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Permutation entropy analysis of the output of a laser diode under stimulated Brillouin scattering optical feedback

The chaotic output emitted by a diode laser with optical feedback has fascinated the community for decades. The external cavity delay time imparts a weak level of periodicity to the laser output (the so-called "time delay signature", TDS) that is a drawback for applications that require random optical signals. A lot of efforts have focused in suppressing the TDS either by post-processing the signal, or by using alternative ways to generate random optical signals. Here, we compare the signals generated by two optical feedback setups: in the first one, the stimulated Brillouin backscattered light from a standard optical fibre is re-injected into the laser (stimulated Brillouin scattering optical feedback, SBSOF); in the second one, the light transmitted through the fibre is re-injected into the laser (conventional optical feedback, COF). We analyse the permutation entropy, a well-known measure of complexity that captures order relations between values of a time series. We find that, on average, the signal generated by the SBSOF setup has slightly lower PE than the one generated by the COF setup, except when the sampling time of the intensity signal is an exact multiple of the delay; in that case, due to TDS, the entropy of the COF signal is lower than that of the SBSOF signal. We interpret the lower entropy value of the SBSOF signal as due to oscillations at the Brillouin frequency shift. Taken together, our results show that TDS suppression can have an undesirable side effect: a decrease of the entropy of the signal.

Introduction

Chaotic dynamics in laser diodes subject to optical feedback has been widely studied for decades [START_REF] Ohtsubo | Semiconductor Lasers: Stability, Instability and Chaos[END_REF]. The complexity of chaotic dynamics has been of great interest in many applications [START_REF] Sciamanna | Physics and applications of laser diode chaos[END_REF]. Complex dynamics have been exploited in reflectometry applications [START_REF] Xia | Simultaneous and precise fault locating in WDM-PON by the generation of optical wideband chaos[END_REF][START_REF] Zhang | Chaotic Brillouin optical correlation-domain analysis[END_REF], reservoir computing [START_REF] Larger | Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing[END_REF][START_REF] Brunner | Parallel photonic information processing at gigabyte per second data rates using transient states[END_REF], rogue wave studies [START_REF] Reinoso | Extreme intensity pulses in a semiconductor laser with a short external cavity[END_REF][START_REF] Lee | Demonstration of optical rogue waves using a laser diode emitting at 980 nm and a fiber Bragg grating[END_REF] and random number generation [START_REF] Uchida | Fast physical random bit generation with chaotic semiconductor lasers[END_REF][START_REF] Sakuraba | Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers[END_REF][START_REF] Kim | Massively parallel ultrafast random bit generation with a chip-scale laser[END_REF].

Chaotic dynamics in laser diodes subject to optical feedback exhibit a weak level of periodicity which arises from the round-trip delay time in the feedback cavity. This periodicity has been referred to as "time delay signature" (TDS) [START_REF] Rontani | Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback[END_REF] and is a drawback in applications that require fully random or chaotic optical signals. In Ref. [START_REF] Zhang | 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser[END_REF] high speed random bit generation (640 Gbit/s) was demonstrated by choosing only 4-least significant bits of the 8-bit digitization of a chaotic signal generated by a monolithic integrated dual-mode amplified feedback laser; however, post-processing was needed to suppress TDS.

A lot of efforts have focused on suppressing TDS, not only by using signal post-processing, but also, hardware alternatives: different feedback configurations have been proposed that have different difficulties, limitations and challenges. Self-interference of chaotic signals has been shown to suppress TDS [START_REF] Wang | Generation of wideband chaos with suppressed time-delay signature by delayed self-interference[END_REF], but it requires two high-speed photodetectors. Brillouin backscattering of optical fibre was examined in Ref. [START_REF] Zhang | Suppression of Time Delay Signature Based on Brillouin Backscattering of Chaotic Laser[END_REF], where the chaotic light generated by an external cavity DFB laser was injected into an Er-doped fibre amplifier (EDFA). While significant reduction (but not complete suppression) of TDS was obtained, the setup has the drawbacks of using a rather high injection power (in the range 400-1500 mW) and rather expensive optical components (an EDFA and an optical isolator). TDS has also been shown to reduce significantly when using fibre Bragg grating (FBG) feedback, but it is not suppressed completely [START_REF] Li | Distributed Feedbacks for Time-Delay Signature Suppression of Chaos Generated From a Semiconductor Laser[END_REF][START_REF] Li | Chaotic Time-Delay Signature Suppression in a Semiconductor Laser With Frequency-Detuned Grating Feedback[END_REF][START_REF] Zhong | Polarization-resolved time-delay signatures of chaos induced by FBG-feedback in VCSEL[END_REF][START_REF] Li | Random bit generation at tunable rates using a chaotic semiconductor laser under distributed feedback[END_REF].

Stimulated Brillouin scattering (SBS) is a nonlinear optical process that is initiated by quantum noise [START_REF] Boyd | Noise initiation of stimulated Brillouin scattering[END_REF], and thus, it has potential for generating, all-optically, highly random signals. In Ref. [START_REF] Fu | Broadband optical chaos for stimulated Brillouin scattering suppression in power over fiber[END_REF] it was shown that broadband optical chaos generated from a single-mode semiconductor laser with optical injection increases the SBS threshold (as compared to that of the cw output from the free-running laser). In the setup in Ref. [START_REF] Fu | Broadband optical chaos for stimulated Brillouin scattering suppression in power over fiber[END_REF], SBS was not used to generate a chaotic signal; in contrast, we have recently proposed a new setup [START_REF] Correa-Mena | Investigation of the Dynamical Behavior of a High-Power Laser Diode Subject to Stimulated Brillouin Scattering Optical Feedback[END_REF] in which SBS backscattered light in the fibre is re-injected into the laser and generates a chaotic output in which TDS is completely absent. By using spectral and autocorrelation analysis, we showed that TDS is present in the chaotic signal generated by conventional optical feedback (COF), while it is removed in the signal generated by the SBSOF setup, without any need of signal post-processing.

An open question is whether the SBSOF signal is genuinely more random than the COF signal. To address this issue, here we analyse the permutation entropy (PE) of the signals generated by the two setups, COF and SBSOF. The PE is a well-known nonlinear measure of complexity that captures order relations between values of a time series [START_REF] Bandt | Permutation Entropy: A Natural Complexity Measure for Time Series[END_REF][START_REF] Zunino | Characterizing the Hyperchaotic Dynamics of a Semiconductor Laser Subject to Optical Feedback Via Permutation Entropy[END_REF][START_REF] Toomey | Mapping the dynamic complexity of a semiconductor laser with optical feedback using permutation entropy[END_REF][START_REF] Aragoneses | Unveiling Temporal Correlations Characteristic of a Phase Transition in the Output Intensity of a Fiber Laser[END_REF][START_REF] Chao | Permutation entropy analysis of chaotic semiconductor laser with chirped FBG feedback[END_REF]. We show that TDS suppression in the SBSOF setup can have an unwanted side effect: it can decrease the entropy of the signal.

Experimental setup and linear analysis

Figure 1 illustrates the experimental setups (they were described in detail in Ref. [START_REF] Correa-Mena | Investigation of the Dynamical Behavior of a High-Power Laser Diode Subject to Stimulated Brillouin Scattering Optical Feedback[END_REF]). A high-power multimode laser diode emitting at 1450 nm with a mode-spacing of 0.1 nm is used together with a standard 4 km-long optical fibre spool. The spectrum of the free-running laser diode is displayed in Fig. 1(c). The maximum free-running power of the laser diode is 𝑃 0 = 270 mW for a pump current of 1000 mA, but the power injected into the fibre is around 140 mW (21.5 dBm) because of the components losses. The light backscattered by SBS from the fibre is injected back into the laser diode as optical feedback forming a closed-loop in Fig. 1(b). In the COF setup, as seen in Fig. 1(a), only the light transmitted through the fibre is injected back into the laser diode. In both setups the time delay is around 21 µs. We note that the SBS threshold power for chaotic laser light in a fibre of 4 km is higher than 30 dBm [START_REF] Fu | Broadband optical chaos for stimulated Brillouin scattering suppression in power over fiber[END_REF]; therefore, with an injected power of 21.5 dBm, SBS is not present in the COF setup. In contrast, in the SBSOF setup, the SBS threshold power is 16 dBm; therefore, the injected power, 21.5 dBm, is higher than the SBS threshold. Rayleigh scattering also exists in the setup, but SBS is almost 12 dB greater than Rayleigh scattering [START_REF] Correa-Mena | Investigation of the Dynamical Behavior of a High-Power Laser Diode Subject to Stimulated Brillouin Scattering Optical Feedback[END_REF] and thus dominant in dynamics.

The dynamical behaviours in the time domain for both the setups appear complex, but very different as shown in Figs. 2(a with a sampling rate of 40 GS/ over a time window of 200 µs. But only a window of 10 µs is shown. Their mean amplitudes are measured as 0.84 V (𝑃 = 295 mW and 0.14 V RMS ) for COF and 0.78 V (𝑃 = 287 mW and 0.12 V RMS ) for SBS. For the COF setup, the dynamics look like noise. For the SBSOF setup, the signal manifests complex with a burst form which appears irregularly. Their fast dynamics are also shown in Figs. 2(c) and 2(d). In the SBSOF case, a fast oscillation can be observed. This is due to the Brillouin frequency shift (BFS) of 11.46 GHz as seen clearly in Fig. 2(f). This frequency matches to the theory at 1450 nm [START_REF] Correa-Mena | Investigation of the Dynamical Behavior of a High-Power Laser Diode Subject to Stimulated Brillouin Scattering Optical Feedback[END_REF]. The power spectrum for COF in Fig. 2(e) does not show such a peak for the BFS. The auto-correlation function (ACF) of the laser intensity in both the setups is presented in Fig. 3. In the COF case the ACF displays a distinct peak at 21.09 µs in Fig. 3(a). The peak corresponds to the time delay (𝜏 𝑒𝑥𝑡 = 21.09 µs) from the 4 km-long fibre. Another peak is also present at 42.18 µs (2𝜏 𝑒𝑥𝑡 ). On the other hand, the TDS vanishes in the SBSOF case as seen in Fig. 2(b). In the SBS setup, the round-trip time is 42.18 µs, but no peak is seen at this time-shift. Therefore, the TDS is suppressed in the SBSOF dynamics. However, the ACF for COF decays much faster than that for SBSOF as shown in the insets of the figure. The large oscillation seen in the inset of Fig. 3(b) is due to the peak at around 4 GHz. Such oscillation with the similar period as the SBSOF one can also be observed in the COF case, but decays much faster than in the SBSOF case. The background is noisy, but oscillation can be noiticed in the SBSOF case and its period corresponds to the BFS at 11.46 GHz. This is because of the strong presence of the BFS in the RF power spectrum shown in Fig. 2(f). Despite of the background oscillation, the TDS is completely suppressed. The TDS suppression is also confirmed by the external-cavity frequency measurement with RF power spectra available in the supplementary material [28].

As a form of distributed feedback, SBSOF can be considered similar to FBG feedback, but in the SBSOF setup, feedback comes from an infinitely large number of reflectors, while in the FBG setup, it comes from a finite number of reflectors. This may be the reason why SBSOF fully suppresses TDS, while in a FBG setup, TDS does not vanish completely [START_REF] Li | Distributed Feedbacks for Time-Delay Signature Suppression of Chaos Generated From a Semiconductor Laser[END_REF][START_REF] Li | Chaotic Time-Delay Signature Suppression in a Semiconductor Laser With Frequency-Detuned Grating Feedback[END_REF][START_REF] Zhong | Polarization-resolved time-delay signatures of chaos induced by FBG-feedback in VCSEL[END_REF][START_REF] Li | Random bit generation at tunable rates using a chaotic semiconductor laser under distributed feedback[END_REF].

Permutation entropy nonlinear analysis

The permutation entropy (PE) [START_REF] Bandt | Permutation Entropy: A Natural Complexity Measure for Time Series[END_REF] is a complexity measure that is calculated from the probabilities of symbols, known as ordinal patterns, that are defined by the temporal order relations of datapoints in the time series (see Ref. [START_REF] Zunino | Characterizing the Hyperchaotic Dynamics of a Semiconductor Laser Subject to Optical Feedback Via Permutation Entropy[END_REF] for details). The plot of the PE as a function of a time shift 𝜏 used to define the ordinal patterns can show well-defined dips that allow to unveil periodicities in the dynamics [START_REF] Toomey | Mapping the dynamic complexity of a semiconductor laser with optical feedback using permutation entropy[END_REF][START_REF] Aragoneses | Unveiling Temporal Correlations Characteristic of a Phase Transition in the Output Intensity of a Fiber Laser[END_REF]. Here we compute the normalised PE with patterns of length 𝐷 = 5.

Figure 4 shows PE with time shifts 𝜏 in the range 0-50 µs, for the times series shown in Fig. 2. We note that 𝜏 represents an effective sampling time, as the ordinal patterns are defined in terms of the relative ordering of the intensity values 𝐼 (𝑡), 𝐼 (𝑡 + 𝜏), 𝐼 (𝑡 + 2𝜏) . . . 𝐼 (𝑡 + 4𝜏). For fully random signals, PE ≈ 1, and lower values reveal the presence of temporal ordering in the sequence of data points. The signals analysed in this paper are highly random, therefore, PE values close to 1 are expected. Because the data acquisition system and the characteristics of the datasets (length and resolution) are the same for the SBSOF and COF setups, we can make a fair comparison, even if the differences found are very small.

For the COF setup in Fig. 4(a), a dip at 𝜏 𝑒𝑥𝑡 = 21.09 µs (see the inset of the figure) confirms the presence of TDS. Additional dips are seen at 7.03 µs, 14.06 µs, 42.18 µs, which correspond to 𝜏 𝑒𝑥𝑡 /3, 2𝜏 𝑒𝑥𝑡 /3 and 2𝜏 𝑒𝑥𝑡 , respectively. The baseline value (for 𝜏 ≠ 𝑛𝜏 𝑒𝑥𝑡 with 𝑛 an integer number) PE ≈ 0.9996 reveals a high degree of randomness, when the intensity sampling time is not an exact multiple of the delay time. For the signal generated with the SBSOF setup, Fig. 4(b), dips occurring at 𝜏 = 𝑛𝜏 𝑒𝑥𝑡 are not observed, confirming the total suppression of TDS. However, the baseline PE value is ≈ 0.9925, slightly lower than that of the COF signal. We speculate that the slight decrease of the entropy is due to the fact that the SBSOF dynamics has oscillations at the BFS, which are not present in the dynamics induced by COF.

We have mapped the PE as a function of the laser current and feedback strength in the COF and SBSOF setups. The maps, depicted in Fig. 5, are established by scanning the laser current from 100 mA to 1000 mA at every 2 mA and the feedback ratio from 0.005 % to 0.2 % at every 0.005 %. For each feedback configuration, a total of 18048 intensity time-traces of 2M samples have been recorded. The entropy values obtained with time shift 𝜏 = 𝜏 𝑒𝑥𝑡 = 21.09 µs are coded in colour scale. In both maps the laser threshold reveals clearly: the PE values are represented with light green colour. The reason for which the entropy, when the laser is below the threshold, is not higher is due to the resolution of the data acquisition system: all readings were done using the same amplitude scale on the oscilloscope (8 bits). This results in very small amplitude fluctuations below the threshold, that lower the PE (this is in contrast with the procedure followed in Ref. [START_REF] Toomey | Mapping the dynamic complexity of a semiconductor laser with optical feedback using permutation entropy[END_REF], where the PE maps do not unveil the threshold).

The map patterns are very different. Particularly the SBSOF map pattern in Fig. 5(b) appears irregular unlike the one for the COF setup in Fig. 5(a). PE drops are seen in the SBSOF map (blue dots). It seems that the PE values decreases in the early process of SBS, but increase rapidly with the laser current, reaching values close to 1. In the COF map it can also be noticed that the PE values decrease slightly after the threshold with a feedback stronger than 0.15 %, showing a green zone surrounded by the yellow zone. In fact, the well-known dynamical regime of low frequency fluctuations [START_REF] Ohtsubo | Semiconductor Lasers: Stability, Instability and Chaos[END_REF] is observed in this parameter region.

Conclusions

We have compared the permutation entropies of the output of a high power laser diode with optical feedback from a standard optical fibre in two configurations: when the light transmitted through the fibre is re-injected into the laser (conventional optical feedback, COF) and when the light backscattered from the fibre is re-injected into the laser (stimulated Brillouin scattering optical feedback, SBSOF). While it was expected that the SBSOF setup would produce a more random output than the COF one (because in the SBSOF setup TDS is fully suppressed), we have found that the SBSOF setup produces signals that are, on average, less random than those produced by the COF setup. Therefore, our results indicate that COF and SBSOF generate chaotic signals with different characteristics, that might have advantages and drawbacks for different applications of optical chaos [START_REF] Sciamanna | Physics and applications of laser diode chaos[END_REF][START_REF] Brunner | Parallel photonic information processing at gigabyte per second data rates using transient states[END_REF][START_REF] Kim | Massively parallel ultrafast random bit generation with a chip-scale laser[END_REF] [?].
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 1 Fig. 1. Schematics of the (a) COF and (b) SBSOF setups. OC: optical circulator, PC: polarisation controller, VOA: variable optical attenuators, PD: photo-detector. (c) Spectrum of the free-running laser.
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 2 Figure1illustrates the experimental setups (they were described in detail in Ref.[START_REF] Correa-Mena | Investigation of the Dynamical Behavior of a High-Power Laser Diode Subject to Stimulated Brillouin Scattering Optical Feedback[END_REF]). A high-power multimode laser diode emitting at 1450 nm with a mode-spacing of 0.1 nm is used together with a standard 4 km-long optical fibre spool. The spectrum of the free-running laser diode is displayed in Fig.1(c). The maximum free-running power of the laser diode is 𝑃 0 = 270 mW for a pump current of 1000 mA, but the power injected into the fibre is around 140 mW (21.5 dBm) because of the components losses. The light backscattered by SBS from the fibre is injected back into the laser diode as optical feedback forming a closed-loop in Fig.1(b). In the COF setup, as seen in Fig.1(a), only the light transmitted through the fibre is injected back into the laser diode. In both setups the time delay is around 21 µs. We note that the SBS threshold power for chaotic laser light in a fibre of 4 km is higher than 30 dBm[START_REF] Fu | Broadband optical chaos for stimulated Brillouin scattering suppression in power over fiber[END_REF]; therefore, with an injected power of 21.5 dBm, SBS is not present in the COF setup. In contrast, in the SBSOF setup, the SBS threshold power is 16 dBm; therefore, the injected power, 21.5 dBm, is higher than the SBS threshold. Rayleigh scattering also exists in the setup, but SBS is almost 12 dB greater than Rayleigh scattering[START_REF] Correa-Mena | Investigation of the Dynamical Behavior of a High-Power Laser Diode Subject to Stimulated Brillouin Scattering Optical Feedback[END_REF] and thus dominant in dynamics.The dynamical behaviours in the time domain for both the setups appear complex, but very different as shown in Figs. 2(a) and 2(b). The time traces are recorded with 8M sample points
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 3 Fig. 3. Auto-correlation functions obtained at 1000 mA and 0.2 % for (a) COF and (b) SBSOF setups, respectively. The ACFs are zoomed in a range of 0.006 µs in the insets.
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 4 Fig. 4. Permutation entropies obtained from the time traces recorded at 1000 mA and 0.2 % for (a) COF and (b) SBSOF setups in the ordinal pattern length 𝐷 = 5. The insets show PE from 21.08 µs to 21.10 µs for zoom-in purpose.
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 5 Fig. 5. Permutation entropy maps for (a) COF and (b) SBSOF setups.
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