Sarra Khaber

Ryma Boussaha
email: rboussaha@esi.dz

Yacine Challal
email: yacine.challal@udst.edu.qa

Service orchestration in Autonomous Vehicle Networks: Leveraging Vehicular Fog and Edge Computing

Keywords: Autonomous vehicles, Intelligent Transportation Systems, Edge computing, Vehicular for computing, QoS

The presence of connected and autonomous vehicles is transforming the transportation landscape, improving safety, efficiency, accessibility, and sustainability. However, the disparity between the computational capabilities of autonomous vehicles and their embedded computations requires offloading computation tasks. To address this issue, RoadSide Units (RSUs) have been introduced, bringing computing units closer to the vehicles. By performing real-time computation tasks at the network edge, RSUs enable faster decision-making and reduce reliance on remote cloud servers. Another solution that enhances the capabilities of smart transportation systems is the collaboration of neighboring vehicles within the framework of vehicular fog computing. However, existing research in task placement for vehicular networks often overlooks the quality of service (QoS) in terms of vehicle-service connectivity, focusing primarily on load balancing and latency reduction. To tackle this problem, our work proposes a task orchestration solution that leverages vehicle mobility factors to strike a balance between minimizing latency and improving QoS. The objective is to minimize disconnection and avoid waiting times for service relocation. We evaluated the effectiveness of our proposed solution through a comparative evaluation, which demonstrated that our approach offers the best tradeoff between average service latency and QoS improvement in terms of vehicle connectivity. These results indicate that our solution effectively enhances both performance and reliability.

I. INTRODUCTION

In recent years, there has been significant research and development in the field of smart cities transportation and Connected Autonomous Vehicles (CAV). These areas aim to leverage advanced technologies and data-driven approaches to enhance transportation systems, improve efficiency, and promote sustainable urban mobility. However, autonomous vehicles rely on sophisticated algorithms and real-time processing of various sensor data to perceive their environment and to make decisions. The complexity and volume of these computations can be significant, especially in highly autonomous vehicles that operate in complex and dynamic environments. Various solutions have been proposed to offload certain computational tasks to external servers. Two such emerging solutions are edge computing and vehicular fog computing. Edge computing involves deploying computing resources, such as Roadside Units (RSUs), closer to the users or at the network edge. These RSUs provide computational power, storage, and communication capabilities and minimizes the required bandwidth for communication with cloud servers. Vehicular fog computing, on the other hand, leverages the computing units within vehicles in close proximity to collaborate and execute services in a distributed manner. While load balancing and minimizing latency are typically prioritized, the Quality of Service (QoS) aspect, particularly the number of connection cuts when a vehicle leaves the range of a node hosting its service, is often overlooked. In [START_REF] Sami | Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services[END_REF], the authors propose a framework for deploying containerized micro-services in a vehicular context, referred to as Vehicular-OBus-as-on-DemandFOGs (VODFs). They propose leveraging the concept of Fog Computing, where resources are distributed at the edge of the network, to enable efficient and dynamic deployment of containerized micro-services. They compare their solution with existing deployment approaches and demonstrate its superiority in terms of resource utilization, latency reduction, and adaptability to changing conditions. In [START_REF] Lee | Resource Allocation for Vehicular Fog Computing Using Reinforcement Learning Combined With Heuristic Information[END_REF], the authors propose a resource allocation approach for vehicular fog computing that combines reinforcement learning with heuristic method. The authors formulate the resource allocation problem as a Markov decision process and employ the Q-learning algorithm to train a reinforcement learning agent. Through simulations, the proposed approach is shown to outperform existing schemes by achieving improved resource allocation efficiency. The study conducted by [START_REF] Daoud | Communication-wise Comparison of the Online Resource Allocation Methods in CAV Fleets[END_REF] explores the comparison of online resource allocation methods in connected and autonomous vehicle (CAV) fleets. The research examines different approaches such as centralized, decentralized, auctionbased, and reinforcement learning methods, focusing on their communication aspects. The study provides insights into the advantages and challenges of each method, considering factors like efficiency, scalability, resilience, and the communication infrastructure available.

In fact, the mobility of a node, especially in a dynamic network, is inherently stochastic and not perfectly predictable in advance. However, there are certain factors that can help facilitate the prediction of node mobility, including: the current position of the vehicle, the destination of the vehicle, the routes that the vehicle will take, the Vehicle speed and acceleration. Most of existing solutions misuse vehicles mobility information in the process of resource allocation and services location. In this work, we address this problem and we aim to improve existing solutions. We propose en effective solution of placing tasks in vehicular fog and edge computing networks while minimizing service latency and improving vehicle connectivity. Our proposal involves a multi-objective optimization model and a service orchestration algorithm, that considers different factors related to vehicle mobility in order to enhance the quality of service. Additionally, our solution addresses potential interruptions and constraints such as connection cuts and latency violations. We conducted tests and we made comparison against a position-based heuristic, and an edgeonly approach. The results demonstrated that our solution achieved the best tradeoff between minimizing average service latency and improving QoS in terms of vehicle connectivity with its service.

The remainder of this paper is organized as follows. In Section 2, we describe the vehicular fog and edge computing based solution for task orchestration that we propose. In Section 3, we present performance evaluation as well as experiments of our proposed scheme. Finally, conclusions are made in Section 4.

II. SERVICE ORCHESTRATION IN VEHICULAR FOG AND

EDGE COMPUTING BASED CAV NETWORK Our solution enables vehicles to request hardware resources from neighboring vehicles when their local resources are insufficient for hosting a service. Neighboring vehicles are grouped into clusters, each managed by a master vehicle responsible for orchestrating services within the cluster. The master vehicle considers factors like vehicle mobility (speed, destination, position) to select the most suitable node within the cluster for each service request. If no neighboring vehicle can meet the request, the vehicle in need will request the closest edge server to deploy the service. This approach optimizes resource allocation by leveraging proximity and mobility, utilizing peerto-peer sharing within clusters, and resorting to edge servers when local resources are insufficient.

A. Network architecture

Our solution seeks to optimize the use of hardware resources in vehicular networks to effectively meet the vehicles service requirements. Our architecture consists of three layers, as depicted in figure 1. The Vehicular Fog Layer consists of vehicles that can act as resource requesters or hosts, providing their available resources to other vehicles in exchange for privileges, such as reduced motorway toll rates. Communication within this layer is facilitated through wireless connections of ad hoc nature, using technologies like DSCR. The main role of the Edge Server Layer is to provide virtual resources for hosting vehicle services. These edge servers possess a much larger pool of physical resources compared to the resources available at the vehicle's edge, known as the On-Board Unit. The primary function of the Access Points/Base Stations Layer is to facilitate the establishment of connectivity between vehicles and edge servers. Vehicles within the coverage range of an access point are linked to it using WiFi or LTE connections. Furthermore, the access points are interconnected with the edge servers through wired connections. The access points themselves are interconnected via highly reliable and fast network to ensure seamless communication within the network.

B. Clustered vehicle organization

The vehicular Fog consists of clusters, which are groups of neighboring vehicles communicating through V2V connections. Each cluster within the vehicular Fog includes two distinct types of vehicles.

1) Master: The master, also referred to as the cluster orchestrator, undertakes the following set of tasks:

• Receive service accommodation requests (requests) from seeking vehicles. • Gather information from other vehicles within its cluster.

• Identify the most suitable node within the cluster to host the service for each requesting vehicle. • Allocate and reserve the requested resources in the selected vehicle. • Notify the requesting vehicle of the decision made by transmitting the required information for establishing communication, such as the IP address of the hosting vehicle. Two methods are employed for selecting the master vehicle within a cluster. The first method involves choosing the vehicle with the highest available resources, considering the resourceintensive nature of tasks performed by the master vehicle. The second method involves selecting the vehicle that tends to be centrally located within the cluster over time, which facilitates communication with other vehicles.

2) Worker: A vehicle within the cluster can act as a requester, a host, or fulfill both roles simultaneously. When a worker vehicle requires additional resources to perform its service, it sends a request to the cluster's master and awaits a response from the host vehicle, containing the necessary information to establish a connection. When a vehicle needs to perform a computer vision service, it starts by formulating a request containing all the necessary information to host the service. This information typically includes the model reference used for image processing, the maximum acceptable latency, and the expected service duration. Additionally, it is vital for the vehicle to provide the average CPU and memory usage rates for the service.

C. Multi-objective optimization model

Consider vehicle v i as the requester of service s, and let C be the cluster (if available) such that v i ∈ C. We define a host H as a node satisfying H ∈ (C -{v i , v m } ∪ E S), where v m represents another vehicle in the cluster and E S represents the edge servers. Lat H,i,s represents the average latency of service s for v i when it is executed on host H. Disc H,i,s represents the probability of a connection being interrupted between v i and H, which may occur before v i reaches its destination or no longer requires the service s. The parameters and their corresponding definitions are summarized in Table I. Our problem can be formulated as follows:

min Lat H,i,s (1)
min Disc H,i,s subject to (2)

Lat H,i,s < trl s (3) dem cpu s < avail cpu H,t < max cpu H t ∈ T (4) dem mem s < avail mem H,t < max mem H t ∈ T (5)
The optimal host selection must carefully balance the objectives of minimizing latency, minimizing the occurrence of connection disruptions, and ensuring an adequate allocation of CPU and memory resources. Furthermore, it is essential for the chosen host to meet the maximum acceptable latency requirement for the given service. To address this problem, we propose an iterative process that incorporates both proactive and reactive measures in response to connection disruptions between the requesting vehicle and its host. The proactive aspect involves selecting a node to host the service during orchestration that minimizes connection outages. Meanwhile, reactive mechanisms are employed to handle such disruptions when they occur.

D. Service orchestration

Upon receiving a request from a requesting vehicle, the master vehicle must determine the relevance of each worker vehicle to the request, based on multiple criteria. To do so, it must calculate a score for each candidate and select the candidate with the highest score. If a vehicle does not possess the requested amount of CPU and memory, it is removed from the list of potential vehicles, and the master vehicle does not compute its score. The master vehicle determines the score for each vehicle by considering the mobility factors of the worker vehicles in relation to the requesting vehicle, which are : the vehicle's destination, speed and position. In order to minimize the loss of connection between the requesting vehicle and its service, it is essential to consider the destination of each candidate. The speed of the vehicle is also a factor in optimizing communication duration and reducing connection disruptions. If the selected vehicle is considerably slower or faster than the requesting vehicle, they will quickly diverge from each other, even if they are following the same route. Moreover, the vehicle's position is considered in order to minimize latency.

1) Score Calculation: Let v i and v j ∈ C represent the requesting vehicle and a candidate vehicle, respectively. The score of v j at time t is determined by the following formula:

score(v j , t) = α 1 .φ 1 + α 2 .φ 2 + α 3 .φ 3 (6)
Such that :

φ 1 = 1 D(desi,desj) , φ 2 =
1 D(p vi,t,p vj,t) and φ 3 = 1 |si,t-sj,t| α 1 denotes the weight assigned to the destination parameter (0 ≤ α 1 ≤ 1). α 2 denotes the weight assigned to the position parameter, (0 ≤ α 2 ≤ 1). α 3 denotes the weight assigned to the speed parameter, (0 ≤ α 3 ≤ 1).

We define φ1 as follows :

φ1 = 1 D(desi,desj) if D(des i , des j) > 1m 1 otherwise (7)
The same procedure applies to the speed parameter, as it is possible for multiple vehicles to be traveling at the same speed. Therefore, we define the following value:

φ3 = 1 |si,t-sj,t| if |s i,t -s j,t | > 0.5m 2 otherwise (8)
The modification does not apply to the position parameter because the distance between any two vehicles at any given moment cannot reach zero. Therefore, the new formula for the score is as follows:

score(v j , t) = α 1 . φ1 + α 2 .φ 2 + α 3 . φ3 (9)
In our final step, we made the decision to incorporate the service usage time into our score calculation. When the requesting vehicle is expected to utilize the service for a brief period (such as a few minutes or seconds), the influence of the destination parameter on the score calculation should be reduced. In such a short time span, the probability of connection dropout is minimal, so the focus should be on latency and ensuring that the distance between vehicles does not increase over time. If, by the end of the service usage time, the vehicle v i reaches its destination, then the score is calculated using equation (9). We define the remaining time for vehicle v i to reach its destination from the current moment t as res i,t . Therefore, the final formula for the score is: 9) otherwise (10) The cluster master executes Algorithm 1 each time it receives a request from a vehicle. The master processes each request individually without directly affecting the orchestration of other requests. Indeed, the arrival of requests from vehicles is not deterministic. There is no guarantee that all requests will arrive at the cluster master simultaneously, and it is crucial that any request received by the master is processed promptly. There is no time for waiting, as computer vision services are highly critical and time-sensitive.

score(v j , t) =    α 1 . tus resi,t . φ1 + α 2 .[1 -tus resi,t].φ 2 + α 3 . φ3 if tu s ̸ = res i,t equation(
The initial step of the algorithm executed by the master upon receiving a request is to gather the "dynamic" information of the workers and combine it with the existing "static" information in the set V . The resulting data is stored in a matrix called list vehicle. Subsequently, list vehicle is filtered to retain only the vehicles that possess available computing capacities greater than the requested ones, which are identified as the candidates. There are three possible scenarios: if there are no candidates in the cluster, the master informs the requesting vehicle by returning "NULL"; if there is only one candidate, the master directly reserves the requested resources in that vehicle; if there are multiple candidates, we proceed with the following steps:

• The master calculates the score of each candidate using formula (9). • The master sorts the list of candidates, in descending order based on the candidates' scores. • The master chooses the first two candidate vehicles from the sorted list, Ranked, and if the requested image is present in the second vehicle but not in the first vehicle, and the scores of the vehicles are close enough, their order is reversed. • The master sends a resource reservation message to the selected vehicle (the first one in the sorted list), and in return, it receives the port number associated with the service. • The master then provides the requesting vehicle with the IP address of the chosen vehicle and the corresponding port number. These two pieces of information are all that the requesting vehicle needs to establish communication with its service. if Ranked [START_REF] Sami | Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services[END_REF] does not have the image of the service and Ranked [START_REF] Lee | Resource Allocation for Vehicular Fog Computing Using Reinforcement Learning Combined With Heuristic Information[END_REF] has the image of the service and (score 1score 2 < β) then 12:

Algorithm 1 Orchestration algorithm within the cluster

Input: V = {(v i , max cpu i , max mam i , des i)/v i ∈ C vi ̸ = v m } 1: β ← 0
Swap the positions of Ranked [START_REF] Sami | Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services[END_REF] and Ranked [START_REF] Lee | Resource Allocation for Vehicular Fog Computing Using Reinforcement Learning Combined With Heuristic Information[END_REF];

III. EVALUATION RESULTS

The architecture described in this work was implemented using the integration of Containernet1 and Mininet-WiFi2 to model the vehicles (and edge servers), and the "AP" class of Mininet-WiFi to model the access points.

Since our solution combines service orchestration at the cluster level and edge solicitation, we compared our solution with two baseline methods.

• Edge-only: In this solution, the neighboring vehicles cannot host the service requested by the vehicle and the only option is the edge [START_REF] Sami | Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services[END_REF]. • First-Fit: The problem of service orchestration or resource allocation is often reduced to the Bin-Packing problem. By analogy, the objects and their volumes represent the services and their demands, respectively. The bins and their capacities represent the nodes (vehicles in a cluster) and their hardware capabilities, respectively [START_REF] Sami | Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services[END_REF].

A. Evluation metrics

We evaluate our solution based on two metrics:

• Latency: As a first step, we calculate the average latency of each requesting vehicle's service from the beginning In this work, we adopted a microservice for high-level image processing: h2non/imaginary. In order to use the service, it is necessary to perform a profiling step to determine the resource requirements, including CPU and RAM. Several tests were carried out on a container named "imaginary" with a maximum CPU allocation of one core and a memory limit of 500MB. The results of these tests are summarized in the table II.

In order to ensure unbiased testing, we decided to randomly generate the hardware resources for the vehicles. The generation process follows a uniform distribution. In the initial step, we generated a random list of 'fit' and 'blur' tasks permuting them. Next, we assigned CPU and memory demands to each task in the generated list. To introduce variability while aligning with the results obtained in the profiling phase, we utilized the normal distribution to generate the demands for each task. To simulate the arrival of requests, we use a Poisson process. In a Poisson process, the time between two consecutive requests follows an exponential distribution with parameter λ [START_REF] Ross | Stochastic processes[END_REF], which represents the average number of requests per unit of time. In our experiments, we set λ = 10 req/min to test our system's response to a high load (frequent arrival of requests) [START_REF] Lin | Resource Allocation in Vehicular Cloud Computing Systems With Heterogeneous Vehicles and Roadside Units[END_REF], [START_REF] Zheng | An SMDP-Based Resource Allocation in Vehicular Cloud Computing Systems[END_REF]. The reason for selecting the Toccoa map in Georgia, United States was its complexity. As depicted in the figure 2, the map highlights the chosen source and destination points. To maximize the range of scenarios, we

B. Empirical study

The scoring function relies on the weights α 1 , α 2 , and α 3 , which determine the importance of each component (destination, current position, velocity). We selected 13 different combinations to represent a wide range of scenarios. Additionally, we chose a scenario with a cluster of 8 vehicles and 6 requesting vehicles. For each combination, we conducted multiple test runs and obtained the average results for latency and connection disruption. The summarized results are presented in the table IV.

The number of connection disruptions has an inverse relationship with the first weight (associated with the destination). This can be observed in combinations [START_REF] Sami | Vehicular-OBUs-As-On-Demand-Fogs: Resource and Context Aware Deployment of Containerized Micro-Services[END_REF][START_REF] Lee | Resource Allocation for Vehicular Fog Computing Using Reinforcement Learning Combined With Heuristic Information[END_REF][START_REF] Ross | Stochastic processes[END_REF][START_REF] Zheng | An SMDP-Based Resource Allocation in Vehicular Cloud Computing Systems[END_REF]10,13). This result is logical because if we assign high importance to the destination in the scoring calculation, we choose a candidate whose route is more similar to that of the requesting vehicle. As a result, the candidate accompanies the vehicle for a longer duration, leading to a lower chance of connection loss to the service. The combination (0.6, 0.2, 0.2) yields the best performance. This combination will be used in the comparative study.

C. Comparative study

In order to test the effectiveness of our solution compared to basic techniques (First Fit and Edge-only), we conducted a series of tests. In terms of service relocations, we observe that hosting services on edge servers yield better results. This is justified by the fact that the vehicle maintains its connection with the edge server hosting its service, even when transitioning from one access point to another. However, there are cases where the latency constraint is violated when the number of hops (access points) between the vehicle and the edge server increases, triggering a service migration. In terms of latency (figure 3), we notice that the average latency of services hosted only on edge servers is significantly higher compared to other methods. This is consistent with the fact that vehicle-edge communications are slower than vehicle-tovehicle communications. When comparing scenarios in which the First Fit method experiences more connection disruptions than our solution, it becomes apparent that latency increases as the number of disruptions rises. This can be attributed to the higher probability of task allocation to the edge server, which subsequently impacts latency.

IV. CONCLUSION

The on-board units of vehicles may not always be able to execute resource-intensive services locally without performance degradation. As a result, vehicles need to leverage their environment to carry out tasks. We have proposed a solution for service orchestration in networks of connected autonomous vehicles based on vehicular fog and edge computing. The orchestration algorithm within a cluster utilizes vehicle mo-bility factors such as speed, current position, and destination to enhance the quality of service (QoS) for the requesting vehicle. To validate our solution, we conducted several tests and compared it to traditional methods such as first fit and edge only. The results demonstrated that our solution strikes the best balance between minimizing average service latency and improving QoS in terms of vehicle connectivity with its service.

Fig. 1 .

 1 Fig. 1. Network architecture.

Fig. 2 .

 2 Fig. 2. Source and destinations of vehicles on the Toccoa map.

Fig. 3 .

 3 Fig. 3. Average latency of the service obtained using different methods.

 Estimated time of usage of s by v i .

		TABLE I
		INPUT PARAMETERS.
	Parameter	Meaning
	v i	A vehicle which belongs to the set of vehicles, V.
	max cpu i	Amount of CPU resources available in the OBU of
		vehicle v i .
	max mem i	Amount of memory resources available in the OBU
		of vehicle v i .
	des i	Destination of v i .
	avail cpu i,t	The amount of CPU resources available in v i at time t.
	avail mem i,t	The amount of memory resources available in vehicle
		v i at a specific time t.
	s i,t	Speed of vehicle v i at time t.
	p v i,t	Position of vehicle v i at time t.
	D(a, b)	Distance between a and b.
	C	Cluster whose master is vm.
	s	Service of the set of services S.
	dem cpus	Amount of CPU resources requested by service s.
	dem mems	Amount of memory resources requested by service s.
	trls	Maximum latency tolerated by service s.
	tu s,i	

 .1; 2: list vehicle ← collect info(V); 3: candidates ← filter(list vehicle,dem cpu s ,dem mem s); 4: if size(candidates) = 0 then

	5:	return NULL;
	6: else if size(candidates)=1 then
	7:	best ← candidates[1];
	8: else
	9:	Calculate the score of each candidate in candidates;
	10:	Ranked ← Sort(candidates,desc,score)
	11:	

TABLE II SUMMARY

 II OF THE PROFILING PHASE OF THE "imaginary" SERVICE.

	Service	Request	Number of re-	CPU (cores)	Memory (MB)
		latency (s)	questss		
	fit	0.019	52	0.62	< 30M B
		0.03	33	0.5	< 20M B
	blur	0.019	52	0.88	< 30M B
		0.03	33	0.7	< 20M B

TABLE III NUMBER

 III OF VEHICLES AND REQUESTS.

		3 requests	4 requests	5 requests	6 requests
	cluster of 5	X		
	cluster of 6	X	X	
	cluster of 7		X		X
	cluster of 8			X	X
	cluster of 9		X	X

TABLE IV RESULTS

 IV OF THE EMPIRICAL STUDY.

		Combination	Latency (s)	Relocation
	1	0.33|0.33|0.33	0.0949	5.75
	2	0.4|0.3|0.3	0.09	5
	3	0.3|0.4|0.3	0.0993	5.75
	4	0.3|0.3|0.4	0.091	4.75
	5	0.45|0.2|0.35	0.0865	4.75
	6	0.45|0.35|0.2	0.0772	5
	7	0.5|0.25|0.25	0.0825	4.25
	8	0.25|0.5|0.25	0.0856	4.25
	9	0.25|0.25|0.5	0.0838	4.5
	10	0.6|0.2|0.2	0.0745	4.25
	11	0.6|0.3|0.1	0.0854	4.5
	12	0.6|0.1|0.3	0.0856	4.5
	13	0.7|0.15|0.15	0.094	4

explored various combinations of number of vehicles in a cluster and number of service requests, which are succinctly presented in the table III.

 Table V summarizes the obtained results.

	cluster	request	Our Solution	First-Fit	Edge Only
			Latency (s)	Relocation	Latency (s)	Relocation	Latency (s)	Relocation
	5 V	3	0.073	2.2	0.0955	3	0.134	1
	6 V	3	0.094	1	0.096	1	0.1383	0
		4	0.057	0	0.0954	3	0.1307	2
	7 V	4	0.045	1	0.045	1	0.121	2
		6	0.0693	3	0.121	5	0.1333	2.6
	8 V	5	0.0623	2.6	0.0673	3	0.142	0
	9 V	5	0.099	3	0.0983	3	0.1312	2
		4	0.0425	0	0.0512	1.2	0.1277	1

https://containernet.github.io/

https://mininet-wifi.github.io/