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We introduce a new methodology based on the multirevolution idea for constructing integrators for stochastic differential equations in the situation where the fast oscillations themselves are driven by a Stratonovich noise. Applications include in particular highly-oscillatory Kubo oscillators and spatial discretizations of the nonlinear Schrödinger equation with fast white noise dispersion. We construct a method of weak order two with computational cost and accuracy both independent of the stiffness of the oscillations. A geometric modification that conserves exactly quadratic invariants is also presented.

Introduction

This article aims at developing invariant-preserving integrators of second weak order that are robust with respect to the stiffness ε both in accuracy and cost for the following class of highly-oscillatory d-dimensional SDEs driven by a one-dimensional Stratonovich noise dXptq 1c ε AXptq ¥ dW ptq F pXptqqdt, t ¡ 0, Xp0q X 0 , (

where W is a standard one-dimensional Wiener process, the function F : R d Ñ R d is a smooth non-linear map, the stiff parameter ε ¡ 0 is fixed and assumed small, and A R d¢d is a given matrix satisfying e A Id (equivalently A is diagonalizable and has all its eigenvalues in 2iπZ). In the deterministic setting, this last property yields that the solution xptq exppεAtqx 0 of dx dt ε ¡1 Ax is ε-periodic. For stochastic oscillations, it means that the solution Xptq exppε ¡1{2 AW ptqqX 0 of dX ε ¡1{2 AX ¥ dW satisfies XpT q Xp0q for a random time T inftt ¡ 0, § § ε ¡1{2 W ptq § § 1u of mean ε. The class of SDEs (1.1) includes in particular highly-oscillatory Kubo oscillators (see [START_REF] Cohen | On the numerical discretisation of stochastic oscillators[END_REF])

dX 2π c ε ¢ 0 ¡1 1 0 X ¥ dW ¢ 0 ¡a a 0 Xdt, a R, (1.2) 
or equivalently, dY 2iπε ¡1{2 Y ¥dW iaY dt in the complex setting where Y X 1 iX 2 .

Applying standard SDE integrators to solve equation (1.1) requires in general a time stepsize h ¤ ε to be accurate, which makes these methods dramatically expensive when ε is small. The goal of this paper is to create robust numerical methods, i.e., numerical integrators whose cost and accuracy do not deteriorate when ε becomes small. Several classes of methods have already been developed for highly-oscillatory SDEs with a deterministic fast oscillation (see for instance [START_REF] Cohen | Convergence analysis of trigonometric methods for stiff secondorder stochastic differential equations[END_REF][START_REF] Vilmart | Weak second order multirevolution composition methods for highly oscillatory stochastic differential equations with additive or multiplicative noise[END_REF]), but not in the case where the stiff oscillatory part is applied to the noise itself. To numerically face this challenge, we introduce in this paper a new methodology to develop robust methods of any high weak order to approximate the solution of equation (1.1). In particular, we propose a method of weak order two, and a geometric modification of this algorithm that preserves quadratic invariants. Stochastic oscillations as defined in (1.1) typically arise in fiber optics models (see [START_REF]Nonlinear Fiber Optics[END_REF][START_REF]Applications of Nonlinear Fiber Optics[END_REF][START_REF] Garnier | Stabilization of dispersion-managed solitons in random optical fibers by strong dispersion management[END_REF]) with a spatial discretization of the highly-oscillatory nonlinear Schrödinger equation (NLS) with white noise dispersion duptq i c ε ∆uptq ¥ dW ptq F puptqqdt, upt 0q u 0 .

(1.3)

As described for instance in [START_REF] Garnier | Stabilization of dispersion-managed solitons in random optical fibers by strong dispersion management[END_REF], in the case ε 1, the NLS equation (1.3) with a cubic nonlinearity F puq |u| 2 u is a model in dimension d 1 describing the propagation of a signal in optical fibers where x corresponds to the retarded time, while t corresponds to the distance along the fiber. Taking into account the inevitable chromatic dispersion effects of the signal, modeled by a random centered stationary process m with a coefficient ν ¡ 0, yields the following random PDE, fv fx px, tq νimpxq f 2 v ft 2 px, tq ν 2 F pvpx, tqq, vpx 0, tq u 0 ptq. The perfect fiber would satisfy m 0, but in practice, engineers build fibers with a small varying dispersion coefficient. To limit the pulse broadening induced by random dispersion, specialists use a wide range of dispersion management techniques (see for instance [START_REF] Garnier | Stabilization of dispersion-managed solitons in random optical fibers by strong dispersion management[END_REF] and references therein). In [START_REF] Marty | On a splitting scheme for the nonlinear Schrödinger equation in a random medium[END_REF][START_REF] De Bouard | The nonlinear Schrödinger equation with white noise dispersion[END_REF], the authors show that if we denote u ν px, tq vpx{ν 2 , tq, then as ν tends to 0 and under some ergodicity assumptions on m, u ν converges to the solution u of equation (1.3) with ε 1. The non-stiff counterpart of equation (1.3), i.e., for ε 1, has also been studied theorically in [START_REF] Debussche | 1D quintic nonlinear Schrödinger equation with white noise dispersion[END_REF] for a particular nonlinearity. The highly-oscillatory behavior (ε 3 1) appears naturally when observing the propagation in long time with a small nonlinearity (via the change of variable t Ð εt) or the propagation of a small initial data in an optical fiber with a polynomial nonlinearity (via the change of variable u Ð u{ε).

A goal of this article is to develop efficient and cheap numerical methods that can model the propagation of pulses in this context, in order to observe some specific behaviors and, ultimately, to build enhanced fibers. Models of the form (1.3) also appear in the recent work [START_REF] Faou | Linearized wave turbulence convergence results for three-wave systems[END_REF] in the context of stochastic three-wave semi-linear systems. We emphasize that there is a growing interest in the recent litterature for stochastic models involving a fast Stratonovitch noise in the context of ergodic stochastic dynamics. In [START_REF] Abdulle | Accelerated convergence to equilibrium and reduced asymptotic variance for Langevin dynamics using Stratonovich perturbations[END_REF], it is shown for a class of overdamped Langevin equations that adding an appropriate fast Stratnovitch noise permits to increase the convergence rate to equilibrium, while reducing the asymptotic variance at infinity. This suggests that new efficient samplers for the invariant distribution of Langevin type models in context of large dimensional molecular dynamics models could be developed. We also mention the recent homogenization results on stochastic dynamics with fast Stratonovitch noises in [START_REF] Li | Homogenisation on homogeneous spaces[END_REF] where our periodicity assumption is replaced by an ergodicity assumption on the fast component of the dynamics posed on manifolds.

Numerous possibilities exist for numerically integrating equations (1.1) or (1.3). We highlight in particular the exponential integrators [START_REF] Cohen | On the numerical discretisation of stochastic oscillators[END_REF][START_REF] Erdoğan | A new class of exponential integrators for sdes with multiplicative noise[END_REF] for the SDE (1.1), and the exponential integrators [START_REF] Cohen | Exponential integrators for nonlinear Schrödinger equations with white noise dispersion[END_REF], the Fourier split-step method [START_REF] Marty | On a splitting scheme for the nonlinear Schrödinger equation in a random medium[END_REF] or the Crank-Nicholson scheme [START_REF] Belaouar | Numerical analysis of the nonlinear Schrödinger equation with white noise dispersion[END_REF] for the SPDE (1.3). These methods have the advantage that they preserve the L 2 invariant of the equation (that is, }uptq} L 2 }u 0 } L 2 for all t ¥ 0) for a class of polynomial nonlinearities. However, they face a severe timestep restriction h ¤ ε when the stiff parameter ε is small. Even in the case of deterministic oscillations, there are restrictions in general, though some robust algorithms exist (see [START_REF] Cohen | Convergence analysis of trigonometric methods for stiff secondorder stochastic differential equations[END_REF] for instance). The methods presented in this paper solve this issue of stepsize restriction. The idea is to approximate the solution of equation (1.1) at random times called revolution times because they correspond to complete revolutions of the oscillatory part dX ε ¡1{2 AX ¥ dW . This is in the spirit of [START_REF] Hofmann | Optimal approximation of stochastic differential equations by adaptive step-size control[END_REF] which also approximates the solution of SDEs at random times.

The article is organized as follows. Section 2 is devoted to the presentation of the new integrators. In section 3, we build an asymptotic expansion of the solution of (1.1) and evaluate it at revolution times to derive the new integrators and a limit model for equation (1.1). Section 4 is devoted to the weak convergence theorems and their proofs. In section 5, we present numerical experiments to confirm our theoretical error estimates, and we apply the new methods to solve numerically the Schrödinger equation (1.3).

Multirevolution integrators for stochastic oscillators

Initially created in [START_REF] Melendo | A new approach to the construction of multirevolution methods and their implementation[END_REF][START_REF] Calvo | Approximate compositions of a near identity map by multi-revolution Runge-Kutta methods[END_REF] in the context of celestial mechanics and later extended using geometric integration (see for instance [START_REF] Murua | Order conditions for numerical integrators obtained by composing simpler integrators[END_REF][START_REF] Calvo | On explicit multi-revolution Runge-Kutta schemes[END_REF][START_REF] Chartier | Multi-revolution composition methods for highly oscillatory differential equations[END_REF]), multirevolution methods represent a class of numerical methods used for solving highly-oscillatory differential equations while reducing the cost of computation. In particular, they can approximate the solution of highly-oscillatory ODEs of the following form at stroboscopic times εN T , where T 1 is the period of dx dt Ax, and N is an integer,

dx dt 1 ε Ax F pxq, xp0q x 0 .
(2.1) The solution x of this equation at times εN T is a perturbation of identity, that is, x satifies xpεtq x 0 Opεtq, thus the solution loses its highly-oscillatory feature when evaluated at stroboscopic times, as shown in Figure 1 for the first component of the solution of equation (2.1) with F pxq ix (respectively F pyq ¢ 0 ¡1 1 0 y in the real setting). The idea of multirevolution is to approximate xpεN q with N Opε ¡1 q with a cost independent of ε.

For stochastic oscillations, the solution Xptq e ε ¡1{2 AW ptq X 0 of dX ε ¡1{2 AX ¥ dW is not periodic, but satisfies XpεT N q X 0 where the T N are random variables called revolution times and defined by

T 0 0, (2.2) T N 1 inf 3 t ¡ T N , ε ¡1{2 |Wpεtq ¡ W pεT N q| ¥ 1 A , N 0, 1, 2, . . .
If X is the solution of (1.1), we show in section 3.1 that X evaluated at times εT N is a perturbation of identity (in a strong and weak sense). Figure 2 illustrates the definition of revolution times and shows the perturbation of identity property on the first component of a Kubo oscillator (1.2) with a 1. We highlight that the revolutions times T N can be simulated without simulating the exact path W . Also we emphasize that the proposed algorithms do not require to simulate W thanks to the use of appropriate discrete random variables. This will be detailed in section 3.4.

We show in section 3.3 that the solution X of (1.1) evaluated at times εT tε ¡1 (when t{ε N is an integer) converges weakly when ε Ñ 0 to the solution y t of the deterministic ODE dy t dt xg 0 ypy t q, y 0 X 0 , where g 0 θ pyq e ¡Aθ F pe Aθ yq and xg 0 y : ³ 1 0 g 0 θ dθ. This ODE is exactly the same one as the asymptotic model for deterministic oscillators of the form (2.1). This asymptotic model naturally yields a weak order 1 deterministic integrator. We propose the two following new multirevolution methods of second weak order for integrating equation ( 

1 2 1 3N if p k 0 1 2π 2 k 2 N if p 0, k $ 0 ¡1 2π 2 p 2 N if p $ 0, k 0 1 2π 2 p 2 N if p k 0, p, k $ 0 0 else Erp α N p p α N k s 6 9 8 
9 7

1 2 3N if p k 0 1 π 2 p 2 N if p k 0, p, k $ 0 0 else p r β N p,k 6 9 8 9 7 1 2π 2 k 2 N if p 0, k $ 0 ¡1 2π 2 p 2 N if p $ 0, k 0 0 else
The definition and construction of these random variables are further discussed in sections 3.2 and 3.4.

Method A (Explicit integrator of weak order two in H N ε to approximate the solution of equation (1.1) at times εT N m for m 0, 1, 2, . . .)

Y 0 X 0 for m ¥ 0 do Y m 1 Y m H Kt{2¡1 ķ¡Kt{2 c 0 k pY m qp α N k H 2 Kt{2¡1 p,k¡Kt{2 c 1 p pY m qpc 0 k pY m qq p β N p,k (2.4)

end for

Method B (Geometric integrator of weak order two in H N ε to approximate the solution of equation (1.1) at times εT N m for m 0, 1, 2, . . . while preserving quadratic invariants) 

Y 0 X 0 for m ¥ 0 do Y m 1 Y m H Kt{2¡1 ķ¡Kt{2 c 0 k ¢ Y m Y m 1 2 p α N k (2.5) H 2 Kt{2¡1 p,k¡Kt{2 c 1 p ¢ Y m Y m 1 2 ¢ c 0 k ¢ Y m Y m 1 2 p r β N p,

Analysis and asymptotic expansion of the exact solution

In this section, we first obtain a local expansion of the solution of (1.1) and then evaluate it at particular random times to deal with the highly-oscillatory patterns of the exact solution.

Finally we derive from this expansion an asymptotic limit for equation (1.1) when ε Ñ 0.

Asymptotic expansion of the exact solution

Instead of studying directly equation (1.1), we apply the change of variable t Ð ε ¡1 t to obtain the following equation, whose solution satisfies Y ptq Xpεtq with X solution of (1.1),

dY ptq AY ptq ¥ d W ptq εF pY ptqqdt, Y p0q X 0 , ( 3.1) 
where we denote for simplicity the Brownian motion W ptq ε ¡1{2 W pεtq again by W . We introduce the following assumption which guarantees in particular global existence and uniqueness of the solution.

Assumption 3.1. The function F is globally Lipschitz continuous and lies in C 3 P , i.e., there exists constants L, C, K ¡ 0 such that for all y, y 1 ,

y 2 R d |Fpy 1 q ¡ F py 2 q| ¤ L |y 1 ¡ y 2 | § § §F piq pyq § § § ¤ Cp1 |y| K q, i t0, 1, 2, 3u. (3.2)
Also the initial condition X 0 has bounded moments, that is, Er|X 0 | p s V for p ¥ 0.

Therefore we denote ϕ ε,t pX 0 q Y ptq the solution of equation (3.1) and focus in the rest of the paper on the approximation of ϕ ε,t pyq at times t Opε ¡1 q. The variation of constants formula yields ϕ ε,t pyq e AW ptq y ε » t 0 e ApW ptq¡Wpsqq F pϕ ε,s pyqqds.

(3.3)
We deduce the following regularity properties. Lemma 3.2. Under Assumption 3.1, the following estimates hold for all y, y 1 , y 2 R d , where C and K are independent of ε and t,

1. |ϕ ε,t py 1 q ¡ ϕ ε,t py 2 q| ¤ C |y 1 ¡ y 2 | e Cεt , 2. |ϕ ε,t pyq| ¤ Cp1 |y|qe Cεt , 3. ϕ ε,t pyq is C 3 in y and § § §ϕ piq ε,t pyq § § § ¤ Cpεtq i¡1 p1 |y| K qe Cεt for i 1, 2, 3.
The proof is postponed to the appendix. It mainly relies on the Gronwall theorem and the boundedness of the one-periodic function θ Þ Ñ e θA . Using a local expansion of the solution of (3.1) in ε, we define the following first and second order approximations of 

ϕ ε,t pyq, ψ 1 ε,
§ § §ϕ ε,t pyq ¡ ψ j ε,t pyq § § § ¤ Cp1 |y| K qe Cεt pεtq j 1 .
The functions ψ j ε,t satisfy the following straightforward inequalities proved with similar arguments as for Lemma 3.2.

Lemma 3.4. With the assumptions and notations of Proposition 3.3, the following esti-

mates hold for all y R d , where C and K are independent of ε and t

, § § ψ 1 ε,t pyq § § ¤ Cp1 |y|qe Cεt , (3.5) § § ψ 2 ε,t pyq § § ¤ Cp1 |y| K qe Cεt , (3.6) § § §ψ 2 ε,t pyq ¡ e AW ptq y § § § ¤ Cp1 |y| K qpεtqe Cεt . (3.7) Proof of Proposition 3.3. Using Assumption 3.1, we get § § ϕ ε,t pyq ¡ ψ 1 ε,t pyq § § ¤ Lε » t 0 § § §ϕ ε,s pyq ¡ e AW psq y § § § ds. Then Lemma 3.2 yields § § §ϕ ε,s pyq ¡ e AW psq y § § § ¤ Cε » s 0 |Fpϕ ε,r pyqq| dr ¤ Cε » s 0 p1 |ϕ ε,r pyq|qdr ¤ Cε » s 0 p1 Cp1 |y|qe Cεr qdr ¤ Cp1 |y|qe Cεs pεsq. We deduce § § ϕ ε,t pyq ¡ ψ 1 ε,t pyq § § ¤ Cp1 |y|qe Cεt pεtq 2 . For j 2, we first denote r ψ 2 ε,t pyq e AW ptq y εe AW ptq » t 0 e ¡AWpsq F pψ 1
ε,s pyqqds. With the same arguments we used for j 1 and inequality (3.5), we have § § §ϕ ε,t pyq ¡ r

ψ 2 ε,t pyq § § § ¤ Cp1 |y| K qe Cεt pεtq 3 . It is sufficient to prove that § § ψ 2 ε,t pyq ¡ r ψ 2 ε,t pyq § § ¤ Cp1 |y| K qe Cεt pεtq 3 . A Taylor expansion of F pψ 1 ε,s pyqq in ε gives F pψ 1 ε,s pyqq F pe AW psq yq εF I pe AW psq yq ¢ e AW psq » s 0 e ¡AWprq F pe AW prq yqdr R ε,s . The remainder R ε,s satisfies |R ε,s | ¤ Cε 2 sup xre AW psq y,ψ 1 ε,s pyqs F P pxq § § § § e AW psq » s 0 e ¡AWprq F pe AW prq yqdr § § § § 2 .
Then, using the polynomial growth of F P and inequality (3.5), we get

|R ε,s | ¤ Cp1 § § §e AW psq y § § § K § § ψ 1 ε,s pyq § § K qpεsq 2 e Cεs ¤ Cp1 |y| K qpεsq 2 e Cεs .
Hence the result. ¥

We shall prove in section 3.3 that the function ψ 2 ε,t in (3.4) evaluated at the revolution times T N (defined in (2.2)) yields a strong order 2 approximation in H εN . 

W τ ¢ 1 ¡ t τ i W i ¢ t τ ¡ i W i 1 for iτ ¤ t ¤ pi 1qτ, (3.8) 
where W 0 0 and W i 1 W i c τ ξ i with pξ i q i a family of independent standard Gaussian random variables, then it can be shown that we obtain an integrator of strong order two in εt. However, the cost of a standard method computing an approximation of the integrals of equation (3.4) by replacing W with W τ is in Opt 2 {τ 2 q, which makes this method tremendously expensive for t Opε ¡1 q. This is why we develop in section 3.4 weak integrators based on a weak approximation of equation (3.4) with a cost independent of t. We shall replace stochastic integrals by appropriate discrete random variables in order not to simulate any expensive Brownian path W . 

Properties of the revolution times

In this section, we study some properties linked to the revolution times T N that will be useful for the analysis. Proposition 3.6. The revolution times T N defined in (2.2) are positive and finite almost surely. Their differences pT N 1 ¡ T N q N ¥0 are independent identically distributed random variables (same law as T 1 ). The Laplace transform Ere zT 1 s of T 1 exists and is analytic for (3.9)

In particular, ErT 1 s 1, ErT 2 1 s 5 3 , and VarpT 1 q 2 3 . Finally, for a fixed ε 0 $ 0, π 2
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, for all ε s0, ε 0 s and p ¥ 0, we have the estimate

Ere εT N pεT N q p s ¤ Ce CεN pεNq p . (3.10)
The law of the first revolution time T 1 has an analytic density, but there is no closed formula for it. It can be numerically approximated accurately by inverting the Laplace transform. In Figure 3, we observe the convergence in law of T N to a Gaussian variable according to the central limit theorem.

Proof of Proposition 3.6. The first properties can be deduced from [24, Chap. 

Ere εT N pεT N q p s ¤ Ere 2εT N s 1{2 ErpεT N q 2p s 1{2 Ere 2εT 1 s N {2 ε p ErT 2p N s 1{2 ¤ Ere 2ε 0 T 1 s εN {2ε 0 pεNq p ErT 2p 1 s 1{2 ¤ Ce CεN pεNq p ,
where we used first the Cauchy-Schwarz inequality and then twice the Jensen inequality. ¥

For developing an algorithm for the weak error, it is useful to know the moments of the random variables appearing in the discretization, that are costly to simulate numerically, in order to replace them with cheap discrete approximations with the same first and second moments. This is the goal of the following proposition.

Proposition 3.7. The random variables

α N k 1 N ³ T N 0 e 2iπkW psq ds, β N p,k 1 N 2 ³ T N 0 e 2iπpW psq ³ s 0 e 2iπkW prq drds, r β N p,k 1 N 2 ³ T N 0 e 2iπpW psq ¡ ³ s 0 e 2iπkW prq ¡ 1 2 ³ T N 0 e 2iπkW prq dr © ds β N p,k ¡ α N p α N k 2 satisfy Erα N k s δ k 4 1 if k 0 0 else
Erβ N p,k s 6 9 9 9 9 9 9 8 9 9 9 9 9 9 7

1 2 1 3N if p k 0 1 2π 2 k 2 N if p 0, k $ 0 ¡1 2π 2 p 2 N if p $ 0, k 0 1 2π 2 p 2 N if p k 0, p, k $ 0 0 else Erα N p α N k s 6 9 8
9 7 ³ T N 0 e 2iπkW psq ³ T N s e 2iπpW prq drds, so that we get if p $ 0,

1 2 3N if p k 0 1 π 2 p 2 N if p k 0, p, k $ 0 0 else Er r β N p,k s 6 9 8 9 7 1 2π 2 k 2 N if p 0, k $ 0 ¡1 2π 2 p 2 N if p $ 0, k 0 0 else Proof. Let k $ 0 (
Erβ N p,k s δ p k ¡ δ k 2π 2 p 2 N .
The case p 0 is obtained by integrating by parts and using the same arguments. Indeed, we find

β N 0,k T N N α N k ¡ β N k,0 i πkN 2 » T N 0 T N e 2iπkW psq dW psq ¡ β N k,0 ,
and Erβ N 0,k s ¡Erβ N k,0 s. Finally, the moments Erα N p α N k s are computed via the equality

β N p,k β N k,p α N p α N k .
Then we obtain Er r

β N p,k s from the formula r β N p,k β N p,k ¡ α N p α N k 2
. ¥ Remark 3.8 (stochastic Fourier series). Let f be a L 2 function on s0, 1r extended on R by 1-periodicity, whose Fourier coefficients are denoted as pc k q kZ . Then we deduce from Proposition 3.7 the following equalities, where the second one is the stochastic version of the Bessel-Parseval theorem,

E » T 1 0 f pWpsqqds & c 0 » 1 0 f pθqdθ, E » T 1 0 |fpWpsqq| 2 ds & ķZ |c k | 2 , E § § § § » T 1 0 f pWpsqqds § § § § 2 ' 5 |c 0 | 2 3 ķ Z ¦ |c k | 2 π 2 k 2 .

Asymptotic expansion at revolution times and limit model

With the results of subsection 3. Notice that c 0 k pyq C d and c 1 p pyq pc 0 k q I pyq C d¢d but ψ ε,t pyq R d . We now evaluate this function ψ ε,t pyq at time t T N to get a second order strong approximation. Proposition 3.9. We define the following quantity

ψ ε,N pyq y H ķZ c 0 k pyqα N k H 2 p ,kZ c 1 p pyqpc 0 k pyqqβ N p,k ,
where pc 0 k pyqq kZ and pc 

|ϕ ε,T N pyq ¡ ψ ε,N pyq| 2 % 1{2 ¤ Cp1 |y| K qH 3 , (3.12) |Erφpϕ ε,T N pyqqs ¡ Erφpψ ε,N pyqqs| ¤ Cp1 |y| K qH 3 , (3.13)
that is, ψ ε,N pyq is a numerical approximation of ϕ ε,T N pyq of strong/weak local order two.

Proof. Inequality (3.12) is a straightforward consequence of Proposition 3.6 when evaluating the estimates of Proposition 3.3 at time T N . For the weak local estimate (3.13), using inequality (3.12), the mean value inequality, Lemma 3.2 and equations (3.5) and (3.6), we get

E § § §φpϕ ε,T N pyqq ¡ φpψ j ε,T N pyqq § § § % ¤ E ! sup xrϕ ε,T N pyq,ψ j ε,T N pyqs § § φ I pxq § § § § §ϕ ε,T N pyq ¡ ψ j ε,T N pyq § § § ( ) ¤ Cp1 |y| K qE ! e CεT N pεT N q j 1 sup xrϕ ε,T N pyq,ψ j ε,T N pyqs p1 |x| p q ( ) ¤ Cp1 |y| K qE pεT N q j 1 e CεT N ¡ 1 |ϕ ε,T N pyq| p § § §ψ j ε,T N pyq § § § p ©% ¤ Cp1 |y| K qE pεT N q j 1 e CεT N $
.

Finally we obtain inequality (3.13) by taking H small enough so that we can apply Proposition 3.6. ¥

For a fixed T N ε, when ε Ñ 0 (or equivalently N Ñ V), the solution of (3.1) evaluated at stroboscopic times T N T T ε ¡1 converges weakly to the solution of a deterministic ODE that involves only the first mode c 0 0 xg 0 y ³ 1 0 g 0 θ dθ of g 0 . This asymptotic model is the same one as for the deterministic equation (2.1). The proof is postponed to subsection 4.3. Proposition 3.10 (asymptotic model). Under Assumption 3.1, for T ¡ 0, the solution ϕ ε,T T ε ¡1 pX 0 q (for ε such that T ε ¡1 is an integer) of equation (1.1) converges weakly when ε Ñ 0 to the solution at time T of dy t dt xg 0 ypy t q, y 0 X 0 , (3.14) that is, for all test function φ C 3 P , lim εÑ0 § § Erφpϕ ε,T T ε ¡1 pX 0 qqs ¡ Erφpy T qs § § 0.

Remark 3.11. It can be proven using the results of section 4 that the solution of the asymptotic model (Proposition 3.10) is an order one weak approximation of

XpεT N m q for m ¥ 0 and X solution of equation (1.1). We deduce the following simple one-step explicit deterministic integrator that corresponds to the Euler method applied to equation (3.14), y 0 X 0 , y m 1 y m Hc 0 0 py m q.

(3.15)

Its cost is independent of ε and N , and it has weak order one w.r.t. H, that is, for all m ¥ 0, Erφpϕ ε,T N m pX 0 qqs ¡ Erφpy m qs OpHq.

Construction of the second order integrators

To obtain an integrator of weak order two with a cost independent of ε and N , we truncate the local expansion of Proposition 3.9. We also replace the involved random variables with cheap discrete random variables with the same first and second moments. To simulate the random variable α N k with discrete random variables p α N k with the same first and second moments, we introduce a set pξ k q kN of independent random variables such that Ppξ k ¨1q 1 2 , the covariance matrix pC N α q p,k such that pC N α q 2p¡1:2p,2k¡1:2k ¡k for k 0 (so that the solution stays real while still having the good moments). We also define p Remark 3.12. The methodology presented in section 3 can be generalized to any order. Thus, under more regularity assumptions on F , it is possible to build algorithms similar to Method A of any weak order and that are still robust with respect to the stiffness ε. For order 3, Method A becomes l,p,k . It is also possible to generalize Method B up to any order in the spirit of the middle-point scheme, but the construction of discrete random variables allowing the preservation of quadratic invariants is not obvious for higher orders (although backward error analysis guarantees the preservation of quadratic invariants for the exact random variables based on W ).

£ CovpRepα N p q, Repα N k qq CovpRepα N p q, Impα N k qq CovpImpα N p q, Repα N k qq CovpImpα N p q, Impα N k qq
Y m 1 Y m H ķZ c 0 k pY m qp α N k H 2 p ,kZ c 1 p pY m qpc 0 k pY m qq p β N p,k H 3 ļ,p,kZ c 1 l pc 1 p pc 0 k qqpY m qp γ p1q,N l,p,k

Weak convergence analysis

This section focuses on the proofs of the following two theorems, showing the order two convergence of Methods A and B. satisfies QpY m 1 q QpY m q.

These two theorems focus on approximating the exact solution of equation ( 1 Using the truncation estimates that we previously discussed and the Lipschitz property of g 0 θ , one gets § § § r

ϕ ε,t ¡ r ϕ pKtq ε,t § § § pyq ¤ ε » t 0 § § §g 0 W psq pr ϕ ε,s pyqq ¡ g 0 W psq pr ϕ pKtq ε,s pyqq § § § ds Cεte ¡cKt sup r0,1s § § g 0 pyq § § ¤ Cε » t 0 § § § r ϕ ε,s pyq ¡ r ϕ pKtq ε,s pyq § § § ds Cεtp1 |y|qe ¡cKt .
The Gronwall lemma and Proposition 3.6 yield for mN ε ¤ T ,

E § § § r ϕ ε,T N m pyq ¡ r ϕ pKtq ε,T N m pyq § § § 2 & 1{2 ¤ Cp1 |y|qe ¡cKt .
The structure of the convergence proof is similar to the one for standard SDE integrators, see e.g. [START_REF] Milstein | Stochastic numerics for mathematical physics[END_REF]Chap. 2], but one has to be cautious because our solution is evaluated at stochastic times and the error constants should not depend on ε or N . 

Boundedness of the numerical moments

p ψ ε,N pyq y H ķZ c 0 k pyqp α N k H 2 p ,kZ c 1 p pyqpc 0 k pyqq p β N p,k , (4.2)
where p

α N k , p β N
p,k are random variables defined such that for all q ¡ 0,

E ¢ °k |p α N k | 2 k 2 q & and E £ °p,k § § § p β N p,k § § § 2 k 2 q '
are bounded uniformly in N . Then, under Assumption 3.1 and if |y| has bounded moments, for any T ¡ 0, for all m, H such that mεN mH ¤ T , for all q ¡ 0, we have Er § § p ψ m ε,N pyq § § 2q s ¤ C q p1 Er|y| 2q sq, where C q is independent of m, ε and N .

Proof. We first prove § § § p

ψ ε,N pyq ¡ y § § § ¤ CHp1 |y|qM N , (4.3)
where ErpM N q 2q s ¤ C q for all q ¡ 0. We have § § § p

ψ ε,N pyq ¡ y § § § H § § § § § ķZ c 0 k pyqp α N k H p ,kZ c 1 p pyqpc 0 k pyqq p β N p,k § § § § § ¤ CH ¤ ¥ M p0q N d ķZ k 2 § § c 0 k pyq § § 2 M p1q N d pZ § § c 1 p pyq § § 2 d ķZ k 2 § § c 0 k pyq § § 2
where M p0q

N °k |p α N k | 2 k 2 and M plq N °p,k § § § p β N p,k § § § 2 k 2
have moments bounded uniformly in N . Then using the Bessel-Parseval theorem, we get °k

k 2 § § c 0 k pyq § § 2 ³ 1 0 § § f θ g θ pyq 0 § § 2 dθ. Assumption 3.1 yields § § f θ g 0 θ pyq § § ¤ Cp1 |y|q. Then, the Bessel-Parseval theorem applied on g 1 θ gives °p § § c 1 p pyq § § 2 ¤ C, hence the result. We define ∆ψ m p ψ m 1 ε,N pyq ¡ p ψ m ε,N pyq p p ψ ε,N ¡ Idqp p ψ m ε,N pyqq, then p p ψ m 1 ε,N pyqq 2q p p ψ m ε,N pyqq 2q 2q j1 ¢ 2l j p p ψ m ε,N pyqq 2q¡j ∆ψ j m .
Equation (4.3) and the bounded moments of

M N give § § §E p p ψ m ε,N pyqq 2q¡j ∆ψ j m % § § § ¤ E § § § p ψ m ε,N pyq § § § 2q¡j CH j p1 § § § p ψ m ε,N pyq § § § j qM j N & ¤ C q H ¢ 1 E § § § p ψ m ε,N pyq § § § 2q & . We deduce 1 E § § § p ψ m 1 ε,N pyq § § § 2q & ¤ e CqH ¢ 1 E § § § p ψ m ε,N pyq § § § 2q & and by induction E § § § p ψ m ε,N pyq § § § 2q &
¤ e CqmH p1 Er|y| 2q sq ¤ e CqT p1 Er|y| 2q sq.

¥ Proposition 4.5 (bounded moments for the integrator (2.5)). Assume that for y R d , the numerical scheme p

ψ ε,N pyq satisfies p ψ ε,N pyq y H ķZ c 0 k £ y p ψ ε,N pyq 2 p α N k (4.4) H 2 p ,kZ c 1 p £ y p ψ ε,N pyq 2 £ c 0 k £ y p ψ ε,N pyq 2 p r β N p,k , where p α N k , p r β N
p,k are random variables defined such that for all q ¡ 0,

°k § § p α N k § § , °p,k § § § § p r β N p,k § § § § , E ¢ °k |p α N k | 2 k 2 q & and E ¢ °p,k § § § § p r β N p,k § § § § 2 k 2 q &
are bounded uniformly in N . Then, under Assumption 3.1 and if |y| has bounded moments, for H 0 small enough and any T ¡ 0, for all m, H such that mεN mH ¤ T and H ¤ H 0 , for all q ¡ 0, we have Er § § § p

ψ m ε,N pyq § § § 2q s ¤
C q p1 Er|y| 2q sq, where C q is independent of m, ε and N .

Proof. We prove an equivalent of the estimate (4.3) for p ψ ε,N pyq. The growth properties of the Fourier coefficients yield § § § p

ψ ε,N pyq ¡ y § § § ¤ CH £ ķ § § c 0 k § § pyq § § p α N k § § p,k § § c 0 k § § pyq § § § § p r β N p,k § § § § CH £ ķ § § p α N k § § p,k § § § § p r β N p,k § § § § § § § p ψ ε,N pyq ¡ y § § § , As °k § § p α N k § § °p,k § § § § p r β N p,k § § §
§ is bounded, using the same estimates as in the proof of Proposition 4.4, we get for all H ¤ H 0 small enough, § § § p

ψ ε,N pyq ¡ y § § § ¤ CHp1 |y|qM N , (4.5) 
where M N has bounded moments. The remaining of the proof is the same as in the proof of Proposition 4.4. ¥

Local weak error

Proposition 4.6 (local error estimate). Assume that for y R d deterministic, the numerical scheme can be written as

p ψ ε,N pyq y H ķZ c 0 k pyqp α N k H 2 p ,kZ c 1 p pyqpc 0 k pyqq p β N p,k R,
where Er|R|s ¤ Cp1 |y| K qH 3 and p

α N k C, p β N p,k R are random variables such that p α N k p α N ¡k and Erp α N k s Erα N k s, Er p β N p,k s Erβ N p,k s, Erp α N k 1 p α N k 2 s Erα N k 1 α N k 2 s.
Under Assumption 3.1, if p ψ ε,N pyq satisfies the assumptions of Proposition 4.4 (or Proposition 4.5), for all test function φ C 3 P , there exists H 0 ¡ 0 such that for all H N ε ¤ H 0 , the following estimate holds, where C and K are independent of ε and

N , § § §Erφpϕ ε,T N pyqqs ¡ Erφp p ψ ε,N pyqqs § § § ¤ Cp1 |y| K qH 3 ,
that is, the numerical scheme has weak local order two.

Proof. Using Proposition 3.9 and its notation

ψ ε,N pyq, it is enough to prove that § § §Erφpψ ε,N pyqqs ¡ Erφp p ψ ε,N pyqqs § § § ¤ Cp1 |y| K qH 3 .
A local expansion gives

φpψ ε,N pyqq φpyq φ I pyqpψ ε,N pyq ¡ yq φ P pyqpψ ε,N pyq ¡ y, ψ ε,N pyq ¡ yq R 1 . As ψ ε,N pyq ψ 2 ε,T N pyq (see equation (3. 4 
)), using inequalities (3.6), (3.7) evaluated at T N and Proposition 3.6 yields

Er|R 1 |s ¤ E sup xry,ψ ε,N pyqs § § §φ p3q pxq § § § |ψ ε,N pyq ¡ y| 3 ' ¤ E Cp1 |y| K |ψ ε,N pyq| K qp1 |y| K qpεT N q 3 e CεT N % ¤ E Cp1 |y| K qpεT N q 3 e CεT N % ¤ Cp1 |y| K qH 3 .
We obtain a similar expansion for φp p ψ ε,N pyqq:

φp p ψ ε,N pyqq φpyq φ I pyqp p ψ ε,N pyq ¡ yq φ P pyqp p ψ ε,N pyq ¡ y, p ψ ε,N pyq ¡ yq x R 1 ,
where, using inequality (4.3) (or (4.5)),

Er| x R 1 |s ¤ E sup xry, p ψ ε,N pyqs § § §φ p3q pxq § § § § § § p ψ ε,N pyq ¡ y § § § 3 ' ¤ CE p1 |y| K § § § p ψ ε,N pyq § § § K qp1 |y| K qH 3 M 3 N & ¤ Cp1 |y| K qH 3 E p1 M K N q $ ¤ Cp1 |y| K qH 3 .
Making the difference of both equations gives

φpψ ε,N pyqq ¡ φp p ψ ε,N pyqq φ I pyqpψ ε,N pyq ¡ p ψ ε,N pyqq ¡ φ P pyqpψ ε,N pyq ¡ yq 2 (4.6)
φ P pyqp p ψ ε,N pyq ¡ yq 2 R, where Er|R|s ¤ Cp1 |y| K qH 3 . For the first term of (4.6), we have

Erφ I pyqpψ ε,N pyq ¡ p ψ ε,N pyqqs H ķZ Erφ I pyqpc 0 k pyqpα N k ¡ p α N k qqs H 2 p ,kZ Erφ I pyqpc 1 p pyqpc 0 k pyqqpβ N p,k ¡ p β N p,k qqs.
Then, we get

Erφ I pyqpc 0 k pyqpα N k ¡ p α N k qqs Erα N k ¡ p α N k sφ I pyqpc 0 k pyqq 0.
We can do the same thing with the term in β N p,k and obtain Erφ I pyqpψ ε,N pyq ¡ p ψ ε,N pyqqs 0. Let us now study the second order term Z φ P pyqp p ψ ε,N pyq¡yq 2 ¡φ P pyqpψ ε,N pyq¡yq 2 that appears in (4.6). We develop this expression and keep only the order one and two terms to obtain Z H 2 Y R where Er|R|s ¤ Cp1 |y| K qH 3 (by the same arguments as before)

and

Y ķ 1 ,k 2 φ P pyqpc 0 k 1 pyqp α N k 1 , c 0 k 2 pyqp α N k 2 q ¡ φ P pyqpc 0 k 1 pyqα N k 1 , c 0 k 2 pyqα N k 2 q $ ķ 1 ,k 2 pp α N k 1 p α N k 2 ¡ α N k 1 α N k 2 qφ P pyqpc 0 k 1 pyq, c 0 k 2 pyqq
The condition on the moments of the p α N k yields ErY s 0.

Putting all these arguments together in (4.6), we finally get that § § §Erφpψ ε,N pyqqs ¡ Erφp p ψ ε,N pyqqs § § § ¤ Cp1 |y| K qH 3 .

We deduce the local order two of the proposed numerical scheme. ¥

Remark.

The constant H 0 in Proposition 4.6 depends on F , but also on the polynomial growth power of φ and its first three derivatives. This dependence is expected when trying to evaluate the solution of SDEs at random times. To make H 0 independent of the test functions, one can consider the following sets of test functions 

C 3 P,K tφ C 3 , hC ¡ 0, hk ¤ K, dy, § § §φ piq pyq § § § ¤ Cp1 |y| k q, i t0, 1, 2, 3uu.

Global error

¡ 0, E ¢ °k |p α N k | 2 k 2 q & and E £ °p,k § § § p β N p,k § § § 2 k 2 q ' are bounded uniformly in N (respectively °k § § p α N k § § , °p,k § § § § p r β N p,k § § § § , E ¢ °k |p α N k | 2 k 2 q & and E ¢ °p,k § § § § p r β N p,k § § § § 2 k 2 q &
are bounded uniformly in N ), for all T ¡ 0, for all test function φ C 3 P , there exists H 0 ¡ 0 such that for all H ¤ H 0 , for all M ¥ 0 such that M N ε M H ¤ T , there exist two positive constants K and C both independent of ε and N such that § § §Erφpϕ ε,T N M pX 0 qqs ¡ Erφp p

ψ M ε,N pX 0 qqs § § § ¤ CH 2 p1 Er|X 0 | K sq.
Proof. We denote 

¤ i ¤ 3, § § § r φ piq m pyq § § § ¤ Ce CεT N m p1 |y| K q.
Thus, knowing the hitting times involved, r 

| ¤ M m1 CE e CεT N m $ H 3 ¢ 1 E § § § p ψ M ¡m ε,N pX 0 q § § § K & .
Finally, the moments of p ψ m ε,N pX 0 q are all bounded uniformly in ε, N and m according to Proposition 4.4 (respectively 4.5). Thus The weak order two is obtained using Theorem 4.7. Indeed the use of discrete random variables and Proposition 3.7 gives the convergence of the involved series.

|e M | ¤ M m1 CH 3 p1 Er|X 0 | K sq ¤ CH 2 p1 Er|X 0 | K sq.
For showing that Method B preserves quadratic invariants, it is sufficient to prove that

Q I pyqp °k c 0 k pyqp α N k q 0 and Q I pyqp °p,k c 1 p pyqpc 0 k pyqq p r β N
p,k q 0 (see [START_REF] Hairer | Geometric numerical integration[END_REF]Chap. IV]). The preservation of Q by equation (1.1) yields Q I pyqpAyq 0 and Q I pyqpFpyqq 0. We deduce the following two equations, valid for all y R d ,

y T Sg 0 θ pyq 0, (4.7) y T Sg 1 θ pyqpg 0 ν pyqq ¡pg 0 ν pyqq T Sg 0 θ pyq, (4.8) 
where equation (4.8) is obtained by differentiating equation (4.7) in the direction g 0 ν . Using equation (4.7), we have

Q I pyq £ ķ c 0 k pyqp α N k » 1 0 Q I pyqpg 0 θ pyqq ķ e ¡2iπkθ p α N k dθ 0.
For the second order term, equation (4.8) and the values of Proposition 3.7 yield

Q I pyq £ p,k c 1 p pyqpc 0 k pyqq p r β N p,k » 1 0 » 1 0 y T Sg 1 θ pyqpg 0 ν pyqq p,k e ¡2iπpθ e ¡2iπkν p r β N p,k dνdθ ¡ » 1 0 » 1 0 pg 0 ν pyqq T Sg 0 θ pyq p,k e ¡2iπpθ e ¡2iπkν p r β N p,k dνdθ ¡ 1 2 » 1 0 » 1 0 pg 0 ν pyqq T Sg 0 θ pyq p,k
re ¡2iπpθ e ¡2iπkν e ¡2iπpν e ¡2iπkθ s p r

β N p,k dνdθ 0.
Hence Method B is well-posed, has weak order 2 and preserves the invariant Q. ¥

Numerical experiments

In this section, we first illustrate numerically the weak order two of Methods A and B with convergence curves. Then, we apply the new algorithms to solve the nonlinear Schrödinger equation with highly-oscillatory white noise dispersion (1.3).

Weak order of convergence

To confirm the results of Theorem 4.1 and Theorem 4.2, we check numerically if Methods A and B have weak order two of accuracy w.r.t. H uniformly in ε and N . As the Euler-Maruyama method and the algorithms presented in [START_REF] Cohen | On the numerical discretisation of stochastic oscillators[END_REF][START_REF] Belaouar | Numerical analysis of the nonlinear Schrödinger equation with white noise dispersion[END_REF][START_REF] Cohen | Exponential integrators for nonlinear Schrödinger equations with white noise dispersion[END_REF] are completely inaccurate if they do not satisfy the severe timestep restriction h 3 ε, we compare the performance of Methods A and B to the performance of the Euler method (3.15). We first apply the algorithms on equation (1.1) with the linearity F pyq iy, A 2iπ, X 0 1 and ε 10 ¡3 .

Equivalently we can write it in the real setting as

dX 2π c ε ¢ 0 ¡1 1 0 X ¥ dW ¢ 0 ¡1 1 0 Xdt, X 0 ¢ 1 0 .
We plot on a logarithmic scale an estimate of the weak error for approximating X at time T 10 ¡3 T 2 8 where ErT s 0.256. The exact solution XpT q is approximated by the output of Method B for H ε. The parameters N and m are varying under the condition that N m 2 8 . The test function is φpyq 2y 1 4y 2 and the average is taken over 10 7

trajectories. We choose the tolerance 10 ¡13 for the fixed point. On the right picture of We take 8 modes for the Fourier decomposition and the same other parameters as before.

The average is taken over 10 6 trajectories. In both cases, we observe the weak order two of Methods A and B. The irregularities of the curve for a small H come from Monte-Carlo errors. We repeated the same experiment on many other examples and we always observe the desired order two as long as H is small enough.

Numerical experiments on NLS equation with white noise dispersion

We now apply the algorithms to solve on the torus T r¡π, πs the following SPDE of the form (1.3), with a polynomial linearity and the stiffness parameter ε 10 ¡2 , where the unknown u is a random process depending on x T and t ¥ 0. We consider a spectral discretization in space of this equation with K x 2 7 modes upx, tq °|l|¤Kx Y l ptqe ilx .

We obtain an equation of the desired form (1.1) with a truncated nonlinearity and the block-diagonal matrix

A diagp¡2πl 2 ¢ 0 ¡1 1 0 , |l| ¤ K x q.
Beginning with the initial condition u 0 pxq expp¡3x 4 x 2 q on T that decreases fast enough, we apply Methods A and B in the two cases σ 2 and σ 4 with K t 2 6 modes, N 10 revolutions, m 150 iterations and a tolerance of 10 ¡13 for the fixed point iteration. Figure 5 shows the evolution in time of one trajectory given by Method B (with a 300 points evaluation grid in space).

In Figure 6, we observe the discrete L 2 and H 1 norms behavior of one trajectory given by our two algorithms and the Euler method (3.15) (the simulated pα k q k are the same for Methods A and B). The Euler method quickly blows up in both norms. The L 2 norm of Method A is not conserved. In contrast, Method B preserves the L 2 norm according to Theorem 4.2. When σ 4, numerical simulations hint that a blow-up in the H 1 norm always happens for all considered methods at a certain time that increases as ε goes to zero. We recall that in the optic fiber model (1.3), t represents the distance along the optic fiber and a cubic nonlinearity (σ 2) is typically considered [START_REF] Garnier | Stabilization of dispersion-managed solitons in random optical fibers by strong dispersion management[END_REF]. For σ 2, we do not observe any blow-up in the H 1 norm in Figure 6, suggesting the well-posedness of the model for all optic fiber distance. Also, the larger σ is, the sooner the blow-up happens. These behaviors agree with the blow-up conjecture for ε 1 and σ ¥ 4 presented in [START_REF] Belaouar | Numerical analysis of the nonlinear Schrödinger equation with white noise dispersion[END_REF], and suggest that the conjecture persists in the highly-oscillatory regime ε 3 1. F P pϕ ε,s pyqqpf y ϕ ε,s pyqphq, f y ϕ ε,s pyqpkqqsds.

Then § § f Then the Gronwall lemma allows to conclude. The proof is similar for the third derivative.

¥

Figure 1 :

 1 Figure 1: Exact solution evaluated at revolution times for the deterministic oscillator (2.1) with F pyq iy and ε 10 ¡1 .

Figure 2 :

 2 Figure 2: Revolution times (2.2) of a Brownian path (top) and exact solution evaluated at revolution times for the Kubo oscillator (1.2) with a 1 and ε 10 ¡1 (bottom).

Remark 3 . 5 .

 35 If we replace the Brownian motion W in (3.4) by a piecewise linear function W τ defined by

Figure 3 :

 3 Figure 3: Convergence in law of c N V arpT1q T N N ¡ ErT 1 s ¨to a standard Gaussian random variable.

Repzq

  

π 2 8 . 8 ,

 88 In addition, for x 0, π 2 Ere xT 1 s 1 cosp c 2xq . The variable T 1 has bounded moments, and they are given by ErT k 1 s p¡2q k k! p2kq! p j1 p¡1q j ņ1 ¤¤¤ n j p n i N ¦ ¢ 2p 2n 1 , . . . , 2n j .

  2.3], where the Laplace transform formula is obtained with an analytic continuation of the equality Ere ¡xT 1 s 1 coshp c 2xq for x ¡ 0. Comparing the Taylor expansions of Ere xT 1 s and 1 cosp c 2xq yields (3.9). The estimate (3.10) is proved as follows

» T N s e 2iπpW prq dr. Then, multiplying by 1 N 2 e 2 » T N 0 e 2iπkW psq » T N s e 2iπpW prq dW prqds ¡ 2π 2 p 2 N 2 »e

 12222 2iπkW psq and integrating from 0 to T N yieldsα N k ¡ α N p k N 2iπp N 2iπkW psq dsdW prq,which has zero average by the same arguments as before. Also by the Fubini theorem for stochastic integrals, β N p,k 1 N 2

,qξ l with δ k 4 1

 4 and Γ N its square root. Then, p α N k is defined for k ¥ 0 as p

  Erβ N p,k s with the values of Proposition 3.7. Doing so yields Method A.For Method B, we adapt Method A in the spirit of the middle point scheme for ODEs (see[START_REF] Hairer | Geometric numerical integration[END_REF] Chap. IV]) so that it preserves any quadratic invariant. We also replace p Er r β N p,k s, using the values of Proposition 3.7.

c 2 l pc 0 p , c 0 k 1 N 2 »e

 0012 qpY m qp γ p2q,N l,p,k with the new random variables γ p1q,N l,p,k 2iπkW pqq dqdrds, and where the discrete random variables share the same moments up to order 3 for the p , and order 1 for the p γ piq,N

k

  pr ϕ pKtq ε,s pyqqe 2iπkW psq ds.

Proposition 4 . 4 (

 44 bounded moments for the integrator (2.4)). Assume that for y R d , the numerical integrator p ψ ε,N pyq is given by

Figure 4 ,

 4 Figure 4, we use a modification of a Kubo oscillator introduced in [8] with the nonlinearity F pyq ip1 Repyq 3 Impyq 5 qy. In the real setting, it yields the following two-dimensional SDE

Figure 4 :

 4 Figure 4: Weak error versus the stepsize H N ε for approximating the solution of equation (1.1) at time εT 2 8 for the linear F pyq iy (left) and the non-linear F pyq ip1 Repyq 3 Impyq 5 qy (right) with A 2iπ, X 0 1, ε 10 ¡3 and the test function φpyq 2 Repyq 4 Impyq.

Figure 5 :

 5 Figure 5: Approximation by Method B of |u| and |f x u| with u solution of a spatial discretization with K x 2 7 modes of the nonlinear Schrödinger equation with white noise dispersion (5.1) on the torus T r¡π, πs with the parameters ε 10 ¡2 , σ 2 (top) and σ 4 (bottom).

Figure 6 :

 6 Figure 6: Evolution in long time of the quantities }U t } L 2 ¡}u 0 } L 2 (left) and }U t } H 1 ¡}u 0 } H 1 (right) with U t the approximation computed with Euler method and Methods A and B for one trajectory of equation (5.1) with ε 10 ¡2 , σ 2 (top) and σ 4 (bottom).

k end for Remark 2.1. One

  

	could apply a Newton iteration to solve the implicit equation (2.5)
	in Method B. However, a few fixed point iterations are sufficient (see discussion in [16,
	Chap. VIII] for non-stiff implicit methods). Indeed, since the Lipschitz constant of the
	iterated map has size OpHq, the convergence rate of the fixed point iterations is independent
	of the smallness of ε.
	Remark 2.2. We observe that p β N p,k and p r β N p,k are always zero except when p 0, k 0 or
	p k 0. Thus the computational cost of one step of Methods A and B grows linearly in
	the number of modes in (2.3).

  The dominated convergence theorem for stochastic integrals allows us to take the limit t Ñ V and yields Erα N k s 0. , let pp, kq $ p0, 0q (the case p k 0 is obtained straightforwardly using Proposition 3.6), we use the Itô formula on e 2iπpW psq and we integrate from s

	α N k i πkN	» T N
	For the coefficients β N p,k to T N , 1 ¡ e 2iπpW psq 2iπp	» T N

the case k 0 is straightforward using Proposition 3.6), then the Itô formula applied to e 2iπkW psq gives 1 2π 2 k 2 N pe 2iπkW ptq ¡ 1q i πkN » t 0 e 2iπkW psq dW psq ¡ 1 N » t 0 e 2iπkW psq ds, which yields at time t T N , 0 e 2iπkW psq dW psq.

Then t Þ Ñ ³ t 0 e 2iπkW psq dW psq is a martingale, so by the Doob theorem, as t T N is finite, Er ³ tT N 0 e 2iπkW psq dW psqs 0 for all t.

s e 2iπpW prq dW prq ¡ 2π 2 p 2

  2, it is now possible to evaluate the local expansions (3.4) at revolution times. To approximate numerically the integrals appearing in equation(3.4) without evaluating F and F I too many times, we first replace the 1-periodic functions g 0 pyqpzq defined in (2.3) by their associated Fourier series with Fourier coefficients pc 0 k pyqq kZ and pc 1 p pyqq pZ . We define the following approximation of ϕ ε,t pyq, ψ ε,t pyq e AW ptq y ε

	and g 1								θ pyq
			ķZ	e AW ptq c 0 k pyq	» t	e 2iπkW psq ds	(3.11)
	ε 2	p	e AW ptq c 1 p pyq	¢ c 0 k pyq	» t	0 » s	e 2iπpW psq e 2iπkW prq drds	.
		,kZ					0		0

θ

  1 p pyqq pZ are the Fourier coefficients of the 1-periodic functions g 0 θ pyq

	and g 1 θ pyq defined in (2.3), α N k , β N p,k are the random variables defined in Proposition 3.7 and
	y R d is deterministic. Under Assumption 3.1, for all test functions φ C 3

P , there exists H 0 ¡ 0 such that for all H N ε ¤ H 0 , the following estimates hold, where C and K are independent of ε and N , E

  P , there exists H 0 ¡ 0 such that for all H ¤ H 0 , for all m ¥ 0 such that mN ε mH ¤ T , there exist two positive constants K and C both independent of ε, N and K t such that|Erφpϕ ε,T N m pX 0 qqs ¡ ErφpY m qs| ¤ CH 2 p1 Er|X 0 | K sq.

	Theorem 4.1. Assume that the Fourier coefficients c 0 k , c 1 p of g 0 θ and g 1 θ in (2.3) are non-zero only for ¡K

t {2 ¤ k, p K t {2. Then, under Assumption 3.1, Method A has weak order two, that is, for all T ¡ 0, for all test functions φ C 3 (4.1) Theorem 4.2. Assume that the Fourier coefficients c 0 k , c 1 p of g 0 θ and g 1 θ in (2.3) are nonzero only for ¡K t {2 ¤ k, p K t {2. Then, under Assumption 3.1, if c 1 0 pc 0 k q and c 1 p pc 0 0 q are Lipschitz continuous uniformly in k and p, Method B is well defined and has weak order two (i.e., it satisfies an estimate of the form (4.1)). In addition, if for a fixed symmetric matrix S R d¢d , the quantity Qpyq 1 2 y T Sy is preserved by equation (1.1), then Method B also preserves the invariant Qpyq 1 2 y T Sy, that is, the solution Y m 1 of equation (2.5)

  Opp1 |y|qe ¡cKt q. For simplicity of the analysis, we thus assumed in Theorems 4.1 and 4.2 that g 0 θ and g 1 θ have a finite number K t of non-zero Fourier modes in (2.3). If this assumption does not hold, the truncation errors Opp1 |y| K qK ¡s t q or Opp1 |y|qe ¡cKt q should be added in the right-hand side of the error estimate (4.1). Let us prove it in the analytic case. We first apply the change of variable r ϕ ε,t pyq e ¡AWptq ϕ ε,t pyq that has no effect at time t T N m . We now have to compare the two solutions of the following integral

	formulations		
	r ϕ ε,t pyq y ε	» t	g 0
		0	

.1) at the revolution times εT N m , m 0, 1, . . . , but one could compute an approximation at different times by composing with other methods at the end of the integration. Remark 4.3. Since the error constant C in (4.1) is independent of the number K t of Fourier modes, we emphasize that Theorems 4.1 and 4.2 remain valid for infinitely many modes (K t Ñ V). In addition, assuming that F is of class C s 1 P yields a truncation error of the Fourier series in (2.3) of size Opp1 |y| K qK ¡s t q (see, e.g., [19, Sect. III.1.3]), and if g 0 θ is assumed analytic in θ (for example if F is a polynomial), this error becomes exponentially small as W psq pr ϕ ε,s pyqqds,

e

  M Erφpϕ ε,T N M pX 0 qqs ¡ Erφp p m¡1 φ ¥ ϕ ε,T N pm¡1q . Using Lemma 3.2 and φ C 3 P , we obtain for 0

				ψ M ε,N pX 0 qqs
	and rewrite it with a telescopic sum	
	e M	M m1	Erφpϕ ε,T N pm¡1q p p ψ M ¡m 1 ε,N	pX 0 qqqs ¡ Erφpϕ ε,T N m p p ψ M ¡m ε,N pX 0 qqqs
		M m1	Er r φ m¡1 p p ψ ε,N p p ψ M ¡m ε,N pX 0 qqqs ¡ Er r φ m¡1 pϕ ε,T N p p ψ M ¡m ε,N pX 0 qqqs

where r φ

  We deduce the global weak order two. ¥With the help of Theorem 4.7, we prove Proposition 3.10 and the convergence of Methods A and B.Proof of Proposition 3.10. Rewriting Theorem 4.7 for order one yields for all H N ε small enough and all M ¥ 0,|Erφpϕ ε,T N M pX 0 qqs ¡ Erφpy εN M qs| ¤ CpεN q 2 p1 Er|X 0 | K sq.Proof of Theorem 4.2. The regularity assumptions yield the Lipschitzness of the c 0

	α N k ¤ C and °p,k 4.7 applies and concludes the proof.	§ § §Erβ k 2 N p,k s	§ § 2 §	converges by Proposition 3.7, Theorem ¥
	the involved c 1 p pyqpc 0 k pyqq with constants independent of k and p. As	°k § § p α N k	k pyq and § and °p,k § § § § § p r β N p,k § § § §

Evaluating in N 1, M T ε and taking the limit ε Ñ 0 yield the result.

¥

Proof of Theorem 4.1. As p are bounded, the right-hand side of equation (2.5) is a contraction for all H ¤ H 0 small enough and the constant does not depend on Y m , so H 0 depends only on F and F I . Thus, the integrator is well-posed for all H ¤ H 0 .

  2 y ϕ ε,t pyqph, kq § § ¤ Cε » t 0 rp1 |ϕ ε,s pyq| K q |f y ϕ ε,s pyqphq| |f y ϕ ε,s pyqpkq| § § f 2 y ϕ ε,s pyqph, kq § § sds ¤ Cεtp1 |y| K qe Cεt |h| |k| Cε

	» t	§ § f 2 y ϕ ε,s pyqph, kq	§ § .
	0		
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Appendix

Proof of Lemma 3.2.

1. First, ϕ ε,t pyq is the solution of ϕ ε,t pyq e AW ptq y εe AW ptq » t 0 e ¡AWpsq F pϕ ε,s pyqqds.

Using the boundedness of the continuous periodic function θ Ñ e θA and Assumption 3.1, we get

The Gronwall lemma yields the desired bound.