 8y (25 (80| 1y, =2, 0- (5.30)
0V, (69) i=0
1 n-1 — ) P(’O
n® o ;) f(X,in,.uo, o0)lgp, (zn(60)) —Eeo(gﬁo(fl))]‘ o0 (5.31)
1 n-1 " 1 n-1 PBO
el 3 _ q _
n’| iZ:(:)f(Xtin,,uo, 7o) -~ ;)f(xtin,,uo, o0)| =3, 0- (5.32)
-1
o 1 Pg,
el q _ q _
|5 2 Koo v [ 1o, cords| =2 o. (533)

‘We remark then that

Z;(Qo) =n1/’80(./tiril _]tl."),

————[E1/n (X, p0) + a(Xyn, 00) (Jyn = Jin) = €1y (Xyn, )]
a(Xtin,O') L 13 i+ L

2(0) =
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and that if 8 € V" (6p), then

I = pol <n n'>"YPo(logn)?, |o— ool <Cnpn~?lognand |B-Bol < Cnn~?logn. (5.34)

Mq)

< Bay (CCL+sup I I7) Tog 2011210 41712 2 )1
1

For (5.29) we remark that

n-1

S L (Rt ) = £ (K p0.00) 185 (24(0))

i=0

Eg, sup n®
0eV,y" (69)

<c( +E90(St}p |Y;Iin|217))1/2(1 +E00( S(LIE) |Z;(9)|2K]qu))1/2(10gn)2(n1/2—1/ﬁ0+£+n—1/2+£)
' 0V, (69)

SC(logn)Z(nl/Zfl/ﬁ(ﬁé‘+n71/2+8) — 0,

n—+o0o

where « may be chosen in 0, 8/2[ thanks to the assumptions made on gg. The last line is followed
from (Clément and Gloter, 2020, the proof of (4.11)) that Eg, (|z},(60) |k Iﬁin) < C, for any k < By and

sup  |24,(8) — 21, (0) |1, < C (1+]X}ul7)(1+]25,(80)]) (logm)? /v, for some j > 0.
0evs™ (60) ‘
To prove (5.30), we proceed similarly by splitting the difference gg(z,(6)) — gg, (25 (60)) into two
parts: gg(25(0)) — gg,(2%,(0)) and gg, (2}, (0)) — gp, (2%, (60)) using the fact that f is Lipschitz w.r.t.
variable x.
For (5.31), let &' = ng‘lf(YZn,uo,O'o) [gﬁo(zil(ﬂo)) - Eg,(88,(J1))], we simply use the fact that

2L (Bg) =n'/Po (Jen = Jim) £, using one more time the fact that f is Lipschitz we have:
Ny (&7 |F) =0, nEay ()7 1F) =0~ f (Xin, o, 00)*Var g, (8, ()1)) = 0.

we then conclude that 377" | & tends to 0 in probability using the results in Jacod and Protter (2012),
Section (2.2.4) for triangular array. For (5.32), we note that

th
Xl ~ X =Zpn - XY, = /0 (B(Eu ) (X2, 2100 10) = B(XE p10))

+ [)ti (Q(Y?]n(u),O'()) —a(X,l_,00))dJ].

Then, we separate the first integral in the r.h.s. into three parts concerning the differences
b(Euzrpo () Xy (12 10+ 10) = D(X;, (1) 10)

b (X, (uys HO) = (X () 10)

b(X] () H0) = b(X.]. po)

and we shall do similarly for the second integral. Now, thanks to the Lipschitz property of the coefficient
functions x — a(x, o) and x — b(x, up), we can easily recycle the arguments from (5.26) to obtain

—q ~
Eg, ( sup Xy - X)) =0(n™").
s€0,1]
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Finally, using Lipschitz assumption on f and Cauchy-Schwarz inequality, we have

IE(ns

For (5.33), we rewrite the considering error as follows

n—+co

1n—l —y 1n—]
- Zf(ng,/loﬁo) - Z F (X2, 1o, 00)
i=0 i=0 '

) =0

né‘

1
[0, 00 = Ko s

and its convergence to zero in probability is directly using a part of the arguments for (5.32).

Proof of Lemma 3.8. To begin with, we denote

1
Fu(0) =nPr= V1 (p, X) —MP(E,';)/O la(X,, o) |Pds.

We prove that if (vn/logn)F,, (0p) is tight which is true from (Todorov, 2013, (21)), then, any sequence
(5',(2, n > 1) belonging to V, (a neighborhood of o7 defined in assumption (A)) that solves F,, (o) =0
is consistent and eventually unique. To do so, using (Jacod and Sorensen, 2017, Theorem 2.7.a), since
F,(0g) converges to zero in probability, we need to verify the following two conditions:

(i) There exists F defined on A compact subset of V-, continuously differentiable, such that F (o) =
0 and oy is the unique root of F (o) =0.

(i1) The following convergence in probability holds

sup |05 Fy(0) = 05F(0)| = 0,

o€EA
and 0, F (o) is non-singular with probability one.

For this proof, we choose

o 1 9
F(o)==pup(Bo) / /0 afﬁ C; (X, u)dsdu.

0

For this choice, the criteria (ii) is straightforward from the fact that BB — Bo. Considering (i), it is
obvious that F'(oq) = 0 and oy is the unique solution of F (o) =0 since from those assumptions on the
function a,

dga

o 1
/ / 1—(Xs,u)dsdu=0 S o =0y.
oo 0o a P

. 12, .. R
Now, from this, we prove that ﬂ’)g m (0'2 — 0y) is tight. From Taylor’s formula, we have

0oa N —~
af;p (Xs’o'n)ds (O-r? _0-0)

1
Fu(0) =~ pitp (B2 /0

where &, lies between 3,? and o0y. Then, using the consistency of 5'2 proven above and the tightness of
(v/n/logn) F,,(09), we complete the proof O
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Proof of Theorem 3.9. Inspired by the work in Bayraktar and Clément (2023), using (Jacod and
Sorensen, 2017, Theorem 2.7.a)), for the consistency and uniqueness, we need to verify the follow-
ing two conditions:

(i) There exists G defined on A, continuously differentiable, such that G, (ug) converges to zero in
probability, G (ug) = 0 and g is the unique root of G (u) = 0.

(ii) The following convergence in probability holds
sup |0, Gp(p) = 0, G (W) — 0,
HEA

and 0,,G () is non-singular with probability one.

For some 1 > 0, we set

W = {(a B):

\n (o-—a'o)
logn \ B—Bo

< n} .
First, we prove the second assertion (ii) by setting

! 3ub(Xs,
G- [ [ 22X b 4w, ).
Ho

a(Xv’O'O)z

Since (5’2,32) € W,i"), we know that Eg > 1 as. for any n large enough. We have 0,G,(u) =
—nl_z/ggffnl’l(u,'&'g,@l) where

" (u, 70, BY)

L opEr (X p) Y (Opétn(Xon, )2 S
B3 G K )0 gy Y O O 0 ).

i=0 a(Xt" AO) i=0 ll(X,in,a'g)z

We rewrite 0,G,(u) — 0,G (1) = Ap () + By (1), where

=) Dty (Xin, ) Bub(Xs,
An(p)=n ) "(1)/( ao)’; 0chg (2h (1,59, B0) - / X “) E(K3, (11)),

i=0

4 01 (Xin, ) S
Bu(u) =—n' Z a:; io) g (& (1.5 BY).

=0

L. P P
Our aim is to prove that sup ¢ 4 |A, (1)) — 0 and SUP A |Bn ()| — 0. To do so, we first prove that

1
SUP 01/ (%, 1) = —Bb (x, )| < C(1+ [xP) [n?,
HEA n

sup |0;&1 / (x, 1) — —a,%b<x,u>| < C(1+x|P)/n?.
HEA

Indeed, under our assumptlons on the regularlty of the coefficient functlon b(.), the proof is classic and
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we can replace 9% 1 E1/n (X, 1) by 16kb()c,/,t) for k € {1,2} in the expressions of A, (u) and B, (u), the
error for this replacement is neghglble.
For A, (u): We rewrite this term as the sum of the two following terms

) @b (X )
Ani(w) = ZO W(a <D (2 (1T ) = Dely (2, (60))),

=t (Bub(Xyn, 1)? : 1 8,b(Xy, 1)?
Ana (1) =% > W@zm(zz(eo)) - /0 ﬁd@(%(m).

i=0

The convergence to zero of sup, ¢4 |A, 2(u)| can be deduced using the assumptions on the regular-
ity of functions a and b and similar arguments as for (5.29) and (5.31). Here, we only take into ac-
count the term An 1 (). For this, we separate the difference into two parts: d,hg(z!, (1, T3 ﬁn))

8Zhﬁo(zn(u, ﬁn)) and 9 hﬁo(zn(,u,AO AO)) -0 h/go(zn(eo)) First, since dgd hg(2) is bounded
for any values of B and z large enough, by intermediate value theorem, we have

logn

\/7_1

Second, since Bz2 hﬁ(z) is bounded for any values of 8 and z, again by intermediate value theorem,

|02 hg (25 (1,50, BY)) = 8z hpy (2 (1, T2, BO))| < C—= (5.35)

Cl(X[n, 0-0)

a(Xt" 0'2)

4 E1n(Xin, o) = E1yn(Xyn s 1)
_1 Z;(GO) +n]/§2 [n\ At Ao/n !
a(Xtin"o-n)

_
2 (TP BY) — 2 (60) = (n”ﬁ" 1o

and assumption (A), we have

|9 b (21, (1, 70, BO) — Bz hg, (25 (00))| < Clz (1,50, BO) — 25 (60)]

a(X;n,00) 4 Etyn(Xen, p10) = E1yn(Xen, 1)
<C nl/[f?l—l/ﬁt—o 1|Z;(90)|+n1/'§91 [n\ At Ao/n !
a(Xt" O'n) a(Xti”»O-n)
¢ (‘ 1A -1/Bo NI
< ——(|(n/Pn —Da(X;n,00) +a(Xp,00) —a(Xen, o 6
X 5D) ( Ja(Xen, 00) +a(Xgn, 00) — a(Xy: (60)l (5.36)
13 E1/n(Xpn, po) = E1yn(Xen, 1)
+n!/Pn 5
a(Xti"90-n)
logn)?, .
sc<1+|xtin|P)((°g”) zn(90)|+n1/53—1),

v

30 —
for some p > 0. The last inequality is obtained by nl/Ba=1/Bo _ | ~ M , the assumption (A), the

intermediate value theorem using the Lipchitz property of a and (5 .19).0 Tnherefore, under our assump-
tions on the regularity of a and b, using the techniques in Jacod and Protter (2012) for triangular array
combined with the fact that Eg, (|z/,(6o)] ‘SI?"H) < C for 6 < By (similar arguments as for (5.29)), the
convergence to zero of SUPyea |An 1(u)] is guaranteed from (5 35) and (5.36).
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regularity of the coefficient functions, we have

n-1
_1_1/p0 . P
sup B ()] < Cn™ ' MPn )" (14 X,n1P") = 0.
HEA i=0

Thus, we obtain (ii). Considering the assertion (i), by the definition of G, we see immediately that
G (up) = 0. In addition, ug is the unique solution of G (u) = 0 thanks to the assumption non degeneracy

P
that there exists s € [0, 1] such that 0,b(Xj, 1) # 0. Now, it rests to prove that G, (ug) — 0. To do so,
by Taylor’s expansion, we have

Gn(po) =n'=208,6, (10, o0, Bo)

o =205 /1(Inl’z(ﬂo,UoH(&r?—00),Bo+t(i3?l—ﬁo)))T(33—00) a0
0 \ 2" (o, o0 +1(35) — 00). Bo +1(Bh —po)) ) \Bp—Bo) "

From this, on the one hand, from (Clément and Gloter, 2020, section 3.2.1.), n! ~2/Po 0utn (10,00, Bo) is
tight and converges to zero in probability. On the other hand, from (Clément and Gloter, 2020, section
3.2.2.), we have

sup

— | 713
(o.B)eW™ nl/Blogn \ I," (no, o, B)

1 (fnl’z(#o,tf,ﬁ))H

is tight and since

sup n'/Flogn (0'—0'0) (logn)? sup b
2/B-1 - =Y Be-1/2
(opewyn | BB = Fo B e
(logn)? 2
< WCXP((IOE%”) /Nn) — 0,

the second term in the Taylor’s expansion above converges to zero.
1/89-1/2
n

Now, for the tightness of (logn)?

(1% — up), we proceed as follows. Since G, (%) = 0, by Taylor’s
expansion, we get

1
_9/R30 —~
Gn(po) = —n'"2/Pn /O 02 (o + 1(TS — p0), 0, B0 dr (i) — o).

Then, reusing the decomposition of G, (1) in (5.37) and its arguments for its convergence above, com-
bined with ug-consistency of 2 proven above and the fact that nl—z/ﬁoaf,fn (uo + (1 — po), 2, AB)
converges to non-singular 7 -1 () in probability uniformly from (Clément and Gloter, 2020, section

3.2.2.), the proof is completed. O
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