PerfectDart: Automatic Dart Design for Garment Fitting
Charles de Malefette, Anran Qi, Amal Dev Parakkat, Marie-Paule Cani, Takeo Igarashi

To cite this version:

HAL Id: hal-04347776
https://hal.science/hal-04347776
Submitted on 20 Dec 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PerfectDart: Automatic Dart Design for Garment Fitting

Charles de Malefette
LIX - Ecole Polytechnique,
IP Paris, France
charles.de-malefette@polytechnique.edu

Anran Qi
The University of Tokyo
Japan
annranqi1024@g.ecc.u-tokyo.ac.jp

Amal Dev Parakkat
LTCI - Telecom Paris,
IP Paris, France
amal.parakkat@telecom-paris.fr

Marie-Paule Cani
LIX - Ecole Polytechnique,
IP Paris, France
Marie-Paule.Cani@polytechnique.edu

Takeo Igarashi
The University of Tokyo
Japan
takeo@acm.org

ABSTRACT

Dart, a triangle-shaped folded and stitched tuck in a garment, is a common sewing technique used to provide custom-fit garments. Unfortunately, designing and optimally placing these darts requires knowledge and practice, making it challenging for novice users. We propose a novel computational dart design framework that takes rough user cues (the region where the dart will be inserted) and computes the optimal dart configurations to improve fit. To be more specific, our framework utilizes the body-garment relationship to quantify the fitting using a novel energy composed of three geometric terms: 1) closeness term encoding the proximity between the garment and the target body, 2) stretchability term favouring area-preserving cloth deformation, and 3) smoothness term promoting an unwrinkled and unfolded garment. We evaluate these three geometric terms via off-the-shelf cloth simulation and use it to optimize the dart configuration by minimizing the energy. As demonstrated by our results, our method is able to automatically generate darts to improve fit for various garment designs and a wide range of body shapes, including animals.

CCS CONCEPTS

- Computing methodologies → Computer graphics.

KEYWORDS

Garment modeling, Sewing pattern design

INTRODUCTION

The current garment industry follows a ‘one design fits all’ manufacturing strategy, i.e., they mass-produce a specific design in a standard or a few predefined sizes to maximize production efficiency and to achieve economies of scale. These garments often fail to cover a wide range of body shapes, resulting in poor fitting—a generic garment may not fit perfectly on every individual and leads to over-consumption and huge textile waste (since people tend to throw away unfit clothes). Dart, a triangle-shaped folded and stitched tuck in a garment, is a common sewing technique used to provide custom-fit garments. Dart design necessitates specialized expertise in pattern making, which is hard for ordinary people to master. Worse, a badly designed dart can aggravate the fitting issues and cause aesthetic inconsistencies. In practice, even for a professional tailor, dart design is a try-and-test process; they try different configurations and make adjustments to achieve the desired fit and style, which can be costly and time-consuming. To this end, we investigate a computational dart design framework to assist people in designing darts to achieve a better fitting.

Many works have investigated custom-fitting garment designs for different body shapes. Umetani et al. [2011] proposed a bidirectional interactive garment edit framework supporting dart design on both the 3D garment and 2D pattern. However, it requires the user to manually place a dart and expect the user to make the right design choice. This also applies to modern computer-aided garment design software, like CLO3D [Fashion 2022]. Other works [McCartney et al. 2005, 1999; Pietroni et al. 2022] utilize the dart to reduce the distortion when flattening a given 3D garment surface and get the corresponding sewing pattern.

Different from these, we start with a pre-existed pattern and aim to assist the user in the dart design process. This scenario is
more practical since garment design usually starts with profession-
ally designed 2D template patterns and modifies them rather than
starting with a 3D garment geometry. Taking these patterns as
the input, our method computes the desired darts based on our
closeness, stretchability, and smoothness measures evaluated using
cloth simulation on the target body. Based on these measures, we
formulate the dart design as an energy minimization problem and
solve it with a greedy local search algorithm. It is worth mentioning
that dart design is not solely a computational task but involves a
thoughtful integration of aesthetics, such as visual appeal and de-
sign coherence with the overall aesthetic vision of the garment. We,
therefore, enable the user to specify a desired area in which he/she
wants to insert the dart (see Figure 1). Our method then searches
around the user-specified area to obtain the desired dart configura-
tion. We validate our method on two commonly used dart types,
single-pointed dart and double-pointed dart, with different body
shapes, including the animal. The results show that our method can
constantly reduce energy and achieve a better fit between the body
and the garment. By reducing the knowledge barrier associated
with dart design to fit a specific individual’s body measurements in
pattern making, our method facilitates garment alteration, which
gives the garment further value, an expanded life cycle and con-
tributes to sustainable fashion practices. Our method’s advantages
extend beyond custom-made clothing for physical wearers. It is
also beneficial in the realm of virtual garment modelling and anima-
tion to the film industry, allowing fast modelling of a realistic and
visually appealing virtual character from existing digital wardrobes.

2 RELATED WORK
Computational garment fitting focuses on creating custom-fit gar-
ments. Early works [Meng et al. 2012; Wang et al. 2005] attempt to
automatically transfer a template garment into different body types
using corresponding feature points and skinning techniques. Brouet
et al. [2012] model the garment transfer criteria as a few geometri-
cal constraints and solve it via interactive quadratic minimisation.
In their work to preserve manufacturability whilst maintaining fit-
ness, selective fit relaxation is used to minimize curvature increase
instead of darts. Without using the concept of darts, Wang [2018]
formulates sewing pattern adjustment for different human bodies as
a single nonlinear optimization problem built on GPU-based
simulation and optimization. Umetani et al. [2011] propose a bidi-
rectional interactive garment edit framework, which can quickly
adapt pattern design to different body sizes. It supports the manual
placement of darts on the pattern or 3D garment, but expects the
user to make the right design choice on detailed dart configura-
tions. This also pertains to modern computer-aided garment design
software, like CLO3D [Fashion 2022]. Instead, our method can au-
tomatically optimize the dart configuration making it accessible for
inexperienced users while improving the overall efficiency.

In the garment industry, early works about flattening the 3D
surface into a 2D pattern resort to the dart to release the energy
generated due to the extension or compression of the edge in the
flattening process. McCartney et al. [1999] incorporate the arbitrar-
ily sited darts at the areas with elliptical curvature. Later, McCartney
et al. [2005] suggested inserting darts in the position with a large
initial energy build-up to maximize its energy reduction capability.

Recently, Pietroni et al. [2022] introduced a method which automatically
generates the 2D sewing pattern from an input 3D garment by
first creating the panel patch layout, and then flattening the
patch considering the anisotropic material property of the woven
fabric. Their work introduces the dart as a leftover of the panel
patch merging to compensate for the high distortion area when
flattening. Unlike previous works that exploit the dart in the surface
flattening process, we focus on inserting darts in a well-designed
pattern to improve the garment fitting.

3 DART DEFINITION
In this paper, we focus on two types of most commonly used darts:
single-pointed and double-pointed. We introduce them in conjunc-
tion with related design conversion in pattern making as follows.

We assume that a single-pointed dart is symmetric and inserted
perpendicularly at the seam of the pattern (see inset). It has one
point p_0 inside the pattern called the vanishing point and two dart
legs inserted at two points p_1 and p_2 on the edge of the pattern. The
length of segment p_1p_2 is named intake with length w, and we define
the midpoint of p_1p_2 as p. The segment p, p is called the fold line, and
we denote its length as h. The stitch lines (green dot lines on the inset)
are the links between the dart legs that will be sewn together. We pa-
rameterize the dart with position parameter $p \in \mathcal{R}$ on the edge and
shape parameter (w, h), which are necessary and sufficient to deter-
mine p_0, p_1, and p_2.

A double-pointed dart, also
known as a closed dart, is similar to having two single-pointed
darts joined together at their widest ends and can be characterised
by four points p_1, p_2, p_3, p_4. We parameterize the dart with three parameters:
a central position $p \in \mathcal{R}^2$ and shape parameter (w, h). It is usually used to shape garments that fit at the waist while also
providing shaping for both the bust and hips.

We observe that single-pointed darts consistently extend from
seams, whereas double-pointed darts are more commonly found
within the pattern. We thus leverage this rule to decide the dart type
inserted in our system. Our other observation is that pattern makers
often strive for left-right symmetry in dart design to shape the fabric
uniformly on the left and right sides, resulting in a balanced fit and
contributing to a harmonious appearance. In our project, we adhere
to this design strategy: the user only needs to specify a rough dart
position on one side of the garment and our system automatically
symmetrizes the dart.

4 METHOD
The input to our method is an existing 2D sewing pattern and a
target 3D body, both represented by manifold triangle meshes. We
aim to find a proper dart configuration, i.e., (w, h, p), such that the
pattern best fits the target body. We first simulate the pattern on the
target body using an off-the-shell cloth simulator. This allows the user to observe the draped results and identify the fitting issue. Then the user specifies a rough area that he/she wants to insert a dart using the brush tool provided by our system. We then represent the dart design criteria in terms of three geometric energies (detailed below): closeness term, stretchability term and smoothness term, and optimize the dart configuration to find the one with minimal energy. To handle this energy minimization problem, we employ a greedy local search algorithm. Figure 1 illustrates the design process. We introduce an interactive user interface for dart design, implemented in Blender as an add-on (please see the accompanying video for detail).

4.1 Closeness term

We define a closeness term \(E_{\text{close}}\) to ensure that the garment is in close proximity to the target body, leading to a superior fit. For each vertex \(v\) in the garment mesh, we define the closest distance to the body mesh as \(sd(p)\). To compute \(sd(p)\), we first calculate the signed distance field of the garment mesh and then use it to identify the closest vertex in the body mesh [Jacobson et al. 2018].

\[
E_{\text{close}} = \frac{1}{A_{\text{tot}}} \sum_{f \in F} A_f \left(\sum_{v \in f} sd(v) \right) (1)
\]

where \(F\) is the set of faces in garment mesh, \(A_f\) and \(A_{\text{tot}}\) are the area of the triangle \(f\) and area of all the \(f \in F\) respectively, \(v\) is the vertex in triangle \(f\) and \(n(f) = 3\) since our input is a triangle mesh) is the number of vertices in \(f\).

4.2 Stretchability term

We introduce a stretchability term that prioritizes area-preserving deformation, preventing excessive stretching during draping. The motivation is twofold: First, the closeness term favours the large darts to reduce the distance as much as possible. This might generate oversized darts leading to large stretching of the fabric and further making the garment unconfomrable to wear; Second, as the dart is skillfully employed to adjust the garment at a specific area, we limit their impact on other regions, maintaining the garment’s overall design integrity. We define the stretchability term as:

\[
E_{\text{stretch}} = \sum_{f \in F'} \| A'_f - A_f \| (2)
\]

where \(A_f\) and \(A'_f\) are the area of the triangle \(f\) before and after inserting the dart. The set \(F'\) contains the triangles in the regions unaffected by the dart, i.e., outside the dart area. We define the circle of radius \(5\ \text{cm}\) centred at the vanishing point \(P_0\) for the single-pointed dart or the centre position \(P\) for the double-pointed dart as the dart area. This area will be deformed largely due to the new stitching force, making it irrelevant to preserve their area.

4.3 Smoothness term

Due to its global consideration of proximity and area preservation, respectively, the closeness and stretchability terms cannot ensure a wrinkle-free cloth without folds. Hence, our last term is to ensure a smooth result without any wrinkles and folds on the garment. The idea is to calculate the difference between the normals of the body and the garment. The more the normals differ, the less the garment is smooth on the body, indicating folds or wrinkles. We define the smoothness term as:

\[
E_{\text{smooth}} = \frac{1}{n(V)} \sum_{v \in V} \| n_v \times n_l \| (3)
\]

where \(V\) is the set of vertices in the garment mesh, \(n(V)\) is the number of vertices in \(V\), \(n_v\) and \(n_l\) are the normal of the garment vertex \(v\) and the normal of its closest face in the body mesh. Using the three terms above, the energy function to be minimized is set to:

\[
E = \alpha E_{\text{close}} + \beta E_{\text{stretch}} + \gamma E_{\text{smooth}} (4)
\]

where \(\alpha, \beta\) and \(\gamma\) correspond to the importance of each energy term, and we use \(\alpha = \beta = \gamma = 1\) for all the examples on the paper.

4.4 Optimization

The simplest way of minimising the energy \(E\) is to try all the possible combinations of these parameters and find the one with the minimum energy, which makes the problem intractable. Therefore, we solve the energy minimization problem discretely in two steps: First, we fix \(w\) and \(h\) and try to find the best position \(p_{opt}\) by a grid search; Then, we optimize the dart shape \((w, h)\) discretely using a greedy local search: starting from a random initial point on a grid representing the parameters, we evaluate the energy function for the current point and its neighbours at each iteration. After each iteration, we move in the direction of the best neighbour, which minimizes the energy function. The process is repeated until the current point is best among all its neighbours, indicating a local convergence. In the examples shown in this paper, the optimization of a dart takes roughly 30 iterations, each of which takes 2 seconds.
for simulation, total 60 seconds. The speed of optimization can be further enhanced by computing the gradient of the energy as in [Umetani et al. 2011], but we leave it as a future work.

5 RESULTS
We first demonstrate the results of our method on different garment categories and dart types. Figure 2 illustrates the double-point darts design on a dress, showing a gradually tighter fit around the waistline during the optimization process. Figure 3 shows a believable fitting improvement of a crop top sewing pattern design on two human bodies with different shapes. In general, we can see deeper and larger darts are required to fit the garment onto a slimmer body (top row) which is consistent with the tailor’s fitting practice. These examples highlight the capacity of our method to create custom-made clothing precisely tailored to the individual’s body measurements. This capacity could be potentially used to improve the efficiency of the pattern making in the fitting process and facilitates upcycling of the garments which gives the garment further value and positively contributes to environmental sustainability. Furthermore, our algorithm’s versatility extends beyond human shapes. Figure 4 illustrates the fitting improvement, especially around the shoulder for a monkey-shaped character, showing the efficacy of our method across highly diverse virtual characters.

6 CONCLUSION
We introduce a new method to assist users with the dart design for fitting. The key novelty is our fitting energy formulation that is explicitly tailored for the dart. It enables the fitting of both virtual and real-life patterns to bodies with different shapes. Our technique allows non-expert users to adapt pre-designed patterns to their own body shapes, removing the knowledge barrier about pattern-making and facilitating upcycling of the garments which contributes to environmental sustainability. It is also directly applicable to virtual character garment modelling.

6.1 Limitations and Future work
In this work, we optimize the dart configuration regarding one static neutral pose, such as T-pose. It would also be interesting to consider fitting during movement like [Wolff et al. 2023], as garments that are well-fitted in the neutral pose may lack enough room for movement. E.g., a design might inadvertently constrain the movement of the arm in order to reach a tighter fit on the upper back. And some fitting issues might only expose during the movement, e.g., a form-fitting skirt is more likely to ride up when walking or moving around. Additionally, we focus on the two most commonly used darts, single-pointed darts and double-pointed darts in this project. In the future, we would like to investigate the design of other dart types, such as the curved dart, French dart and serged dart, along with different dart combinations.

ACKNOWLEDGMENTS
We thank Nobuyuki Umetani for the discussion. This work was partly supported by Cani’s Hi!Paris fellowship on user-centered Creative AI and JST AdCORP, Grant Number JPMJKB2302, Japan.

REFERENCES