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Abstract—We propose, in this paper, a comprehensive study
on risk assessment related to car insurance, based on claim and
telematics data, collected from a dataset of voluntary drivers. Our
work addresses experimental settings not covered before in the
state of the art, such as the collection of telematic data within a
period significantly after the claim reporting one, and coping with
much more unbalanced data owing to the rarity of the claim class.
To address these issues, we propose weighted XGBoost models
that model the telematic-based features, represented as tabular
feature heatmaps and mitigate the class unbalanced problem.
Our heatmaps encore not only speed-acceleration distributions,
but also speed-jerk (acceleration derivative) distributions, not
considered in previous studies. To ensure model interpretability,
we assess the importance of each feature in order to reveal the
telematic features that are most discriminant for claim detection.
Owing to rarity of the claim data, we propose also one-class
machine learning models, namely 1-class SVM and Isolation
Forests, trained only on the most dominant class, the samples
from the underrepresented one being assessed only in the test
phase and considered as outliers or anomalies. In addition,
we propose a novel unsupervised machine learning strategy
consisting of a two-stage clustering scheme that not only allows to
infer a driver signature and estimate, through sound information-
theoretic measures, how stable a driver behavior is, but also
uncovers the correlation between driver groups (clusters) and
claim distributions. The first clustering stage uncovers behavioral
clusters, i.e. monthly-based heatmap prototypes, irrespective of
drivers, while the second uncovers yearly based driver clusters
with similar behavior w.r.t the first-level clusters. We obtain
promising results given the adverse conditions considered and we
provide guidelines in the conclusion for developing more effective
driving risk assessment based on telematic data.

Index Terms—Car insurance, Claim detection, Telematics,
Machine Learning, Interpretability

I. INTRODUCTION

A. Context and motivation

Driving insurance is a fundamental component of modern
society as it provides protection and peace of mind to individ-
uals and businesses alike. Traditional methods for assessing
risk and setting premiums have relied, for many years, on
policies such as bonus-malus. Early studies on risk assessment
in the insurance industry have relied on traditional risk factors
such as age, gender, and driving record to determine premium
pricing. These risk factors, however, are too broad and do
not accurately reflect individual driving behavior, leading to
overpricing for some individuals and underpricing for others.

According to a recent literature review [1] on risk assessment
in insurance industry, such risk factors are limited in their
ability to accurately predict individual risk.

To enhance risk assessment and pricing strategies, the
insurance industry has been recently exploring cutting-edge
technologies to collect telematics data as they provide a
comprehensive view of driver behavior. By leveraging smart
devices like GPS trackers, smartphones, and in-vehicle embed-
ded sensors, telematics can capture key information such as
speed, acceleration, braking, and location. Telematics can also
provide additional contextual data such as driven distance, day
time, and weather conditions, which can further improve risk
assessment. This technology has given rise to alternative in-
surance models like Pay-As-You-Drive (PAYD) or usage-based
insurance (UBI) [27], whereby policyholders install telematics
devices in their vehicles and receive premium discounts in
return. Telematics technology, therefore, enables insurance
companies to personalize pricing and risk assessment by
adjusting premiums based on policyholders’ driving behavior
and usage, ensuring thereby a personalized pricing model
based on individual risk profiles. This new policy making
has been boosted recently by French regulations which, in
September 2021, gave the green light to telematics data in
car insurance pricing, subject to guidelines and regulations set
and controlled by the French data protection authority [9].
In the telematics-based insurance literature, safety variables
related to road accidents have been identified as key factors
for assessing personalized risk and providing a more compre-
hensive coverage of driving behavior, leading to a reduction
in the frequency and severity of claims [18] [17] [30].

Numerous studies have investigated the relationship be-
tween mileage and accident risk. Verbelen et al. (2018) [37],
for instance, considered multivariate exposures as compo-
sitional variables, while Paefgen et al. (2014)[31] grouped
mileage based on various factors. Ayuso et al. (2016b) [4]
[2] used a Weibull regression in a survival model to examine
the distance traveled before a first accident caused by the
driver, revealing that night driving and speeding are risk
factors of an accident. Gender differences in accident risk were
explored by Ayuso et al. (2016a), who found that they were
primarily due to variations in vehicle usage, with men driving
more frequently than women. Ayuso et al. (2019) [3] further



incorporated data on driving habits, such as the percentage
of distance driven at night, above speed limit, or in urban
areas. Lemaire et al. (2016) [25] found mileage to be the most
significant predictor of the number of at-fault claims based on
data from a Taiwan insurer. Finally, Boucher et al. (2017)
[6] examined the non-linear effects of duration and distance
exposure on accident risk using a generalized additive model.

Recent studies on behavioral telematics can be categorized
in two ways, according either to the type of tasks they are
targeting, or to the type of risk assessment methods they
rely on. In task-based categorization, we distinguish mainly
three categories: Classification to predict claims occurrence
[33], Estimation of claims frequency [38], [12](2022), [11]
[15], [41], [14], and Classification to predict claims based
on past claims frequency. The Second categorisation is based
on the type of models used for risk assessment, namely
actuarial models, Machine Learning (ML) models, and Deep
Learning (DL) models. One popular method used in actuarial
science is Generalized Linear Models (GLMs), used to model
the frequency of claims using risk factors and telematics
data. Some use telematics data to create speed-acceleration
heatmaps (probability distributions), first introduced in [38]
to identify driving styles and predict claims frequency. In
addition to speed-acceleration heatmaps, these studies also
utilized the encoded data to extract features and model claims
frequency using GLMs and covariates. These models were
used to identify driving behavior patterns and to predict the
likelihood of claims. Similar studies, including [14] [11] [15],
[39], have demonstrated that analyzing telematics data in this
manner can effectively recognize driver behavior patterns and
anticipate potential claims. Regarding machine learning (ML)
approaches for auto insurance modeling, various methods,
such as logistic regression, XGBoost, random forest, decision
trees, naive Bayes, and KNN, have been proposed to predict
claim occurrence [21]. A Tree-based ML method has been
proposed in [22] to uncover insights in insurance tariff plans.
The ML category has gained increasing attention recently as
illustrated by the review for pricing and reserving in [5] that
reviews the applications of ML to actuarial science. The deep
learning category is not yet as popular since it usually requires
modeling directly the raw data which is not straightforward
given the huge spatio-temporal data streams associated with
telematic data. To overcome this issue, a DL-based model
has been proposed in [13] by proposing a Convolutional
Neural Network (CNN) that takes as input images obtained
by aggregating the telematic data into heatmaps. The studies
above have shown that GLMs can provide promising results
in modeling claims frequency. These models, however, require
human actuarial expertise to identify the relevant variables
and the linearity assumptions between variables may not
always hold. ML models, by contrast, do not require expertise
knowledge in actuarial science and they are able to learn
complex non-linear mapping functions between the input and
the output, although they rely on features extracted in a
handcrafted way from telematic data. Despite the potential
of Deep learning models to overcome this issue by modeling

the raw data, the huge spatio-temporal resolution of the long
telematic input stream and the large noise it exhibits make
such a modeling a challenging task.

B. Proposed work

Our proposed work lies in the category of past claims-based
prediction by leveraging telematic data and machine learning.
The state of the art is very limited for this category as very
few studies seek to correlate driving behavior to claims not
occurring necessarily in the driving period but prior to this
period. Thus, such telematic data-past claims association is
hard to find as past driver experience may not be significantly
correlated with future claims. An accident, for instance, may
change significantly driver behavior to avoid subsequent risks.
From this viewpoint, our work is similar to [15], which also
models past claims. However, our work is different in several
ways. First, in [15], the driving period considered in the
experiments was three months from 01/05/2016 to 31/07/2016,
with reported claims from 01/01/2014 to 29/05/2017, while in
our experiments, the driving period was from December 2020
to December 2022, with reported claims from 2016 to 2021,
with only 20% of the claims occurring during the two year
driving period and 60% occurring more than two years earlier.
This means that, on average, a claim in our study occurs a
large period before the driving experiment starts, which may
decrease the correlation between telematics and claims. Also,
in [15], the average claims frequency is 0.24 per year per
car/driver, while in our data, this ratio is 0.011. As pointed
out in [15], the ratio of 0.24 is much higher than typically in
Europe. This makes our data much more unbalanced in terms
of claims occurrence w.r.t non-claims. An additional difference
is that, while [15] propose to estimate claims’ frequency based
on actuarial models, our task is to classify a telematics-based
driver behavior into two classes: (past) claim or none. While
these facts show that our data are extremely adverse to any
machine learning model, this reflects the type of data that can
be collected for such studies from random voluntary drivers.
The considerations above have guided us to consider ML
models that are suitable for classifying telematic data aggre-
gated into heatmaps in a similar way as the state of the art.
Our heatmaps, however, encore not only speed-acceleration
distributions, but also speed-jerk distributions, which has not
been considered in the previous studies. Jerk corresponds
to the derivation of the acceleration and thus encodes the
hesitations or acceleration-deceleration transitions that may
characterize some drivers. As these aggregated telematic data
generate tabular features, we propose XGBoost models that
not only have been demonstrated to outperform DL models for
such kind of input [16], but also have good ability to cope with
unbalanced class distribution through their weighted training
model version. To ensure the explainability of our models,
we estimate the importance of each feature in order to reveal
the telematic features that are most discriminant for claim
detection. Although our XGBoost models show promising
results, the very limited amount of claim data and the severe
unbalanced class distribution issue it entails have guided us
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to propose one-class supervised ML models, namely one-class
SVM and Isolation Forests, trained only on the most dominant
class, the underrepresented one being assessed only in the test
phase and considered as an anomaly class. For both classifica-
tion schemes, we use as evaluation metrics, AUC (Area under
the Curve), F1 score and BalancedAccuracy which is more
reliable for unbalanced class distribution settings. To cope
with the unbalanced class distribution problem, we propose
also a novel unsupervised ML technique consisting of a two-
stage clustering scheme that not only allows inferring a driver
signature and estimate, through sound information-theoretic
measures, how stable a driver behavior is, but also uncovers
the correlation between driver groups (clusters) and claim
distributions. The first clustering stage uncovers behavioral
clusters, i.e. monthly-based heatmap prototypes, irrespective of
drivers, while the second uncovers yearly-based driver clusters
with similar behavior distribution over the first-level clusters.

To summarize, our contributions are as follows: 1) We
extract a wide range of features from the raw second-by-
second telematic data by considering longitudinal and transver-
sal speed, acceleration and jerk, aggregated at the year, month
and week levels; 2) We propose a two-class weighted XGBoost
that accommodates the heavily unbalanced class distribution;
3) We propose a one-class supervised scheme that does not
require training on the underrepresented class (claims) and
treat claim detection as an anomaly detection problem; 4) We
propose a novel two-stage unsupervised model that not only
infers driver signature but also correlates driver groups with
claim distribution through information-theoretic measures; 5)
we estimate the importance of the extracted features for claim
detection to make our models explainable.

Our paper is structured as follows. Section 2 describes
the data and details the feature extraction process. Sections
3 and 4 present the details of, respectively, the XGBoost
and one-class models, used for classification along with the
experiments and the results obtained. Section 5 details our two-
stage unsupervised scheme proposed to infer driver signature
and to correlate driver groups with claim distribution. Section
6 concludes the paper.

II. METHODOLOGY

A. Dataset

Our telematic dataset consists of GPS location data, speed,
acceleration, in all directions, collected on a second-by-second
basis from smart devices installed on cars of voluntary drivers.
A total of 1032 drivers/cars have participated in the study and
their telematic data were collected over up to two years of
driving experience from December 2020 to December 2022,
generating over +10 M second-per-second data. The speed,
x acceleration (longitudinal), and y acceleration (horizontal)
ranges are, respectively, [0, 250] km/h, [-1400, 1400] mg and
[-1000, 1100] mg. Based on the instantaneous acceleration at
time t, A(t), we extract the instantaneous jerk at time t, J(t).
The x and y jerk at time are defined as:

Jx(t) = Ax(t+ 1)−Ax(t) (1)

Jy(t) = Ay(t+ 1)−Ay(t) (2)

The jerk encodes the rate of acceleration change and thus
encodes driver hesitations related, for instance, to traffic jam,
or unexpected events. It may, therefore, be relevant for risk
assessment.

B. Telematics Heatmaps-based Feature Extraction

From these raw data, we extract global features by aggre-
gating the instantaneous values into buckets, i.e. rectangular
intervals, where a horizontal interval corresponds to a specific
speed range, and a vertical interval corresponds to, respectively
a specific acceleration interval or jerk interval. For speed,
hereafter referred to by V (velocity), based on the following
segments [0:30], [30:90],[90:130] associated, in France, to Ur-
ban zone, Extra Urban zone, and Motorway zone respectively,
we consider seven finer intervals for the generation of our
heatmaps. The intervals are defined by these thresholds: [0,
30, 60, 90, 110, 120, 130, 250]. Likewise we generate 16
intervals for Ax, Ay , J x and J y.
Ax : [-1400, -850, -650, -450, -350, -250, -150, -50, 0, 50,

150, 250, 350, 450, 650, 850, 1400]
Ay: [-1400, -850, -650, -450, -350, -250, -150, -50, 0, 50,

150, 250, 350, 450, 650, 850, 1200]
J x and J y : [-1000, -450, -400, -350, -300, -250, -150,

-50, 0, 50, 150, 250, 300, 350, 400, 450, 1100]
According to these segmentations, we generate four

heatmaps : V − Ax, V − Ay , V − J x, and V − J x, by
aggregating the associated buckets over one week, one month,
or one year. The dimension for each map for each duration
is 112 as the horizontal axis consists of 7 intervals and the
vertical axis always consists of 16 intervals. The reason for
this gross aggregation is threefold. First, it allows reducing
the huge dimensionality associated with second-by-second
telematic data, that is unmanageable directly. Second, such
reduction allows the use of machine learning models which
otherwise would not be possible as, in this case, the dimension
would be much larger than the number of observations. Third,
it allows to mitigate the huge noise inherent to embedded
sensors on cars, and the large non-stationarity of the telematic
data stemming from various factors such as daily route state
and weather conditions, traffic jam levels, week days, etc.

III. PAST CLAIMS FREQUENCY DETECTION

We describe in this section our claim classification ap-
proach. After detailing how we encore the claim data, we
describe our weighted XGBoost model and present the ex-
periments and the results obtained.

A. Encoding of Claim Data

Table I shows the distribution of claims in the training and
test datasets, at the yearly, monthly and weekly driving periods
(aggregation levels). The table shows the number of driving
periods and their distribution at different levels of claim
responsibility. In the context of insurance, the degree of driver
responsibility refers to the degree to which an insured party
is at fault or responsible for a claim. It is attributed the value
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Fig. 1: Caption

Fig. 2: Heatmap

of 1, 0.5 or 0 depending on whether the driver has total, 50%
or no responsibility, respectively. The level of responsibility
we consider in this study refers to the accumulated degree
of responsibility over the six year report claim period. Please
note that drivers with no claims and those with claims but
involving null responsibility are merged into one class (Level
of Responsibility = 0). According to this encoding scheme,
we obtain in our dataset seven claim levels of responsibility
lr(i) for i = 0, 1, ...6, with lr(i) = (0, 0.5, 1, 1.5, 2, 2.5, 3.5).
Owing to the severe under-representability of the positive
levels of responsibility, we merge them into one class: the
claim class. In the table, the count regarding the merged claim
class corresponds to the symbol R+ (i.e. lr(i) > 0). Despite
this merging, the claim class remains heavily underrepresented
as it account for less than 9% of the driving periods.

B. XGBoost models: V −Ax / V −Ay / V − Jx / V − Jy

Although the trend in machine learning for prediction tasks
on large datasets is to use deep neural networks as they are able
to model complex non-linear hierarchical mappings between
the input and the target output, it has been shown recently [16]
that tree-based models, and XGBoost in particular, outperform
deep models when the input data are in the form of tabular
features. Our input telematics-based heatmaps are indeed
tabular data and are characterized by significant uninformative
features and irregular patterns in the input-target mapping as
a result of the large time gap that might exist between the
driving period and the claim period, and the non-availability
of key contextual features such as the speed limit in different
driving zones. Owing to these reasons, we propose XGBoost
models [7] that not only have been demonstrated to outperform
DL models for such kind of input, but also have good
ability to cope with unbalanced class distributions through
their weighted training model version. XGBoost is a scalable
and fast implementation of gradient boosting, that consists of
training an ensemble of shallow decision trees, where each
iteration harnesses the error residuals of the previous tree
model to train the next one. It can be used for classification
or regression, and the final prediction is a weighted sum of all
the tree predictions. Weighted XGBoost assigns to the samples
weights that are inversely proportional to their class frequency
in the training set. As the claim data represent less than 9%
in the training data, these samples get much higher weights in
the XGBoost loss function than the normal data do.

C. Model Evaluation

1) Tuning of the XGBoost hyperparameters : The training
of XGBoost consists of jointly fitting the trees and optimiz-
ing the model hyperparameters. Chief among the latter are
the number of trees to fit, the fraction of features to be
randomly sampled for each tree, and the maximum depth
of a tree, but there are other important hyperparameters as
well such as the learning rate and the regularization terms.
Each hyperparameter has a specific range of possible values
chosen according to the XGBoost implementation, with the
optimal value being dependent on the characteristics of the
dataset at hand. Optimizing these hyperparameters is key
to achieve optimal performance as this will ensure the best
tradeoff between underfitting and overfitting. To perform such
an optimization, we adopt a 3-fold cross-validation scheme,
by dividing the training dataset into three equal subsets. It is
worth noting that the split is performed in a stratified way
to keep the same distribution in terms of claims’ frequency
over the three subsets, in order to avoid optimisation bias. For
each hyperparameter combination, each subset is used as a
validation fold to evaluate the model while the remaining two-
thirds are used to fit the model trees, the overall evaluation
performance being the average performance over the three
validation subsets. By trying different combinations of the
hyperparameters using a grid search, we can find the optimal
combination that produces the best average performance on
the three validation subsets. Once this combination is found,
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Fig. 3: Drivers signature generation process: row data preprocessing

TABLE I: Aggregation Distribution

Aggregation Level Train Test

Annual {0 : 1171} {0 : 507}
{0.5 | 87, 1.0 | 4, 1.5 | 2, 2.0 | 10, 2.5 | 6, 3.5 | 1,R+ | 110} {0.5 | 34, 1.0 | 2, 1.5 | 2, 2.0 | 4, 2.5 | 1, 3.5 | 2,R+ | 45}

Monthly {0 : 8207} {0 : 3656}
{0.5 | 626, 1.0 | 25, 1.5 | 7, 2.0 | 63, 2.5 | 40, 3.5 | 8,R+ | 769} {0.5 | 215, 1.0 | 18, 1.5 | 14, 2.0 | 33, 2.5 | 12, 3.5 | 21,R+ | 313}

Weekly {0 : 29378} {0 : 13037}
{0.5 | 2248, 2.0 | 222, 2.5 | 155, 1.0 | 89, 1.5 | 18, 3.5 | 18,R+ | 2750} {0.5 | 759, 1.0 | 71, 2.0 | 102, 3.5 | 85, 2.5 | 52, 1.5 | 41,R+ | 1110}

we train, with the optimal hyperparameters, a new XGBoost
model on the whole training dataset, as splitting the training
dataset is no longer needed, and it is important to leverage the
whole training data available for fitting the trees.

2) Results : Table II shows the results obtained with
our weighted XGBoost algorithm based on the different
Telematics-based features proposed in this study, namely,
V −Ax, V −Ay , V −Jx, and V −Jy , heatmaps, extracted at
the year, month and week levels. The sizes of the training|test
datasets at the year, month and week levels are 1281|552,
9012|3988, and 32128|14147, respectively. As the split of the
training and test datasets are done in a stratified way, all
the sets above comprise the same ratio between the claim
and normal data, roughly 9%. The results are expressed in
terms of the BalancedAccuracy (BA), Area under the Curve
(AUC), Precision, Recall, and the F1 score. These metrics
are defined as follows:

Specificity =
True Negatives

True Negatives+ False Positives

Recall = Sensitivity =
True Positives

True Positives+ False Negatives

BA =
Sensitivity + Specificity

2

AUC =
n−1∑
i=1

(TPRi + TPRi+1)× (FPRi+1 − FPRi)

2

where FPR i represents the false positive rate and TPR i
represents the true positive rate at the i-th threshold.

Precision =
True Positives

True Positives+ False Positives

F1 Score = 2× Precision×Recall

Precision+Recall

Specificity is the proportion of correctly predicted negative
instances (Class 1: normal) out of all actual negative instances.
A high Specificity indicates a model with low rate of falsely
classifying normal as actual claims. Precision is the propor-
tion of correctly predicted positive instances (Class 1: claims)
out of all instances predicted as positive. A high Precision
indicates a model with low rate of falsely predicting claims
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when the instances are actually normal. Recall (also known
as Sensitivity or true positive rate) is the proportion of
correctly predicted positive instances (Class 1: claims) out
of all actual positive instances. A high Recall indicates a
model with low rate of falsely classifying actual claims as
normal. The F1 score is the harmonic mean of Precision and
Recall, providing a single metric that balances both measures.
The F1 score is high when both Precision and Recall are
high, indicating a good balance between correctly predicting
claims and avoiding false positives and false negatives. BA is
a reliable measure when there is large unbalance distribution
between negative class (here, normal: 9̃2%) and the positive
class (here, claims: 9̃%). Tu understand this, let us consider
the traditional Accuracy metrics, defined as the proportion
of well classified instances irrespective of their class (normal
or claims). Assume we consider a blind classifier that always
assign a test instance to the dominant class (normal). In such
a setting, the accuracy obtained is 92%, a high rate that is
nonetheless misleading as the classifier never detects a claim.
By contrast, BA in this case is merely 50% as Specificity =
100% but Recall = 0%. Thus, BA has reliable interpretation
to assess how a model behaves w.r.t a blind classifier, while
taking the under-represented (rare) class on equal footing with
the dominant one. In our presentation of the results, we will
emphasize mainly BA even though we report also AUC and
F1 as they are also popular metrics of the state of the art.

As observed in Table II, the best results, in terms of BA,
are obtained at the year level with Ax and Ay and are about
62%. This is a very promising result given the rarity of the
claim class, with a significant improvement of 12% over the
blind classifier. Jx and Jy also bring improvements but less
significantly. Jx is 3% better than Jy , reflecting the fact that
longitudinal (driving direction) acceleration-deceleration hesi-
tations are more correlated to claims. At the month levels, the
performance with Jerk becomes better than with acceleration
as the latter is behaving merely as a blind classifier. This may
reflect the fact that the monthly acceleration heatmaps become
so noisy and unstable that their correlation with claims be-
comes low. Jerk, it turns out, does keep some correlation with
claims but to a significantly lower extent w.r.t the year level.
The instability stems for underlying factors, such a possible
vacation periods and special events, not taken into account in
the study. At the week level, both acceleration and jerk provide
performance similar to a blind classifier, hinting to their high
noisiness and inability to capture relevant information for
detecting claims. The reasons why some performances at the
month and week level are poor lie in the fact that considering
heatmaps at such time resolutions introduces high amount of
noisiness that might stem from driver behavior change due to
seasonal changes, vacation periods, or whether the car was
driven mainly by a different driver. Such changes are usually
dissipated over the annual period.

Although the models based on year aggregation suffer less
from the factors above, they still operate under adverse effects
like the rarity of the claim class, and the non-availability
of key contextual information such as speed limit. As an

example, a speed of 60 km/h is normal in an extra-urban zone
while it far exceeds the limit in an urban zone (30 km/h). If
the speed limit were available, considering, as feature, speed
difference w.r.t the limit instead of absolute speed would have
likely lead to significantly better results. Despite these negative
factors, our model was able to provide promising results by
detecting a significant number of claims. Concretely, the Ax

based model has a Recall of 73% as it detects 33 claims
over 45. An instance is classified as a claim if the XGBoost
output probability score is higher than the threshold of 0.5.
We may be tempted to change this threshold and retain the
one maximizing the Recall, under the constraint that the
Specificity does not decrease significantly. We have carried
out such an experiment and we report the results in Figure 4.
As observed, lowering the threshold doe increase the Recall,
allowing it even to reach 100% for a threshold ≤ 0.35, but this
comes at the expense of a sharp decrease of Specificity. The
figure shows, in particular, that 0.5 is the threshold allowing
for the optimal trade-off between Specificity and Recall as
reflected by the maximum BA obtained.

A natural strategy to seek further improvements of the re-
sults above is to fuse the Acceleration and Jerk based models.
This fusion can be score-based or feature-based. The former
consists of fusing the scores output by the combined models
while the latter consists of concatenating the feature vectors to
fuse and input them to a single XGBoost model. The bottom
part of Table II shows such results when combining Ax and
Ay . As shown, whether the fusion is score-based or feature-
based, no improvement is obtained for the different driving
periods considered. The other fusion experiments, considering
two or more feature types, have not led to improvements either
and are not shown in the table. This may be explained mainly
by the small number of claims in the test set and by the fact
that a large number of them is already detected prior to fusion
(Recall = 33/45 with Ax), and that the remaining ones may
be due to other factors such as the absent of the context, etc.
These are preliminary results and other more sophisticated
fusion schemes [26] [10] [24] might be considered in the
future, by training, for instance, a neural network that takes as
input all the features types and learn how to combine them in
a non-linear way. Prior to this, nonetheless, a large number of
claims should be added to the dataset, to measure the effect
of fusion and other enhancement strategies.

D. Shap Values

The SHAP (SHapley Additive exPlanations) [29] explana-
tion technique is recent method that allows for interpreting the
predictions of machine learning models, considered as black
boxes, by quantifying the impact of individual features on the
global model predictions, or on the model’s prediction for a
specific instance. These feature contributions are referred to as
the SHAP values. This knowledge may empower us to make
informed decisions, identify influential factors, detect potential
biases, and improve the transparency and trustworthiness of
our model’s outputs. In this section, we show our assessment
of the importance of each feature input to our XGBoost model.
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TABLE II: Accuracy metrics obtained with the weighted
XGBoost model. SF stands for Score Fusion while FF stands
for Feature Fusion

BA AUC Precision Recall F1

Ax year 0.615 0.576 0.95 0.50 0.65
0.11 0.73 0.20

Ay year 0.619 0.563 0.97 0.39 0.56
0.11 0.84 0.19

Jerkx year 0.592 0.591 0.95 0.45 0.61
0.11 0.73 0.19

Jerky year 0.560 0.571 0.94 0.43 0.59
0.10 0.69 0.17

Ax month 0.522 0.549 0.93 0.78 0.85
0.09 0.27 0.14

Ay month 0.481 0.475 0.92 0.80 0.86
0.07 0.16 0.09

Jerkx month 0.547 0.571 0.93 0.61 0.74
0.10 0.49 0.16

Jerky month 0.547 0.573 0.93 0.76 0.84
0.11 0.34 0.16

Ax week 0.524 0.551 0.93 0.84 0.88
0.10 0.21 0.14

Ay week 0.484 0.476 0.92 0.73 0.82
0.07 0.24 0.11

Jerkx week 0.549 0.563 0.94 0.44 0.60
0.09 0.66 0.16

Jerky week 0.515 0.522 0.92 0.69 0.79
0.09 0.34 0.14

SF (Ax, Ay) year 0.578 0.566 0.94 0.47 0.63
0.10 0.69 0.18

FF (Ax, Ay) year 0.518 0.564 0.92 0.59 0.72
0.09 0.44 0.15

SF (Ax, Ay) month 0.492 0.509 0.92 0.84 0.88
0.07 0.14 0.09

FF (Ax, Ay) month 0.521 0.532 0.93 0.66 0.77
0.09 0.38 0.14

SF (Ax, Ay) week 0.49 0.496 0.92 0.86 0.89
0.07 0.12 0.09

FF (Ax, Ay) week 0.503 0.542 0.92 0.90 0.91
0.08 0.11 0.09

To understand which feature has significant importance, we
compute the average future contribution as Avg = 1/112, as
feature dimension = 112. A feature importance is expressed
in terms of how much it is higher than Avg. In our dataset,
the acceleration is measured in mg, g being gravity accel-
eration. To ease interpretabilty, we define three acceleration
types: Soft, Medium and Intense. Concretely, we categorize
Braking intensity and Acceleration into different levels. Soft
braking is characterized by an acceleration between 0 and -
450 m/s2, Medium braking by the range of -450 to -650
m/s2, and Intense braking by the range of -650 and -1400
m/s2. Similarly, Soft acceleration refers to a gradual increase
in speed, with an acceleration range from 0 to 450 m/s2,
Medium acceleration, with a range from 450 to 650 m/s2,
and Intense acceleration with a range from 650 to 1400 m/s2.
Each result is associated with a specific speed , acceleration/
braking combination of Heatmap features values.

Figure 5 shows the 20 most important features, from top to
bottom in decreasing order, according to their global impact
on the model output on the normal/claim prediction task on the
test set, when considering the V −Ax feature map consisting
of 112 features overall. The vertical position of each feature

Fig. 4: Specificity, Recall, and Balance Accuracy as a
function of the decision threshold

correspond to its rank among the best features. This is reflected
by the global SHAP value along side it (e.g. top feature: -
A50:0-S60-90 : 0.1). Associated with each feature name is
a horizontal bar, with colors represented in shades between
blue and red, corresponding to the values that this feature has
taken on the different instances on the test set. High positive
values correspond to bright shades of red, while high negative
values correspond to bright shades of blue. Darker shades of
red and blue correspond to moderate positive and negative
values respectively. Associated with these feature values are
their SHAP values, i.e. their importance or contribution on
the model prediction. These SHAP values, shown on the
horizontal axis, represent the direction and magnitude of the
features’ impact on the model’s output. A positive feature
value v indicates that it has a positive contribution of v towards
predicting the claim class, and vice versa. When a feature has
a negative SHAP value, this means that the feature value is
associated with a decrease in the model prediction of the claim
class, albeit this does not necessarily imply that the normal
class will be output as this depends on the other features as
well. Similarly, when a feature has a positive SHAP value, this
means that the feature value increases the model prediction of
the claim class, albeit this does not guarantee the prediction
of this class. As far as the amplitude is concerned, the larger
(farther from the origin) the SHAP value, the higher the impact
of the feature value on the model output.

According to Figure 5, we draw the following interpreta-
tions for the 10 top features:

• ’-A50:0-S60-90’ indicating soft braking with a speed
range of 60-90 km/h is the most important feature
overall. Its SHAP value, 10%, has more than 10 times
feature importance, w.r.t Avg, for claim prediction.

• ’A350:250-S60-90’ corresponds to soft acceleration with
a speed range of 60-90 km/h (SHAP = 9%).

• ’-A350:250-S60-90’ denotes soft braking with a speed
range of 60-90 km/h (SHAP = 9%).
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Fig. 5: SHAP Values Global Summary Ax

• ’A250:150-S0-30’ signifies soft acceleration with a speed
range of 0-30 km/h (SHAP = 7%).

• ’A150:50-S60-90’ indicates soft acceleration with a speed
range of 60-90 km/h (SHAP = 5%).

• ’A450:350-S0-30’ represents soft acceleration with a
speed range of 0-30 km/h (SHAP = 5%).

• ’A150:50-S120-130’ signifies soft acceleration with a
speed range of 120-130 km/h (SHAP = 4%).

• ’-A150:50-S120-130’ indicates soft braking with a speed
range of 120-130 km/h (SHAP = 4%).

• ’A250:150-S130-250’ corresponds to soft acceleration
with a speed range of 130-250 km/h (SHAP = 3%).

For five of the top seven features, more in-depth interpre-
tations can be drawn. Overlooking features ’-A50:0-S60-90’
and ’A450:350-S0-30’ for which no clear trends emerge, we
make the following interpretations for the remaining ones:

• ’A350:250-S60-90’: Drivers in the normal class tend to
have high values in the speed segment S60:90.

• ’-A350:250-S30-60’: Drivers in the claims class tend to
perform frequent soft braking in the speed zone S30-60.
The frequency of braking is higher compared to drivers
in the normal class.

• ’A250:150-S0-30’: Drivers in the claims class tend to
have high values in bucket, indicating potential frequent
traffic congestion. This is associated with low accelera-
tion and weak braking.

• ’A150:50-S60-90’: Drivers frequently driving in the
speed zone S60-90, with low , representing a low risk.

• ‘A150:50-S110-120’: Drivers in the normal class are
characterized by frequent driving in the speed zone S110-
120, with low acceleration values.

8



IV. ONE CLASS ANOMALY DETECTION

In this section, we propose a new one-class supervised
scheme for telematic-based risk assessment. This scheme does
not require training on the underrepresented class (claims) as
it treats claim detection as an anomaly detection problem. One
class ML models seek identifying the anomalous data as those
that lie on the decision boundaries inferred by training on the
over-represented class only. Considering the one-class scheme
offers key advantages from a modeling standpoint. First, as the
claim data are very rare, the one-class model allows to put all
of them in the test phase, making the results obtained much
more representative than, say, if only 30% of the claim data
were used for test and the remaining 70% for training. Second,
it will give insights on how similar the behaviors of drivers
without any claims are, and whether the behaviors of drivers
with registered claims lie at the decision boundaries or not.
In other words, this will allow us to investigate on whether
drivers with claims show a driving behavioral pattern that is
different from the pattern of drivers without claims. For this
investigation, we consider two of the most popular one-class
ML models, namely one-class SVM and Isolation forest.

A. One class SVM

One-Class SVM [34], a variant of Support Vector Machines
(SVM), is used for outlier detection. It is an unsupervised
model that seeks identifying the smallest hypersphere that
comprises the bulk of data points while allowing some points,
considered as outliers, to lie outside. The decision function
for One-Class SVM is defined as: f(x) = sign(wTϕ(x)− b).
The optimization problem can be solved using quadratic
programming. Once the weight vector w and the bias term
b are found, the decision function can be used to classify new
data points as either inside the hypersphere or outside it.

B. Isolation Forest

Isolation Forest [28] is an unsupervised ML model used
for anomaly detection. It is based on the concept of isolating
anomalies (outliers) from normal data points by randomly
partitioning through a binary tree structure. It relies on two
main concepts: isolation and path length. Isolation is a measure
of how easy it is to separate a data point from the rest of the
dataset. Path length is a measure of how many partitions (or
splits) it takes to isolate a data point. The lower the anomaly
score, the more anomalous the data point is.

C. Experiments

To assess the performance of our one-class models, we use
the whole claim data in the test set as none is considered in the
training phase. The training and test sets regarding the normal
(no claim) class remains the same as before. According to
these settings, for the yearly data, the training and set sizes for
class 0 (no claim) are 756 and 504 heatmaps while the test size
for class 1 (claims) is 155. For the monthly data, these sizes
are 5305, 3575 and 1084 respectively. For the weekly data,
the sizes are 18890, 12725 and 3860 respectively. Tables ??
and ?? show the balance accuracy when testing one-class SVM

and Isolation Forest respectively, on the weekly, monthly and
yearly test sets. As observed, the best performance is obtained
with Isolation Forest on the year data and reaches 53.2% of
BA, which is barely above a random classifier achieving 50%.
The results obtained are far below those obtained with the 2-
class weighted XGBoost classifier. This implicitly reflects the
fact that most claim data in the test set are not located at the
boundaries of the normal data identified by one-class SVM
or Isolation Forest. To confirm this intuition, we visualize,
trough the t-SNE projection technique [36], the normal and
predicted anomaly data according to one-SVM for the yearly,
monthly and weekly data (Figures 6, 7, and 8 respectively).
As observed, while the one-class SVM makes a good job as
identifying outliers (figures in the middle), associating these
outliers with claims is barely effective as the claims data
strongly overlap with the normal data and barely lie at the
boundaries (figures on the left). Even when we restrict the
one-class SVM to identify only the 10% percentile of outliers,
the latter barely overlap with the actual claims for the same
reasons. The same observations can be drawn for the Isolation
Forest algorithm as illustrated by Figures 9, 10, and 11 (for
which the right figures have been dropped).

TABLE III: One-class SVM results for Ax speed

Data Metric BA Class Precision Recall F1

week 0.515 class 0 0.77 0.99 0.87
class 1 0.54 0.04 0.08

month 0.508 class 0 0.77 0.98 0.86
class 1 0.38 0.03 0.06

year 0.517 class 0 0.77 0.98 0.86
class 1 0.43 0.06 0.10

TABLE IV: Isolation Forest results for Ax speed

Data Metric BA Class Precision Recall F1

week 0.517 class 0 0.77 0.93 0.85
class 1 0.32 0.10 0.15

month 0.520 class 0 0.78 0.94 0.85
class 1 0.34 0.10 0.16

year 0.532 class 0 0.78 0.96 0.86
class 1 0.46 0.10 0.17

V. DRIVERS STABILITY ASSESSMENT

The previous sections and the experiments therein have
highlighted some issues with supervised 2-classes and 1-
class models. The former assume a good separability between
the two classes while the latter assume that claim data lie
mainly at the boundaries of the normal data distribution. These
assumptions, however, are barely supported by the results
obtained: for the 2-classes setting, the results are promising
given the heavily unbalanced class distribution but detecting
a large proportion of claims is only obtained at the expense
of misclassifying a large proportion of normal data. For the
1-class setting, the results show that the claim data barely
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Fig. 6: Anomaly detection by the one-class SVM on the test at the year level: (a) actual distribution of normal (blue) and
claim (red) data; (b) the distribution of normal (magenta) and claim (yellow) data as detected by the model; (c) the same
distribution by retaining only 10% percentile of the anomaly data

Fig. 7: Anomaly detection by the one-class SVM on the test at the month level: (a) actual distribution of normal (blue) and
claim (red) data; (b) the distribution of normal (magenta) and claim (yellow) data as detected by the model; (c) the same
distribution by retaining only 10% percentile of the anomaly data

lie at the boundaries as most show strong overlapping with
the normal data. For these reasons, we propose a different
modeling, inspired from works characterizing Alzheimer’s
disease from online handwriting [40] [23], that does not
seek to discriminate claim from non-claim data, but rather
detect homogeneous groups w.r.t behavior driving, and then
analyse whether these groups are informative regarding claims
or not. To this end, we propose a novel unsupervised ML
technique consisting of a two-stage clustering scheme that not
only allows to infer a driver signature and estimate, through
sound information-theoretic measures, how stable a driver
behavior is, but also uncovers the correlation between driver
groups (clusters) and claim distributions. The first clustering
stage uncovers behavioral clusters, i.e. monthly-based heatmap
prototypes, irrespective of drivers’ identities, while the second
uncovers yearly-based driver clusters with similar behavior
distribution over the first level clusters.

A. First-Stage Clustering

The first stage clustering seeks splitting the monthly aggre-
gated telematic heatmaps into homogeneous groups (clusters)

w.r.t driving behavior, irrespective of driver identity. This
means that the driver monthly heatmaps may be assigned to
different clusters or to the same cluster depending on their
similarity in terms of driving behavior. To this end, we use
the K-means algorithm to partition the monthly heatmaps into
a predetermined number of clusters. The optimal number of
clusters Nc obtained is equal to nine, determined based on
the prediction strength technique [35]. Figure 12 shows the
centroids of the nine clusters. This clustering is based on the
V −Ax distribution heatmap but clustering based on the other
heatmaps can be performed in a similar way. As shown, each
cluster represents a distinct pattern of driving behavior in terms
of speed-acceleration joint distributions. The heatmaps within
a same cluster are similar to the associated centroid and exhibit
similar driving behavior over a month duration.

B. Estimation of Driver (Un-)Stability Level

The first-stage clustering uncovers heatmap clusters
(groups) with each representing several drivers and each
driver may have his/her monthly heatmaps assigned to several
clusters. To infer a driver representation, we generate for each
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Fig. 8: Anomaly detection by the one-class SVM on the test at the week level: (a) actual distribution of normal (blue) and
claim (red) data; (b) the distribution of normal (magenta) and claim (yellow) data as detected by the model; (c) the same
distribution by retaining only 10% percentile of the anomaly data

Fig. 9: Anomaly detection by Isolated Forest on the test at the year level: (a) actual distribution of normal (blue) and claim
(red) data; (b) the distribution of normal (magenta) and claim (yellow) data as detected by the model

driver a histogram associated with the distribution of his/her
monthly heatmaps over the different clusters (Figure 14).
Owing to the variable number of months of driving experience
for each driver, we normalize the histogram w.r.t this number
to make the representation duration-independent. Each bin
value, therefore, is between 0 and 1, and the bins’ sum is
equal to one. Intuitively, in the extreme case, if only one
bin value is non-zero (equal to one) for a driver, this means
that this driver produces roughly the same heatmap (driving
behavior) at each month, implying thereby maximum stability.
At the other extreme, if all the bins have the same frequency,
i.e. 1/Nc, this means that the driver produces all the heatmap
clusters with equal probability, implying thereby a maximum
instability. Between these two extremes, drivers show different
levels of stability depending not only on how many of their
heatmaps (bins) are activated but also on the frequencies
(probabilities) of these activated heatmaps. To assess the driver
instability level in a quantified way, we introduce information-

theoretic measures based on entropy and perplexity. Entropy is
defined as the degree of disorder, uncertainty or randomness,
in a probabilistic system or source. We use it here to quantify
the degree of instability of a driver in terms of the heatmaps
he/she produces each month. The driver entropy is defined as:

H = −
Nc∑
i=k

pk log pk (3)

where log is the binary logarithm, and pk is the probability
of heatmap prototype (cluster) k, computed, in a maximum
likelihood way, as its frequency over the driving experience
duration. H reaches its minimum 0 for maximum driver
stability (only one of the heatmap prototypes is activated)
and its maximum log(Nc) at maximum instability, when all
the prototypes are activated with equal probability (1/Nc).
Likewise, we introduce the driver perplexity, directly related
to entropy through this equation: P = 2H . Perplexity shows
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Fig. 10: Anomaly detection by Isolated Forest on the test at the month level: (a) actual distribution of normal (blue) and claim
(red) data; (b) the distribution of normal (magenta) and claim (yellow) data as detected by the model

Fig. 11: Anomaly detection by Isolated Forest on the test at the week level: (a) actual distribution of normal (blue) and claim
(red) data; (b) the distribution of normal (magenta) and claim (yellow) data as detected by the model

the same properties as entropy but it is easier to interpret as
its minimum, 1, corresponds to the fact that only one heatmap
prototype is activated, and its maximum, Nc, reflects the fact
that all (the Nc) heatmap prototypes are activated with the
same probability. Beyond these two extremes, the closer the
perplexity to 1 the more stable the driver, and the closer the
perplexity to Nc the more unstable the driver.

C. Second-Stage Clustering

Driver representation as a distribution over the 1-stage
clusters has the additional key advantage that it allows in-
ferring a fixed feature dimension (Nc) irrespective of the
driver experience duration. As a result, we can now run any
clustering algorithm on such representations to uncover now
clusters (groups) of drivers with similar driving behavior, not

only in terms of, speed-acceleration intervals’ distribution, but
also in terms of their stability/instability across their driving
months. Based on the Kmeans algorithm and the prediction
strength, we find an optimal number of clusters equal to 12
(shown in Figure 18). The clusters at the 2-stage cluster-
ing reflect similarity between drivers both in terms of low-
level behavior (speed-acceleration intervals’ distribution in the
heatmaps) and high-level month-by-month behavior in terms
of stability/instability across the monthly heatmap prototypes.
This stability is shown by Figure 17 that displays the dis-
tributions of the 2-stage clusters over the heatmap prototypes
(1-stage clusters). As illustrated, some clusters are much more
stable than others. Based on the driver stability given by the
perplexity computed previously, we can compute the stability
level for each cluster as the average of the perplexities of the
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Fig. 12: The heatmaps’ prototypes obtained at the first-stage clustering. For simplicity, the color scale and the speed / acceleration
intervals are omitted; they are the same those in Figure 2

drivers assigned to that cluster. Table VII shows the average
perplexities associated with the 2-stage clusters. Accordingly,
the lowest the perplexity the more stable the drivers assigned
to that cluster, and the higher the perplexity the more unstable
the drivers in that cluster.

D. Correlation between claims and 2-stage clusters

Having performed 1-stage and 2-stage clustering, and pro-
vided an information-theoretic measure of the stability level
of the 2-stage clusters, it remains to be seen whether there
is correlation between the latter and the claim distribution.
Table V shows the distribution of claims over the second-
stage clusters. It shows the number of drivers in each cluster
(Ni) and the number of claims for each cluster at different
levels of responsibility (0resp, 0.5resp, 1resp, 1.5resp, 2resp,
2.5resp, and 3.5resp). The last row shows the total number of
claims in each cluster and the associated percentage. The last
column shows the global claim distribution before clustering.
In line with the results obtained with supervised modeling in
Sections III and IV, no major trends are observed regarding the
correlation between the clusters and the claims distributions.
However, we do observe some partial correlations as the
frequencies of the claims are higher in some clusters w.r.t
the global distribution before clustering, and lower in some
others. Intuitively, more informative clusters are those that
have the most different claim distributions w.r.t the global
one as they correspond to significantly either higher or lower
claims’ occurrence w.r.t the global initial distribution before
clustering. Specifically, in Table V, apart from the natural
fact that each cluster is dominated by the 0 claim frequency
giving that this class has a large global frequency of 91.18%,
we observe that the global claim percentage is 8.72%, while
this percentage decreases significantly to 5.3% and 5.71% for
clusters 3 and 5 respectively. Conversely, clusters 4 and 7 have
significantly more claims w.r.t the global claim distribution
with ratios of 12.6% and 12.38%. We may partially interpret
this finding by arguing that the first two clusters are associated

with more risky driving behavior and that the drivers with no
claim inside may be seen as those with risky behavior although
they were not involved in accidents. The two last clusters,
by contrast, are characterized by less risky behavior and the
drivers with claims inside may be seen as those with less risky
behavior although they happened to be involved in accidents.

The interpretations above are based only on the global
clusters’ claim distributions without taking into account the
fine levels of claim responsibility. To tackle this point and
assess cluster correlation level with claim distribution in a
fine way, we introduce the Kullback–Leibler (KL) clusters’
divergence between each cluster and the global one (the one
with no clustering, comprising all drivers). Kullback–Leibler
divergence is a distance metric that quantifies the difference
between two probability distributions. Before we apply the
KL divergence, we convert the cluster claim distributions in
Table V into probabilities by normalizing each value column-
wise and smoothing them. We obtain in this way the claim
probability distribution for each cluster and also the global
one before clustering. Formally, let P be the global label
probability distribution of classes (claims), and Qk the label
probability distribution knowing cluster Ck (k = 1...Nc). The
KL divergence is then calculated as follows:

KL(P ∥ Qk) = D(P ∥ QCk
) =

NL−1∑
i=0

P (i) log
P (i)

Qk(i)
(4)

where NL is the number of classes or labels (NL = 7),
i = 0; 1; ..., 6 is associated with levels of claims responsibility
equal to 0; 0.5; 1; 1.5; 2; 2.5; 3.5 respectively, and P (i)
and Qk(i) are the probabilities of class i under P and Qk,
computed in a maximum likelihood way, as follows:

P (i) =
Ni

N
(5)

Qk(i) = ProbQk
(i/Ck) =

Nik

Nk
(6)
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Fig. 13: Results of k-means first clustering with the optimal number, nine k=9, is the maximum number of clusters with a
prediction strength ≥ 0.8

Fig. 14: Distribution of one driver monthly telematic data over the heatmaps’ prototypes obtained at the first-stage clustering

where N is the total number of drivers, Ni is the number
of drivers with claim label of index i, k = 1, ..., NC2, with
NC2 the number of clusters at the second stage, Nk the
number of drivers in cluster Ck, and Nik the number of
drivers with claim label of index i in cluster Ck. We also have
N =

∑NL

i Ni. Based on these definitions, we compute the
global KL divergence between the global distribution and the
whole clustering scheme as the weighted sum of the cluster-
based KL divergences.

D(P ∥ Q) =

Ck∑
k=1

D(P ∥ QCk
)Wk (7)

where Wk = Nk/N is the percentage of heatmaps pertaining
to cluster Ck, used as a coefficient to give more weight to
denser clusters.

Table VI shows the KL divergences between each (2-stage)
cluster distribution and the global distribution, with the no-
claim class considered (first row) and without (second row). As
observed in the first row, no clusters having a really dissimilar
distribution from the global one actually emerge, which can be
explained by the heavy dominance of the no-claim class over
all the distributions. By taking out this class, and normalizing
the remaining probabilities accordingly, clusters C7 and C8

clearly emerge with a KL much more higher than all the
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Fig. 15: Entropy

Fig. 16: Perplexity

others. This is understandable, as these two clusters do not
comprise any claim data (Table V). These two clusters may
be associated with very safe driving. The third most different
cluster with the global distribution is C5 that comprises only
one driver with claims. This driver may be associated with safe
driving although he/she has been involved in a claim. Another
interesting cluster is C10 with a fair KL. It has a much larger
relative number of claims w.r.t the global distribution. The
drivers with no-claims therein my be seen as drivers with risky
behavior even though they happen not to have been involved
with claims. These results show the ability of our 2-stage
clustering scheme to uncover different clusters of drivers with
behaviors associated with different driving risks and claim
distributions.

Globally, the obtained KL divergence between the whole 2-
stage clustering (NC2 = 12) and the global distribution is D =
0.023, while the same divergence without taking into account
the no-claim class increases to 0.078. These two values can
be used to compare different clustering methods in order to
identify the one providing the best correlation with claims.

VI. CONCLUSION

The objective of this paper was to investigate whether driver
behavior, as reflected by in-car collected telematic data, is
correlated with risks leading to involvement in claims. Our
extensive investigation based on supervised and unsupervised
models demonstrates that, although the best balanced accuracy
obtained, i.e. 62% is clearly far below a satisfactory perfor-
mance that can be harnessed for insurance pricing, the answer
is yes as such correlation, albeit partially, does exist. This is re-
flected by the significant increase by 12% of balanced accuracy
w.r.t a blind classifier and the correlation that exists between
some clusters and claims, despite the adverse conditions in
which our models have operated. These conditions are sever-
alfold. First, the claim’s frequency, even when all the levels of
responsibility are merged, is rare as it consists of less than 9%
of the data. This unbalanced issue is further worsened by the
fact that they are split into Training, validation and test data.
As a matter of fact, this rarity implies that the distributions of
the telematics data distributions associated with claims over
these subsets consisting of different drivers may show low
overlapping, making optimization of models parameters based
on the first two hardly generalizable to the unseen test data.
Second, most of the claims have occurred years before the
experimental driving period, which may decrease significantly
the correlation between the claims and the collected telematic
data. Third, the telematic-based feature heatmaps are extracted
without taking into account key contextual information such as
the speed limit in the driving zone, which hampers drastically
the quality of the features extracted. As an example, a speed
of 120% km/h is normal in a highway with 130% as speed
limit and extremely dangerous in an extra urban zone with
90 km/h as speed limit. Other important contextual indication
such as night/day period and weather conditions, even though
if they are available, have been dropped owing to the rarity
of the claim distribution, making the addition of context data
likely to worsen the generalization capabilities of our models.

To significantly improve performance, a natural direction
is to tackle the issues mentioned above. Regarding the heavy
class unbalance problem reflected by the rarity of the claim
class, our extensive experiments with different models shows
that additional investigations of other models is likely to be
doomed to failure, as the main issue is not model-related but
data-related. Rather than following a model-based approach,
we should, therefore, adopt a data-centric approach, a recent
paradigm-shift trend in machine learning that has gained
attention over the last couple of years [32]. Data-centric AI
trains the model and hyperparameters once and keep it fixed.
Accuracy is improved by data-driven error analysis, in which
model errors are analysed in terms of the worst-recognised
classes and the main types of mis-classified inputs. This guides
a smart collection of new data to minimise such errors, which
is much more effective than randomly collecting data for
standard model-centric approaches. Once sufficient training
claim data are collected in this way to cover fairly enough dif-
ferent feature-context configurations, contextual information
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TABLE V: Distribution of claims over the 2-stage clusters, for Ax

claims cluster0 cluster1 cluster2 cluster3 cluster4 cluster5 cluster6 cluster7 cluster8 cluster9 cluster10 cluster11
0sinis 71 154 149 52 51 17 107 20 20 24 90 187
0.5resp 7 9 10 3 6 1 9 0 0 2 11 11
1resp 0 1 0 0 0 0 2 0 0 0 1 0
1.5resp 0 0 2 0 0 0 0 0 0 0 0 0
2resp 0 1 1 0 0 0 2 0 0 1 2 1
2.5resp 0 0 1 1 1 0 0 0 0 0 0 2
3.5resp 1 0 1 0 0 0 0 0 0 0 0 0
groups 8 11 15 4 7 1 13 0 0 3 14 14

% 10.12% 6.66% 9.14% 7.27% 12.06% 5.55% 10.83% 0% 0% 11.11% 13.46 % 6.97%

TABLE VI: KL second clustering k=12 Ax

Cluster C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Dpqsecond clustering k=12 0.01 0.021 0.01 0.009 0.019 0.095 0.01 0.088 0.088 0.073 0.017 0.029
Dpq second clustering only claims k=12 0.04 0.035 0.051 0.057 0.03 0.134 0.063 0.416 0.416 0.094 0.06 0.065

TABLE VII: Second clustering perplexity k=12

Cluster C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

mean perplexity 2.272 1.288 1.218 2.553 1.497 1.306 1.521 1.749 1.828 1.418 2.295 1.081
std perplexity 0.583 0.345 0.485 0.555 0.674 0.597 0.392 1.023 1.017 0.685 0.587 0.184

and speed limit that might be collected from GPS devices
should be added to the telematic data, to make the latter more
informative regarding driver behavior. An other improvement
direction is data augmentation that consists of synthesizing
under-represented data, i.e. the claim data. Our first endeavors
in this direction based on the SMOTE technique were not
successful. We argue that Generative Adversarial Networks
(GAN)-based augmentation techniques can be more effective
for data augmentation, whether for image-like input [19][20],
or telematics data stream time-series [8], especially by adapt-
ing our recent work that selects the synthesized data with the
most impact on reducing errors [26]. Finally, authenticating
car drivers should also be included to disentangle the telematic
data collected from different drivers using the same car.
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