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Recently, rapidly growing vision sensors and human-centric videos have driven numerous application demands for automating spatiotemporal action detection. Stateof-the-art approaches mainly concentrate on competitive accuracy, relying on heavy 3D CNN or fine-grained optical flow to extract space-time representations. However, the adoption of such expensive modules is not compliant with vast real-world applications which mandate continuous and instantaneous processing under limited computational budgets. Jointly addressing detection accuracy, speed, and complexity for practical settings, we customize a cost-effective 2D-CNN tubelet detection framework coined Accumulated Micro-Motion Action detector (AMMA). AMMA encodes and accumulates actions' motion boundaries that can be generated on-the-fly from RGB frames in real-time. It leverages a coarse-scale detection paradigm, inferring actions from clip-level visual-dynamic cues. Further, its anchor-free detector head cooperatively models action instances as moving points across video clips. Overall, AMMA achieves competitive accuracy on public benchmarks while reducing model size, computational cost, and processing time by multiple folds.
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ImViA EA7535, Univ. Bourgogne Franche-Comté, Dijon 21078, France In recent years, spatiotemporal action detection/localization has been an active area of research driven by numerous application 2 demands such as unmanned surveillance, driver-assistance systems, and interactive robot services, etc. [START_REF] Hu | Online human action detection and anticipation in videos: A survey[END_REF]). When 3 compared to the task of video action recognition, detecting actions in space and time poses more challenges, as it aims to predict the spatial positions, temporal boundaries, and action categories of individual action instances in the video (rather than inferring a global action label). On top of the complex nature of the problem, action detection becomes more difficult when it needs to fulfill online settings, i.e., continuously observing ongoing actions (from streaming videos) and updating detection results in an efficient and real-time fashion. These criteria are crucial in many of the above application scenarios but often overlooked by ongoing research, which solely address high-precision detection while disregarding computational budgets.

Modern solutions for action detection mostly rely on adopting CNN (Convolutional Neural Network) detectors to localize 10 action instances. To extract the temporal cues from actions, one leading approach is to employ the two-stream CNN architecture 11 pioneered by [START_REF] Simonyan | Two-stream convolutional networks for action recognition in videos[END_REF]. This architecture decouples spatiotemporal reasoning into separate learning of 12 frame-wise RGB and optical flow features, followed by designated fusion strategies such as those proposed by Peng and Schmid 13 (2016) and [START_REF] Singh | Online real-time multiple spatiotemporal action localisation and prediction[END_REF]. Other approaches further model short-term appearance variations by extending frame-wise detection 14 to the clip-level [START_REF] Kalogeiton | Action tubelet detector for spatio-temporal action localization[END_REF]; [START_REF] Zhao | Dance with flow: Two-in-one stream action detection[END_REF]; [START_REF] Yang | Step: Spatio-temporal progressive learning for video action detection[END_REF]; Li et al. (2020)). These methods input a sequence of consecutive frames from which they directly infer action tubelets (i.e., a sequence of bounding boxes). When integrated 16 with the two-stream architecture, action tubelet detectors achieve state-of-the-art performance with 2D CNN backbones. Inspired 17 by leading techniques for action recognition, the latest action detectors also leverage 3D CNN to augment frame-wise prediction 18 with additional spatiotemporal context [START_REF] Yang | Step: Spatio-temporal progressive learning for video action detection[END_REF]; [START_REF] Köpüklü | You only watch once: A unified cnn architecture for real-time spatiotemporal action localization[END_REF]; [START_REF] Hou | Tube convolutional neural network (t-cnn) for action detection in videos[END_REF]; [START_REF] Gu | Ava: A video dataset of spatio-471 temporally localized atomic visual actions[END_REF]; Zhao et al. 

23

In spite of the aforementioned advancements, we argue that trending action detection pipelines have been tailored to solely 24 obtain superior detection scores in public benchmarks. In turn, they are sub-optimal in terms of efficiency for practical deployment.

25

Firstly, short-term dynamics in the form of optical flow are often exploited to model temporal structures of actions. Under this 26 setup, however, optical flow inevitably needs to be prepared in advance as it is expensive and time-consuming to acquire on-site, appearance ones at multiple convolutional scales to produce temporal-aware features. On top of its spatiotemporal backbone, AMMA aggregates multiple temporal-aware features from successive clips at its detector head, permitting longer-range action modeling. Precisely, it adopts an anchor-free detector head popularized by [START_REF] Zhou | Objects as points[END_REF], 44 which is computationally more efficient than mainstream detectors such as SSD [START_REF] Liu | Ssd: Single shot multibox detector[END_REF]) and YOLO (Redmon and Farhadi feature. With this pipeline, one-stage detectors can operate in real-time while retaining competitive accuracy as the two-stage 75 variants.

76

Integrating anchor boxes has become the mainstream design choice in modern detectors. Nevertheless, utilizing anchors intro-77 duces excessively more design parameters associated with anchor sizes, aspect ratios, and number of pre-defined boxes, etc. These 78 hyperparameters largely impact the final detection performance and require heuristic tuning for different datasets. Further, anchors 79 incur complicated intersection-over-union (IoU) computation when matched with groundtruth boxes. In contrast, some newly pro- (2014). In this architecture, appearance and motion features are independently extracted from RGB and optical flow inputs using 93 two feed-forward networks. Fusing the results from both modalities first demonstrates beneficial for action recognition accuracy, 94 inspiring many subsequent works in related fields (Li et al. (2020), Yang et al. (2021), Suneetha et al. (2021)). Under the hood, 95 Sevilla-Lara et al. (2018) found that fusing optical flow with RGB modalities not only provides additional temporal information, 96 but also helps to capture appearance-invariant structures (i.e., moving targets' "boundaries"). This facilitates model generalization 2016)) final convolution layer as the decoder. This serves to adaptively project highly abstracted features onto a spatially larger feature map to facilitate dense detection of small/overlapped objects. Different from object detection, it can be reasonably assumed 150 that the likelihood of actors emerging densely in a scene is low. With this insight, AMMA's backbone decoder is implemented 151 with only one deconvolution layer followed by bilinear upsampling. The resulted appearance feature is a tensor with dimension the temporal evolution of various general patterns. We refer to our implicit motion representation as accumulated micro-motion.

152 H R × W R × D,
163

Formally, we define the shallow convolutional block, Conv 5×5 , as eight 5 × 5 convolutions with strides of 1 and paddings of 3.

164

The input to the convolutional block is any clip V cp where all its frames are first downsampled by two via a max pooling layer. The 165 downsampling operation comes from our observation that the difference map between two shallow features within close temporal 166 proximity retains values near 0 in most areas, i.e., it only contains high responses in motion salient regions. As the difference map 167 exhibits high sparsity, it is more efficient to process it in a low-resolution space without much loss of information. Concretely, the 168 above steps are described as follows:

169 [ f 1 , f 2 , ..., f t ] = Conv 5×5 (MaxPool([F 1 , F 2 , ..., F t ])) (1)
MM d i (x, y) = f d t (x, y) -f d i (x, y), f or i = 1 : t -1, (2) 
where in Equation 1, To efficiently encode motion variation across different feature spaces and time steps, all MM d are first accumulated into one channel to manifest the motion magnitude, as shown in Equation 3:

f 1 , f 2 , ...,
AMM i (x, y) = 8 d=1 (MM d i (x, y)) 2 , f or i = 1 : t -1. ( 3 
)
Note that unlike optical flow fields which typically encode horizontal and vertical motion vectors, each AMM cue is an the final clip-level micro-motion matches the spatial dimension of the original frames (we first downsampled the frames via max 178 pooling in Equation 1). In practice, clip length t is defined as 4 in this study; the accumulated micro-motion of a clip thus has the same dimension as an RGB frame (i.e., H × W × 3). In AMMA, the weights to sum spatial and temporal information are learnable scalars (ranging from 0 to 1) that add up to 1.

187

In addition, the number of lateral connections dictates the extent of fusion between actions' visual and dynamic cues, which will 188 be studied more thoroughly in Section 4.2. Since fusion is conducted by summation at the spatial CNN, the dimension of the short-term motion-aware features remains 

H R × W R × D. representation f stack ∈ R H R × W R ×KD .
(x-x c i ) 2 +(y-y c i ) 2 2σ 2
),

203

where the salient region surrounds (x c i , y c i ), and its dimension is determined by σ 2 derived from the groundtruth instance's size.

204

The training objective for Center branch follows the same focal loss used by [START_REF] Zhou | Objects as points[END_REF] as shown below:

205 l Center = - 1 n x,y,c        (1 -Lxyc ) α log( Lxyc ), if L xyc = 1 (1 -L xyc ) β ( Lxyc ) α log(1 -Lxyc ), otherwise, ( 4 
)
where n is the number of groundtruth instances; α and β are hyperparameters of the focal loss. 

217 l T ra jectory = 1 n n i=1 | mF K t i -m F K t i |, (5) 
where i indicates the i th out of n action instances.

218

During inference, Center Branch obtains action centers at the end of the input sequence as references, while Trajectory branch 219 adjusts all action centers at the end of each clip according to the predicted offsets with respect to the reference centers. Note that 220 the predicted center offset at F K t from itself is expected to be zero; as a result, we do not adjust action centers at F K t .

221

Box branch. Box branch serves to regress the spatial extent of action instances at [F 1 t , F 2 t , ..., F K t ], whose locations have been 

∈ R H R × W R ×2
, where 2 corresponds to the height and width prediction.

226

As Box branch is shared by all K clip-level features, it outputs K spatial maps, each one being associated with the size prediction at 227 F 1 t , F 2 t , ..., F K t . We optimize this branch by summing the L1 loss at all clips as follows:

l Box = 1 n n i=1 K j=1 | ŝ j i -s j i |, (6) 
where s j i corresponds to the groundtruth height and width of the i th action instance (out of n instances) belonging to the j th clip. AMMA's buffer will be updated accordingly to only keep the most recent K features. 

249

We adopt an online linking algorithm similar to the one used by [START_REF] Kalogeiton | Action tubelet detector for spatio-temporal action localization[END_REF]. Given a video stream with sufficient 250 frames as input, AMMA detects N initial tubelets. Among them, the top ten tubelets with the highest confidence scores are kept as 251 "active" action links for subsequent tubelet linking. As the video continues to be streamed, we incrementally extend active links 252 with new tubelet candidates if their detections at corresponding temporal positions match (i.e., the average IoU exceeds threshold 253 τ = 0.5). It is noteworthy that each candidate tubelet can only be assigned to an active link. On the other hand, an active link stops 254 extending and is terminated ("inactive") either when there no longer exists temporal overlaps with the newly detected tubelets, or 255 the video stops being streamed.

256

The final action tubes are constructed from all the inactive action links, where each tube's confidence score is calculated as the In this section, we investigate various architectural configurations of AMMA. For efficient exploration, the following studies 304 are conducted using ResNet-18 unless specified otherwise.

305

Effect of input duration and micro-motion fusion. The core of AMMA lies in detecting action tubelets across successive 306 video clips. Intuitively, combining more clips as input encapsulates richer spatiotemporal context. However, longer sequences could 307 potentially introduce irrelevant background cues, as well as raising difficulty to track tubelets' trajectories. To investigate how the 308 input duration affects the proposed detector, we conduct experiments on both JHMDB-21 and UCF-24 by varying the number of 309 input clips (denoted as "RGB"). To jointly examine the influence of incorporating dynamic features under varied input length, we 310 replicate the above experiment while introducing micro-motion fusion ("RGB + MM"). In these experiments, the extent of motion 311 fusion is fixed to three lateral connections (at the output of the first three stages in ResNet-18). The corresponding frame-mAP 312 results are depicted in Figure 5.

313

From the above experiments, we first observe that AMMA generally produces more accurate tubelets the longer video sequences 314 it sees. This result matches our hypothesis that reasoning from longer video clips enriches spatiotemporal feature learning. Notably,

315

AMMA's accuracy continues to benefit on JHMDB-21 as K increases. We observe that longer input sequences improve accuracy 316 mainly by reducing false-positive detection in videos where ambiguous visual cues are present. Figure 6 displays several examples 317 where AMMA manages to detect correctly when enlarging its temporal receptive field across longer video sequences. We stop 318 increasing the number of clips at 5 (equivalent to 20 frames), as that nearly takes up half of the frames in most videos of this 319 dataset. We adopt a similar setup when evaluating UCF-24. Interestingly, although input duration and accuracy remain positively 320 correlated, AMMA performs best when K = 3. We deduce that as UCF-24 consists of temporally untrimmed videos, AMMA is prone to produce more temporal false-positive detection (on frames having no groundtruth action) when assigning a unified action 322 label to a longer sequence. Alongside varied input duration, all the configurations with micro-motion feature fusion consistently outperform those using 324 only appearance cues, confirming the efficacy of modeling short-term dynamic motion to help differentiate actions. For instance,

325

the baseline configuration K = 1 ("RGB") is the least accurate due to a complete lack of temporal modeling (neither incorporating short-term dynamic nor successive appearance variation cues). To better understand predicted tubelets' accuracy with and without temporal modeling capacity along with varied input duration, as well as the benefit of incorporating micro-motion features. Here,

346

we further investigate different forms of micro-motion generation and fusion, along with associated computational cost.

347

Table 1 summarizes AMMA's detection accuracy and computation on JHMDB-21 in accordance with varied input forms.

348

Building upon the input-duration experiment, we adopt the 5-clip input and three stages of lateral connections (when fusion is 349 applied). To approximate our model's complexity under the streaming-video setting, we report the MACs needed for tubelet exploits an efficient feature-caching and retrieval workflow on clip-level features (see Figure 4). In fact at a larger K, the minor 403 increase in runtime is related to filling AMMA's buffer with K clip features during initialization, as well as a slight increase of 404 computation at the detector head. On the other hand, the runtime associated with tubelet linking prominently rises along sequence 405 length. As tubelet linking depends on calculating the mean IoUs of detection across K -1 overlapping frames, determining whether 406 two tubelets match becomes more computationally demanding when longer tubelets are considered. These results pin-point the 407 importance of a carefully chosen sequence length for balancing AMMA's accuracy and speed performance. Note that speed performances can be impacted by other elements such as hardware devices and manners of measurement. For 431 example, the delay in generating optical flow was not considered in works such as [START_REF] Kalogeiton | Action tubelet detector for spatio-temporal action localization[END_REF], [START_REF] Zhao | Dance with flow: Two-in-one stream action detection[END_REF],

432
and Li et al. (2020). On the other hand, efficiency measures in terms of MACs and model size are independent of the above factors.

433

We refer our readers to Table 3 for such information. To summarize, our most lightweight model (AMMA S ) incurs 1 GMACs in the 

19(

  2021)). Equipped with stacked 3D convolutional filters to simultaneously model spatial and temporal variations over consecutive 20 frames, 3D CNN-based detectors are capable of learning high-dimensional video representations from RGB images alone. Fusing 21 optical flow cues proves to further enhance the temporal modeling capability and detection accuracy in the above methods (Sun 22 et al. (2018); Su et al. (2019); Li et al. (2020)).

Fig. 1 .

 1 Fig.1. AMMA overview. Given continuous video frames, AMMA aims to incrementally detect underlying action instances by their bounding boxes and categories. Different from existing accuracy-dominating detectors, the designs of AMMA and its components strictly and jointly consider reliable detection precision as well as low cost (time and computation) for practical deployment purposes (e.g., online and real-time detection under limited computation budgets).

  80 posed detectors demonstrate comparable accuracy by directly regressing objects' shapes and locations without pre-defined anchors 81 (such as the works by Law and Deng (2018); Zhou et al. (2019); Liu et al. (2020); Tian et al. (2020); Xie et al. (2021)). For in-82 stance, Zhou et al. (2019)'s CenterNet represents an object by its bounding box's center, converting the detection task to a keypoint 83 estimation problem. After acquiring image features, the network predicts objects' center points in the form of a multi-channel 84 heatmap. Peaks within the heatmap are regarded as the center locations of detected objects, and each channel is associated with a 85 class. Objects' bounding boxes can then be regressed from image features whose locations match those of the deduced centers. In

97Fig. 2 .

 2 Fig.2. Overview of AMMA. AMMA's backbone takes a video clip of t frames as input at a time (t = 4 in this study), encode short-term action dynamics as accumulated micro-motion, and outputs a motion-aware feature tensor by merging appearance (from F t ) and complementary motion information via lateral fusion. Beyond a single clip, AMMA enables long-range spatiotemporal modeling by aggregating multiple clip-level features at its detector head consisting of three cooperative branches. After merging results of the detector branches, the predicted tubelets are coarse in time. From the coarse tubelets, dense frame-wise detection can be interpolated between any two clips in a later stage. All figures in this paper are best viewed in color.

  appearance information. We define an input video clip V cp to contain t consecutive RGB frames, whereV cp = 145 [F 1 , F 2 , ..., F t ].The dimension of each frame is H × W × 3. Since neighboring frames share highly resembling visual cues, we only 146 extract appearance information from F t via a 2D CNN. Formally, we adopt a reduced variant of the encoder-decoder architecture 147 used by[START_REF] Zhou | Objects as points[END_REF] as the 2D backbone. Originally, three deconvolution layers have been added at the end of ResNet's (He 148 et al. (

  Fig. 3. Overview of AMMA's detector head. Given an input sequence of K clips (K = 4 in this figure), Center branch (TOP) detects action centers at F K t . Trajectory branch (MIDDLE) infers center offsets with respect to Center branch's prediction, and adjusts action centers for F 1 t , F 2 t , ...F K-1 t accordingly. Finally, Box branch (BOTTOM) regresses action instances' spatial extent (i.e., height and width) at action centers deduced by the other two branches.

  Afterwards, f stack is fed to a standard 3 × 3 and 1 × 1 convolutional layer interleaved with ReLU non-linearity, outputting action heatmap L ∈ R H R × W R ×C for F K t , where C corresponds to the number of action classes. Each grid of 199 Lx,y,c reflects the probability of detecting action instance of class c at location (x, y) of the heatmap. 200 To train Center branch, the groundtruth heatmap L ∈ R H R × W R ×C associated with a K-clip sequence is first derived from the 201 groundtruth center location (x c i , y c i ) of F K t , where c i corresponds to the true class of action instance i. We set heatmap L x,y,c = 0 for 202 all classes except for the true class. When c = c i , a Gaussian kernel is applied to generate soft heatmap L x,y,c i = exp(-

222

  previously deduced by Center and Trajectory branch. Unlike these first two branches, incorporating temporal information from 223 multiple frames contributes less to frame-wise class-agnostic bounding box regression. Hence, our Box branch regresses actions' 224 width and height for each clip independently. It comprises a 3 × 3 and 1 × 1 convolutional layer in sequence (interleaved with ReLU) 225 as the other branches, and generates spatial prediction map ŝ

  Fig. 4. AMMA's incremental feature-caching-dequeuing mechanism for online action detection on streaming videos.

  244 3.5. From coarse tubelets to dense action tubes 245 Given an incoming video stream, AMMA detects tubelets on top of the latest K clips. Notably, the lastly detected tubelets have 246 a temporal overlap with the previous ones by a duration of (K -1) clips (as illustrated in the bottom-right corner of Figure 4). When tubelet results within the temporal overlaps are consistent, AMMA can incrementally link local tubelets over time into action tubes, 248 yielding long-range space-time proposals for localizing actions in trimmed/untrimmed videos.

Fig. 5 .

 5 Fig. 5. Frame-mAP performance under varied input duration (i.e., number of clips). "MM" denotes micro-motion.

Fig. 6 .

 6 Fig. 6. Examples of short-tubelet (K = 2) and long-tubelet (K = 5) detection on JHMDB-21. The groundtrue actions (from top to bottom) are catch, sit, and shoot ball. The green and red boxes correspond to correct and incorrect detection, respectively. Each colored box also displays the detected class and associated confidence score. Longer input sequences help to reduce false-positive detection which are prone to occur in the presence of ambiguous visual cues (e.g., confusion between sit & stand, or catch & shoot ball.)

Fig. 7 .

 7 Fig.7. Frame-mAP error distribution before and after micro-motion ("MM") feature fusion (JHMDB-21 and UCF-24). Each bar corresponds to a specific type of error (out of five error categories). A model is more accurate when incurring lower error rates.

Figure 7

 7 Figure 7 reports the error distribution comparison before and after fusing micro-motion features. On JHMDB-21, one can

350Fig. 8 .

 8 Fig. 8. Visualization of micro-motion cues between pairs of action frames.

Fig. 10 .

 10 Fig.10. Comparisons of runtime-accuracy trade-off between AMMA and state-of-the-arts on UCF-24 (video-mAP). "AF" and "RTF" denote accurate flow and real-time flow, respectively. It is note-worthy that methods that depend on externally calculated optical flow typically omit this part of the computation in their runtime measurement.

  430
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  online detection setting while requiring 6M parameters. To put these values in perspective, the standard SSD which is widely used of spatiotemporal action detection such as[START_REF] Singh | Online real-time multiple spatiotemporal action localisation and prediction[END_REF],[START_REF] Kalogeiton | Action tubelet detector for spatio-temporal action localization[END_REF]), Saha et al. (2020), and Zhao 436 and Snoek (2019), has around 27M trainable parameters (54M in the two-stream setup). Similarly, the two-stream SSD architecture incurs approximately 32 GMACs (with input image size of 300 × 300), which is nearly 32 times more computationally expensive 438 than our lightest model. Methods leveraging 3D CNN[START_REF] Gu | Ava: A video dataset of spatio-471 temporally localized atomic visual actions[END_REF] and[START_REF] Sun | Actor-centric relation network[END_REF]) such as I3D or S3D as the feature 439 backbone, are estimated to exceed 45 and 32 GMACs, respectively. 440 5. Conclusion and Future works 441 In this paper, we present a lightweight, online action tubelet detector based on 2D CNN (termed AMMA). It makes use of 442 a coarse detection paradigm to efficiently model actions from underlying appearance and variation cues over video sequences.

  

  where R and D correspond to the downsampling ratio and channel dimension of the feature, respectively. In practice,We uncover motion information of a clip by simply accumulating the appearance variation between F t and its precedent frames

153 R and D are 8 and 256, respectively. 154 Accumulated micro-motion as clip-level action dynamics. A short sequence of t frames still potentially embeds crucial 155 dynamic information which F t alone does not carry. Such a motion cue, often encoded in optical flow, consistently grants two-156 stream CNN networks better discriminating capacity to recognize actions. Alternative to optical flow which is commonly prepared 157 in advance due to its high computational cost, we devise a simpler, adaptive motion representation which highlights the small 158 displacements of motion boundaries. 159 160 in the shallow-CNN feature space. Specifically, shallow-CNN features tend to reflect local patterns (e.g., edges or textures) with low 161 receptive fields. The difference map between two such low-level features within close temporal proximity inherently encapsulates 162
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  At the inference stage, the resulted heatmap is further filtered independently for each class to only keep local peaks that are

	212	
		mF K t ∈ R
	215	
	216	groundtruth movement (m F K t ) of any action instance with respect to F K t is simply the offset between its center at F K t and those at
		other frames. Finally, movement map	mF K t i is optimized based on L1 loss as follows:

207

greater than their 8-connected neighbors. Finally, the top N peaks across all classes are considered candidate action centers. In this 208 study, we follow the work of

[START_REF] Zhou | Objects as points[END_REF] 

and set α, β, and N to 2, 4, and 100 respectively. 209 Trajectory branch complements Center branch by modeling action instances' center movement between frames F 1 t , F 2 t , ..., F K-1 t 210 and F K t . Similar to Center branch, Trajectory branch first aggregates K clip-level features by concatenation across the channel di-211 mension, followed by a standard 3 × 3 and 1 × 1 convolution interleaved with ReLU. The output of the branch is movement map H R × W R ×2K , where 2K denotes the center offsets (in X and Y directions) sequentially for F 1 t , F 2 t , ..., F K t with respect to action 213 centers at F K t . 214 For training, groundtruth action centers at F 1 t , F 2 t , ..., F K t are first computed the same way as for Center branch. Then, the

  257average score of all its enclosed tubelets. The temporal extent of any action tube is determined by the starting frame of the initialized 258 tubelet and the end frame of the last tubelet. Lastly, we discard any final action tube having either a low confidence score or a short The former metric validates the IoU between the detected and groundtruth 273 boxes at each frame and is independent of the online linking strategy. For frame-mAP, the IoU threshold is fixed at 0.5 throughout 274 all experiments. On the other hand, video-mAP inspects spatiotemporal overlaps between linked action tubes and groundtruth tubes 275 at multiple IoU thresholds. Furthermore, to evaluate the efficiency of AMMA, we also report its model size (number of trainable We use the Adam optimizer to train our models. An initial learning rate of 5e -4 , 2.5e -4 , and 2.5e -4 is applied when employing 298 ResNet-18, MobileNet-V2 and ShffleNet-V2 as AMMA's backbone, respectively. For JHMDB-21, we train AMMA for 10 epochs 299 while reducing the learning rate by a factor of 10 at the 6 th and 8 th epoch. Likewise, UCF-24 is trained for 10 epochs, but with the

	1	
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	
	296	and Box branch learn to regress movement and spatial dimension of action instances over all the clips, thus requiring groundtruth
			labels of F 1 t , F 2 t , ..., F K t .
	276	
	277	parameters), MACs (number of multiply-accumulate operations), and speed (frame-per-second, or FPS).
	278		Implementation details. Aiming to conduct highly accelerated and efficient detection, we first employ ResNet-18 as AMMA's
	279	main 2D CNN backbone. All RGB frames inputted to our model are resized to 288 × 288. AMMA's backbone includes an
		encoder-decoder feature extractor followed by a bilinear upsampling layer, transforming video clips to clip-level representations of
	285	

259

temporal duration. To acquire temporally dense (i.e., frame-wise) detection, we apply coordinate-wise linear interpolation between 260 bounding boxes located at separate clips to infer detection for intermediate frames. This design form is reasonable as transitions of 261 actions across consecutive frames are typically smooth and continuous. 262 4. Experiments

263 4.1. Experimental Setup 264 Dataset. Our proposed action detector is evaluated on two popular action datasets: UCF-24 (Soomro et al. (2012)) and JHMDB-265 21 (Jhuang et al. (2013)). The former one is composed of 3207 temporally trimmed/untrimmed sports videos of 24 classes. The 266 number of action instances varies in this dataset. The latter consists of 928 short videos (maximum of 40 frames) divided into three 267 splits, with 21 action categories in daily life such as sit, stand, and walk, etc. Each video is temporally trimmed and has a single 268 action instance. For JHMDB-21, the experimental results are reported over the average of its three splits. Unlike datasets for 269 action recognition or temporal action detection, both of the above datasets provide actions' temporal extent and frame-level 270 bounding-box annotations which AMMA strictly seeks for model training. 271 Metrics. Following previous studies in spatiotemporal action detection, we evaluate the accuracy of our proposed detector using 272 frame-mAP and video-mAP (mean Average Precision).

280 dimension 36 × 36 × 256. Prior to AMMA's detector head, clip-level features are first fed to another 1 × 1 convolutional layer to 281 reduce their channel dimension by 4 in order to gain efficiency at Center and Trajectory branches (who operate on channel-wise 282 stacked features). 283 Within AMMA's backbone, the fusion of spatial and temporal information is realized by lateral fusion. In the case of ResNet-18, 284 we establish uni-lateral connections at the "stage" level. To investigate the influence of combining micro-motion and RGB features 297 300 learning rate reduced by half at every epoch after the second one. In our experiments, all the training is conducted on an NVIDIA 301 Titan V GPU while the mini-batch size is fixed to 16.

302 4.2. Ablation study 303

Table 1 .

 1 Performance summary of different forms of micro-motion on JHMDB-21. Input duration is fixed to 5 clips, and three lateral connections are attached to the output of the first three stages in ResNet-18.

		Frame-mAP GMACs # params (M)
	RGB only	65.08	3.49	15.07
	RGB + MM Di f f	67.69	5.14	15.75
	RGB + MM Conv Di f f	69.74	5.40	15.75

Table 2 .

 2 Performance summary of varied extents of fusion between appearance and micro-motion features on JHMDB-21. Input duration is fixed to 5 clips.More on micro-motion generation, fusion, and complexity. The previous experiments demonstrate AMMA's extensible

		Frame-mAP GMACs # params (M)
	--	65.08	3.49	15.07
	Stage 1	66.58	3.95	15.08
	Stage 1-2	68.74	4.72	15.23
	Stage 1-3	69.74	5.40	15.75
	Stage 1-4	70.22	6.08	17.85
	Stage 1-5	72.48	6.76	26.24
	345			

Table 3 .

 3 Performance summary of integrating different 2D CNN backbones.

				JHMDB-21 (K = 5)	
			Frame-mAP	Video-mAP @0.2 0.5 0.75 0.5:0.95	GMACs Param. (M) FPS
		AMMA 18	69.7	73.7 72.7 60.1 50.3	5.2	15.8	80
		AMMA M	66.1	70.0 69.0 53.7 45.3	1.3	6.8	77
		AMMA S	67.7	72.3 70.9 47.9 43.0	1.0	6.0	75
				UCF-24 (K = 3)	
			Frame-mAP	Video-mAP @0.2 0.5 0.75 0.5:0.95	GMACs Param. (M) FPS
		AMMA 18	74.6	81.1 53.5 24.6 26.3	5.2	15.8	115
		AMMA M	71.8	78.0 49.7 22.0 23.5	1.3	6.8	110
		AMMA S	71.3	78.7 47.4 20.9 22.5	1.0	6.0	100
	their computational cost is substantially lower. On the one hand, this phenomenon has been addressed by Orsic et al. (2019),
	398	One may have noticed AMMA's conspicuous difference in speed between JHMDB-21 and UCF-24, as shown in the last column
	of					

Table 3 .

 3 Such discrepancy is mainly associated with the choice of input sequence length. In Figure9, we demonstrate the

399

influence of sequence length (K = {2, 3, 4, 5}) on AMMA 18 's runtime based on UCF-24. The average runtime (millisecond, or ms) 400 of a detection cycle can be decomposed into tubelet inference (including feature extraction) and tubelet linking (including intra-401 frame interpolation); the average FPS is plotted in red. Note that the tubelet inference time is nearly invariant to K, as our detector 402

  Comparison with state-of-the-arts
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	409													
	410	In this section, we evaluate AMMA against several state-of-the-art methods on JHMDB-21 and UCF-24. We emphasize that
	411	as our tubelet detector concurrently seeks competitive accuracy, low complexity, and real-time runtime for practical deploy-
		ment, only state-of-the-arts with loosely comparable architectures as AMMA are listed in Table 4. Recent top-performing
	417													

412

approaches/models that employ much heavier configurations (such as those relying on both 3D CNN and optical flow) are 413 excluded for fair comparison.

414

It can be observed from Table

4

that AMMA 18 achieves competitive accuracy on both datasets. Notably, our proposed model 415 utilizes the most lightweight feature backbone than all other methods on the list, such as two-stream VGG16, two-stream DLA-416 34, C3D, I3D, and S3D, etc. Furthermore, leveraging only RGB frames as input, AMMA 18 still outperforms most of the other

appearance-invariant saliency map reflecting small displacement of motion boundaries. To further incorporate temporal struc-

tures of the clip, we concatenate all t -1 AMM i in the channel dimension, followed by a bilinear upsampling operation so that

J. Redmon, A. Farhadi, Yolo9000: better, faster, stronger, in: IEEE CVPR, 2017, pp. 7263-7271.
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at different scales, we vary the extent of fusion by progressively adding a lateral connection at the output of each stage (up to five 286 connections for .

287

To verify our detection framework on ultra-lightweight architectures for resource-constrained devices, we also evaluate its 288 integration with MobileNet-V2 (Sandler et al. (2018)) and ShuffleNet-V2 (Ma et al. (2018)). The weights of all 2D CNN backbones 289 are initialized with COCO pretrain (except for ShuffleNet-V2 which uses ImageNet pretrain).

290

During training, we apply common practices of data augmentation such as photometric transformation, scale jittering, random 291 cropping/expansion, and location jittering, etc. To train AMMA on K-clip sequences, each action tubelet is expected to last K × t 292 frames. For any action video having a shorter duration, we pad the beginning of its K-clip sequence by the first frame of the video 293 until the minimum length requirement is met, simulating an action without movement at the beginning. At AMMA's detector head, GMACs and model size. This suggests that the temporal evolution of general patterns better encodes dynamic information than 360 raw RGB differences, which are more likely to carry local noises. In Figure 8, we show some examples of our micro-motion 361 representation which successfully captures motion boundaries near moving subjects.

362

Next, We explore different extents of fusion between appearance and micro-motion information by incrementally increasing 363 the number of lateral connections. As shown in Table 2, the more stages lateral fusion takes place, the more accurate AMMA Both detection accuracy (e.g., frame-mAP and video-mAP) and model efficiency (e.g., inference speed, model complexity, and size) 373 are assessed. In particular, speed is recorded based on the per-frame processing time of the entire action detection pipeline, i.e., the 374 total runtime of generating action proposals for all videos divided by the total number of their frames.

375

Integration of micro-motion and lateral fusion in these mobile-friendly architectures closely follows our design in ResNet-18.

376

With MobileNet-V2 as the backbone, we append three lateral connections at the output of the 1 st , 3 rd , and 6 th bottleneck residual 3. We observe that AMMA 18 consistently obtains higher accuracy 383 than the other two (especially reflected in video-mAP at high detection thresholds). This is expected as ResNet has higher capacity 384 to extract richer visual context in general than the mobile architectures prioritizing efficiency. Indeed, both datasets consist of 385 actions embedding prominent appearance cues such as shoot bow and pole vault that could benefit from a more powerful feature 386 extractor. In terms of efficiency, the average GMACs of AMMA M and AMMA S are approximately 1/4 and 1/5 of that of AMMA 18 387 due to their highly optimized architectural design. Similarly, the model size of AMMA M and AMMA S are also significantly smaller.

388

Countering the above observations, the two ultra-lightweight variants have slightly slower runtime than AMMA 18 even though which points out that the implementation of depth-wise separable convolution is not optimized in the cuDNN library (therefore,

391

MobileNet-V2 tends to be slower than ResNet-18 in standard experimental setups). Moreover, computational complexity does 392 not necessarily guarantee faster runtime as GMAC does not take into account factors such as memory access cost and platform Table 4. Comparison with the state-of-the-art methods. Under column "Input", "+OF" indicates applying optical flow as the additional input modality (alongside RGB input).

Method Input

JHMDB-21 UCF-24

F-mAP Video-mAP 0.2 0.5 0.75 0.5:0.95 F-mAP Video-mAP 0.2 0.5 0.75 0.5:0. 

448

In the future, we will evaluate AMMA on more challenging public benchmarks, e.g., AVA, which contains more complex 449 scenes and sophisticated action categories. Note that our coarse detection pipeline is designed to smoothly adapt to the sparse 450 training annotations of this dataset. We also attempt to extend AMMA's 2D backbones to ultra-lightweight 3D CNN for enhancing 451 its spatiotemporal modeling capacity. Further, aiming at a fully resource-efficient vision system for deployment, we will also 452 precisely customize AMMA for embedding onto different edge devices such as NVIDIA Jetson TX2 or Xavier GPUs.
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