Omar Tahmi
email: omar.tahmi.1@ens.etsmtl.ca

Chamseddine Talhi
email: chamseddine.talhi@etsmtl.ca

Yacine Challal
email: yacine.challal@udst.edu.qa

Two-layer Architecture for Signature-based Attacks Detection over Encrypted Network Traffic

Keywords: Secure middlebox, Searchable encryption, Intrusion detection, Homomorphic encryption, Signature-Based detection, Secure pattern matching

. Therefore, we propose a two-layer architecture inspired from Ren et al., 2020 [7] scheme, but in a different way, in order to build a fast and efficient secure IDS.

Introduction

Several enterprises have transformed their network services into middleboxes (e.g., firewalls, network address translators, load balancers, and deep packet inspection) through the large-scale adoption of network functions virtualization, which facilitates the realization, deployment, and management of advanced network functions as well as cost reduction. But due to the increase of network traffic and the rapid evolution of cloud services, these companies have started to outsource their middleboxes to the cloud.

Despite the benefits of cloud services, this transformation brings new constraints in terms of security and privacy of enterprise data, as its traffic is redirected to an untrusted environment. In this work, we aim to implement an IDS in the form of a middlebox deployed on the cloud for packets inspection without revealing confidential data.

According to Poh et al., 2021 [6], many companies use a simple approach called MitM (Man-in-the-Middle) to inspect their traffic on a third party. The idea is to encrypt the content of the traffic before sending it to the cloud, and then decrypt it on the MB in order to perform the inspection. However, this approach can easily lead to eavesdropping attacks. With this traditional way of outsourcing IDS, cloud servers could have access to all the rules and packets in the MB. Exploiting the packets can provide sensitive data about the company's infrastructure and exploiting the rules can allow attackers to escape the inspection.

To address these issues, a class of methods called searchable encryption (SE) is proposed. It allows to inspect the packets of encrypted traffic against encrypted rules directly, so that the packets and the rules remain protected. The objective of this work is to build a system that supports attack signatures detection in the content of packets by protecting both the signatures and the packets.

Limitations of prior works

A recent work in the SE class called SHVE+ proposed by Lai et al., 2021 [4] used the SHVE scheme to inspect encrypted packets against encrypted rules directly in a different way to avoid tokenization in order to enable encrypted pattern matching with constant and moderate communication overhead. To speed up the process, they designed encrypted SHVE filters to further reduce the number of accesses to SHVE+ during the matching process. However, the number of vectors in these filters is very large, which makes them very expensive to traverse, affecting the overall performance of the system. In addition, according to Ren et al., 2020 [START_REF] Ren | Privacy-preserving efficient verifiable deep packet inspection for cloud-assisted middlebox[END_REF], 99% of the real network traffic is legitimate that should be filtered quickly without passing through thousands of SHVE filter vectors. Therefore, such filtering cannot filter packets quickly.

Another recent work called EV-DPI [START_REF] Ren | Privacy-preserving efficient verifiable deep packet inspection for cloud-assisted middlebox[END_REF] proposed a scheme with two-layer, one is a TFS (token filtering server) and the other is an RMS (rules matching server). The first layer filters out quickly the most of legitimate packets using an encrypted Bloom filter (ETF) and the second layer performs exact rules matching using SHVE scheme [START_REF] Lai | Result pattern hiding searchable encryption for conjunctive queries[END_REF] to inspect only malicious traffic. However, the RMS tokenizes patterns that contain multiple words which require a tockenisation of the packets. Such tokenisation induces a considerable communication overhead therefore these types of designs are communication inefficient since traffic content must be transformed into variable size tokens. As a result, long latency is introduced, which is not acceptable in most networked applications [START_REF] Lai | Towards practical encrypted network traffic pattern matching for secure middleboxes[END_REF].

Our contributions

To tackle the above limitations, in this paper, we aim to propose our scheme where we combined the advantages of the previous two systems to build our fast and efficient secure IDS without any data leakage. We achieve this goal by using a completely separate two-layer architecture inspired by the scheme of Ren et al., 2020 [7] and we use the same fast filtering layer as in the TFS in a different way to quickly filter the majority of the traffic. For the second layer, we used the SHVE+ pattern matching system of Lai et al., 2021 [4]. Our contributions can be summarized as follows:

-In order to improve the performance of the scheme proposed by Lai et al., 2021 [4] for attacks signatures detection in encrypted traffic, we have modified the scheme to a completely separate two-layer architecture: the "Fast filtering" layer and the "Exact pattern matching" layer. The first is used to quickly eliminate the majority of legitimate traffic. We used a Bloom filter for this layer. The second is used to perform exact pattern matching using the scheme of Lai et al., 2021 [4] only for the unfiltered packets in the possible matching positions received from the first layer. -We implemented our approach and evaluated it by comparing it with the previous pattern matching scheme of Lai et al., 2021 [4] and we show how our architecture can improve the overall performance using the first layer.

Related Works

According to the survey of Poh et al., 2021 [6], signature detection methods in encrypted network traffic can be classified into four main categories: Searchable Encryption (SE), Access Control (AC), Machine Learning (ML) and Trusted Hardware (TH). Our work is based on the SE class of methods (aka cryptographic solutions). Here we give a brief overview of some of the works in this class. We present them by order of appearance.

BlindBox by Sherry et al., 2015

BlindBox (the name indicates that the middlebox cannot see the content of the traffic) is the first DPI scheme that preserves traffic privacy using the SE class. BlindBox supports four entities: the sender (S), the receiver (R), the middlebox (MB) and the rules generator (RG). The latter generates the attack rules that will be used by the MB to detect the attacks. The general idea is that the MB hosts the rules which are encrypted by a key k. The client (sender) generates the tokens by tokenizing the traffic, and encrypts these tokens using the same key k, then sends them over a second connection apart from the SSL/TLS connection. The MB then tries to match the tokens with the encrypted rules.

If there is a match, then the traffic is considered malicious. The MB must not know the value of k and both the sender and receiver (endpoints) should not have access to the IDS rules. Therefore, they used an exchange scheme called "obfuscated rule encryption". However, Sherry et al., 2015 [8], did not consider preservation of inspection rules against the MB. BlindBox is the first step towards a general protocol, based on the SE class, that aims to solve the MitM problem. However, it is computationally costly.

Yuan et al., 2016

Yuan et al., 2016 [START_REF] Yuan | Privacy-preserving deep packet inspection in outsourced middleboxes[END_REF] remarked that BlindBox is still not suitable for the context of outsourced middleboxes, as it does not consider rule protection against middleboxes. They also found that BlindBox is currently not ready for practical deployment due to its expensive initialization phase. For these reasons, they proposed a scheme that is more efficient using a high-performance encrypted filter. They formulated the problem as encrypted token matching based on homomorphic encryption. As in Blindbox, traffic packets must be divided into tokens so that they can be encrypted (but in this case they used hashing to encrypt the tokens). Meanwhile, patterns and actions are extracted and encrypted (hashed) as key-value pairs from the RG to be used the hash table. The secure filter allows MB to perform DPI over the encrypted traffic without knowing the content of packets and the inspection rules. It is based on one of the efficient hash table designs [START_REF] Fan | Cuckoo filter: Practically better than bloom[END_REF]. They transformed an efficient hash table, which stores only the encrypted actions, into an encrypted index while preserving its original performance characteristics. Cuckoo hashing [START_REF] Fan | Cuckoo filter: Practically better than bloom[END_REF] is applied to make the filter extremely compact where the actions can be moved to different gaps so that the filter can achieve a high fill rate.

Hidden CrossTags (HXT) by Lai et al., 2018

HXT is a cryptographic scheme used for conjunctive queries without without revealing data based on two cryptographic primitives: Hidden Vector Encryption (HVE) and Bloom filter. HVE [START_REF] Iovino | Hidden-vector encryption with groups of prime order[END_REF] is a public key encryption paradigm that allows testing membership over encrypted data, without the need to decrypt it, thanks to the use of homomorphic encryption. It supports conjunctive, equality and comparison queries. For efficiency reasons, Lai et al., 2018 [3] exclude public key HVE and replace it with their symmetric key HVE or SHVE scheme which uses a symmetric key encryption scheme. The general idea of HXT is to compare two Bloom filter vectors using SHVE.

EVDPI by Ren et al., 2020

Neither of the previous schemes support packet filtering. Ren et al., observed that most of the packets are legitimate (more than 99%). Therefore, the most of packets should be filtered quickly. Thus, legitimate packets filtering and exact rules matching should be performed separately. By doing so, the efficiency of DPI can be improved. To this end, they proposed the EV-DPI scheme [START_REF] Ren | Privacy-preserving efficient verifiable deep packet inspection for cloud-assisted middlebox[END_REF] based on HXT scheme to implement a DPI using a two-layer architecture deployed on two separate servers. The first layer filters legitimate packets by filtering encrypted tokens using an encrypted Bloom filter. The second layer supports exact pattern matching using the scheme of Lai et al., 2018 [3].

SHVE+ by Lai et al., 2021

According to Lai et al., 2021 [4] these designs are communication inefficient due to traffic tokenization. They observed that variable size tokenization introduces a considerable communication overhead, which can reach more than 100 times the original packet size. As a result, high latency will be introduced, which is not acceptable in large network applications. Recently Lai et al. in 2021, proposed an efficient solution that is based on their SHVE scheme [START_REF] Lai | Result pattern hiding searchable encryption for conjunctive queries[END_REF] to build an efficient pattern matching scheme in encrypted network traffic without going through the traffic tokenization step. However, the SHVE scheme cannot be used directly for packet inspection because inspection rules are composed of patterns and corresponding actions whereas the goal of packets inspection is to reveal a message in case of a match i.e. the corresponding action, not only to test the membership by using the SHVE. For this purpose, the actions must be considered as encrypted messages, Therefore, they have replaced the SHVE scheme with a new one called SHVE+ which supports encryption of actions to reveal them in case of a match. They have also built a secure filter (based on SHVE) to filter out legitimate traffic and perform pattern matching only on malicious traffic. The construction of their filter is based on the S-PATCH scheme [START_REF] Stylianopoulos | Multiple pattern matching for network security applications: Acceleration through vectorization[END_REF]. This filter provides an improvement in the overall performance of pattern matching because, for each rule, instead of using all encrypted patterns for matching, only those matched during the filtring need to be examined in the exact pattern matching using only possible match positions. However, the size of this filter is very large, which limits the overall performances. Thus, this filter is not suitable for fast traffic filtering. Therefore, we built our system in two layers, the first designed to quickly filter legitimate traffic and the second to further inspect malicious packets. In the following sections, we will present the detailed design and development of our solution and in the section 5 "Experiment and Evaluation" we provide a comparison which shows that our proposed design outperforms the existing cryptographic solution of Lai et al., 2021 [4] in terms of inspection time.

3 Overview of the solution based on SHVE+ scheme

System Architecture

Our design uses the same architecture/entities as all existing searchable encryption schemes use that we present in Fig. 1. There are four entities: the sender (S), the receiver (R), the middlebox (MB) and the rules generator (RG). We use the term "endpoints" to denote both S and R. The simple use case we rely on is that the sender aims to inspect all traffic in a third-party middlebox MB service (deployed in the cloud service provider) against malicious activities, and then forward only the legitimate traffic to the receiver. The Rules Generator (RG) is the part that endpoints trust to inspect their traffic. It generates the rules that allow the middlebox to perform the inspection without knowing either the traffic content nor the rules.

Threat Assumption

As our system is based on the searchable encryption (SE) category, we follow the same security model where the middlebox is (semi-)honest (i.e., it honestly participates in the detection system but aims to learn the contents of the private encrypted traffic or the encrypted rules) and one of the endpoints should be honest. According to Sherry et al., 2015 [8], under this threat assumption, there will be two types of attackers against this system which are: The original attacker considered by any traditional IDS and another attacker who aims to learn data from both encrypted packets/rules. Therefore, MB is considered semi-honest. The main goal here is to detect anomalies caused by the first attacker by letting the MB inspect the encrypted traffic using the encrypted rules, while preserving data privacy (both traffic and rules) from the second attacker.

Building Blocks

In order to facilitate the understanding, we will first talk about the building blocks on which our system is based before moving on to explain the general flow of the system.

Basic cryptographic tools.

-Sym: Is a symmetric key encryption system. It consists of three basic functions defined as follows:

• k ← KeyGen(.): To generate the secret key k. -PRF: It is a function in which the set of possible outputs is not effectively distinguishable from the outputs of a random function. The existence of one-way functions is sufficient to construct this type of function. Formally, a pseudorandom function is a function F : K * X -→ Y where K represent the key space, X represents the domain of the function and Y its image. The associated security definition is given by the fact that any polynomial adversary is unable to distinguish between the output of F and the output of a random function on the same domain, conditional on the choice of the key k [START_REF] Paillier | Paillier encryption and signature schemes[END_REF].

SHVE+.

We have based our work on the symmetric key HVE scheme version which also supports message encryption called SHVE+ [START_REF] Lai | Towards practical encrypted network traffic pattern matching for secure middleboxes[END_REF]. It uses a symmetric key encryption Sym to generate the secret key k, encrypt the message m by the symmetric key k and decrypt the ciphertext c by the same key used for encryption. The SHVE+ scheme consists of four probabilistic polynomial-time algorithms.

k SE ← SHVE+.Setup(λ) : This function is used to generate the key k SE (used for the searchable encryption) and it takes as input a security parameter λ . -C ← SHVE+.Enc(k SE , X) : It takes as input the key k SE and the packet represented as a vector, byte by byte, X = (x 1 , • • • , x n) to produces the ciphertext, byte by byte, vector C (associated to the vector X) where

C = {c i = F 0 (k SE , x i ||i)}; ∀i ∈ [n]
. F 0 is a PRF used to encrypt each byte x i concatenated with its position i (x i ||i).

-T = {P NW , d 0 , d 1 } ← SHVE+.KeyGen(k SE , V, Action): It takes as input the key k SE , a pattern (of a rule) placed at a predicate vector

V = (v 1 , • • • , v n) (such that |V| = |X| = n)
in a specific positions called non-wildcard positions P NW where the search of this pattern should be applied on the packets. The unfilled positions are called wildcard positions and are denoted by the symbol "*" which means don't care about these positions. It also takes as input a message Action which represents the action associated to the pattern in order to encrypt it as d 1 (using Sym) and then hide the key inside an homomorphic encryption calculation d 1 with the ciphertext of the vector V on the non-wildcard positions. The algorithm generates the triplet T = (P NW , d 0 , d 1) corresponding to the predicate vector V such that:

• P NW = {l ∈ [n]; v l ̸ = * } ; l 1 < • • • < l |P NW | • d 1 = Sym.Enc(K, Action) ; K ← Sym.KeyGen(.) • d 0 = ⊕ j∈[|P NW |] (F 0 (k SE , v l j ||l j)) ⊕ K -Out
result = ⊕ j∈[|P NW |] c l j ⊕ d 0
By replacing d 0 , we obtain:

result = ⊕ j∈[|P NW |] c l j ⊕ j∈[|P NW |] F 0 (k SE , v l j ||l j) ⊕ K = ⊕ j∈[|P NW |] F 0 (k SE , x i ||i) ⊕ j∈[|P NW |] F 0 (k SE , v l j ||l j) ⊕ K If ∀ j ∈ [1, n], x j = v j ou v j = * then: ⊕ j∈[|P NW |] (F 0 (k SE , v l j ||l j)) = ⊕ j∈[|P NW |] F 0 (k SE , x i ||i))
As a result:

result = K Bloom Filter.
The Bloom filter is a probabilistic data structure used essentially to test the membership of elements to the vector V of N elements represented as fellows

V = {s 1 , s 2 , • • • , s N }. The idea is to choose k independent hash functions, {H i : V -→ [m]}; 1 ≤ i ≤ k.
The filter consists of a binary vector b of m bits, all initialized to 0. In order to establish a BF of V , for each element s ∈ V , the bits at positions {H i (s)}; 1 ≤ i ≤ k are changed to 1. To test the membership of an element q, we check if b has 1 in all positions {H i (q)}; 1 ≤ i ≤ k, and if it is the case, we conclude that q ∈ V with a high probability. If not, we conclude that q / ∈ V with a probability of 1. If q / ∈ V and the membership test returns 1, we call it a "false positive" event.

Architecture Models based on SHVE+ scheme

We have built our system based on the SHVE+ architecture. Returning to Fig. 1 and in order to understand the general flow process for secure packet inspection, we will explain the role of each principal model on it.

Preparation and sending of encrypted packets. Before starting, a connection establishment session is required where the client establishes an SSL connection with the server (using the SSL encryption key k SSL) which passes through the middlebox for forwarding encrypted legitimate packets. Then, the client and the rules generator establish a searchable encryption key k SE (generated using the SHVE+.Setup() algorithm). When this session is executed at least one time, the client then prepares the packets by encrypting them by the use of the key k SE using the SHVE+ method in order to allow the detection later. Each packet X is encrypted (hashed) byte by byte using the SHVE+.Enc(k SE , X). The hashing is performed using a PRF F 0 function that concatenates each byte x i with its position i to link it to it and generate the hashed bytes c i of the hashed packet C as shown on the Fig. 2(a). The client then sends the two flows (the SE flow beside the SSL flow) to the MB for the inspection.

Preparation and sending of encrypted rules. On the other hand, the rules generator prepares the set of encrypted inspection rules E by encrypting rules (patterns) using the key k SE (the same key used for hashing the packets) with SHVE+.KeyGen(k SE , V, Action) algorithm. The latter generates a triplet T = (P NW , d 0 , d 1) for each (pattern, action) in each rule. We will now explain the process of generating a triplet T for each vector V with an example using this snort rule: alert tcp $HOME NET any → $EXTERNAL NET any (msg:"MALWARE-BACKDOOR Infector.1.x" ; flow: established , to client ; content:"WHATISIT" , offset 2 , depth 9; metadata:impact flag red , ruleset community ; reference:nessus , 11157; classtype:miscactivity ; sid:117; rev:17;)

We are only interested in 4 fields which are the Content/Pattern : "WHATISIT" to search for, the Offset : "2" for the starting position, the Depth : "9" of the search and the Action : "alert" to be triggered in case of a match. The pattern will be duplicated j times (j = end -|pattern|beg + 2) in the form of a set of vectors V 1 , ...,V j such that:

beg = o f f set, o f f set > 0 1, else end = beg + depth, depth > 0 |paquet|, else Each V i
represents a pattern insertion (byte by byte) at a specific position such that V i+1 is a one-byte shift to the right compared to V i . The first vector V 1 inserts the first byte of the pattern at the position "offset", and then the other bytes are inserted in succession just after the first byte of the pattern. All other empty positions of the vector are filled with the wildcard character "*" and the positions where the pattern is placed represent the set P NW . After generating the V i vectors, the algorthm KeyGen(k SE ,V i , Action) encrypts them to obtain the corresponding T i of each as shown on the Fig. 2(b). The collection of T i triples represents the set of encrypted inspection rules E that the rules generator sends to the MB to perform the inspection. Inspection. The MB traverses the encrypted (hashed) ruleset E vector by vector and compares it to the encrypted (hashed) packets C using the SHVE+.Query algorithm which uses the Sym.Dec to decrypt d1 (the encrypted Action) using the key K found in case of match as follows:

SHV E + .Query = Sym.Dec(result, d 1) = Action, result = K "MATCH" ⊥, else "MISMATCH"
If the packet is legitimate, the MB allows the SSL connection to pass to the server side. Otherwise, it blocks the SSL connection and acts as an IPS by applying the security actions corresponding to the matched rules, e.g. dropping the packet. The MB also sends the legitimate hashed packet to the server to verify the inspection.

The process of pattern matching proposed by Lai et al., 2021 [4] is performed in two phases: The filtring phase then the exact pattern matching phase. The filtering phase uses two filters FC and FL to filter out some patterns. The creation of these filters is also carried out by using SHVE+.KeyGen algorithm. FC contains the set of vectors Ti associated to short patterns (|pattern| ≤ 3 Bytes) that use the subchain "pattern[0] | | pattern [START_REF] Fan | Cuckoo filter: Practically better than bloom[END_REF]" instead of using the full pattern. It is used to filter out rules with short patterns based on the first two bytes only. FL contains the set of vectors Ti associated to long patterns (|pattern| > 3 Bytes) used to filter out rules with long patterns based on the first fourth bytes only instead of using the full pattern. It contains two successive sub-filters FL12 (contains the first and second byte) and FL34 (contains the third and fourth byte). The filtering is performed before the exact pattern matching process using the SHVE.Query(Filter,C) algorithm to eliminate unmatched patterns and keep the first position of only matched patterns in a vector called "possible match positions". This vector is later used as input to perform exact pattern matching process (to check the remaining bytes for each matched pattern) on the packets at the collected positions only. The Fig. 3 summarizes SHVE+ scheme of Lai et al., 2021 [4].

Verification. The server must verify the detection results by decrypting the SSL connection flow using the k SSL key and re-encrypting it with the same encryption algorithm used by the client (hashing it using the k SE key) and compare it to the legitimate hashed packets received from the MB. In case of mismatch of any packet, it indicates that the detection process is escaped.

The Proposed System

The problem with the filter of Lai et al., 2021 [START_REF] Lai | Towards practical encrypted network traffic pattern matching for secure middleboxes[END_REF] scheme is that the size of the two filters (FC and FL) together is very large almost equal to E that contains a very large number (thousands) of T i vectors, which makes traversing this set very costly. Therefore, the same applies to traversing the two filters (FC and FL) in the filtering phase. Moreover, according to Ren et al., 2020 [7] 99% of real network traffic is legitimate and needs to be filtered out quickly without going through thousands of SHVE+ filter vectors. Therefore, the filtering phase of Lai et al, 2021 [START_REF] Lai | Towards practical encrypted network traffic pattern matching for secure middleboxes[END_REF] is not designed in a way that helps filter out such legitimate packets quickly. To solve this problem, we need a filter that quickly eliminates the majority of legitimate traffic. Therefore, we proposed a completely separate two-layer architecture, inspired by the Ren et al., 2020 scheme [START_REF] Ren | Privacy-preserving efficient verifiable deep packet inspection for cloud-assisted middlebox[END_REF]: Fast filtering layer and Exact pattern matching layer, as shown in the Fig. 4. The objective of the first layer (Fast filtering) is to filter out the majority of legitimate traffic. The filtering must not produce any false negatives, i.e. it must not miss any possible matches. It must also produce less than 50% false positives in order to filter out the majority of incoming traffic. The objective of the second layer (Exact pattern matching) is to further inspect unfiltered packets from the first layer using an exact pattern matching process only in the possible match positions provided by the first layer. In the following, we provide details on each of them. For this layer, we have chosen the tokens filtering module (TFS) of the EVDPI scheme [START_REF] Ren | Privacy-preserving efficient verifiable deep packet inspection for cloud-assisted middlebox[END_REF]. It is based on the ETF Bloom filter of encoded tokens. The main idea is to associate each encoded token etk to a specific locations in the Bloom filter, of size m, using k hash functions to avoid collisions. Then, to test the membership (for the filtering) of a given encoded token etk, the TFS computes the k hash functions as follows:

loc i = h i (etk) mod m;1 ≤ i ≤ k. Then, the token is matched only if ET F[loc i] = 1; ∀i ∈ [1, k].
This layer must check all tokens and if no match is found, the packet must be sent outside the network. In our conception, we used the first two bytes of each pattern concatenated with the offset as a token to be searched. We encrypt the token by a PRF F 0 using another key k BF . Thus, our etk is calculated as follows: etk = F 0 (k BF , pattern[0]||pattern [START_REF] Fan | Cuckoo filter: Practically better than bloom[END_REF]||o f f set) for each pattern. This filter is generated at the level of the rules generator RG. Thus, the filtering process is the same as in TFS. The Fig. 5 illustrates the design of this layer. The probability of a false positive of a bloom filter is P e ≤ (1e (-k•N/m)) k (N is the number of elements in the set). Bigger m and k allow to avoid collisions, which reduces the false positive rate. But a small k is preferable because it reduces the computational cost (fast hashing). A smaller m is also preferable so that the search can be performed in the lower levels of the cache. There are formulas and machine learning techniques to choose the best k and the best m in the Bloom filter to maximize its efficiency.

Layer 2: Exact pattern matching

For this layer we have used the SHVE+ scheme. However, in our case (when using the first layer) it is necessary to remove the two filters FC and FL12 because they become useless in the presence of the Bloom filter which processes the first two bytes of each pattern in the previous layer (layer 1). The advantage of our proposed scheme compared to the Lai et al., 2021 scheme [START_REF] Lai | Towards practical encrypted network traffic pattern matching for secure middleboxes[END_REF] is that in the latter, for each packet of maximum 1500 bytes, the filtering algorithm has to go through thousands of vectors just to decide if the packet is legitimate or not, and thus requires a deep inspection of all the bytes after the filtring process. In contrast, in our design, with the use of the bloom filter (in the first layer) of fixed size m, which does not increase with the number of patterns unlike the SHVE filters, the first layer filtering algorithm traverses the packet instead of the SHV E filters. This means that the algorithm uses a fixed size sliding window of 2 bytes to generate 1499 tokens of fixed size, for each packet, to test the membership of each of them in the bloom filter and collect the possible match positions. Thus, in next layer, for packets that require further inspection, the algorithm only checks the possible match positions found in the first layer. In summary, we prefer to traverse a packet of 1500 bytes through a 2-bytes sliding window instead of traversing a set containing thousands of vectors to just filter out the legitimate packets.

Experiment and Evaluation

To evaluate the performances of our solution, we have implemented 4 different inspection methods. The first two Method 1 1 and Method 2 2 are those of Lai et al, 2021 [START_REF] Lai | Towards practical encrypted network traffic pattern matching for secure middleboxes[END_REF] (SHVE+ without and with SHVE filter, respectively) and the other two Method 3 3 and Method 4 4 are our two-layer architecture without and with the use of FL34 SHVE filter in the second layer, respectively. Fig. 6 represents a summary of the conception of each. The objective of this section is to compare the four implemented inspection methods between them and show how the size of the Bloom filter affects the inspection time. To do that, we present the results of two tests. The first one "Methods comparison" is to compare the methods and the second one "Parameters optimization" to see the effect of the Bloom filter size. The execution time was used as a metric for these tests. We want to mention that we used the programming language Python for the implementation which is very slow compared to other languages like C++ with a very remarkable difference. Therefore, we will compare our conceptions with the SHVE+ methods that we implemented in our environment under the same conditions. For inspection performance evaluations, we used a machine equipped with Intel® Core™ i7-5500U CPU @ 2.40GHz and 8 GB RAM. We used Snort 5 as a ruleset for the inspection.

1 Method 1: SHVE+ without SHVE filtring 2 Method 2: SHVE+ with SHVE filtring 3 Method 3: Filtre Bloom in Layer 1 with SHVE+ without filtring in layer 2 4 Method 4: Filtre Bloom in Layer 1 with SHVE+ and SHVE filter FL34 in layer 2 5 Snort, "Snort community ruleset," 2019. [Online]. Available: https://www.snort.org/downloads Fig. 6. The overall conception with the four implemented methods

Test 1: Methods comparison

For this tests, we used five rulesets R0 1 , R1 2 , R2 3 , R3 4 , R4 5 to inspect 40 packets where only 2 are malicious, giving a percentage of 5% of malicious packets (which is high compared to the real world). We present in Table 1 the inspection time of each method, of 40 packets, using the five rulesets. Then, we present in Fig. 7 the relation between the inspection time of each method and the number of packets. For this first test, we used a Bloom filter of 1000 elements (BF 1000). We obtain for a small set of rules (Ruleset0):

T (Method2) < T (Method1) < T (Method3) < T (Method4)
The method 2 is faster than method 1, making it interesting to use the SHVE+ filter, instead of using SHVE+ alone to avoid inspecting all bytes of each pattern as mentioned in Lai et al, 2021 [START_REF] Lai | Towards practical encrypted network traffic pattern matching for secure middleboxes[END_REF]. We also remark that when the number of vectors is very small, the SHVE+ methods (methods 1 and 2) becomes fast compared to our conception (methods 3 and 4) which performs a membership test of 1499 tokens of fixed size for each packet, which is logical. However, when the number of patterns increases, we obtain:

T (Method3) < T (Method4) < T (Method2) < T (Method1)
When the number of vectors becomes large, the SHVE+ filtering becomes very time consuming. To avoid this, it is necessary to quickly filter legitimate packets in the first layer with the membership test of 1499 fixed size tokens, which makes it very fast compared to passing through a set that contains thousands of vectors. Therefore, the methods that use the fast filtering layer give a better inspection time than those that use only the second layer. As the ruleset becomes larger, the difference in inspection time between the methods becomes larger as shown in Fig. 8 which shows the relation between inspection time and ruleset size for the four methods.

We notice that for Method 3, the inspection time increases when the number of patterns increases, while normally this is not the case (because normally the size of the ruleset is independent of the filtering time in the first layer, as the filtering time of the Bloom filter is basically completely dependent on the computation time of the hash functions). This is due to the fact that the Bloom filter used has a very small number of elements (m = 1000) which means that there are many legitimate packets that pass the Bloom filter (the problem of collisions during insertions leads to many false positives). To solve this problem, it is necessary to increase the number of elements m in the filter. However, Method 3 gives us the best results, despite the use of a Bloom filter with a very small number of elements. We will see later the improvement of this method by increasing the number of elements.

Test 2: Parameters optimization

In this second test, we will first show the difference between using a 1000 elements bloom filter "BF 1000 " and a 10000 elements bloom filter "BF 10000 ". For that, we used 8 packets with the ruleset "Ruleset2" and the Method 3 for inspection as shows in Fig. 9. Then we will compare the four methods again and show the big difference using the filter BF 10000 instead of BF 1000 . From Fig. 9 we remark that there is a big difference between the two cases and this is due to the fact that in the first case, when the number of elements is small, the Bloom filter suffers a lot of collisions and consequently more legitimate packets pass to the second layer (more false positives) which increases the inspection time. In contrast, when there is enough space in the Bloom filter, it lets only suspicious packets pass for further inspection (less false positives), making the inspection time at layer 2 very fast.

Fig. 9. The difference between using "BF 1000 " and "BF 10000 " according to the inspection time We now present, in Fig. 10, the difference between the inspection time of the four methods with the use of "BF 10000 " for methods 3 and 4. We can see this time that our methods (methods 3 and 4) give us a better inspection time and incomparable to the other methods especially when the set of rules becomes bigger and this thanks to the use of the Bloom filter of 10000 elements which minimizes the false positive rate in the first layer. We present in Table 2 the inspection time results obtained using Method 3 with the Bloom filter "BF 10000 " for the inspection of 40 packets. We also give the inspection throughput and the gain obtained compared to methods 1 and 2 (abbreviated as Gain % M12) and method 3 with BF 1000 (abbreviated as Gain % M3 1000). The most important thing to observe is that the larger the ruleset, the greater the gain of the Bloom filter compared to other methods that don't use this filter. As the IDS needs a very large number of rules to work efficiently, this filter will be very useful, especially when the percentage of malicious packets becomes very low where they get filtered by the Bloom filter, which saves a lot of inspection time. Moreover, we show in Fig. 11 that by using a Bloom filter of 10000 elements, we obtained an inspection time almost independent of the size of the ruleset due to the sufficient space of this filter which reduces the collisions and so the false positive rate. It is important to choose the number of elements m carefully to maximize the efficiency of the filter without degrading the performances. Increasing the value m leads to a risk of degrading performances when the Bloom filter size surpasses the cache size.

Conclusion and Future Work

In this work, we built a secure IDS, that performs intrusion detection over encrypted traffic, based on the "Searchable encryption" class of methods. We used a two-layer architecture to build our solution. The first layer "Fast filtering" is used to quickly filter out the majority of legitimate traffic and the second layer "Exact pattern matching" is used to further inspect only the unfiltered malicious traffic. We prove that our solution outperforms one of the best recent works in this class of methods in terms of inspection time due to the use of the fast filtering layer. We show how a fixed-length tokenization can improve the performance of the secure IDS. We also present how our solution becomes more important as the number of rules becomes larger and larger. One of our future goals is to study how to extend our system to support other inspection rules such as multi-pattern rules, regexes and scripts as well as other rulesets.

Fig. 1 .

 1 Fig. 1. System architecture

 • c ← Enc(k, m): To encrypt the message m by the symmetric key k. • m ← Dec(k, c): To decrypt the ciphertext c by the encryption key k.

 put ← SHVE+.Query(T, C) : The Query algorithm used for the test. It takes as input a trapdoor/triplet T = (P NW , d 0 , d 1) and a ciphertext C. As a result, it can extract the key K from the homomorphic encryption calculation d 1 iff the pattern matches the encrypted packet in the non-wildcard positions P NW (i.e. ∀ j ∈ [1, n], x j = v j ou v j = *) and then reveal the corresponding Action as Out put. Otherwise, it outputs ⊥. More formally, the algorithm performs a homomorphic encryption calculation result as follows:

Fig. 2 .

 2 Fig.2. SHVE+ architecture models[START_REF] Lai | Towards practical encrypted network traffic pattern matching for secure middleboxes[END_REF]

Fig. 3 .

 3 Fig.3. SHVE+ with filtering[START_REF] Lai | Towards practical encrypted network traffic pattern matching for secure middleboxes[END_REF]

Fig. 4 .

 4 Fig. 4. Two-layer architecture

Fig. 5 .

 5 Fig. 5. Preparation and fast filtering of the first layer

Fig. 7 .

 7 Fig. 7. The relation between the inspection time and the number of packets (using BF 1000)

Fig. 8 .

 8 Fig. 8. The relation between the inspection time and the size of the ruleset (using BF 1000)

Fig. 10 .

 10 Fig. 10. The relation between the inspection time and the number of packets (using BF 10000)

Fig. 11 .

 11 Fig. 11. The relation between the inspection time and the ruleset size (using BF 10000)

Table 1 .

 1 Inspection time of 40 packets through 5 rulesets using the four implemented methods

	Ruleset Method 1 Method 2 Method 3 Method 4
	Ruleset0 0.15 s	0.14 s	1.58 s	1.59 s
	Ruleset1 11.39 s	10.56 s	7.41 s	7.56 s
	Ruleset2 22.88 s	21.37 s	15.04 s	17.10 s
	Ruleset3 45.68 s	43.6 s	27.2 s	33.24 s
	Ruleset4 214.14 s 192.10 s 116.84 s 143.33 s
	1 Ruleset0 (70 KB), 1 rule, 64 vectors			
	2 Ruleset1 (3.7 MB), 9 rules, 4951 vectors			
	3 Ruleset2 (8.4 MB), 9 rules, 10085 vectors		
	4 Ruleset3 (19 MB), 17 rules, 20544 vectors		
	5 Ruleset4 (86 MB), 107 rules, 88360 vectors		

Table 2 .

 2 Inspection throughput, gain and inspection time of 40 packets using Method 3 (our conception) based on BF 10000

	Ruleset Inspection time Gain % M12 Gain % M3 1000	Throughput
	Ruleset0	1.57 s	loss	1%	25 Packets/s 38 Bytes/ms
	Ruleset1	1.78 s	≥ 83%	76%	22 Packets/s 34 Bytes/ms
	Ruleset2	2 s	≥ 91%	87%	20 Packets/s 30 Bytes/ms
	Ruleset3	2.53 s	≥ 94%	91%	16 Packets/s 24 Bytes/ms
	Ruleset4	8.52 s	≥ 96%	93%	5 Packets/s 7 Bytes/ms