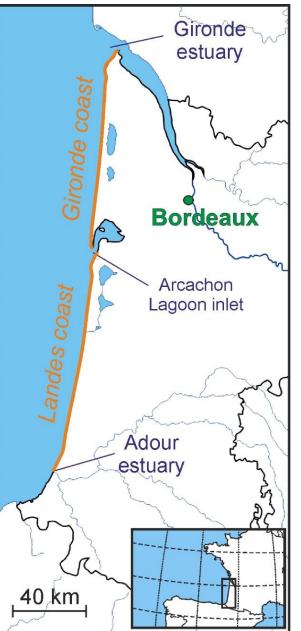


Environmental controls on summer surf zone hazards, beach crowds, and resulting life risk at a high-energy sandy beach in southwest France

<u>Bruno Castelle1, Jeoffrey Dehez², Jean-Philippe Savy³, Vincent Marieu¹, Sandrine Lyser², Stéphane Bujan¹, David Carayon², Rob Brander⁴</u>

¹ CNRS, Bordeaux INP, EPOC, UMR 5805, University of Bordeaux, Pessac, France
² INRAE Nouvelle Aquitaine, Cestas-Gazinet, France
³ SMGBL, Messanges, France
⁴ UNSW Beach Safety Research Group, UNSW Sydney, Sydney, NSW, Australia



World Conference on **Drowning Prevention**

4-7 December, 2023

The southwest Coast of France

- 250 km of sandy beaches
- Popular destination
- Summer-mean wave height > 1 m
- Max tide range ~5m

The primary causes of surf zone injuries in southwest France

31% of SZI

Castelle et al. (2018, Nat. Haz.)

The primary causes of surf zone injuries in southwest France

31% of SZI

45% of SZI

Castelle et al. (2018, Nat. Haz.)

The primary causes of surf zone injuries in southwest France

31% of SZI

45% of SZI

9% of SZI

Castelle et al. (2018, Nat. Haz.)

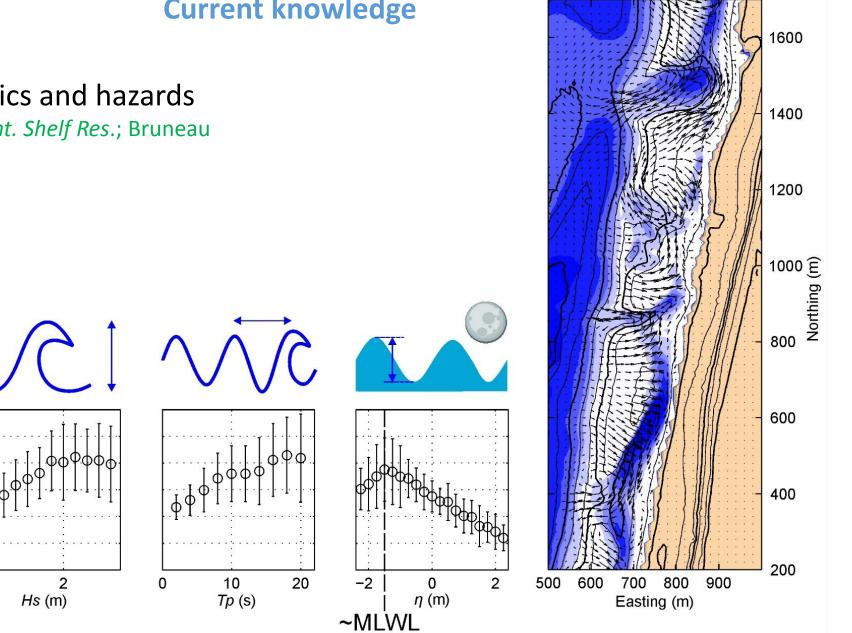
Current knowledge

✓ Rip current dynamics and hazards

[e.g. Castelle et al., 2006 Cont. Shelf Res.; Bruneau et al., 2011 J. Geophys Res.]

Urip (m/s)

0.8

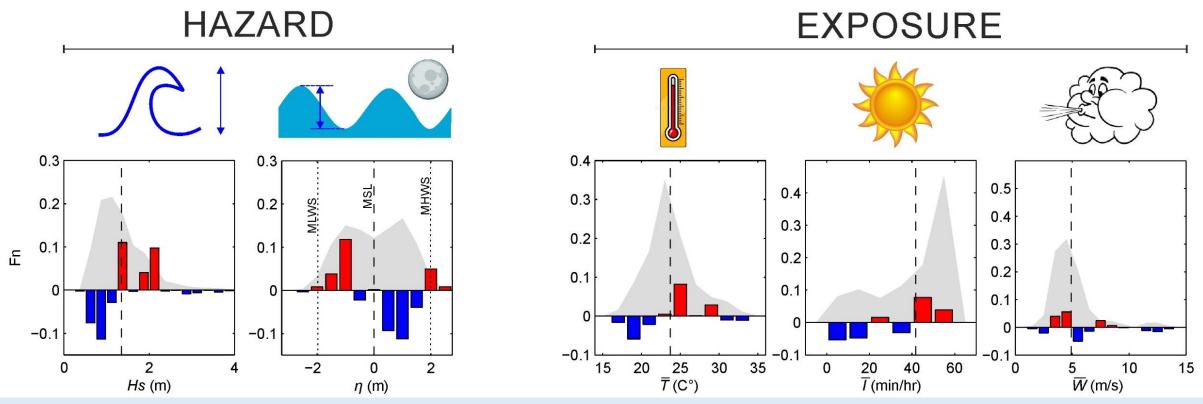

0.6

0.4

0.2

0

0



✓ Rip current dynamics and hazards [*e.g.* Castelle *et al.*, 2006 *Cont. Shelf Res.*; Bruneau

et al., 2011 J. Geophys Res.]

✓ Environmental controls on SZIs

[e.g. Castelle et al., 2019 Nat. Haz. Earth Syst. Sc.; de Korte et al., 2021 Nat. Haz. Earth Syst. Sc.]

Research & methodological questions

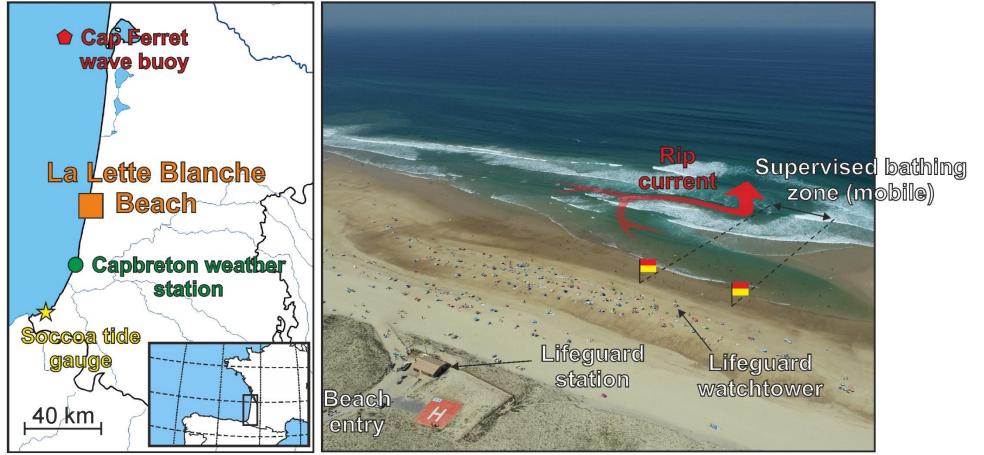
Jeoffrey Dehez RESCUE 7 <u>:</u> Coastal Safety

Life risk = Hazard x exposure x vulnerability

After Stokes et al. (2015, Ocean & Coast. Management)

• Can lifeguards be a valuable source of (hazard and exposure) data ?

- What are the respective contributions of hazard and exposure to risk ?
- Can this provide better insight into the environmental controls ?
- Can we ultimately predict life risk at the beach ?


Experiment (July-August 2022, La Lette Blanche)

Environmental data and beach configuration

Experiment (July-August 2022, La Lette Blanche) Lifeguard data

Hourly estimate of beach crowd and rip-current and shore-break-wave hazards (from 0 to 4)

Dayhour	Rip current hazard	Shore-break wave hazard	Beach crowd	
11AM	2	0	50	
12AM	3	0	200	
1PM	2	0	400	
	•••	•••		
6PM	0	3	450	
7PM	0	3	400	

Experiment (July-August 2022, La Lette Blanche) Lifeguard data

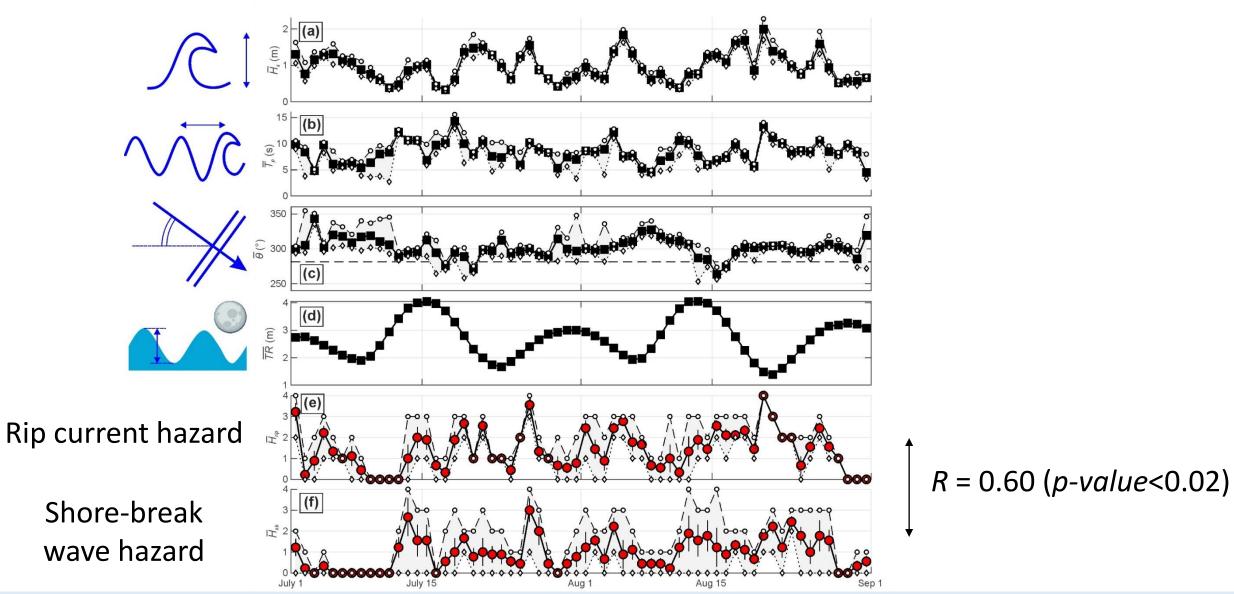
Hourly estimate of beach crowd and rip-current and shore-break-wave hazards (5-level scale from 0 to 4)

Dayhour	Rip current hazard	Shore-break wave hazard	Beach crowd	
11AM	2	0	50	
12AM	3	0	200	
1PM	2	0	400	
	•••			
6PM	0	3	450	
7PM	0 3		400	

Experiment (July-August 2022, La Lette Blanche) Lifeguard data

Hourly estimate of beach crowd and rip-current and shore-break-wave hazards (5-level scale from 0 to 4)

Dayhour	Rip current hazard	Shore-break wave hazard	Beach crowd
11AM	2	0	50
12AM	3	0	200
1PM	2	0	400
	•••	•••	
6PM	0	3	450
7PM	0	3	400

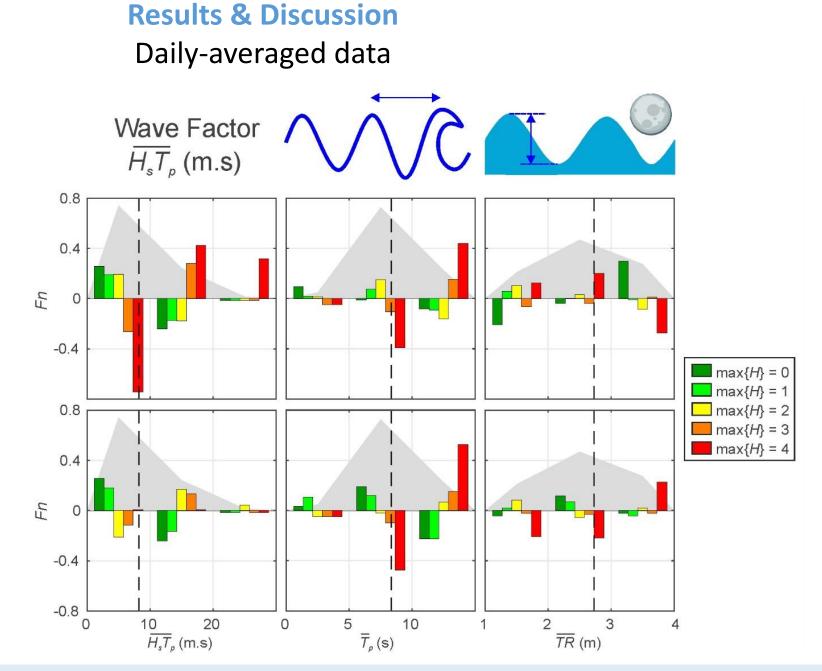


Results & Discussion Daily-averaged hazard data

Results & Discussion Daily-averaged exposure

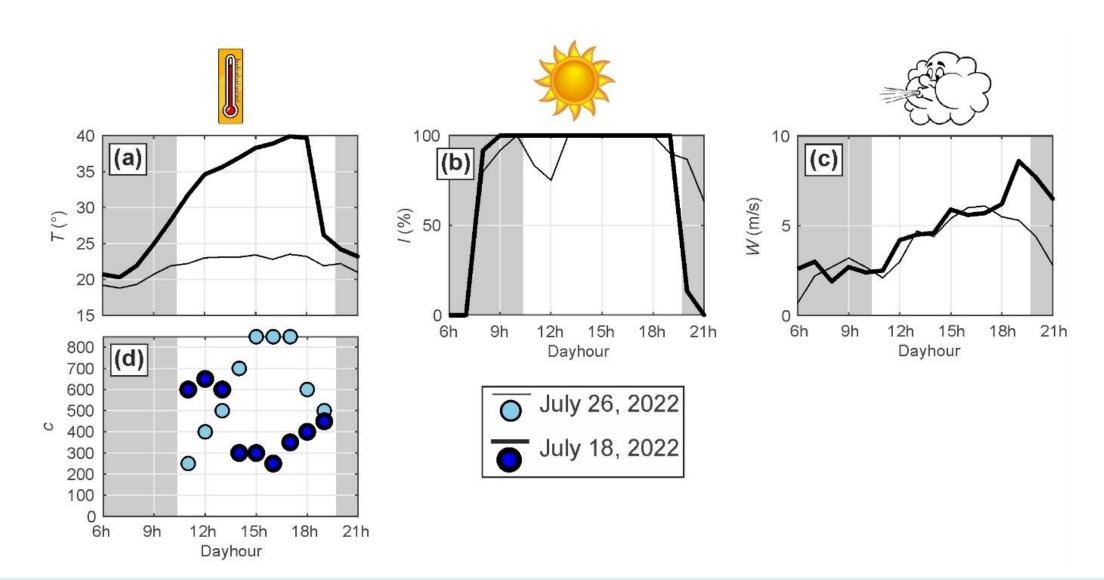
Results & Discussion

Daily-averaged data : correlation with environmental conditions

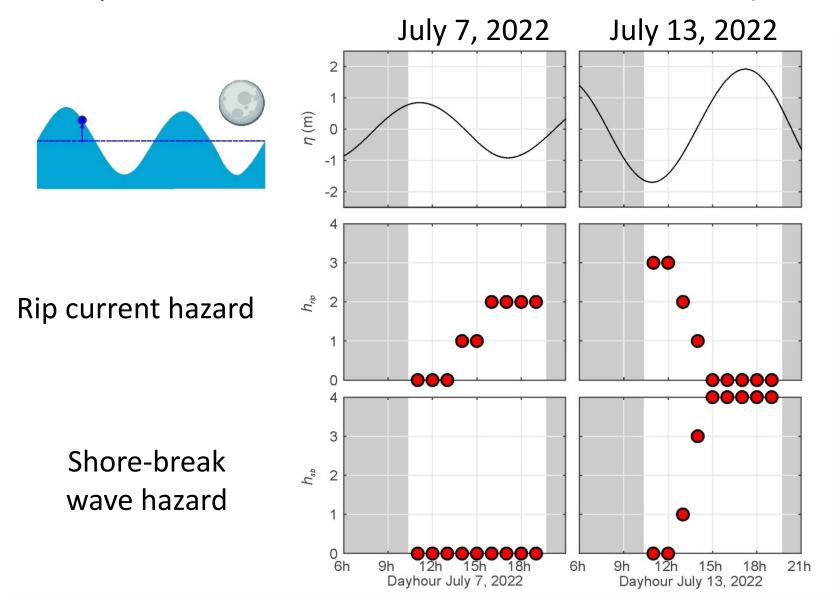


	\overline{H}_s	\overline{T}_p	$ \cos 2(\theta - \theta_c) $	$\overline{H_sT_p}$	\overline{TR}	\overline{T}	Ī	\overline{W}
\overline{H}_{rip}	0.80*	0.36*	0.24	0.83*	- 0.21	- 0.29*	- 0.08	0.22
$Max\{H_{rip}\}$	0.62*	0.33*	0.23	0.67*	0.00	- 0.15	0.01	0.20
$Min\{H_{rip}\}$	0.82*	0.36*	0.23	0.86*	- 0.37*	- 0.33*	- 0.15	0.23*
\overline{H}_{sb}	0.41*	0.51*	0.41*	0.57*	0.09	0.00	- 0.03	- 0.07
$Max\{H_{sb}\}$	0.37*	0.47*	0.45*	0.48*	0.23	0.06	- 0.01	- 0.03
$Min\{H_{sb}\}$	0.34*	0.32*	0.17	0.47*	- 0.27	- 0.07	- 0.03	0.05
\overline{C}	- 0.27*	0.25*	0.03	- 0.10	0.23	0.54*	0.57*	- 0.27*
$Max\{C\}$	- 0.20	0.14	- 0.05	- 0.09	0.16	0.42*	0.47*	- 0.20
$Min\{C\}$	- 0.38*	0.32*	- 0.01	- 0.15	0.37*	0.73*	0.55*	- 0.32*

Rip current hazard


Shore-break wave hazard

Results & Discussion Hourly data : heat wave influence



Results & Discussion

Rip-current hazard *versus* shore-break-wave hazard ($Hs \approx 1 \text{ m}$)

CONCLUSIONS

• Can lifeguard be a valuable source of (hazard and exposure) data ?

YES – Links with environmental conditions in line with previous work

• Can it provide better insight into the environmental controls ?

YES – e.g. Heat wave influence on beach crowd, role of wave period on shore-break hazard

• What are the respective contributions of hazard and exposure to risk ? Hard to say – Needs more data (more beaches, more years)

• Can we ultimately predict life risk at the beach ?

Work in progress – Combining physics-based and AI models

Do not miss the talks of:

David Carayon (RESCUE 6 - AI) & Jeoffrey Dehez (RESCUE 7 - Coastal Safety)

Thank you for your attention !

More in :

Castelle, B., Dehez, J., Savy, J.-P., Marieu, V., Lyser, S., Bujan, S., Carayon, D., Brander, R.W. (2023). Environmental controls on lifeguard-estimated surf-zone hazards, beach crowds, and resulting life risk at a high-energy sandy beach in southwest France, *Natural Hazards*, https://doi.org/10.1007/s11069-023-06250-0.

Funding :

Project **SWYM** (Surf zone hazards, recreational beach use and Water safetY Management in a changing climate) funded by Région Nouvelle-Aquitaine and the French government in the framework of the University of Bordeaux's IdEx "Investments for the Future" program/RRI Tackling Global Change