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Order Conditions for Sampling the Invariant Measure of
Ergodic Stochastic Differential Equations on Manifolds

Adrien Laurent1 and Gilles Vilmart1

April 12, 2021

Abstract

We derive a new methodology for the construction of high order integrators for sam-
pling the invariant measure of ergodic stochastic differential equations with dynamics con-
strained on a manifold. We obtain the order conditions for sampling the invariant measure
for a class of Runge-Kutta methods applied to the constrained overdamped Langevin equa-
tion. The analysis is valid for arbitrarily high order and relies on an extension of the exotic
aromatic Butcher-series formalism. To illustrate the methodology, a method of order two
is introduced, and numerical experiments on the sphere, the torus and the special linear
group confirm the theoretical findings.
Keywords: constrained stochastic differential equations, manifolds, invariant measure,
ergodicity, exotic aromatic B-series, order conditions.
AMS subject classification (2020): 60H35, 70H45, 37M25, 65L06

1 Introduction
We consider systems of stochastic differential equations (SDEs) in Rd subject to a smooth
scalar constraint and a Stratonovich noise of the form

dXptq � ΠMpXptqqfpXptqqdt�ΠMpXptqqΣpXptqq � dW ptq, Xp0q � X0 P M, (1.1)

where ΠM : Rd Ñ Rd�d is the orthogonal projection on the tangent bundle of the mani-
fold M � tx P Rd, ζpxq � 0u of codimension q, ζ : Rd Ñ Rq is a given constraint, f : Rd Ñ Rd
is a smooth drift, Σ: Rd Ñ Rd�d is a smooth diffusion coefficient and W is a standard d-
dimensional Brownian motion in Rd on a probability space equipped with a filtration and ful-
filling the usual assumptions. For simplicity of the analysis, we assume that M is a compact
smooth manifold of codimension q � 1. The smoothness and compactness of M guarantee in
particular the existence and uniqueness of a solution to (1.1) with bounded moments for all
times t ¡ 0.2 In addition, thanks to the projection operator ΠM, the solution Xptq lies on M
for all t ¡ 0. In the additive noise case where Σpxq � σId with σ ¡ 0, equation (1.1) can also
be rewritten equivalently with a Lagrange multiplier (see [44, Sect. 3.2.4.1] or [45, Sect. 3.3])
as

dXptq � fpXptqqdt� σdW ptq � gpXptqqdλt, ζpXptqq � 0, Xp0q � X0 P M,

where g � ∇ζ and λ is an adapted stochastic process determined by the equation ζpXq � 0.
1Université de Genève, Section de mathématiques, UNI DUFOUR, 24 rue du Général Dufour, CP 64, 1211

Geneva 4, Switzerland. Adrien.Laurent@unige.ch, Gilles.Vilmart@unige.ch.
2The extension to manifolds of any codimension q ¥ 1 will be further discussed in Remarks 2.6 and 3.1.
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A major motivation of model (1.1) appears in computational problems in molecular dy-
namics with the constrained overdamped Langevin equation (obtained in the particular case
where Σpxq � σId is a constant homothety),

dXptq � ΠMpXptqqfpXptqqdt� σΠMpXptqq � dW ptq, Xp0q � X0 P M, (1.2)

with σ ¡ 0, f � �∇V and V : Rd Ñ R is a smooth potential. The overdamped Langevin
equation is widely used to model the motion of a set of particles subject to a potential V
in a high friction regime. The possible constraints can be induced for example by strong
covalent bonds between atoms, or fixed angles in molecules. Sampling from the constrained
overdamped Langevin equation allows to compute the so-called free energy, which is a key
quantity in thermodynamic (see, for instance, [18, 44, 45] and references therein). Equations of
the form (1.1) appear naturally when studying conservative SDEs, that is, SDEs possessing an
invariant H conserved almost surely by all realisations of (1.1). The solution of conservative
SDEs are subject to the constraint ζpXq � 0 with ζpxq � Hpxq �HpX0q. Drawing samples
on a manifold also has many applications in statistics (see [10, 23] and references therein).

Under regularity conditions on the generator of the SDE and on M, it was shown in [18, 25]
that the solution Xptq of the SDE (1.1) is ergodic, that is, there exists a unique invariant
measure dµ8 on M that has a density ρ8 with respect to dσM, the canonical measure on M
induced by the Euclidean metric of Rd, such that for all test functions φ P C8pRd,Rq,

lim
TÑ8

1
T

» T
0
φpXptqqdt �

»
M
φpxqdµ8pxq almost surely. (1.3)

In the case of the overdamped Langevin equation (1.2) on M, the process is naturally er-
godic and the invariant measure is given by dµ8 � ρ8dσM � 1

Z exp
�� 2

σ2V
�
dσM with Z �³

M exp
�� 2

σ2V
�
dσM. Approximating the quantity

³
M φpxqdµ8pxq is a computational chal-

lenge when the dimension d is high, which is the case in the context of molecular dynamics
where the dimension is proportional to the number of particles, because a standard quadra-
ture formula becomes prohibitively expensive. We emphasize that µ8 is singular with respect
to the Lebesgue measure on Rd. In addition, the integrator samples should remain on the
manifold M. Hence, the order conditions for sampling the invariant measure in the Eu-
clidean context of Rd do not generalize straightforwardly to the manifold case. The main
goal of this article is to build and analyse high order one-step integrators for approximat-
ing

³
M φpxqdµ8pxq that lie on the manifold M and that have the form

Xn�1 � ΦpXn, h, ξnq, (1.4)

where the ξn are standard independent random vectors and h is the numerical step.
There are different ways to approximate the solution of the SDE problem (1.1). A strong

approximation focuses on approaching the realisation of a single trajectory of (1.1) for a
given realisation of the Wiener process W . A weak approximation approaches the average of
functionals of the solution. We focus here on the approximation for the invariant measure,
that is approaching averages of functionals of the solution in the stationary state. This
convergence is the numerical equivalent of (1.3). The integrator (1.4) is said to have order p
for the invariant measure if for all φ P C8pRd,Rq, there exists a positive constant Cpφq
independent of the initial condition X0 such that

epφ, hq ¤ Cpφqhp where epφ, hq �
���� lim
NÑ8

1
N � 1

Ņ

n�0
φpXnq �

»
M
φdµ8

����. (1.5)
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We recall that a scheme of weak order r immediately has order p ¥ r for the invariant
measure. For the underdamped and overdamped Langevin dynamics in Rd, the articles [9, 40,
3, 4, 41] proposed multiple schemes of high order for the invariant measure with low weak order
(typically r � 1). We mention in particular the work [3] that introduced a methodology for
the analysis and design of high order integrators for the invariant measure. This methodology,
which relies on Talay-Tubaro expansions [63], backward error analysis and modified differential
equations for SDEs [67, 1, 22, 36, 37], is generalised in the context of manifolds in the present
paper.

A widely used and simple numerical scheme for sampling the invariant measure distribution
on manifolds is the Euler scheme (see [17, 42, 44, 45] for instance). Two variants exist for the
overdamped Langevin equation (1.2), both of order one in the weak sense, or for sampling
the invariant measure: the Euler integrator with explicit projection direction

Xn�1 � Xn � hfpXnq � σ
?
hξn � λgpXnq, ζpXn�1q � 0, (1.6)

and alternatively the Euler integrator with implicit projection direction

Xn�1 � Xn � hfpXnq � σ
?
hξn � λgpXn�1q, ζpXn�1q � 0. (1.7)

To the best of our knowledge, no high order numerical integrators for sampling the invari-
ant measure of the overdamped Langevin equation with constraints (1.2) have been pro-
posed in the literature. In [46], an order two discretization based on the RATTLE inte-
grator (see [58, 5, 31]) is applied to the underdamped Langevin equation, rather than to
the overdamped Langevin dynamic (1.2). The previously described discretizations can be
combined with Metropolis-Hastings rejection procedures [50, 32]. We quote in particular
the Markov-Chain Monte-Carlo (MCMC) methods [27, 10, 45] and the Hybrid Monte-Carlo
methods [65, 46], where the need for a reverse projection check is shown to be a key step.
We also mention the integrators in [66, 47] that are based on an Euler discretization and
present new approaches for projecting on the manifold. The alternative approach of using
Metropolis-Hastings rejection procedure allows to fully remove the bias on the invariant mea-
sure. Analogous to the Euclidean case, this procedure does not make high order discretizations
obsolete because, in particular, the rejection rate depends on the quality of the discretization
and the dimension of the problem in general, and in the case of stiff problems or problems
in high dimension, it suffers from timestep restrictions. Note also that in the specific case
where M is a Lie group, high order integrators can be naturally obtained using splitting meth-
ods, that are, however, typically limited to weak order two of accuracy (see [7] for further
details in the context of ODEs).

This article proposes new tools for constructing integrators of any high order for sampling
the invariant measure of constrained SDEs of the form (1.1) and relies on the formalism of trees
and Butcher-series. Originally introduced by Hairer andWanner in [30], and based on the work
of Butcher [13], B-series have proved to be a powerful standard tool for the numerical analysis
of deterministic differential equations, as presented, for instance, in the textbooks [29, 14].
In the last decades, several works extended B-series to the stochastic context. We mention
in particular Burrage and Burrage [11, 12] and Komori, Mitsui and Sugiura [35] who first
introduced stochastic trees and B-series for studying the order conditions of strong convergence
of SDEs, Rößler [53, 54, 55, 56, 57] and Debrabant and Kværnø [20, 19, 21] for the design and
analysis of high order weak and strong integrators on a finite time interval, [6] for creating
schemes preserving quadratic invariants, and [38], where tree series were applied to a class
of stochastic differential algebraic equations (SDAEs) for the computation of strong order
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conditions. Finally we mention the recent work [39], that introduced the exotic aromatic
B-series for the computation of order conditions for sampling the invariant measure of ergodic
SDEs in Rd, and that we extend in this paper to the context of SDEs on manifolds.

This article is organized as follows. Section 2 is devoted to the analysis of the accuracy
of integrators for sampling the invariant measure on a manifold M. In Section 3, we apply
this methodology on a class of Runge-Kutta methods for solving the constrained overdamped
Langevin equation (1.2), to derive arbitrary high order conditions for the invariant measure,
with special emphasis on order two conditions, and to introduce a new order two scheme that
uses only a few evaluations of f per step. The detailed calculations of the order conditions
for the invariant measure are done in Section 4 with the help of an extension of the exotic
aromatic B-series formalism [39]. We compare in Section 5 the new order two scheme with
the Euler scheme (1.7) in numerical experiments on a sphere, a torus and the special linear
group SLpmq to confirm its order of convergence for sampling the invariant measure.

2 High order ergodic approximation on a manifold
In this section, we present a new criterion for building integrators of any order for the invariant
measure by extending the Rd results in [22, 3] to the context of manifolds. We first settle
down a few notations and assumptions, before we recall the standard weak expansions of the
exact and numerical solution using the backward Kolmogorov equation. For ζ : Rd Ñ R a
smooth map, we denote g � ∇ζ its gradient, and Gpxq � gT pxqgpxq � |gpxq|2 the Gram
function related to the manifold M � tx P Rd, ζpxq � 0u, where we denote by |x| � pxTxq1{2
the Euclidean norm in Rd. We assume in the rest of the article that M is a compact and
smooth manifold of codimension one embedded in Rd. We suppose in addition that the Gram
function G is strictly positive on M, Gpxq ¥ α ¡ 0 for all x P M. With these notations,
the projection ΠM on the tangent bundle is given by ΠMpxq � I � Gpxq�1gpxqgpxqT . We
denote L the generator of the SDE (1.1). It is given, for φ P C8pRd,Rq, by

Lφ � φ1pΠMfq � 1
2

ḑ

i�1
φ1ppΠMΣeiq1pΠMΣeiqq � 1

2

ḑ

i�1
φ2pΠMΣei,ΠMΣeiq, (2.1)

where peiqi�1,...,d is the canonical basis of Rd and, for all vectors a1, . . . , am P Rd, we use the
following notation for differentials in Rd,

φpmqpa1, . . . , amq �
ḑ

i1,...,im�1
Bi1,...,imφa1

i1 . . . a
m
im �

ḑ

i1,...,im�1

Bmφ
Bxi1 . . . Bxim

a1
i1 . . . a

m
im .

For the overdamped Langevin equation (1.2), the generator (2.1) reduces to

Lφ � φ1f �G�1pg, fqφ1g � σ2

2 G
�1 divpgqφ1g � σ2

2 G
�2pg, g1gqφ1g � σ2

2 ∆φ (2.2)

� σ2

2 G
�1φ2pg, gq � σ2

2 exp
� 2
σ2V

	
divM

�
exp

�
� 2
σ2V

	
∇Mφ

	
,

where ∇Mψ :� ΠM∇ψ and divMpHq :� divpHq � G�1pg,H 1pgqq. The adjoint L� of the
generator (2.1) in L2pdσMq for the SDE (1.1), i.e. , the operator that satisfies for all test
functions φ, ψ P C8pRd,Rq, »

M
pLφqψdσM �

»
M
φpL�ψqdσM,
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is given by

L�φ � �divMpφfq � 1
2

ḑ

i�1
divMpdivMpφΣeiqΣeiq.

Remark 2.1. As L is a self-adjoint operator in L2pdµ8q, but not in L2pdσMq in general, it
could be more natural to perform the analysis in the space L2pdµ8q. However, as we allow
the substages of our numerical integrators to explore the open neighbourhood of M in Rd, we
shall work in this paper with differential operators that cannot be rewritten in general with
intrinsic derivatives on the manifold M. In addition, performing directly the integration by
parts calculations in L2pdµ8q with such operators is not straightforward, and this motivated
the choice of L2pdσMq for the analysis. A similar choice was done in [39] in the context of Rd.

We follow the framework of [25]. In particular, we rely on the construction of the local
orthogonal coordinates. In a neighbourhood NM of the manifold M, there exists an atlas of
local orthogonal coordinate systems py, zq P pV � Rd�1q � p�ε, εq for ε ¡ 0, with respect to
local charts ψ : U � NM Ñ pV � Rd�1q � p�ε, εq, such that if ψpxq � py, zq, then z � ζpxq.
We make the following regularity assumption on the generator L.

Assumption 2.2. On an open neighbourhood NM of M in Rd, there exists a constant C ¡ 0
such that for all x P NM and py, zq � ψpxq, for all one-form field v : TM Ñ R on M of norm
one, we have

d�1̧

i,j�1

ḑ

k�1

rΣikpy, zqrΣjkpy, zqviprxqvjprxq ¥ C,

where rx P M is such that ψprxq � py, 0q and, for k � 1, . . . , d, prΣikpy, zqqi P Rd�1 is defined as
the restriction of the vector pΠMprxqΣikpxqqi P Rd to the tangent space T

rxM of M, rewritten
in the local orthogonal coordinate system.

This assumption is a variant in the manifold case of the uniform ellipticity property of
the generator L in the Euclidean context of Rd. In addition, Assumption 2.2 is automat-
ically satisfied for the constrained overdamped Langevin equation (1.2) and yields that the
function upx, tq � ErφpXptqq|Xp0q � xs satisfies the backward Kolmogorov equation (see [25]):

Bu
Bt px, tq � Lupx, tq, upx, 0q � φpxq, x P NM, t ¡ 0. (2.3)

We refer to [36, 37] for similar results in the context of Rd. The backward Kolmogorov
equation (2.3) allows us to write the following expansion of upx, hq � ErφpXphqq|X0 � xs
for h small enough,

upx, hq � φpxq �
Ņ

j�1

hj

j! Ljφpxq � hN�1RhN pφ, xq, x P NM, (2.4)

where NM is an open neighbourhood of M in Rd and the remainder satisfies the esti-
mate

��RhN pφ, xq�� ¤ CN pφq where the constant CN pφq is independent of h and x.
We now assume the existence and uniqueness of an invariant measure, as well as an

additional regularity property on L, in the spirit of [22, Hypotheses H1-H2] in the context
of Rd.
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Assumption 2.3. There exists an open neighbourhood NM of M in Rd and a unique positive
function ρ8 P C8pNM,Rq satisfying ³M ρ8dσM � 1 and L�ρ8 � 0 on NM. Moreover, for
all φ P C8pNM,Rq such that

³
M φdσM � 0, there exists a unique solution ρ P C8pNM,Rq to

the Poisson problem L�ρ � φ that satisfies
³
M ρdσM � 0.

The existence and uniqueness of the invariant measure are in particular satisfied for the
constrained overdamped Langevin equation (1.2) (see [25, Sect. 2.3] for further details). As-
sumption 2.3 yields the ergodicity of the process Xptq solution of (1.1) with the unique
invariant measure dµ8 � ρ8dσM on M. To proceed further, we shall assume that the in-
tegrator (1.4) is ergodic, that is, there exists a measure dµh that has a density with respect
to dσM such that

lim
NÑ8

1
N � 1

Ņ

n�0
φpXnq �

»
M
φdµh almost surely. (2.5)

We refer to [60, 61, 48, 62] in the Euclidean case, and to [25] in the manifold case, and
references therein, for further details on the ergodicity of numerical integrators. In addition,
we suppose that ErφpX1q|X0 � xs, the numerical analog of upx, hq, can be developed in powers
of h as was done, for instance, in [63, 3] in the context of Rd.

Assumption 2.4. For all φ P C8pRd,Rq, the numerical integrator (1.4) has a weak Taylor
expansion of the form

ErφpX1q|X0 � xs � φpxq �
Ņ

j�1
hjAj�1φpxq � hN�1RhN pφ, xq, x P NM, (2.6)

for all h assumed small enough, and where NM is an open neighbourhood of M in Rd and the
remainder satisfies

��RhN pφ, xq�� ¤ CN pφq where the constant CN pφq is independent of h and x.
The Aj’s, j � 0, 1, 2, . . . are linear differential operators with coefficients depending smoothly
on f , g and their (high order) derivatives (and depending on the choice of the integrator).

Under Assumptions 2.2 and 2.4, by comparing the expansions (2.6) and (2.4), the inte-
grator has at least weak order p if Aj�1 � Lj{j! for j � 1, . . . , p. However, as observed
already in Rd, high order for the invariant measure can be achieved in spite of a low weak
order. This is the purpose of Theorem 2.5 where we present a new sufficient condition for
a scheme to have order r for the invariant measure. This result, that relies on the powerful
tool of backward error analysis for SDEs, is similar to [3, Thm. 3.3] in the context of smooth
compact manifolds.

Theorem 2.5. Under Assumptions 2.2, 2.3 and 2.4, if the numerical scheme is consistent
(that is, A0 � L) and ergodic, and if it satisfies in L2pdσMq

A�
j ρ8 � 0, j � 1, . . . , r � 1,

then it has order r for the invariant measure and the numerical error (1.5) satisfies, for hÑ 0,

epφ, hq � hr
»

M
φpxqρrpxqdσMpxq �Ophr�1q

� hr
» 8

0

»
M
upx, tqA�

rρ8pxqdσMpxqdt�Ophr�1q,

where ρr P C8pNM,Rq is the unique solution of the Poisson problem L�ρr � �A�
rρ8 in NM

that satisfies
³
M ρrdσM � 0, with NM an open neighbourhood of M in Rd.
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The proof of Theorem 2.5 is detailed in Appendix A for the sake of completeness. The
idea is to write an expansion of the error in the spirit of [63], and to generalize the analysis
in [22, 3] on Td and in [25] to the context of smooth compact manifolds.

Theorem 2.5 states the result for times tÑ8. A bound of the error at finite time tn � nh
is typically given by the following exponential estimate (see [25, 22])����ErφpXnqs �

»
M
φpxqdµ8pxq

���� ¤ Ke�µtn � Chp,

where the constant µ ¡ 0 is in practice the spectral gap of a certain operator that depends on
the numerical integrator. Reducing the error term Ke�µtn is out of the scope of this paper,
though the recent works [43, 24, 2] proposed numerical methods in Rd that improve the rate
of convergence at infinity, while sometimes also reducing the variance.

Remark 2.6. One can consider possible generalisations of Theorem 2.5 in the case where M
is not compact, or if M is a manifold of any dimension. We refer to [3] for the non-compact
extension of Theorem 2.5 in the context of Rd.

3 High order integrators for constrained Langevin dynamics
In this section, we propose a new class of Runge-Kutta methods for sampling the invariant
measure of equation (1.2), and present the methodology for deriving the conditions of any
order for the invariant measure using Theorem 2.5. In particular, we compute exactly the
consistency and order two conditions for the invariant measure as they are the most relevant
for the applications.

3.1 Runge-Kutta methods for constrained overdamped Langevin

When discretizing naively equation (1.2), one cannot ensure in general that the integrator
stays on M. It is natural to discretize instead the equivalent formulation with Lagrange
multipliers

dX � fpXqdt� σdW � gpXqdλt, ζpXq � 0, Xp0q � X0 P M.

The class of numerical schemes we obtain is in the spirit of deterministic Runge-Kutta methods
for differential algebraic problems such as the methods SHAKE and RATTLE (see [58, 5,
31]), introduced in the context of constrained Hamiltonian dynamics, or the SPARK class of
methods for general DAEs (see [34]). Since evaluating f is in practical applications the most
expensive part of the algorithm compared to evaluating g, we propose high order integrators
that are implicit in g and explicit in f in the spirit of implicit-explicit (IMEX) integrators
(see, e.g., [31]), so that there are only a few evaluations of f per step. We thus consider the
following class of Runge-Kutta integrators

Yi � Xn � h
ş

j�1
aijfpYjq � σ

?
hdiξn � λi

ş

j�1
paijgpYjq, i � 1, . . . , s,

ζpYiq � 0 if δi � 1, i � 1, . . . , s, (3.1)
Xn�1 � Ys,
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where A � paijq, pA � ppaijq P Rs�s and δi �
°s
j�1 paij P t0, 1u are the given Runge-Kutta

coefficients, and the ξn � N p0, Idq are independent standard Gaussian random vectors in Rd
(an alternative with discrete bounded random variables is discussed in Remark 3.2). We
fix δs � 1 so that Xn�1 P M and we ask that if δi � 0, then paij � 0 for j � 1, . . . , s (internal
stages without projection, Yi R M a.s.). Ideally, one aims for IMEX integrators with a low
number of evaluations of f , we hence assume in addition that pA is a lower triangular matrix
and A is a strictly lower triangular matrix (in the spirit of DIRK methods). We represent the
numerical integrators with their associated Butcher tableau, where b � pas,iqi, pb � ppas,iqi, c �
A1 and 1 � p1, . . . , 1qT .

c A δ pA d

bT pbT
For instance, the Euler schemes can be written as Runge-Kutta methods of the form (3.1)
with s � 2 and the following Butcher tableaux.

Euler (1.6) :
0 0 0 0 0 0 0
1 1 0 1 1 0 1

1 0 1 0
Euler (1.7) :

0 0 0 0 0 0 0
1 1 0 1 0 1 1

1 0 0 1

Note that the class of methods (3.1) satisfies automatically Assumption 2.4.

Remark 3.1. The class of Runge-Kutta methods (3.1) can be straightforwardly generalized
(as done in [39] in the Euclidean case Rd) to study partitioned problems where f � f1 � f2
and, for example, to create IMEX schemes. In order to improve the order of the method
without increasing its cost, one could also apply a postprocessor (in the spirit of [64] in Rd) or
use multiple independent noises in (3.1) instead of only one random variable ξn � N p0, Idq.
This last extension can increase the number of conditions but may also increase the set of
solutions. We refer in particular to [19, 39] in the context of Rd, where it is shown for a
class of stochastic Runge-Kutta method that the order conditions for weak order 3 cannot be
satisfied in general, unless we use at least two independent noises. In addition, if we rewrite
the internal stages of (3.1) as

Yi � Xn � h
ş

j�1
aijfpYjq � σ

?
hdiξn �

� ş

j�1
paijgpYjq
λi,

where g : Rd Ñ Rd�q and λi P Rq, then the same class of methods is also fit for solving (1.2)
with a multidimensional constraint ζ : Rd Ñ Rq. Note that the coefficients of the method do
not depend on the dimension of the space d or the codimension q of the manifold. This will
be studied in future work.

Remark 3.2. If ξn is a Gaussian random variable, its realisations can be arbitrarily large,
and the existence and uniqueness of the solution of the system (3.1) does not hold in general.
A standard remedy to ensure that the projection on M always exists for h ¤ h0 small enough
is to replace the standard Gaussian random vectors ξ in (3.1) by bounded discrete random
vectors pξ that have the same first moments in the spirit of [51, Chap. 2]. This way, the order
of the method is preserved both in the weak sense and for the invariant measure, and the
method is well-posed for all h small enough. For weak/ergodic order two, one can consider,
for instance, the random vectors pξ with independent components pξi that satisfy

Pppξi � 0q � 2
3 and Pppξi � �

?
3q � 1

6 , i � 1, . . . , d. (3.2)
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The following lemma guarantees the well-posedness of a method of the form (3.1) with
bounded random variables pξn. The result is still true when A and pA are general matrices, but
we consider only the lower triangular case for the sake of brevity. This result is in the spirit
of [31, Chap.VII] for deterministic DAEs.

Lemma 3.3. For Runge-Kutta methods of the form (3.1) where the ξn are replaced by bounded
random variables pξn, there exists h0 ¡ 0 such that for all h ¤ h0, for any initial condition Xn P
M, there exists a unique solution Xn�1 of (3.1) in a neighbourhood of Xn. Furthermore, the
internal stages satisfy Yi � Xn �Op?hq and λi � Op?hq for i � 1, . . . , s.

Proof. We proceed by induction on i. We assume that for j   i, the Yj are already defined and
satisfy Yj � Xn�Op?hq. The result is straightforward if δi � 0. We thus assume that δi � 1
and prove the existence of a unique solution to the equations of the internal stage i:

Yi � Xn � h
i�1̧

j�1
aijfpYjq � σ

?
hdipξn � λi

i̧

j�1
paijgpYjq, (3.3)

ζpYiq � 0. (3.4)

Using ζpXnq � 0, we rewrite equation (3.4) as

ζpYiq � ζpXnq �
» 1

0
gT pXn � τpYi �XnqqdτpYi �Xnq � 0. (3.5)

Inserting (3.3) in (3.5) yields» 1

0
gT pXn � τpYi �Xnqqdτ

�
h
i�1̧

j�1
aijfpYjq � σ

?
hdipξn � λi

i̧

j�1
paijgpYjq� � 0. (3.6)

Multiplying both sides of equation (3.3) by
³1
0 g

T pXn � τpYi � Xnqqdτ
�°i

j�1 paijgpYjq	, and
substituting λi in (3.3) with its value from (3.6), we deduce that F pYi, hq � 0, where the
function F : Rd � RÑ Rd is given by

F py, tq �
» 1

0
gT pXn � τpy �Xnqqdτ

��
t
i�1̧

j�1
aijfpYjq � σ

?
tdipξn	� i�1̧

j�1
paijgpYjq � paiigpyq	

�
� i�1̧

j�1
paijgpYjq � paiigpyq	�y �Xn � t

i�1̧

j�1
aijfpYjq � σ

?
tdipξn	�.

As F pXn, 0q � 0 and the partial differential ByF pXn, 0q � GpXnqId is invertible, the implicit
function theorem yields the existence and uniqueness of Yi in a ball of center Xn for h ¤ h0
small enough. As pξn is bounded and M is compact, there exists a deterministic h0 that
works for every initial condition Xn P M. Now that Yi is well-posed, we deduce from the
identity F pYi, hq � 0 that Yi � Xn � Op?hq and we derive from (3.6) that λi is well-posed
for h small enough and satisfies λi � Op?hq. Finally we observe that pYi, λiq is indeed a
solution to (3.3)-(3.4).

Remark 3.4. In practice, one can solve numerically each internal stage of the set of equa-
tions (3.1) with a fixed point iterations or a Newton method starting from Yi � Xn and λi � 0.
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As M is compact, if the ξn are replaced by bounded random variables, these two methods con-
verge for h ¤ h0 where h0 is small enough and independent of the initial condition. It is
crucial to initialize the Yi in a neighbourhood of Xn as (3.1) has multiple solutions in gen-
eral. For example, the Euler scheme (1.7) always has two solutions if M is a sphere (the two
intersections of M and a straight line going through the center of M).

Before looking at the consistency and the order conditions of the class of methods (3.1),
we introduce a concise notation for multiplying vectors component-wise.

Definition 3.5. For y, yp1q, . . . , ypnq P Rd and m ¥ 0, we define the diamond product and the
diamond power as the vectors in Rd,

yp1q � . . . � ypnq �
� n¹
k�1

y
pkq
i



i

and y�m � pymi qi.

We present below the detailed calculation of the consistency conditions of the class of
methods (3.1) for the constrained overdamped Langevin equation (1.2). Similar proofs can
be found in [44, Prop. 3.24] for the Euler schemes (1.6)-(1.7), and in [3, 39] for Runge-Kutta
methods in Rd.

Proposition 3.6. For a Runge-Kutta method of the form (3.1), the operator A0 in (2.6) is
given for φ P C8pRd,Rq by

A0φ � bT1φ1f � bT1G�1pg, fqφ1g � σ2

2 d
2
sG

�1 divpgqφ1g � σ2

2 d
2
s∆φ�

σ2

2 d
2
sG

�1φ2pg, gq

� σ2ds

�pbTd�pbT pδ � dq � 1
2ds



G�2pg, g1gqφ1g � σ2ds

�pbT pδ � dq �pbTd	G�1φ1g1g.

In particular, if
bT1 � ds � 1 and pbTd � pbT pδ � dq, (3.7)

then the method is consistent, that is, A0 � L.

Proof. If we apply one step of a method of the form (3.1) with the initial condition X0 � x,
then the internal stages Yi satisfy the following expansion

Yi � x� σ
?
hdiξ � hcifpxq �Rh, if δi � 0,

Yi � x�
?
h
�
σdiξ � λ1{2,ipxqgpxq

�� h
�
cifpxq � λ1,ipxqgpxq � σλ1{2,ipxq

ş

j�1
paijdjg1pxqξ

� λ1{2,ipxq
ş

j�1
paijλ1{2,jpxqδjg1pxqgpxq

�
�Rh, if δi � 1,

where the remainder satisfies
��Rh�� ¤ Ch3{2, and where we used that λi can be developed in

powers of
?
h as λi �

?
hλ1{2,i � hλ1,i � . . . in the spirit of [44, Lemma3.25]. If δi � 1, ζpYiq

can also be expanded as

ζpYiq � ζpxq �
?
h
�
σdipg, ξq � λ1{2,iG

�� h
�
cipg, fq � λ1,iG� λ1{2,i

ş

j�1
paijλ1{2,jδjpg, g1gq

� σλ1{2,i

ş

j�1
paijdjpg, g1ξq � 1

2σ
2d2
i pξ, g1ξq � σλ1{2,idipg, g1ξq �

1
2λ

2
1{2,ipg, g1gq

�
� . . .
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where we omitted the dependency in x of G, g, g1 and the λk{2,j ’s for brevity. We have ζpYiq �
ζpxq � 0 (since x P M), thus by identifying each term of the expansion with zero, we get

λ1{2,i � �σδidiG�1pg, ξq,

λ1,i � �δiciG�1pg, fq � σ2δi

�
ş

j�1
paijdidj � d2

i

�
G�2pg, ξqpg, g1ξq

� σ2δi

�
ş

j�1
paijδjdidj � 1

2d
2
i

�
G�3pg, ξq2pg, g1gq � σ2

2 δid
2
iG

�1pξ, g1ξq.

For φ a test function, the operator A0φ satisfies

ErφpX1qs � ErφpYsqs � φpxq � hA0φpxq � h2A1φpxq � . . .

By replacing Ys with its expansion in powers of h1{2, and by identifying the first terms, we
deduce that

A0φ � E
�
csφ

1f � csG
�1pg, fqφ1g � σ2

2 d
2
sG

�1pξ, g1ξqφ1g � σ2dsppbTd� dsqG�2pg, ξqpg, g1ξqφ1g

� σ2ds

�pbT pδ � dq � 1
2ds



G�3pg, ξq2pg, g1gqφ1g � σ2

2 d
2
sφ

2pξ, ξq � σ2d2
sG

�1pg, ξqφ2pg, ξq

� σ2

2 d
2
sG

�2pg, ξq2φ2pg, gq � σ2dspbT pδ � dqG�2pg, ξq2φ1g1g � σ2dspbTdG�1pg, ξqφ1g1ξ
�
,

where we used that δs � 1 and that all the terms containing an odd number of ξ vanish since
odd moments of ξ are zero. Distributing the expectation on each term and using cs � bT1
yield the desired expression of A0φ. We deduce the consistency conditions bT1 � ds � 1
and pbTd � pbT pδ � dq in order to get A0 � L.

Remark 3.7. The analysis presented in Section 3.1 is conducted for the overdamped Langevin
dynamics (1.2). It would be interesting to consider extensions with multiplicative noise or a
non-gradient vector field f . The calculations would likely become more involved and we may
get more order conditions (see, for instance, [3, Thm. 3.3] and [39, Remark 5.1 and Sect. 5.5]
in the context of Rd, where many additional terms arise, in particular for the integration by
parts calculations). This will be studied in future work.

3.2 Order conditions for the invariant measure on manifolds

We now derive the methodology for getting the conditions of arbitrary high order for sampling
the invariant measure of the constrained overdamped Langevin equation (1.2). In particular,
the following theorem presents the Runge-Kutta conditions for order two for the invariant
measure on M. Note that the number of conditions does not depend on the dimension of the
space d.

Theorem 3.8 (Runge-Kutta conditions for order two for the invariant measure). We consider
a Runge-Kutta method of the form (3.1) and assume the consistency condition (3.7). If the
method is ergodic and if the following conditions are satisfied, then the integrator has order
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two for the invariant measure:

pbTd � bTd,

bT c � bT pδ � cq � bTd�2 � bT pδ � d�2q � 2pbTd� 1
2 ,pbT c � pbT pδ � cq � pbTd�2 � pbT pδ � d�2q � pbTd�3 � pbT pδ � d�3q � 2pbTd� 1

2 ,pbT pc � dq � pbT pδ � c � dq,
bT pd � pApp1� δq � dqqq � 0,pbTAppδ � 1q � dqq � pbT pδ �Appδ � 1q � dqqq � ppbTdq2 � 2pbTd� 1

2 ,pbT pd � pAcq � pbT pd � pAd�2q � pbT pd � pApδ � d�2qq � 2pbT pd � pAdq � ppbTdq2 � 2pbTd� 1
2 ,pbT pd�2

� pAdq � pbT pd � pAdq � 1
2ppbTdq2,pbT pc � pAppδ � 1q � dq �pbT pd � pAppδ � 3 � 1q � dq �pbT pd � pApδ � cq � 2ppbTdq2 � 4pbTd� 1,pbT pd�2

� pApδ � dqq �pbT pd � pApδ � dqq � 2pbT pd � pAdq � 3
2ppbTdq2 � 2pbTd� 1

2 ,pbT pd � p pApp1� δq � dqq�2q � 0,pbT pd � p pAdq�2q � 3pbT pd � pApd � pApp1� δq � dqqq � p4� 2pbTdqpbT pd � pAdq � 3ppbTdq2 � 4pbTd� 1.

In the particular case where we set δ � 1, the order two conditions reduce to the following:

ppbTdq2 � 2pbTd� 1
2 � 0,pbTd � bTd,

bT c � bTd�2 � pbT c � pbTd�2 � pbTd�3 � 2pbTd� 1
2 ,pbT pd � pAcq � pbT pd � pAd�2q � 2pbT pd � pAdq,pbT pd�2

� pAdq � pbT pd � pAdq �pbTd� 1
4 ,pbT pd � p pAdq�2q � p4� 2pbTdqpbT pd � pAdq � 2pbTd� 1

2 .

For simplicity, we used in Theorem 3.8 the notation � of Definition 3.5. For instance, the
condition pbT pd�2

� pAdq � pbT pd � pAdq � 1
2ppbTdq2 rewrites into

ş

i,j�1

pbid2
ipaijdj � ḑ

i,j�1

pbidipaijdj � 1
2

� ḑ

i�1

pbidi	2
.

The order conditions of Theorem 3.8 can be obtained from straightforward calculations with
the following methodology. We compute the operator A1 with the same method used for A0
in Proposition 3.6. It is a differential operator of order four with the following first terms

A1φ � σ4

8 ∆2φ� σ4

4 G
�1∆φ2pg, gq � σ4

8 G
�2φp4qpg, g, g, gq � Bφ, (3.8)

where B is a differential operator of order three. We present the complete expansion of A1 in
Section 4 by using a B-series approach. If we assume that pbTd � bTd, then we can integrate
by parts to transform

³
M A1φdµ8 into an integral of the form

³
M A0

1φdµ8 where A0
1φ is a

differential operator of order one in φ (in the spirit of [3, 39]). On a manifold, the integration
by parts is a corollary of the Green theorem (see, for instance, [59, Chap. II]). As we shall
see below, it reveals a crucial tool for deriving order conditions for the invariant measure. To
perform the calculations in a systematic manner, a formalization of the integration by parts
process with trees and B-series is presented in Section 4.
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Lemma 3.9 (Integration by parts on M). If ψ : Rd Ñ R and H : Rd Ñ Rd are smooth
functions, then »

M
p∇Mψ,HqdσM � �

»
M
ψ divMpΠMHqdσM,

where ∇Mψ :� ΠM∇ψ and divMpHq :� divpHq �G�1pg,H 1gq. In addition, with the invari-
ant measure dµ8 � ρ8dσM and k ¥ 0, we obtain»

M

�
G�kψ1H �G�pk�1qpg,Hqψ1g

�
dµ8 �

»
M

�
G�pk�1qpg,H 1gqψ (3.9)

� p2k � 1qG�pk�2qpg, g1gqpg,Hqψ �G�k divpHqψ � 2kG�pk�1qpg, g1Hqψ
�G�pk�1q divpgqpg,Hqψ � 2

σ2G
�pk�1qpg, fqpg,Hqψ � 2

σ2G
�kpf,Hqψ

�
dµ8.

For example, let us integrate by parts the terms of order four w.r.t. φ of the operator A1φ
in equation (3.8). Applying identity (3.9) with ψ � σ4

8 ∆φ1peiq, H � ei and k � 0, and then
summing on i � 1, . . . , d yields»

M

�σ4

8 ∆2φ� σ4

8 G
�1∆φ2pg, gq

�
dµ8 �

»
M

�
� σ4

8 G
�2pg, g1gq∆φ1g (3.10)

� σ4

8 G
�1 divpgq∆φ1g � σ2

4 G
�1pg, fq∆φ1g � σ2

4 ∆φ1f
�
dµ8.

We apply again (3.9) with ψ � σ4

8 φ
p3qpg, g, eiq, H � ei and k � 1, and then sum on i � 1, . . . , d

to get »
M

�σ4

8 G
�1∆φ2pg, gq � σ4

8 G
�2φp4qpg, g, g, gq

�
dµ8 (3.11)

�
»

M

�
� σ4

4 G
�1
¸
i

φp3qpg, Big, eiq � σ4

2 G
�2φp3qpg, g, g1gq

� 3σ4

8 G�3pg, g1gqφp3qpg, g, gq � σ4

8 G
�2 divpgqφp3qpg, g, gq

� σ2

4 G
�2pg, fqφp3qpg, g, gq � σ2

4 G
�1φp3qpg, g, fq

�
dµ8.

Subtracting (3.11) from (3.10) allows to express
³
M A1φdµ8 with derivatives of φ of order

strictly less than 4. We iterate this method to obtain
³
M A1φdµ8 � ³

M A0
1φdµ8 where A0

1
is an operator of order one in φ, and then find sufficient conditions such that A0

1 � 0. This
implies that A�

1ρ8 � 0, and Theorem 2.5 then gives the order two for the invariant measure.
The computation of A0

1 is further detailed in Section 4.
Although constructing methods of high weak order is not the main focus of this paper,

considering the explicit formula for A1 and comparing with L2{2 (see Section 4 for their
detailed expansion in B-series), one immediately obtains the following theorem for weak order
two of accuracy.

Theorem 3.10 (Runge-Kutta conditions for weak order two). We consider a Runge-Kutta
method of the form (3.1) and assume that it satisfies (3.7). If the following conditions are
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satisfied, then the integrator has weak order two:

bTd � bT c � bT pδ � cq � bTd�2 � bT pδ � d�2q � 1
2 ,pbTd � pbT c � pbT pδ � cq � pbTd�2 � pbT pδ � d�2q � pbTd�3 � pbT pδ � d�3q � 1

2 ,pbT pc � dq � pbT pδ � c � dq,pbT pd � pAdq � 1
8 ,

bT pd � pApp1� δq � dqq � 0,pbTApp1� δq � dq � pbT pδ �App1� δq � dqq � 1
4 ,pbT pd � pAcq � pbT pd � pAd�2q � pbT pd � pApδ � d�2qq � 0,pbT pd�2

� pAdq � 1
4 ,pbT pc � pApp1� δq � dqq �pbT pd � pApδ � dqq �pbT pd � pApδ � cqq � 1

8 ,pbT pd�2
� pApδ � dqq �pbT pd � pApδ � dqq � 1

8 ,pbT pd � p pApp1� δq � dqq�2q � 0,pbT pd � p pAdq�2q � 3pbT pd � pApd � pApp1� δq � dqqq � 1
8 .

Remark 3.11. For δ � 1, the weak order two conditions of Theorem 3.10 have no solution,
which is in contrast with the invariant measure case presented in Theorem 3.8. Indeed, the
condition pbTApp1� δq � dq � 1

4 cannot be fulfilled if we fix δ � 1.

3.3 Illustrative examples of high order Runge-Kutta methods on manifolds

In this section, we present several examples of high order Runge-Kutta methods of the
form (3.1). The purpose of these examples is to illustrate our analysis, and deriving new
integrators with small error constant, favourable stability properties, small variance and fast
convergence to equilibrium is a challenging open question which is not addressed in the present
paper. First, we introduce a method that has order two for sampling the invariant measure of
the constrained Langevin dynamics (1.2). Since there are many solutions to the order condi-
tions, we obtain this integrator by solving numerically an optimization problem: we minimize
the absolute values of the coefficients of the method under the constraints given by the order
conditions of Theorem 3.8. This method is explicit in f and uses only three evaluations of f
per step. It is defined by the following Butcher tableau

0 0 0 0 0 1 1 0 0 0 d1
c2 c2 0 0 0 1 pa21 pa22 0 0 d2
c3 0 c3 0 0 1 pa31 pa32 pa33 0 d3
1 pa41 pa42 pa43 0 1 pa41 pa42 pa43 0 1pa41 pa42 pa43 0 pa41 pa42 pa43 0

or by the associated set of equations

Y1 � Xn � σ
?
hd1ξn � λ1gpY1q,

Y2 � Xn � hc2fpY1q � σ
?
hd2ξn � λ2 rpa21gpY1q � pa22gpY2qs ,

Y3 � Xn � hc3fpY2q � σ
?
hd3ξn � λ3 rpa31gpY1q � pa32gpY2q � pa33gpY3qs ,

Xn�1 � Xn � h
3̧

j�1
pa4jfpYjq � σ

?
hξn � λ4

3̧

j�1
pa4jgpYjq, (3.12)
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where λ1, λ2, λ3, λ4 are such that ζpY1q � ζpY2q � ζpY3q � ζpXn�1q � 0,

and with the values of ci, di, paij given in Appendix C. To implement one step of this scheme, we
apply a few iterations of the Newton method to find the projections on M. We emphasize that
if the stepsize h is not small enough, the fixed point problems of finding λi such that ζpYiq � 0
may not be well defined, leading to diverging Newton iterations. Following Remark 3.2, we
replace the standard Gaussian random vectors ξ in (3.1) by independent bounded discrete
random vectors pξ that satisfy (3.2). This way, the order two for the invariant measure is
preserved and the method is well-posed for h small enough.

With the same methodology we used to obtain the order conditions of Theorem 3.8 and
Theorem 3.10, and with the expressions of A1φ and A0

1φ (see Section 4 for further details),
we also get classes of Runge-Kutta integrators and their order conditions for the following
specific subproblems.

Euclidean case Rd. Fixing g � 0 in the expressions of A1φ and A0
1φ yields the order two

conditions in the weak sense and for the invariant measure in Rd as given in [39, Tables 1-2].

Deterministic case. Fixing σ � 0 in the expression of A1φ yields the order conditions for
approximating the solution of ODEs of the form 9x � ΠMpxqfpxq, where f is a gradient. Note
that this equation can be rewritten as the following differential algebraic equation (DAE) of
index two (see [31, Chap.VII]):

9x � fpxq � λgpxq, (3.13)
0 � ζpxq.

We obtain a class of deterministic Runge-Kutta methods for solving DAEs of the form (3.13)
by setting σ � 0 in (3.1). A Runge-Kutta method of this form is consistent if bT1 � 1, and
has order two if pbT c � pbT pδ � cq � bT c � bT pδ � cq � 1{2. For instance, an order two method
for solving ODEs of the form (3.13) is

Xn�1 � Xn � h
fpXnq � fpXn�1q

2 � λ
gpXnq � gpXn�1q

2 , ζpXn�1q � 0.

Spherical case. In the simple case where M is the unit sphere in Rd (that is, when the
constraint is of the form ζpxq � p|x|2 � 1q{2 and gpxq � x), the consistency conditions (3.7)
reduce to bT1 � ds � 1. The weak order two conditions of Theorem 3.10 reduce to the
following conditions:

bTd � bT c � bT pδ � cq � bTd�2 � bT pδ � d�2q � pbTd � pbT c � 1
2 ,pbT pd � pAdq � 1

8 ,pbTApp1� δq � dq � 1
4 ,pbT pd � pAcq � 0.

On the other hand, the order two conditions for the invariant measure of Theorem 3.8 on the
sphere are the following:pbTd � bTd,

bT c � bT pδ � cq � bTd�2 � bT pδ � d�2q � pbT c � 2pbTd� 1
2 ,pbT pd � pAcq � 2pbT pd � pAdq � ppbTdq2 � 2pbTd� 1

2 ,pbTAppδ � 1q � dq � ppbTdq2 � 2pbTd� 1
2 .
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For example, the following integrator has order two for the invariant measure if M is a sphere:

Y1 � Xn � h

�
3
2 �

?
2


fpY2q � σ

?
h

�
1�

?
2

2



ξn � λ1p2Y1 � Y2q, ζpY1q � 0,

Y2 � Xn � hfpY1q � σ
?
hξn � λ2Y1, ζpY2q � 0,

Xn�1 � Y2.

Brownian motions on manifolds. Runge-Kutta methods of the form (3.1) can also be used
for simulating a Brownian motion on a manifold (see [33, Chap. III]) by solving numerically

dX � ΠMpXq � dW, Xp0q � X0 P M. (3.14)

We recall that in the context of Rd, the Euler-Maruyama integrator is exact for approximating
a Brownian motion in law. However, in the context of manifolds, there are no exact Runge-
Kutta integrators for simulating a Brownian motion on M in general. In particular, the Euler
scheme (1.7) only has weak order one for solving (3.14) in general. Fixing f � 0 in (3.1) yields
a class of Runge-Kutta methods for solving (3.14). The consistency conditions are ds � 1
and pbTd � pbT pδ � dq. The conditions for order two for the invariant measure (respectively for
weak order two) of such a Runge-Kutta method are obtained by deleting the order conditions
in Theorem 3.8 (respectively in Theorem 3.10) that involve A, b or c. In the specific case
where M is a sphere, the consistency conditions (3.7) become ds � 1 and the weak order two
conditions of Theorem 3.10 reduce to the two following conditions

pbTd � 1
2 ,

pbT pd � pAdq � 1
8 .

For example, a weak order two method for simulating a Brownian motion on a sphere is

Xn�1 � Xn �
?
hξn � λ

3Xn �
?
hξn �Xn�1
4 , ζpXn�1q � 0.

In addition, there are no additional order two conditions for the invariant measure, that is, any
consistent integrator, such as the Euler scheme (1.7), has at least order two for the invariant
measure on the sphere.

4 Exotic aromatic B-series for computing order conditions
As described in the introduction, B-series were introduced to tackle the calculations of order
conditions of ODEs by representing Taylor expansions with trees. In [16], an extension of the
original B-series, called aromatic B-series, was used to study volume-preserving integrators.
It allowed in particular to represent the divergence of a B-series. B-series and aromatic B-
series were also studied later in [52, 49, 26] for their geometric properties, and in [15, 8] for
their algebraic structure of Hopf algebras. In [39], a new formalism of B-series, called exotic
aromatic B-series, was introduced for computing order conditions for sampling the invariant
measure of SDEs in Rd. It added a new kind of edge, called liana, to the aromatic trees in
order to represent new terms such as the Laplacian of an aromatic B-series. In this section,
we extend the formalism of exotic aromatic B-series by allowing the representation of scalar
products, and show that the operators Lj and Aj can be represented conveniently in the form
of B-series. We also rewrite the integration by parts formula (3.9) as a straightforward process
on graphs, and apply it to compute A0

1.
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We consider graphs γ � pV,E, Lq where V is the set of nodes, E the set of edges and L the
set of lianas. We split the set of edges into E � E0 YES where E0 are the standard oriented
edges as defined in [39], and where ES is a new set of non-oriented edges represented as
double horizontal straight lines. If pv, wq � pw, vq P ES , we consider this edge as an outgoing
edge for both v and w, but v and w are not predecessors of each other. If pv, wq P ES ,
we denote Spvq � w and Spvq � v otherwise. We consider graphs where each node has
exactly one outgoing edge, except exactly one node, called the root r, that has none. If we
consider only the graph pV,Eq, where we erase the lianas, it can be decomposed in two kinds
of connected components: one that contains the root, that we name the rooted tree, and the
other components that we name aromas. We decompose the set of nodes in V � Vf YVgYtru
where Vf are the nodes representing the function f and are represented with black disks
(respectively Vg represent the function g and are drawn with white disks). We write Nf pγq
the number of elements of Vf (respectively Ngpγq the number of elements of Vg) and Nlpγq
the number of lianas. The order of a directed graph γ � pV,E,Lq is defined as

|γ| � Nf pγq �Nlpγq � Ngpγq
2 � |ES | .

For instance, the graph γ � pV,E,Lq with
Vf � tv2, v5, v6u, Vg � tv1, v3, v4, v7u, ES � tpv6, v7qu, (4.1)

E0 � tpv1, rq, pv2, v1q, pv3, rq, pv4, v4q, pv5, v4qu, L � tpv2, v2q, pv3, v5q, pv5, v6qu,
satisfies |γ| � 7 and is represented as

1

2

3

5

4

67
r .

We say that two directed graphs pV 1, E1, L1q and pV 2, E2, L2q are equivalent if there exists a
bijection ϕ : V 1 Ñ V 2 such that

ϕpV 1
f q � V 2

f , ϕpV 1
g q � V 2

g , pϕ� ϕqpE1q � E2, pϕ� ϕqpE1
Sq � E2

S , pϕ� ϕqpL1q � L2.

We call exotic aromatic forests the equivalence classes of these directed graphs γ � pV,E, Lq,
and we denote EAT the set of exotic aromatic forests. In addition, we need a different set of
rooted forests where the root is in Vf or Vg. We call them exotic aromatic vector fields and
gather them together in the set EAV. The elementary differential associated with an exotic
aromatic forest is given by the following definition.

Definition 4.1. Let γ � pV,E, Lq P EAT , and let f , g : Rd Ñ Rd and φ : Rd Ñ R be smooth
functions. We denote l1, . . . , ls the elements of L, v1, . . . , vm the elements of V r tru and δi,j
the Kronecker symbol (δi,j � 1 if i � j, δi,j � 0 else). We use the notation for v P V , Iπpvq �
piq1 , . . . , iqsq where πpvq � tq1, . . . , qsu are the predecessors of v, and JΓpvq � pjlx1

, . . . , jlxt q
where Γpvq � tlx1 , . . . , lxtu are the lianas linked to v. Then F pγq is defined as

F pγqpf, g, φq � σ2p|γ|�Nf pγqqG�Ngpγq{2
ḑ

iv1 ,...,ivm�1

ḑ

jl1 ,...,jls�1

��¹
vPVf

δiv ,iSpvqBIπpvqBJΓpvqfiv

�
�
��¹
vPVg

δiv ,iSpvqBIπpvqBJΓpvqgiv

�BIπprqBJΓprqφ.
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For example, the differential associated with the exotic aromatic forest γ given by (4.1) is

F pγqpf, g, φq � σ8G�2
ḑ

iv1 ,...,iv7�1

ḑ

jl1 ,...,jl3�1
Bjl1jl1fiv2Bjl2jl3fiv5 δiv6 ,iv7Bjl3fiv6

� Biv2giv1Bjl2giv3Biv4 iv5giv4 δiv7 ,iv6giv7Biv1 iv3φ.
We extend the definition of F on SpanpEAT q by linearity and write, for the sake of simplic-
ity, F pγqpφq instead of F pγqpf, g, φq. An exotic aromatic B-series is a formal series indexed
over EAT of the form

Bpaqpφq �
¸

γPEAT
h|γ|apγqF pγqpφq.

Remark 4.2. As we assumed that the functions f and g are gradients, multiple exotic aro-
matic forests can represent the same differential. We do not detail here the method to identify
two such forests as it is similar to [39, Prop. 4.7] in the context of Rd.

The following result states that the operators Lj{j! and Aj can be written with exotic
aromatic forests. We omit the proof for the sake of brevity as it is similar to [39, Thm. 4.1].

Proposition 4.3. Take a Runge-Kutta method of the form (3.1), then the expansions (2.4)
and (2.6) can be formally written with exotic aromatic B-series, that is, there exists two maps e
and a over EAT such that

ErφpXphqq|Xp0q � xs � Bpeqpφqpxq, ErφpX1q|X0 � xs � Bpaqpφqpxq,
and where the operators are given by

Lj

j! � F

� ¸
γPEAT ,|γ|�j

epγqγ


, Aj�1 � F

� ¸
γPEAT ,|γ|�j

apγqγ


.

If epγq � apγq for all γ P EAT with 1 ¤ |γ| ¤ p, then the integrator has at least weak order p.

For example, the operator L in (2.2) can be rewritten with exotic aromatic forests as

Lφ � φ1f �G�1pg, fqφ1g � σ2

2 G
�1 divpgqφ1g � σ2

2 G
�2pg, g1gqφ1g � σ2

2 ∆φ� σ2

2 G
�1φ2pg, gq

� F
�
� � 1

2 � 1
2 � 1

2 � 1
2

	
pφq.

We present in Table 2 (see Appendix D) the decomposition in exotic aromatic forests of the
operators L2φ{2 � LpLφq{2 and A1φ under the consistency condition (3.7).

Remark 4.4. If we replace the functions g and φ by f and fix σ � G � 1, the newly
obtained exotic aromatic B-series satisfy an isometric equivariance property, that is, they stay
unchanged when applying an isometric coordinate transformation. It was proved in [52] that,
under a condition of locality, aromatic B-series are exactly the affine equivariant methods,
that is, the maps that stay unchanged when applying an affine coordinate transformation.
Analogously, it would be interesting to make a link between the isometric equivariant maps
and the exotic aromatic B-series.

In the spirit of the Butcher product on trees [29, Chap. III], we introduce a few notations
for writing with ease different operations on forests.
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Notation. Let γ be an exotic aromatic forest/vector field, τ be an exotic aromatic vector field
and v a node of γ, then we define the following operators on forests.

1.
τ

γ: sum of all exotic aromatic forests/vector fields obtained by linking the root of τ to a
node of γ with a new edge in E0

2. ττ (resp. ττ): aroma obtained by linking the root of τ to a white node (resp. a black
node) with a new edge in ES

3. τ : sum of all aromas obtained by linking the root of τ to a node of τ with a new edge
in E0

4. γγv : sum of all exotic aromatic forests/vector fields obtained by linking the node v to a
node of γ with a new liana

5. vvγ

ττ

: forest obtained by linking the root of τ to the node v of γ with a new edge in E0

For simplicity, we combine multiple operations on a same forest as in vvγ and
ττ

, where
operation 1 is always applied first.

For example, let γ � , τ � and v � r the root of γ, then we get

τ

γ � � 2 , ττ � ,
τ � � , γγv � � 2 , vvγ

ττ

� .

The integration by parts (3.9) can be rewritten conveniently with exotic aromatic forests.

Lemma 4.5. Let γ P EAT and τ P EAV, then the process of integration by parts rewrites
into»

M
F
�
τ

γ � ττ γ

	
pφqdµ8 �

»
M
F
�

ττ
γ � pNgpγq �Ngpτq � 1q ττ γ � τ

γ (4.2)

� pNgpγq �Ngpτqq
ττ

γ � ττ γ � 2 ττ γ � 2 ττ γ

	
pφqdµ8,»

M
F
�
γγv � vvγ

	
pφqdµ8 �

»
M
F
�
� pNgpγq � 1q vvγ (4.3)

�Ngpγq vvγ � vvγ � 2 vvγ � 2 vvγ

	
pφqdµ8.

We write γ � rγ if it is possible to go from γ P EAT to rγ P SpanpEAT q with the processes
of integration by parts (4.2) or (4.3). We extend this relation by linearity on SpanpEAT q and
make it symmetric so that � becomes an equivalence relation on SpanpEAT q. For example,
the integrations by parts (3.10) and (3.11) can be rewritten with exotic aromatic B-series by
using (4.3) with γ � and γ � . It yields

1
8 � 1

8 � �1
8 � 1

8 � 1
4 � 1

4 ,

1
8 � 1

8 � �1
4 � 1

2 � 3
8 � 1

8 � 1
4 � 1

4 .

For the sake of completeness, we present in Appendix B the integrations by parts for the
order 3 terms of A1φ. The computations are similar for the terms of order two in φ.
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Remark 4.6. In the Euclidean case Rd, that is, for a forest γ P EAT and a vector field τ P
EAV with Ngpγq � Ngpτq � 0 and g � 0, Lemma 4.5 reduces to the two following equations:

τ

γ � � τ

γ � 2 ττ γ, γγv � �2 vvγ .

We recover the process of integration by parts described in [39, Thm. 4.4] in the context of
exotic aromatic B-series in Rd.

We can now revisit the statement of Theorem 2.5 in terms of B-series.

Theorem 4.7. Take a consistent ergodic Runge-Kutta method of the form (3.1). We de-
note Ai � F pγiq with γi P EAT . If γi � γ0

i and F pγ0
i q � 0 for 1 ¤ i   r, then the method has

at least order r for the invariant measure.

By applying repeatedly the process of integrations by parts described in Lemma 4.5,
one can simplify the operator Ai � F pγiq into an operator of the form A0

i � F pγ0
i q such

that γi � γ0
i . The complete decomposition of A0

1 into exotic aromatic forests is detailed in
Table 3 (see Appendix D). According to Theorem 4.7, choosing the coefficients of the Runge-
Kutta method such that γ0

1 � 0 yields the order two conditions for the invariant measure, as
stated in Theorem 3.8.

Remark 4.8. We call EAT 0 the subset of exotic aromatic forests whose root has only one
predecessor (that is, the forests associated with an order one operator) or that have a rooted tree
of the form , , , . . .Then, if γ P EAT , there exists γ0 P EAT 0 such that γ � γ0.
For instance, for a consistent method of the form (3.1), the operator A0

1 � F pγ0
1q has the form

γ0
1 � pbTd�pbTdq �

¸
|γ|�2
|πprq|�1

a0pγqγ,

so that γ0
1 P EAT 0, and A0

1 is a differential operator of order one if the condition bTd � pbTd
holds.

5 Numerical experiments
In this section, we perform numerical experiments to confirm the theoretical findings, first on
a sphere and a torus in R3, and then on the special linear group.

5.1 Invariant measure approximation on a sphere and a torus

To check the numerical order two of the Runge-Kutta integrator (3.12) presented in Sec-
tion 3.3, we first compare it with the Euler scheme (1.7) on the unit sphere in R3, where
the constraint is given by ζpxq � px2

1 � x2
2 � x2

3 � 1q{2. We choose the potential V pxq �
25p1 � x2

1 � x2
2q, with σ � ?

2, φpxq � x2
3, f � �∇V , g � ∇ζ, M � 107 independent

trajectories to have a small Monte-Carlo error and a final time T � 20. Observe that for
the smaller final time T � 10 (not included in the figures for conciseness), the convergence
curves reveal nearly identical to the case T � 20 considered in Figure 1, which suggests that
the numerical solutions are already very close to equilibrium at these final times. Following
Remark 3.2 and Lemma 3.3, we use discrete bounded random variables satisfying (3.2) in
the implementation of the integrators. For both integrators, we compute the Monte-Carlo
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estimator sJ � 1
M

°M
m�1 φpXpmq

N q � ErφpXN qs, where Xpmq
n is the m-th realisation of the

integrator at time tn � nh, and N is an integer satisfying Nh � T . We compare this ap-
proximation with a reference value of

³
M φdµ8 computed via a standard quadrature formula,

and we plot the error for the invariant measure (1.5) versus different timestep h. We also
plot an estimate of the Monte-Carlo error by using the standard error of the mean estimator�°M

m�1pφpXpmq
N q� sJq2�1{2{aMpM � 1q. We observe in all convergence plots that the Monte-

Carlo error prevails for small values of the timestep h. On Figure 1, we observe as expected
order one for the Euler scheme (1.7) and order two for the Runge-Kutta scheme (3.12).

Figure 1: A trajectory of the order two method (left) and the convergence curve for the sphere for the
invariant measure (right) with the potential V pxq � 25p1 � x2

1 � x2
2q, φpxq � x2

3, a final time T � 20
and M � 107 trajectories.

We then apply the Euler scheme (1.7) and the Runge-Kutta integrator (3.12) on a torus
defined by the constraint ζpxq � px2

1�x2
2�x2

3�R2�r2q2�4R2px2
1�x2

2q with R � 3 and r � 1.
The potential is V pxq � 25px3 � rq2 and we choose σ � ?

2, φpxq � x2
3, f � �∇V , g � ∇ζ,

a final time T � 20 and M � 107 independent trajectories. On Figure 2, we plot the error
for the invariant measure versus the timestep h, by using a reference value for

³
M φdµ8

obtained with a standard quadrature formula. As expected, we observe order two for the
proposed integrator. These curves confirm the theoretical findings presented in Section 3. In
particular, the scheme (3.12) has order two of accuracy for the invariant measure on manifolds,
according to Theorem 3.8. Note that if we had chosen a very short final time T , we would
have observed the weak order one instead of the order two for the invariant measure as we
would not have reached equilibrium.

5.2 Invariant measure approximation on the special linear group

Sampling on a manifold M is especially useful to compute integrals of the form
³
M φpxqdµ8

when M is a manifold of high dimension. The class of methods (3.1) is convenient as the
number of order conditions does not increase with the dimension of the space increasing. We
apply Method (3.12) on a Lie group (in the spirit of [65, 66]) to see how it performs in high
dimension. We choose the special linear group SLpmq � tM P Rm�m, detpMq � 1u, seen as a
submanifold of Rm2 of codimension 1. As explained in Remark 2.6, our analysis still applies
to SLpmq if we choose a potential V with appropriate growth assumptions, even if it is not a
compact manifold. We compare the Euler scheme (1.7) and the Runge-Kutta integrator (3.12)
on M � SLpmq for different m (that is, with the constraint ζpxq � detpxq � 1), where we use
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Figure 2: A trajectory of the order two method (left) and the convergence curve for the torus for
the invariant measure (right) with the potential V pxq � 25px3 � rq2, φpxq � x2

3, a final time T � 20
and M � 107 trajectories.

in the implementation discrete random variables satisfying (3.2). We choose the potential

V pxq � 25 Trppx� Im2qT px� Im2qq (5.1)

and the parameters σ � ?
2, φpxq � Trpxq and M � 106 trajectories. Each trajectory is an

approximation of the solution of equation (1.2) at time T � 10 with a timestep h � T {N
and N � 212 steps. With this timestep h, the Newton method used in the Euler scheme (1.7)
does not converge for approximately 0.005% of the trajectories for m � 4. We choose to
discard these trajectories, which induces a negligible bias in the expectation. This does not
occur for the Runge-Kutta integrator (3.12). We recall that for a small enough timestep h,
the Newton method would always converge (see also Remark 3.4). The reference solution
for Jpmq � ³

SLpmq φpxqdµ8pxq is computed with the Runge-Kutta method (3.12) with href �
2�14T . With the factor 25 in the potential (5.1), the solution of (1.2) stays close to Im2 ,
and Jpmq is close to φpIm2q � m. This choice of factor permits to explore a reasonably small
area of SLpmq with moderate manifold curvature. We observe numerically that replacing
the factor 25 by 1 in (5.1) induces a severe timestep restriction (results not included for
conciseness). The computation of Jpmq could also be done via the parametrization given by
the Iwasawa decomposition for SLpmq (see, for instance, [28, Chap. 1]) and the use of standard
quadrature methods, but these methods have prohibitive costs in high dimension. We put
together the numerical results in Table 1 and observe that the Runge-Kutta method (3.12)
performs significantly better than the Euler scheme (1.7).

m dimpSLpmqq Jpmq sJEuler error for sJEuler sJ2 error for sJ2

2 3 2.00967 2.01031 6.4 � 10�4 2.00962 4.4 � 10�5

3 8 3.01954 3.02068 1.1 � 10�3 3.01934 2.0 � 10�4

4 15 4.02930 4.03095 1.6 � 10�3 4.02907 2.3 � 10�4

Table 1: Numerical approximation of the integral Jpmq �
³
SLpmq

φpxqdµ8 for 2 ¤ m ¤ 4 with the
estimator sJ �M�1 °M

k�1 φpX
pkq
N q where pXnq is given by the Euler scheme (1.7) for sJEuler and by the

Runge-Kutta integrator (3.12) for sJ2, with their respective errors. The average is taken over M � 106

trajectories, with the potential (5.1), φpxq � Trpxq, a final time T � 10 and a timestep h � 2�12T .
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Appendices
A Proof of Theorem 2.5
In the spirit of backward error analysis for differential equations (see [29, 67, 1, 22]), we build
a modified generator Lh such that Upx, hq � ErφpX1q|X0 � xs formally satisfies

Upx, hq �
¸
j¥0

hj

j! pL
hqjφpxq. (A.1)

Truncating this formal series yields an estimate of the form

Upx, hq � φpxq �
Ņ

j�1

hj

j! pL
hqjφpxq � hN�1RhN pφ, xq, x P NM,

where NM is an open neighbourhood of M in Rd and the remainder satisfies
��RhN pφ, xq�� ¤

CN pφq. For this, we write formally Lh � L �°
n¥1 h

nLn and compare the series expression
in (2.6) and (A.1). By formally identifying the powers of h, we deduce the following rigorous
definition of the Ln on an open neighbourhood of M in Rd,

L0 � L, Ln � An �
ņ

l�1

Bl
l!

¸
n1�����nl�1�n�l

Ln1 � � �LnlAnl�1 , n ¥ 1, (A.2)

where the Bl are the Bernoulli numbers (see [22, 67, 3] for similar expansions in Td or Rd).
Using Assumption 2.3, we build recursively a sequence of functions pρnq such that

L�ρn � �
ņ

l�1
L�l ρn�l and ρ0 � ρ8, (A.3)
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where
³
M ρndσM � 0 for n ¥ 1. We denote ρhr �

°r
n�0 h

nρn and dµhr � ρhrdσM and adapt on
the manifold M the following result from [22, Thm. 2.1] in the context of Rd.

Lemma A.1. Under Assumptions 2.2, 2.3 and 2.4, for all φ P C8pRd,Rq, for every positive
integer r, there exists a constant Crpφq independent of h such that, for all h small enough,����»

M
φdµh �

»
M
φdµhr

���� ¤ Crpφqhr�1. (A.4)

We omit the proof of Lemma A.1 as it is exactly the same as in [22, Thm. 2.1] by replac-
ing dx by dσM and Td by M. We are now able to prove Theorem 2.5.

Proof of Theorem 2.5. As A�
j ρ8 � 0 for j � 1, . . . , r � 1, we deduce recursively from (A.2)

and (A.3) that ρj � 0 for j � 1, . . . , r � 1, which yields ρhr � ρ8 � hrρr. Using the defi-
nition of the error for the invariant measure (1.5) and the ergodicity of the integrator (2.5),
equation (A.4) becomes �����epφ, hq � hr

»
M
φpxqρrpxqdσMpxq

����� ¤ Chr�1.

We are left to prove that»
M
φpxqρrpxqdσMpxq �

» 8

0

»
M
upx, tqA�

rρ8pxqdσMpxqdt.

By the backward Kolmogorov equation and ergodicity, u satisfies

lim
TÑ8

upx, T q � φpxq �
» 8

0
Lupx, tqdt �

»
M
φpyqdµ8pyq.

Using L�ρr � �L�rρ8 � �A�
rρ8, we deduce»

M
φpxqρrpxqdσMpxq � �

» 8

0

»
M

Lupx, tqρrpxqdσMpxqdt�
»

M
φpyqdµ8pyq

»
M
ρrpxqdσMpxq

� �
» 8

0

»
M
upx, tqL�ρrpxqdσMpxqdt

�
» 8

0

»
M
upx, tqA�

rρ8pxqdσMpxqdt,

where we used that
³
M ρrpxqdσMpxq � 0. This concludes the proof of Theorem 2.5.

B Integration by parts using the tree formalism
We provide here the detailed calculations of the integrations by parts of the order three
terms, that are needed for the proof of Theorem 3.8. After applying the operations (3.10)
and (3.11),

³
M A1φdµ8 is transformed into

³
M Bφdµ8 where B is a differential operator of

order three given by

Bφ � F
�1

4 � 1
4 � 1

2 � 1
4 � 1

4
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� 1
8 � 3

8 � 1
4 � 1

8 � 1
8

	
pφq �Rφ,

and R is a differential operator of order two. Using Lemma 4.5 multiple times, we get the
following integrations by parts of the order three terms of Bφ.

1
4 � 1

4 � �1
4 � 1

4 � 1
4 � 1

4 � 1
2 � 1

2

�1
4 � 1

4 � 1
4 � 1

4 � 1
4 � 1

4

� 3
4 � 1

2 � 1
4 � 1

2 � 1
2

�1
4 � 1

4 � 1
4 � 1

4 � 1
4 � 3

4 � 1
4

� 1
4 � 3

4 � 1
4 � 1

2 � 1
2

�1
8 � 1

8 � 1
8 � 1

8 � 1
8 � 3

8
� 3

8 � 1
8 � 1

4 � 1
4

1
8 � 1

8 � �1
8 � 1

4 � 1
8 � 1

4 � 1
8

� 5
8 � 5

8 � 1
8 � 1

4 � 1
4

1
4 � 1

4 � �1
2 � 1

2 � 5
4 � 1

4

� 5
4 � 1

4 � 1
4 � 1

4 � 1
2 � 1

2

C Coefficients of the order two Runge-Kutta method
The coefficients of the Runge-Kutta method (3.12) used in Section 5 are

c2 � 0.621729189582953540,
d1 � �0.898931652839146019,
d3 � 0.318924515019668897,pa31 � 0.887706593835748395,pa41 � 0.0547449506054026516,pa22 � 1� pa21,pa43 � 1� pa41 � pa42.

c3 � 0.102032386582165330,
d2 � �1.66233102561284629,pa21 � 0.584372887990673524,pa32 � �0.345018694936693742,pa42 � �0.0205123070437693053,pa33 � 1� pa31 � pa32,
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D Decomposition of the operators in exotic aromatic forests

Forest γ Differential F pγqpφq Exact epγq Numerical approximation apγq
Terms of order 4 w.r.t. φ

σ4∆2φ 1
8

1
8

σ4G�1∆φ2pg, gq �1
4 �1

4

σ4G�2φp4qpg, g, g, gq 1
8

1
8

Terms of order 3 w.r.t. φ

σ2∆φ1f 1
2

1
2

σ2G�1φp3qpg, g, fq �1
2 �1

2

σ4G�2φp3qpg, g, g1gq 1 1

σ4G�1°φp3qpg, g1ei, eiq �1
2 �1

2

σ2G�2pg, fqφp3qpg, g, gq 1
2

1
2

σ4G�2 divpgqφp3qpg, g, gq 1
4

1
4

σ4G�2pg, g1gqφp3qpg, g, gq �3
4 �3

4

σ2G�1pg, fq∆φ1pgq �1
2 �1

2

σ4G�1 divpgq∆φ1pgq �1
4 �1

4

σ4G�2pg, g1gq∆φ1pgq 1
4

1
4

Terms of order 2 w.r.t. φ

φ2pf, fq 1
2

1
2

σ2°φ2pf 1ei, eiq 1
2 bTd

σ2G�1φ2pg, g1fq �1 �1

σ2G�1φ2pg, f 1gq �1 �bTd�pbTd
σ4G�2φ2pg, g1g1gq 3

2 �2pbT pd � pAdq � ppbTdq2 � 2pbTd� 1

Table 2 (Part 1/7): Coefficients in exotic aromatic B-series of the operators L2φ{2 �
°
epγqF pγqpφq

and A1φ �
°
apγqF pγqpφq for consistent Runge-Kutta methods of the form (3.1).
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γ F pγqpφq epγq apγq

σ2G�2φ2pg1g, g1gq 1
4 �pbT pd � pAdq � 1

2ppbTdq2 �pbTd
σ4G�2φ2pg, g2pg, gqq 1

2 2pbTd�2 � 2pbT pδ � d�2q � 1
2

σ4G�1φ2pg,∆gq �1
2 �1

2

σ4G�1°φ2pg1ei, g1eiq �1
4

pbT pd � pAdq � 1
2ppbTdq2 �pbTd

σ4G�1°φ2pg2pg, eiq, eiq 0 pbT pδ � d�2q �pbTd�2

G�1pg, fqφ2pg, fq �1 �1

σ2G�1 divpgqφ2pg, fq �1
2 �1

2

σ2G�2pg, g1gqφ2pg, fq 1
2

1
2

σ2G�1pg, fq°φ2pei, g1eiq �1
2 �pbTd

σ4G�1 divpgq°φ2pei, g1eiq �1
4 �1

2
pbTd

σ4G�2pg, g1gq°φ2pei, g1eiq 1
4

1
2
pbTd

σ2G�2pg, fqφ2pg, g1gq 2 2pbTd� 1

σ4G�2 divpgqφ2pg, g1gq 1 pbTd� 1
2

σ4G�3pg, g1gqφ2pg, g1gq �5
2 2pbT pd � pAdq � ppbTdq2 � 3pbTd� 3

2

σ2G�2pg, g1fqφ2pg, gq 1 1

σ2G�2pg, f 1gqφ2pg, gq 1
2 bTd

σ4G�2° Bijgigjφ2pg, gq 1
2

1
2

σ4G�2° BjgiBigjφ2pg, gq 1
4

1
4

σ4G�3pg, g1g1gqφ2pg, gq �7
4

pbT pd � pAdq � 1
2ppbTdq2 �pbTd� 3

2

σ4G�3pg, g2pg, gqqφ2pg, gq �1
2

pbT pδ � d�2q �pbTd�2 � 1
2

G�2pg, fq2φ2pg, gq 1
2

1
2

σ2G�2pg, fq divpgqφ2pg, gq 1
2

1
2

σ2G�3pg, fqpg, g1gqφ2pg, gq �2 �pbTd� 3
2

Table 2 (Part 2/7): Coefficients in exotic aromatic B-series of the operators L2φ{2 �
°
epγqF pγqpφq

and A1φ �
°
apγqF pγqpφq for consistent Runge-Kutta methods of the form (3.1).
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γ epγq apγq
1
8

1
8

�1 �1
2
pbTd� 3

4

19
8 �pbT pd � pAdq � 1

2ppbTdq2 � 3
2
pbTd� 15

8

Terms of order 1 w.r.t. φ

1
2 bT c

1
4

1
2b
Td�2

�1
2

pbT pd � pAcq �pbTd
�1

2
pbTAppδ � 1q � dq �pbTdbTd

0 bT pd � pAppδ � 1q � dqq

�1
4 �1

2b
T pδ � d�2q

0 pbT pδ � c � dq �pbT pc � dq

�1
4

1
2
pbT pd � pAd�2q � 1

2
pbTd

�pbT pd � p pAdq�2q � 3pbT pd � pApd � pApp1� δq � dqqq
1
2 �2pbTdpbT pd � pAdq � ppbTdq2 �pbTd
1
4

pbT pd � pAd�2q � 3
2
pbT pd � pApδ � d�2qq �pbTdppbTd�2 �pbT pδ � d�2qq � 1

2
pbTd

0 �2pbT pd�2
� pAdq � ppbTd� 1qpbTd�2 �pbTdpbT pδ � d�2q

0 pbT pd�2
� pAdq � 1

2
pbTd�2

0 1
2
pbT pδ � d�3q � 1

2
pbTd�3

�1
2 �pbT c

Table 2 (Part 3/7): Coefficients in exotic aromatic B-series of the operators L2φ{2 �
°
epγqF pγqpφq

and A1φ �
°
apγqF pγqpφq for consistent Runge-Kutta methods of the form (3.1).
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γ epγq apγq

�1
4 �1

2
pbT c

1
4

1
2
pbT c

�1
2 �bT pδ � cq

�1
4 �1

2b
T pδ � d�2q

1
4 bT pd � pApp1� δq � dqqq � 1

2b
T pδ � d�2qpbT pc � pApp1� δq � dqq � ppbTdq2 �pbTd

1 �pbT pd � pApp1� δq � dqq �pbT pd � pApδ � cqq
1
2
pbT pd � pApp1� δq � dqq � 1

2ppbTdq2 � 1
2
pbTd

1
2 �1

2
pbT pd�2

� pApp1� δq � dqq � 1
2
pbT pd � pApδ � d�2qq

3pbT pd � pApd � pApp1� δq � dqqq � p2pbTd� 1
2qpbT pd � pAdq

�3pbT pd � p pApp1� δq � dqq�2q � 1
2
pbT pd � pApδ � dqq �pbT pd � p pAdq�2q

�1 �1
2
pbT pd�2

� pAppδ � 1q � dqq � 1
2
pbT pd � pApδ � d�2qq � 3

2ppbTdq2 � 3
2
pbTd

�1
4 �1

2
pbTd�2

�1
8 �1

4
pbTd�2

1
8

1
4
pbTd�2

1
4

1
2
pbT pδ � d�2q

1
8

1
4
pbT pδ � d�2q

�1
8

pbT pd�2
� pAdq � ppbTd� 1

2qpbTd�2 � ppbTd� 1
4qpbT pδ � d�2q

1
2 �pbT pd � pAcq �pbTd
1
2

pbT pδ �App1� δq � dqq �pbTdbTd
1
4 �1

2
pbT pd � pAd�2q � 1

2
pbTd

0 �pbT pd�2
� pAdq � 1

2
pbT pδ � d�2q

Table 2 (Part 4/7): Coefficients in exotic aromatic B-series of the operators L2φ{2 �
°
epγqF pγqpφq

and A1φ �
°
apγqF pγqpφq for consistent Runge-Kutta methods of the form (3.1).
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γ epγq apγqpbT pd � p pAdq�2q � 3pbT pd � pApd � pApp1� δq � dqqq
�1

2 �2pbT pd�2
� pAdq � 2pbTdpbT pd � pAdq �pbT pδ � d�2q � ppbTdq2 �pbTd

�1
4

1
2
pbT pd � pApp3δ � 2 � 1q � d�2qq �pbTdppbT pδ � d�2q �pbTd�2q � 1

2
pbTd

1
2

pbT pδ � cq

1
2

1
2
pbT pδ � d�2q � 1

2
pbT pδ � cqpbT pc � pAppδ � 1q � dqq �pbT pd � pAppδ � 1q � dqq

�3
2 �pbT pd � pApδ � cqq � 1

2
pbT pδ � d�2q � 1

2
pbT pδ � cq � ppbTdq2 �pbTd

1
8

1
4
pbT pδ � d�2q

1
2
pbT pd � pAppδ � 1q � dqq � 1

2
pbT pd � pApδ � d�2qq

�3
4 �1

2
pbT pd�2

� pAppδ � 1q � dqq � 1
2
pbT pδ � d�2q � 1

2ppbTdq2 � 1
2
pbTd

3pbT pd � p pApp1� δq � dqq�2q � 1
2
pbT pd�2

� pAppδ � 1q � dqq
�pbT pd � p pAdq�2q � 3pbT pd � pApd � pApp1� δq � dqqq
�p1

2 � 2pbTdqpbT pd � pAdq � 1
2
pbT pd � pApδ � dqq � 1

2
pbT pd � pApδ � d�2qq

9
8 �9

2
pbT pδ � d�3q � 15

4
pbT pδ � d�2q � 3

2ppbTdq2 � 3
2
pbTd

�1
2 �bT c

�1
2 �1

2

�1
2 �1

2

�1
4 �1

2b
Td�2

�1
2 �bTd

3
2 �pbT pd � pAcq �pbTd� 1

3
2 bT pd � pApp1� δq � dqq �pbTApp1� δq � dq � ppbTd� 2qbTd
1
2

pbT pc � dq �pbT pδ � c � dq � 1
2

1
4

1
2b
T pδ � d�2q

3
4 �1

2
pbT pd � pAd�2q � 1

2
pbTd� 1

2

Table 2 (Part 5/7): Coefficients in exotic aromatic B-series of the operators L2φ{2 �
°
epγqF pγqpφq

and A1φ �
°
apγqF pγqpφq for consistent Runge-Kutta methods of the form (3.1).
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γ epγq apγq

1
4

1
2
pbTd�3 � 1

2
pbT pδ � d�3q � 1

4

1
2 �pbT pd�2

� pAdq � 3
2
pbTd�2 �pbT pδ � d�2q � 1

2

1
4 �pbT pd � pAdq � 1

2ppbTdq2 �pbTdpbT pd � p pAdq�2q � 3pbT pd � pApd � pApp1� δq � dqqq
�9

4 �p2pbTd� 3qpbT pd � pAdq � 1
2ppbTdq2 � 4pbTd� 1

1
2
pbT pd � pApp3δ � 2 � 1q � d�2qq � 2pbT pd�2

� pAdq
�7

4 �p2pbTd� 3qpbTd�2 � 2ppbTd� 1qpbT pδ � d�2q � 1
2
pbTd� 3

2

�1
8 �1

8

�1
8 �1

8

3
2

pbT c� 1
3
4

1
2
pbT c� 1

2

�9
4

pbT pd � pAcq � 1
2
pbT c�pbTd� 3

2

1
2 bT pδ � cq
1
4

1
2b
T pδ � d�2qpbT pδ �Appδ � 1q � dqq

�5
4 �bT pd � pAppδ � 1q � dqq � 1

2b
T pδ � d�2q � ppbTd� 1qbTd

3
4

1
2
pbTd�2 � 1

2

3
8

1
4
pbTd�2 � 1

4

�9
8

1
2
pbT pd � pAd�2q � 1

4
pbTd�2 � 1

2
pbTd� 3

4

1
2

pbTd
1
4

1
2
pbTd

�1
2

pbT pd�2
� pAdq � 1

2
pbT pδ � d�2q � 1

2
pbTd� 1

4pbT pc � pAppδ � 1q � dqq �pbT pd � pApδ � cqq
�3 �pbT pd � pAppδ � 1q � dqq � ppbTdq2 � 3pbTd� 1

Table 2 (Part 6/7): Coefficients in exotic aromatic B-series of the operators L2φ{2 �
°
epγqF pγqpφq

and A1φ �
°
apγqF pγqpφq for consistent Runge-Kutta methods of the form (3.1).
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γ epγq apγq
1
2
pbT pd�2

� pAppδ � 1q � dqq � 1
2
pbT pd � pApδ � d�2qq

�3
2 �1

2
pbT pd � pAppδ � 1q � dqq � 1

2ppbTdq2 � 3
2
pbTd� 1

2

3pbT pd � p pApp1� δq � dqq�2q � 1
2
pbT pd�2

� pApp3 � 1� δq � dqq
�2pbT pd � p pAdq�2q � 6pbT pd � pApd � pApp1� δq � dqqq
�1

2
pbT pd � pApδ � d�2qq � 1

2
pbT pd � pApδ � dqq

23
4 �p4pbTd� 5

2qpbT pd � pAdq �pbT pδ � d�2q � ppbTdq2 � 13
2
pbTd� 3

�3
4 �1

2
pbT pδ � d�2q � 1

2

�3
8 �1

4
pbT pδ � d�2q � 1

4
1
2
pbT pd � pApp2 � 1� 3δq � d�2qq �pbT pd�2

� pAdq
13
8 �p2pbTd� 3

2qpbTd�2 � p2pbTd� 3
4qpbT pδ � d�2q � 1

2
pbTd� 5

4

�1 �pbT pδ � cq � 1
2

�1 �1
2
pbT pδ � cq � 1

2
pbT pδ � d�2q � 1

2pbT pc � pApp1� δq � dqq �pbT pd � pApp1� δq � dqq
7
2 �pbT pd � pApδ � cqq � 1

2
pbT pδ � cq � 1

2
pbT pδ � d�2q � ppbTdq2 � 2pbTd� 3

2

�1
4 �1

4
pbT pδ � d�2q � 1

8
1
2
pbT pd�2

� pApp1� δq � dqq � 1
2
pbT pd � pApδ � d�2qq

7
4 �1

2
pbT pd � pApp1� δq � dqq � 1

2
pbT pδ � d�2q � 1

2ppbTdq2 �pbTd� 3
4pbT pd � p pAdq�2q � 3pbT pd � pApd � pApp1� δq � dqqq

�3pbT pd � p pApp1� δq � dqq�2q � p2pbTd� 1
2qpbT pd � pAdq

�1
2
pbT pd�2

� pApp1� δq � dqq � 1
2
pbT pd � pApδ � d�2qq � 9

2
pbT pδ � d�3q

�7
2 �1

2
pbT pd � pApδ � dqq � 15

4
pbT pδ � d�2q � ppbTdq2 � 3pbTd� 15

8

Table 2 (Part 7/7): Coefficients in exotic aromatic B-series of the operators L2φ{2 �
°
epγqF pγqpφq

and A1φ �
°
apγqF pγqpφq for consistent Runge-Kutta methods of the form (3.1).

35



γ a0pγq
bTd�pbTd
bT c� 2bTd� 1

2

1
2b
Td�2 � bTd� 1

4

pbT pd � pAcq � 2pbT pd � pAdq � ppbTdq2 � 2pbTd� 1
2

pbTAppδ � 1q � dqq �pbTdbTd� 2pbTd� 1
2

bT pd � pAppδ � 1q � dqq

�1
2b
T pδ � d�2q � bTd� 1

4

pbT pδ � c � dq �pbT pc � dq � 2pbTd�2 � 2pbT pδ � d�2q

1
2
pbT pd � pAd�2q �pbT pd � pAdq � 1

2ppbTdq2 �pbTd� 1
4

�pbT pd � p pAdq�2q � 3pbT pd � pApd � pApp1� δq � dqqq
�p4� 2pbTdqpbT pd � pAdq � 3ppbTdq2 � 4pbTd� 1
1
2
pbT pd � pApp2 � 1� 3δq � d�2qq �pbT pd � pAdq
�ppbTd� 1qppbTd�2 �pbT pδ � d�2qq � 1

2ppbTdq2 �pbTd� 1
4

�2pbT pd�2
� pAdq � 2pbT pd � pAdq

�ppbTd� 2qpbTd�2 � p3�pbTdqpbT pδ � d�2q � ppbTdq2 � 2pbTd� 1
2

pbT pd�2
� pAdq �pbT pd � pAdq � 1

2
pbTd�2 �pbT pδ � d�2q � 1

2ppbTdq2 �pbTd� 1
4

1
2
pbT pδ � d�3q � 1

2
pbTd�3 �pbTd�2 �pbT pδ � d�2q

�pbTd�2 �pbT pδ � d�2q

�pbT c� 2pbTd� 1
2

�1
2
pbT c�pbTd� 1

4

Table 3 (Part 1/5): Coefficients in exotic aromatic B-series of the operator A0
1φ �

°
a0pγqF pγqpφq for

consistent Runge-Kutta methods of the form (3.1).
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γ a0pγq

1
2
pbT c�pbTd� 1

4

�bT pδ � cq � 2bTd� 1
2

�1
2b
T pδ � d�2q � bTd� 1

4

bT pd � pApp1� δq � dqq � 1
2b
T pδ � d�2q � bTd� 1

4pbT pd � pApp3 � 1� δq � dqq �pbT pd � pApδ � cqq
�pbT pc � pApp1� δq � dqq � 2ppbTdq2 � 4pbTd� 1
1
2
pbT pd � pApp3 � 1� δq � dqq � 1

2
pbT pd � pApδ � d�2qq

�1
2
pbT pd�2

� pApp1� δq � dqq � ppbTdq2 � 2pbTd� 1
2pbT pd � p pAdq�2q � 3pbT pd � pApd � pApp1� δq � dqqq � p2pbTd� 11

2 qpbT pd � pAdq
�3pbT pd � p pApp1� δq � dqq�2q � 1

2
pbT pd�2

� pApp1� δq � dqq
�1

2
pbT pd � pApδ � dqq � 1

2
pbT pd � pApδ � d�2qq � 4ppbTdq2 � 6pbTd� 3

2

�1
2
pbTd�2 �pbTd� 1

4

�1
4
pbTd�2 � 1

2
pbTd� 1

8

1
4
pbTd�2 � 1

2
pbTd� 1

8

�2pbTd�2 � 5
2
pbT pδ � d�2q �pbTd� 1

4

5
4
pbT pδ � d�2q �pbTd�2 � 1

2
pbTd� 1

8

p5
2 �pbTdqpbTd�2 � ppbTd� 13

4 qpbT pδ � d�2q
�pbT pd�2

� pAdq �pbT pd � pAdq � 1
2ppbTdq2 � 3

2
pbTd� 3

8

�pbT pd � pAcq � 2pbT pd � pAdq � ppbTdq2 � 2pbTd� 1
2

pbT pδ �App1� δq � dqq �pbTdbTd� 2pbTd� 1
2

�1
2
pbT pd � pAd�2q �pbT pd � pAdq � 1

2ppbTdq2 �pbTd� 1
4

�pbT pd�2
� pAdq �pbT pd � pAdq � 1

2
pbT pδ � d�2q � 1

2ppbTdq2 �pbTd� 1
4

Table 3 (Part 2/5): Coefficients in exotic aromatic B-series of the operator A0
1φ �

°
a0pγqF pγqpφq for

consistent Runge-Kutta methods of the form (3.1).
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γ a0pγqpbT pd � p pAdq�2q � 3pbT pd � pApd � pApp1� δq � dqqq � 2pbT pd�2
� pAdq

�p2pbTd� 6qpbT pd � pAdq �pbT pδ � d�2q � 4ppbTdq2 � 6pbTd� 3
2

1
2
pbT pd � pApp3δ � 2 � 1q � d�2qq �pbT pd � pAdq
�p1�pbTdqppbTd�2 �pbT pδ � d�2qq � 1

2ppbTdq2 �pbTd� 1
4

pbT pδ � cq � 2pbTd� 1
2

1
2
pbT pδ � d�2q � 1

2
pbT pδ � cq � 2pbTd� 1

2pbT pc � pAppδ � 1q � dqq �pbT pd � pAppδ � 3 � 1q � dqq
�pbT pd � pApδ � cqq � 1

2
pbT pδ � d�2q � 1

2
pbT pδ � cq � 2ppbTdq2 � 6pbTd� 3

2

1
4
pbT pδ � d�2q � 1

2
pbTd� 1

8
1
2
pbT pd � pAppδ � 3 � 1q � dqq � 1

2
pbT pd � pApδ � d�2qq

�1
2
pbT pd�2

� pAppδ � 1q � dqq � 1
2
pbT pδ � d�2q � ppbTdq2 � 3pbTd� 3

4

3pbT pd � p pApp1� δq � dqq�2q � p13
2 � 2pbTdqpbT pd � pAdq

�pbT pd � p pAdq�2q � 3pbT pd � pApd � pApp1� δq � dqqq
�1

2
pbT pd�2

� pAppδ � 1q � dqq � 1
2
pbT pd � pApδ � d�2qq � 9

2
pbT pδ � d�3q

�1
2
pbT pd � pApδ � dqq � 15

4
pbT pδ � d�2q � 9

2ppbTdq2 � 15
2
pbTd� 15

8

�bT c� 2pbTd� 1
2

�1
2b
Td�2 �pbTd� 1

4

�bTd�pbTd
�pbT pd � pAcq � 2pbT pd � pAdq � ppbTdq2 � 2pbTd� 1

2

bT pd � pApp1� δq � dqq �pbTApp1� δq � dq � ppbTd� 2qbTd� 4pbTd� 1
2pbT pc � dq �pbT pδ � c � dq � 2pbTd�2 � 2pbT pδ � d�2q

1
2b
T pδ � d�2q �pbTd� 1

4

�1
2
pbT pd � pAd�2q �pbT pd � pAdq � 1

2ppbTdq2 �pbTd� 1
4

1
2
pbTd�3 � 1

2
pbT pδ � d�3q �pbTd�2 �pbT pδ � d�2q

Table 3 (Part 3/5): Coefficients in exotic aromatic B-series of the operator A0
1φ �

°
a0pγqF pγqpφq for

consistent Runge-Kutta methods of the form (3.1).
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γ a0pγq

�pbT pd�2
� pAdq �pbT pd � pAdq � 1

2
pbTd�2 �pbT pδ � d�2q � 1

2ppbTdq2 �pbTd� 1
4pbT pd � p pAdq�2q � 3pbT pd � pApd � pApp1� δq � dqqq

�p2pbTd� 4qpbT pd � pAdq � 3ppbTdq2 � 4pbTd� 1
1
2
pbT pd � pApp3δ � 2 � 1q � d�2qq � 2pbT pd�2

� pAdq � 3pbT pd � pAdq
�p3� 2pbTdqpbTd�2 � p2pbTd� 4qpbT pδ � d�2q � 3

2ppbTdq2 � 3pbTd� 3
4pbTd�2 �pbT pδ � d�2qpbT c� 2pbTd� 1

2

1
2
pbT c�pbTd� 1

4pbT pd � pAcq � 2pbT pd � pAdq � 1
2
pbT c� ppbTdq2 � 3pbTd� 3

4

bT pδ � cq � 2pbTd� 1
2

1
2b
T pδ � d�2q �pbTd� 1

4

bT pd � pAppδ � 1q � dqq �pbT pδ �Appδ � 1q � dqq
�1

2b
T pδ � d�2q � ppbTd� 1qbTd� 4pbTd� 3

4

1
2
pbTd�2 �pbTd� 1

4

1
4
pbTd�2 � 1

2
pbTd� 1

8

1
2
pbT pd � pAd�2q �pbT pd � pAdq � 1

4
pbTd�2 � 1

2ppbTdq2 � 3
2
pbTd� 3

8pbT pd�2
� pAdq �pbT pd � pAdq � 1

2
pbT pδ � d�2q � 1

2ppbTdq2 �pbTd� 1
4pbT pc � pAppδ � 1q � dqq �pbT pd � pApδ � cqq

�pbT pd � pAppδ � 3 � 1q � dqq � 2ppbTdq2 � 4pbTd� 1
1
2
pbT pd�2

� pAppδ � 1q � dqq � 1
2
pbT pd � pApδ � d�2qq

�1
2
pbT pd � pAppδ � 3 � 1q � dqq � ppbTdq2 � 2pbTd� 1

2

3pbT pd � p pApp1� δq � dqq�2q � 1
2
pbT pd�2

� pApp3 � 1� δq � dqq
�2pbT pd � p pAdq�2q � 6pbT pd � pApd � pApp1� δq � dqqq � p23

2 � 4pbTdqpbT pd � pAdq
�1

2
pbT pd � pApδ � dqq � 1

2
pbT pd � pApδ � d�2qq �pbT pδ � d�2q � 8ppbTdq2 � 12pbTd� 3

2pbTd�2 � 5
2
pbT pδ � d�2q �pbTd� 1

4pbTd�2 � 5
4
pbT pδ � d�2q � 1

2
pbTd� 1

8

Table 3 (Part 4/5): Coefficients in exotic aromatic B-series of the operator A0
1φ �

°
a0pγqF pγqpφq for

consistent Runge-Kutta methods of the form (3.1).
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γ a0pγq
1
2
pbT pd � pApp2 � 1� 3δq � d�2qq �pbT pd�2

� pAdq � 2pbT pd � pAdq
�p2pbTd� 7

2qpbTd�2 � p17
4 � 2pbTdqpbT pδ � d�2q � ppbTdq2 � 5

2
pbTd� 5

8

�pbT pδ � cq � 2pbTd� 1
2

�1
2
pbT pδ � cq � 1

2
pbT pδ � d�2q � 2pbTd� 1

2pbT pc � pApp1� δq � dqq �pbT pd � pApp3 � 1� δq � dqq
�pbT pd � pApδ � cqq � 1

2
pbT pδ � cq � 1

2
pbT pδ � d�2q � 2ppbTdq2 � 6pbTd� 3

2

�1
4
pbT pδ � d�2q � 1

2
pbTd� 1

8
1
2
pbT pd�2

� pApp1� δq � dqq � 1
2
pbT pd � pApδ � d�2qq

�1
2
pbT pd � pApp3 � 1� δq � dqq � 1

2
pbT pδ � d�2q � ppbTdq2 � 3pbTd� 3

4pbT pd � p pAdq�2q � 3pbT pd � pApd � pApp1� δq � dqqq
�3pbT pd � p pApp1� δq � dqq�2q � 1

2
pbT pd � pApδ � dqq

�p2pbTd� 13
2 qpbT pd � pAdq � 1

2
pbT pd�2

� pApp1� δq � dqq
�1

2
pbT pd � pApδ � d�2qq � 9

2
pbT pδ � d�3q � 15

4
pbT pδ � d�2q � 9

2ppbTdq2 � 15
2
pbTd� 15

8

Table 3 (Part 5/5): Coefficients in exotic aromatic B-series of the operator A0
1φ �

°
a0pγqF pγqpφq for

consistent Runge-Kutta methods of the form (3.1).
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