
HAL Id: hal-04347158
https://hal.science/hal-04347158v1

Submitted on 15 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Overview of Reachability Indexes on Graphs
Chao Zhang, Angela Bonifati, M. Tamer Özsu

To cite this version:
Chao Zhang, Angela Bonifati, M. Tamer Özsu. An Overview of Reachability Indexes on Graphs.
SIGMOD/PODS ’23: International Conference on Management of Data, Jun 2023, Seattle WA USA,
United States. �10.1145/3555041.3589408�. �hal-04347158�

https://hal.science/hal-04347158v1
https://hal.archives-ouvertes.fr

An Overview of Reachability Indexes on Graphs
Chao Zhang

University of Waterloo
Waterloo, Canada

chao.zhang@uwaterloo.ca

Angela Bonifati
Lyon 1 University

Lyon, France
angela.bonifati@univ-lyon1.fr

M. Tamer Özsu
University of Waterloo

Waterloo, Canada
tamer.ozsu@uwaterloo.ca

ABSTRACT
Graphs have been the natural choice for modeling entities and the
relationships among them. One of the most fundamental graph pro-
cessing operators is a reachability query, which checks whether a
path exists from the source to the target vertex in a plain graph, and
additionally whether the path can satisfy a given path constraint
based on the edge labels in an edge-labeled graph. Processing reach-
ability queries requires potentially visiting a large portion of the
graph due to the inherent transitivity of these queries. This makes
it costly to evaluate them on large graphs. Thus, significant ef-
fort has been spent to design indexing techniques for reachability
queries in the last three decades, building advanced data structures
to efficiently compress the transitive closure of the graph so as to
accelerate online query processing, aka reachability indexes. In this
tutorial, we provide an in-depth technical review of the existing
reachability indexes, ranging from those designed for plain graphs
to ones for edge-labeled graphs. We conclude the tutorial by sum-
marizing the open challenges for integrating these techniques into
GDBMSs.

CCS CONCEPTS
• Information systems→Graph-based database models;Data
structures; Database query processing.

KEYWORDS
graph database; reachability query; reachability index
ACM Reference Format:
Chao Zhang, Angela Bonifati, and M. Tamer Özsu. 2023. An Overview of
Reachability Indexes on Graphs. In Companion of the 2023 International
Conference on Management of Data (SIGMOD-Companion ’23), June 18–23,
2023, Seattle, WA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3555041.3589408

1 INTRODUCTION
Graphs are ubiquitous for modeling real-world data [32] where it is
important to represent relationships as first-class objects – vertices
represent entities and edges represent relationships. Examples can
be found in various domains, e.g., biological networks [28], financial
networks [30], social networks, transportation networks [4], and
knowledge graphs [16]. With graph-structured data, one of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9507-6/23/06. . . $15.00
https://doi.org/10.1145/3555041.3589408

most interesting queries is to check the existence of a directed
path from one vertex to another, i.e., the transitive relationship
from one entity to another in the network, which is known as
the reachability query (𝑄𝑟). Reachability queries are well-known
fundamental graph data processing operators and have been widely
used in practice [36, 37]. They are considered by some as the most
interesting graph-oriented queries [38].

Tutorial outline. In this tutorial, we present an in-depth review
of each type of reachability indexes. We start the tutorial with the
presentation of the background on reachability queries on graphs
(§2), followed by the review of plain reachability indexes (§3) and
the review of path-constrained reachability indexes (§4). We end
the tutorial by discussing the open challenges (§5). We share our
vision towards having full-fledged indexes in modern GDBMSs for
reachability queries.

2 BACKGROUND
We adopt the common definition of a graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is
a set of vertices and 𝐸 is a set of edges, and 𝑒 ∈ 𝐸 ⊆ 𝑉 ×𝑉 . In this
paper, the edges are directed. This definition will be enhanced as
the graph is enriched. Therefore, the issue is checking the existence
of paths in 𝐺 according to the arguments in 𝑄𝑟 .

2.1 Plain reachability
Plain graphs follow the above definition 𝐺 = (𝑉 , 𝐸). Figure 1(a)
shows a plain graph. The reachability queries over plain graphs are
referred to as plain reachability queries. A plain reachability query
𝑄𝑟 (𝑠, 𝑡) contains a pair of arguments, a source vertex 𝑠 ∈ 𝑉 and
a target vertex 𝑡 ∈ 𝑉 , and 𝑄𝑟 (𝑠, 𝑡) checks whether there exists a
path from 𝑠 to 𝑡 in 𝐺 , referred to as an 𝑠-𝑡 path, e.g., in Figure 1(a),
𝑄𝑟 (𝐴,𝐺) = 𝑡𝑟𝑢𝑒 because of an 𝑠-𝑡 path (𝐴, 𝐷,𝐻,𝐺).

2.2 Path-constrained reachability
Edge-labeled graphs can contain different kinds of relationships,
where each edge is assigned a specific label, e.g., RDF graphs [15].
In this case, the graph is defined as 𝐺 = (𝑉 , 𝐸, 𝐿), where 𝐿 is a
set of labels and each 𝑒 ∈ 𝐸 is assigned a label 𝑙 ∈ 𝐿. Figure
1(b) shows an edge-labeled graph, representing a social network
with three kinds of relationships, i.e., 𝐿 = {friendOf, follows,
worksFor}. Reachability queries over edge-labeled graphs can be
expressed with additional constraints on paths using edge labels
[21, 52], referred to as path-constrained reachability queries. A path-
constrained reachability query 𝑄𝑟 (𝑠, 𝑡, 𝛼) contains as arguments
source (𝑠) and target (𝑡) vertices, and an expression 𝛼 specifying
the path constraint using 𝐿. 𝑄𝑟 (𝑠, 𝑡, 𝛼) checks whether there exists
an 𝑠-𝑡 path in 𝐺 such that the path can satisfy the constraint en-
forced by 𝛼 . In general, 𝛼 is defined as a regular expression using
edge labels 𝑙 ∈ 𝐿 as literal characters and using concatenation ‘·’,
alternation ‘∪’, and the Kleene operators (star ‘∗’ or plus ‘+’) as

https://doi.org/10.1145/3555041.3589408
https://doi.org/10.1145/3555041.3589408
https://doi.org/10.1145/3555041.3589408

SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA Chao Zhang, Angela Bonifati, and M. Tamer Özsu

A
D

L

K

C
G

H

B

M

(a)

friendOf

fo
llo
w
s wo

rks
Fo
r

fo
llo
w
s

worksFor

worksFor

worksFor
fol
low

s

worksFor

frie
n
d
O
f

frie
n
d
O
f

wo
rks

For worksFor

A
D

L

K

C
G

H

B

M

(b)

Figure 1: A plain graph (a) and an edge-labeled graph (b).

meta-characters, which is generated by the following grammar:
𝛼 ::= 𝑙 |𝛼 · 𝛼 |𝛼 ∪ 𝛼 |𝛼+ |𝛼∗. The path constraint enforced by a regular
expression 𝛼 in 𝑄𝑟 (𝑠, 𝑡, 𝛼) is that the sequence of the edge labels of
an 𝑠-𝑡 path should form a word in the language of 𝛼 . For instance,
if 𝛼 = (friendOf ∪ follows)∗, then 𝑄𝑟 (𝐴,𝐺, 𝛼) = 𝑓 𝑎𝑙𝑠𝑒 in Fig-
ure 1(b) because every path from 𝐴 to 𝐺 includes worksFor. Path
queries with regular expressions as path constraints are known as
regular path queries (RPQ) [1, 3], and path-constrained reachability
queries are a subclass of RPQs, which check the existence of an
𝑠-𝑡 path that can satisfy the path constraint defined by a regular
expression. Path-constrained reachability queries have been widely
used in graph analytics [12, 21, 33, 44, 52, 56], e.g., social relation-
ships analysis in social networks, analyzing interaction pathways
of proteins in biological networks, money laundering detection in
financial transaction networks, among others.

2.3 Reachability processing
Plain reachability queries can be processed by performing online
traversal [50], e.g., breadth-first traversal (BFS), depth-first traver-
sal (DFS), or bidirectional breadth-first traversal (BiBFS). However,
these approaches visit a large portion of the graph, which is pro-
hibitively inefficient for large graphs. Path-constrained reachability
queries can be processed by guided graph traversal: a finite au-
tomata (FA) can be built according to the regular expression 𝛼 in
the query, and then the traversal is guided by the FA [3, 5]. However,
a significant portion of the graph still needs to be visited because
of the presence of the Kleene operator in 𝛼 .

The naive approach to accelerate plain reachability queries is
to build a transitive closure (TC) [2], which can be extended to
path-constrained reachability queries, called generalized transitive
closure (GTC) [21, 52]. TC computes and stores the existence of a
path between every pair of vertices in the graph. Although query
processing with TC requires only constant time, the high computa-
tion and storage costs make it infeasible in practice. GTC extends
TC by adding additional information of edge labels to deal with
path-constrained reachability queries. However, the computation
of GTC is more challenging than the computation of TC because of
the additional distinction of paths according to a large number of
possible path constraints in graphs. Consequently, computing GTC
is also infeasible in practice.

Over the past three decades, significant research has focused on
designing advanced data structures to efficiently compute and store

Table 1: A review of plain reachability indexes.

Indexing Technique Framework Index Type Input Dynamic
Tree cover [2] Tree cover Complete DAG No
Tree+SSPI [9] Tree cover Partial DAG No

Dual labeling [17] Tree cover Complete DAG No
GRIPP [43] Tree cover Partial General No

Path-tree [24, 27] Tree cover Complete DAG Yes
GRAIL [50] Tree cover Partial DAG No
Ferrari [40] Tree cover Partial DAG No

DAGGER [51] Tree cover Partial DAG Yes
2-Hop [14] 2-Hop Complete General No

Ralf et al. [39] 2-Hop Complete General Yes
3-Hop [26] 2-Hop Complete DAG No
U2-hop [7] 2-Hop Complete DAG Yes
Path-hop [8] 2-Hop Complete DAG No
TFL [13] 2-Hop Complete DAG No
DL [25] 2-Hop Complete General No
PLL [49] 2-Hop Complete General No
TOL [55] 2-Hop Complete DAG Yes
DBL [29] 2-Hop Partial General Yes

O’Reach [18] 2-Hop Partial DAG No
IP [46, 47] Approximate TC Partial DAG Yes
BFL [41] Approximate TC Partial DAG No
HL [25] - Complete DAG No

Feline [45] - Partial DAG No
Preach [31] - Partial DAG No

TCs or GTCs while providing efficient processing for (plain/path-
constrained) reachability queries. These advanced data structures
are known as reachability indexes [2, 7–11, 13, 14, 17–20, 25–27,
29, 31, 34, 35, 39–41, 43, 45, 46, 49–51, 55]. The general intuition in
designing reachability indexes is to reduce the redundant recording
of reachability information in building TCs or GTCs and to store
succinct information among different reachable pairs of vertices.
This makes it possible to derive the reachability for any pair of
vertices in the graph. The derivation process should take much
less time than the query processing using online graph traversal,
which makes indexes interesting. There exist two different types
of reachability indexes that mirror the reachability queries: plain
reachability indexes [2, 7–9, 11, 13, 14, 17–20, 25–27, 29, 31, 34,
35, 39–41, 43, 45, 46, 49–51, 55] and path-constrained reachability
indexes [10, 12, 21, 33, 44, 52, 56].

3 PLAIN REACHABILITY INDEXES
The existing plain reachability indexes can be grouped into three
main classes according to the underlying frameworks with a few
additional techniques: tree-cover [2], 2-hop labeling [14], and ap-
proximate TC [46]. The plain reachability indexes are summarized
in Table 1. The Index Type column denotes whether an index is
partial or complete. Complete indexes can process queries by using
only index lookups, while partial indexes require additional graph
traversal. The Input column indicates the type of graph that the
index assumes as input: DAG for directed acyclic and General for
general graphs. The Dynamic column indicates whether the index
can support graph updates, i.e., edge/vertex deletion and insertion.

3.1 Tree-Cover-Based Indexes
The foundation of the tree-cover index [2] is one or more intervals
attached to each vertex, which are leveraged to process reachability

An Overview of Reachability Indexes on Graphs SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA

queries. Let [𝑎𝑣, 𝑏𝑣] denote the interval attached to vertex 𝑣 . Tree-
cover approach is defined on spanning trees of a general graph and
then extended to deal with the edges that are not covered by the
spanning trees. Thus, we can identify three basic structures: (1)
trees; (2) DAGs; and (3) general graphs. The indexing techniques
[9, 17, 24, 27, 40, 43, 50, 51] based on the tree-cover framework are
listed in the the first block of Table 1. The intervals attached to
vertices differ in each of these.

Interval labeling for trees. In this class of techniques, for each
vertex 𝑣 , 𝑏𝑣 is 𝑣 ’s post-order number obtained by the post-order
traversal from the root of the tree, and 𝑎𝑣 is the lowest post-order
number of all the descendants of 𝑣 in the tree. 𝑄𝑟 (𝑠, 𝑡) can be pro-
cessed by checking if 𝑏𝑡 ∈ [𝑎𝑠 , 𝑏𝑠]. The intuition is that𝑄𝑟 (𝑠, 𝑡) can
be processed by checking whether the sub-tree rooted at 𝑠 in the
spanning tree of𝐺 contains 𝑡 , and the intervals assigned to vertices
encode sufficient information for such a checking.

Reachability in DAGs. A major problem arises when using the
interval labeling approach to deal with reachability in a DAG: if ver-
tex 𝑡 is reachable from vertex 𝑠 only via paths containing non-tree
edges, interval labeling cannot capture such paths. In the original
tree-cover approach, the problem is solved by first computing vertex
intervals based on spanning trees of the DAG and then inheriting
vertex intervals. For a non-tree edge (𝑢, 𝑣) with intervals [𝑎𝑢 , 𝑏𝑢]
and [𝑎𝑣, 𝑏𝑣] and 𝑏𝑣 ∉ [𝑎𝑢 , 𝑏𝑢], in order to record that 𝑣 is reachable
from𝑢,𝑢 inherits [𝑎𝑣, 𝑏𝑣] from 𝑣 . Consequently,𝑢 has two intervals
[𝑎𝑢 , 𝑏𝑢] and [𝑎𝑣, 𝑏𝑣]. Interval inheritance is also required for tree
edges in the DAG due to the transitivity of reachability, e.g., for
a tree edge (𝑤,𝑢), 𝑣 is reachable from𝑤 , such that𝑤 needs to in-
herit [𝑎𝑣, 𝑏𝑣] from 𝑢. Vertices in DAGs are examined in the reverse
topological order to inherit intervals. In case intervals for a vertex
happen to be adjacent, they can be merged for efficient storage, e.g.,
intervals [1, 6] and [7, 8] can be merged to interval [1, 8].

From cyclic graphs to DAGs. General graphs with directed cycles
can be transformed to a DAG using an efficient reduction method
(Tarjan’s algorithm [42]) in linear time. Specifically, all the strongly
connected components (SCC), where each vertex is reachable from
every other vertex, are identified, and each SCC is coarsened into a
representative vertex. The output of the transformation will be a
DAG. Then, 𝑄𝑟 (𝑠, 𝑡) can be processed by first checking whether 𝑠
and 𝑡 belong to the same SCC, followed by checking the reachabil-
ity in the DAG in case they are in different SCCs using the DAG
approach discussed above. Thus, most plain reachability indexes in
literature assume DAGs as input since generalization is easy.

In a nutshell, the tree-cover index is the interval labeling ap-
proach with interval inheritance. The main drawback of the tree-
cover approach is the potentially large number of intervals as each
vertex may need to inherit intervals form other vertices due to the
existence of non-tree edges in the graph. The index size is defined
as the total number of intervals allocated to vertices, and a DAG
can be covered by spanning trees of different shapes, which result
in different index sizes. The optimal tree cover [2] can lead to the
minimum index size. However, the complexity of computing the
minimum size index based on the optimal tree cover is the same as
that of computing TC [2], which is unfeasibly high in practice.

Several follow-upworks [9, 40, 50] aim at reducing the number of
intervals for each vertex. Theseworks adopt two types of designs for
reducing the number of intervals: (1) recording exactly 𝑘 intervals

(e.g., GRAIL [50]) and (2) recording at most 𝑘 intervals (e.g., Ferrari
[40]), where 𝑘 is an input parameter. In GRAIL, the 𝑘 intervals are
computed by using 𝑘 random spanning trees. In Ferrari, intervals
are merged even if they are not adjacent so as to guarantee that the
maximum number of intervals for each vertex is not larger than
𝑘 , which leads to the existence of approximate intervals. Neither
approach computes a complete index, and the query results using
index lookups may contain false positives but no false negatives.
Thus, these partial indexes can be used to guide online traversal
to compute correct query results. Although partial indexes require
additional graph traversal for query processing, their index building
time and index size scale linearly with the input graph size, making
them one of the first methods feasible for large graphs with millions
of vertices. In addition, reachability processing using these indexes
can be an order of magnitude faster than using only graph traversal.
GRAIL is extended for dynamic graphs in DAGGER [51].

Several early works extend interval labeling, including dual-
labeling [17], GRIPP [43], and path-tree [24, 27]. However, their
sophisticated designs might not be able to deal with current real-
world graphs. Specifically, dual-labeling and path-tree are designed
for tree structures e.g., XML databases, and their application to
graphs works well only if the number of non-tree edges is very low.
Although GRIPP is a partial index, it requires graph traversal if the
partial index returns false, which is not competitive compared to
the design of GRAIL and Ferrari that do not have false negatives in
the query results returned by their partial indexes.

3.2 2-Hop-Based Indexes
The 2-hop labeling lies in between transitive closure materialization
and online search (BFS, DFS, BiBFS). In the 2-hop index [14], each
vertex 𝑣 ∈ 𝑉 is labeled with two sets of vertices: 𝐿𝑖𝑛 (𝑣) and 𝐿𝑜𝑢𝑡 (𝑣).
A vertex𝑢 ∈ 𝐿𝑖𝑛 (𝑣) if 𝑣 is reachable from𝑢 and similarly for 𝐿𝑜𝑢𝑡 (𝑣).
Construction of these sets is discussed below. 𝑄𝑟 (𝑠, 𝑡) is processed
by checking whether one of the following cases can be satisfied:
(1) 𝑠 ∈ 𝐿𝑖𝑛 (𝑡); (2) 𝑡 ∈ 𝐿𝑜𝑢𝑡 (𝑠); (3) 𝐿𝑖𝑛 (𝑡) ∩ 𝐿𝑜𝑢𝑡 (𝑠) ≠ ∅, i.e., we can
compute whether 𝑡 is reachable from 𝑠 by determining whether
there exists at least a common hop𝑢. The indexing techniques based
on the 2-hop index [7, 8, 13, 18, 25, 26, 29, 39, 49, 55] are listed in
the second block of Table 1. Notice that unlike the tree-cover index,
the 2-hop index can be directly applied to general graphs.

The index size of the 2-hop index is
∑𝑛
𝑖=1 |𝐿𝑜𝑢𝑡 (𝑣𝑖) | + |𝐿𝑖𝑛 (𝑣𝑖) | for

a graph with 𝑛 vertices. The minimum 2-hop index is the one with
the minimum index size. Computing the minimum 2-hop index is
NP-hard [14]. An approximation algorithm was proposed in the
original work of the 2-hop index. However, the time complexity is
𝑂 (𝑛4), which is infeasible for large graphs.

Efficiently computing the 2-hop index while reducing the index
size maximally has been a long-standing problem. Advanced heuris-
tics have been proposed, including TFL [13], DL [25], PLL [49], and
TOL [55]. TOL is a general approach for computing the 2-hop index
with a total order of vertices as input, and TFL, DL, and PLL are
instantiations of TOL, i.e., an instantiation of a total order is used in
each of them. Let 𝑜 be a strict total order on𝑉 and 𝑜 (𝑣) be the rank
of 𝑣 in 𝑜 . TOL applies backward and forward BFSs from each vertex
𝑣 ∈ 𝑉 , and for each vertex 𝑢 visited by the BFSs, TOL adds 𝑣 to
𝐿𝑜𝑢𝑡 (𝑢) and 𝐿𝑖𝑛 (𝑢) respectively only if 𝑢 ∈ 𝑉 satisfies 𝑜 (𝑢) > 𝑜 (𝑣).

SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA Chao Zhang, Angela Bonifati, and M. Tamer Özsu

If a vertex𝑤 such that 𝑜 (𝑤) < 𝑜 (𝑣) is visited by the backward and
forward BFSs from 𝑣 , then the BFSs immediately terminate, i.e., the
search space for computing the reachability paths to and from each
𝑣 is pruned according to the total order 𝑜 . An instantiation of 𝑜 is
the topological order of a DAG (obtained after coalescing all the
SCCs), which is the strategy used in TFL. Another instantiation of
𝑜 is based on vertex degree, which is adopted in DL and PLL. It has
been proven that DL and PLL are equivalent [25].

Several works based on the 2-hop index also study how to ac-
commodate dynamic graphs. TOL can handle both insertions and
deletions by leveraging the total order of vertices. DBL [29] is a re-
cent proposal based on the 2-hop index designed for insertion-only.
The U2-hop [7] approach and the approach by Ralf et al. [39] study
the maintenance of the 2-hop index on dynamic graphs, but it has
been shown that they cannot scale to large graphs [55].

There are a few extensions of 2-hop indexing. Early works re-
place the intermediate vertices in the reachability path with graph
structures, i.e., chains in the 3-hop index [26] and trees in the path-
hop index [8]. Although these approaches can further reduce the
index size, they require more time to build the index compared
to recent 2-hop indexes. O’Reach [18], one of the state-of-the-art
indexes, builds a partial 2-hop index by selecting 𝑘 vertices and
processes queries with an extended topological order.

3.3 Approximate Transitive Closure
Let𝑂𝑢𝑡 (𝑣) be the set of all the vertices that are reachable from 𝑣 in
the graph (note that this is different from 𝐿𝑜𝑢𝑡 (𝑣) defined earlier).
Then, the computation of the TC for a graph is basically comput-
ing 𝑂𝑢𝑡 (𝑣) for every vertex 𝑣 in the graph, which is unrealistic
in practice. The intuition of an approximate TC is computing an
approximate version of 𝑂𝑢𝑡 (𝑣) efficiently. We use 𝐴𝑃 () to denote
the approximating function. Note that |𝐴𝑃 (𝑂𝑢𝑡 (𝑣)) | ≪ |𝑂𝑢𝑡 (𝑣) |.
The𝐴𝑃 () function needs to be carefully designed so that it provides
correct query results instead of random ones. The design of 𝐴𝑃 ()
can be guided by the following observation. If it is known that ver-
tex 𝑡 is reachable from vertex 𝑠 in the graph, then𝑂𝑢𝑡 (𝑡) ⊆ 𝑂𝑢𝑡 (𝑠).
If 𝐼𝑛(𝑣) is defined as the dual, namely it contains all the vertices that
reach 𝑣 , a similar observation can be obtained, i.e., if 𝑡 is reachable
from 𝑠 , then 𝐼𝑛(𝑠) ⊆ 𝐼𝑛(𝑡). Although the observation does not make
sense since it contradicts processing 𝑄𝑟 (𝑠, 𝑡), it turns out that the
contra-positive condition can be leveraged: if𝑂𝑢𝑡 (𝑡) is not a subset
of 𝑂𝑢𝑡 (𝑠), then 𝑡 is not reachable from 𝑠 in the graph. Therefore,
as long as the 𝐴𝑃 () function preserves the contra-positive condi-
tions – if 𝐴𝑃 (𝑂𝑢𝑡 (𝑡)) is not a subset of 𝐴𝑃 (𝑂𝑢𝑡 (𝑠)), then𝑂𝑢𝑡 (𝑡) is
not a subset of 𝑂𝑢𝑡 (𝑠) – the approximate TC built using the 𝐴𝑃 ()
function will not provide false negatives.

The first design of the 𝐴𝑃 () function uses a k-min-wise inde-
pendent permutation, leading to the IP index [46, 47], followed by
using a Bloom filter in BFL [41], which is one of the state-of-the-art
techniques for plain reachability indexing. Query processing using
IP or BFL does not have false negatives since the corresponding
𝐴𝑃 () function can preserve the contra-positive condition. However,
false positives might exist, which calls for additional graph traver-
sal. Similar to the case of the partial indexing techniques based on
the tree cover framework, the graph traversal can be pruned by
recursively querying the index, i.e., if all the neighbors of 𝑣 (the

vertex currently visited by the traversal from the source vertex) do
not reach the target vertex, then 𝑣 can be skipped in the traversal.

3.4 Other Techniques
A few graph reduction techniques are proposed to accelerate reach-
ability indexing, including SCARAB [23], ER [54], and RCN [53].
These reduction techniques are orthogonal to the indexing tech-
niques. Several other techniques that do not use the three indexing
frameworks discussed earlier also exist in literature, including HL
[25], Feline [45], and Preach [31]. In general, these indexes have
their own designs to deal with reachability queries. A few early
works study the maintenance of transitive closure or SCCs on dy-
namic graphs, including [19, 34, 35], but these approaches cannot
scale to large graphs [55].

4 PATH-CONSTRAINED REACHABILITY
INDEXES

The reachability indexes that support path-constrained reachability
queries𝑄𝑟 (𝑠, 𝑡, 𝛼) are generally designed for a specific type of path-
constrained expressions 𝛼 . Based on the specification of 𝛼 there
are two types of path-constrained reachability queries: alternation-
based queries, where 𝛼 = (𝑙1 ∪ 𝑙2 ∪ ...)∗, ∀𝑙𝑖 ∈ 𝐿 [12, 21, 33, 44, 56],
and concatenation-based queries, where 𝛼 = (𝑙1 ·𝑙2 · ...)∗, ∀𝑙𝑖 ∈ 𝐿[52].

Unfortunately, there is currently no index that can support both
query classes; indexes have been proposed for either one or the
other and these are shown in Table 2. As indicated in the table,
there are three index classes that support alternation-based queries:
(1) tree-based, (2) 2-hop, and (3) GTC. The first two are extensions
of their counterparts for the plain graphs, while GTC is an extended
TC enriched by edge label information specific for this query type.
There is only one index that has been proposed for concatenation.
In the remainder, we discuss each of these index classes.

Table 2: A review of path-constrained reachability indexes.

Indexing Technique Framework Path Constraint Index type Input Dynamic
Jin et al. [21] Tree cover Alternation Complete General No

Chen et al. [12] Tree cover Alternation Complete General No
Zou et al. [48, 56] GTC Alternation Complete General Yes

Landmark index [44] GTC Alternation Partial General No
P2H+ [33] 2-Hop Alternation Complete General No
DLCR [10] 2-Hop Alternation Complete General Yes

RLC index [52] 2-Hop Concatenation Complete General No

4.1 Indexes for Alternation-Based Queries
An alternation of edge labels defines a set of labels 𝐿′ ⊆ 𝐿, and the
path constraint in 𝑄𝑟 (𝑠, 𝑡, 𝛼) enforces that an 𝑠-𝑡 path should only
contain edges with labels that are in 𝐿′, e.g., if 𝛼 = (friendOf ∪
follows)∗, then 𝐿′ = {friendOf, follows}, and 𝑄𝑟 (𝐴,𝐺, 𝛼) =

𝑓 𝑎𝑙𝑠𝑒 in Figure 1(b). An alternation-based reachability query is also
known as label-constrained reachability (LCR) query.

Sufficient path-label sets. The problem of indexing alternation-
based reachability queries is first studied by Jin et al. [21], where two
foundations on edge label information for indexing such queries are
proposed. The first foundation is that if there are two 𝑠-𝑡 paths with
edge-label sets 𝑆1 and 𝑆2 and 𝑆1 ⊆ 𝑆2, then 𝑆2 is redundant, which
means recording 𝑆1 in the index is sufficient. Edge-label sets such

An Overview of Reachability Indexes on Graphs SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA

as 𝑆1 are denoted as sufficient path-label sets (SPLS). For instance, in
Figure 1(b), vertex M is reachable from vertex L via two paths: 𝑝1 =
(L, worksFor, C, worksFor,M), and 𝑝2 = (L, follows, K, worksFor,
M), and the label set of 𝑝1 is a subset of the label set of 𝑝2, such
that the former is the SPLS from 𝐿 to𝑀 . The second foundation is
that the SPLSs of paths from vertex 𝑠 to vertex 𝑡 can be obtained
by computing the cross product of the ones from vertex 𝑠 to vertex
𝑢 and the ones from vertex 𝑢 to vertex 𝑡 (transitivity of SPLSs).
For instance, in Figure 1(b), the SPLS from A to M is {follows,
worksFor}, which can be computed by using the SPLS from A to L,
i.e., {follows}, and the SPLS from L to M, i.e., {worksFor}.

4.1.1 Tree-Based Indexes. The first indexing approach is pro-
posed by Jin et al. [21], which consists of a tree-based index enriched
with SPLSs and a partial GTC for paths with non-tree edges. The
general idea is to characterize paths in the graph into 2 cases: case
(1) the first or the last edge in the path is a tree edge, and case (2)
neither the first nor the last edge is a tree edge. A partial GTC con-
taining SPLSs is pre-computed to deal with the reachability caused
by the paths in case (2). Reachability due to the paths in case (1) is
processed by combining spanning trees and the partial GTC, i.e., vis-
iting the successors of the source and the predecessors of the target
in a spanning tree and then for each possible successor-predecessor
pair checking the partial GTC. Two optimization techniques are
proposed to speed up query processing. The first optimization is
based on interval labeling to efficiently find the successors and
the predecessors in a spanning tree. The second optimization is
recording the occurrences of individual edge labels in SPLSs of
the paths from the root 𝑟 of a spanning tree to each vertex in the
spanning tree. Then, the SPLS of an 𝑠-𝑡 path in the spanning tree
can be computed by subtracting the SPLS of the 𝑟 -𝑠 path from the
SPLS of the 𝑟 -𝑡 path in the tree.

One of the state-of-the-art indexes is proposed by Chen et al.
[12]. The approach uses spanning trees to classify edges and dis-
tinguishes the reachability caused by different classes. Specifically,
after computing a spanning tree (or forest) 𝑇 in 𝐺 , directed edges
(𝑢, 𝑣) are grouped into four disjoint classes: (1) tree edge if (𝑢, 𝑣)
is an edge in 𝑇 ; (2) forward edge if 𝑣 is a descendant of 𝑢 in 𝑇 ; (3)
back edge if 𝑣 is an ancestor of 𝑢 in 𝑇 ; and (4) cross edge if 𝑣 is
neither an ancestor nor descendant of 𝑢 in 𝑇 . Tree and forward
edges are grouped together to form a tree-like structure, denoted as
T . The reachability information in T can be efficiently encoded by
the interval labeling approach enriched with SPLSs. More precisely,
as there is already a path in 𝑇 for each forward edge in T , the
interval labeling built for 𝑇 is able to encode the plain reachability
information in T . In order to efficiently record the SPLSs in T , the
second optimization technique in the approach discussed earlier
[21] is adopted, i.e., recording the SPLSs of paths from the root of
T to each 𝑣 in T and the occurrence of each individual edge label
in each SPLS. Then, 𝐺 is compressed by keeping only the vertices
and edges that can transfer the reachability information caused by
cross edges, which leads to a summary 𝐺𝑐 . Thus, 𝐺 is decomposed
into (T ,𝐺𝑐). 𝐺𝑐 is then taken as input, denoted as 𝐺1, and further
decomposed into (T 1,𝐺1

𝑐), which are the tree-like structure and
the graph summary of 𝐺1, respectively. The approach applies a re-
cursive decomposition method until the decomposition of𝐺𝑖 only
contains a tree-like structure T 𝑖 . The series of the decomposition

results are used as the index of the approach. In each decomposition
result (T 𝑖 ,𝐺𝑖

𝑐), the reachability information caused by back edges
in 𝐺𝑖 are taken into account by performing online search with a
optimization of chaining back edges, e.g., for back edges (𝑢, 𝑣) and
(𝑢′, 𝑣 ′), if 𝑢′ is a descendant of 𝑣 in T 𝑖 , then they are chained into a
back path (𝑢, 𝑣 ′). Finally, 𝑄𝑟 (𝑠, 𝑡, 𝛼) is recursively decomposed into
sub-queries that are evaluated on the series (T ,T 1, ...) with online
search for back paths, and if an 𝑠-𝑡 satisfying 𝛼 can be found by
using T 𝑖 , then query result 𝑡𝑟𝑢𝑒 will be returned.

4.1.2 GTC-Based Indexes. The problem of efficiently computing
a GTC for alternation-based reachability queries is extensively
studied by Zou et al. [48, 56]. The fundamental step is to compute a
single-source GTC, e.g., computing all the vertices that are reachable
from a source vertex and the corresponding SPLSs. A Dijkstra-like
algorithm is proposed by using the number of distinct labels in
path-label sets to simulate distances between vertices. Consider
the computation of the single-source GTC from vertex 𝐿 in Figure
1(b). 𝐻 is reachable from 𝐿 via two paths: 𝑝3 = (𝐿, worksFor, 𝐶 ,
worksFor, 𝐻) and 𝑝4 =(𝐿, worksFor, 𝐷 , friendOf, 𝐻). Path 𝑝3 is
‘shorter’ than 𝑝4 since 𝑝3 has only 1 distinct label while 𝑝4 has
2. Thus, 𝑝3 is expanded to compute SPLS from 𝐿 to 𝐺 and 𝑝4 is
ignored. An input graph is first transformed into a DAG, and then
the computation is done by following the topological order of the
DAG so as to share the single-source GTC of vertices in a bottom-up
manner. The transformation from a general graph to a DAG for
alternation-based reachability is more complicated than the one for
plain reachability discussed in Section 3, because paths in SCCs are
not equivalent due to different SPLSs. Each SCC is replaced by a
bipartite graph with in-portal and out-portal vertices. A vertex 𝑣 in
an SCC is in-portal (or out-portal) iff 𝑣 has at least one incoming
(or outgoing) edge from vertices out of the SCC. Then, the SPLSs
from in-portal to out-portal vertices are computed and recorded in
the index. In computing the reachability information within each
SCC, the Dijkstra-like algorithm is further optimized by starting
the computation from vertices of high degree; the single-source
GTC of such vertices will be leveraged to prune search space for
the subsequent computations. The index maintenance problem on
dynamic graphs is also discussed.

A partial index with online BFS has been proposed [44]. The
partial index is a set of single-source GTCs for a subset of vertices
in the graph. The subset of vertices is selected as those in the top-
𝑘 degree ranking, referred to as landmark vertices. 𝑄𝑟 (𝑠, 𝑡, 𝛼) is
processed by performing BFS with acceleration through leveraging
the partial indexwhen landmark vertices are hit during the traversal
from 𝑠 . If the single-source GTC of a landmark vertex 𝑣 that is hit
by the BFS from 𝑠 contains 𝑡 with a SPLS that can satisfy 𝛼 , then the
approach returns true. Otherwise, all the vertices that are reachable
from the landmark 𝑣 under the constraint 𝛼 can be pruned in the
subsequent search. In addition, the querying process is further
improved by computing the reachability and SPLSs of paths from
non-landmark vertices to landmark vertices, where the number of
indexed paths is controlled by a predefined parameter.

4.1.3 2-Hop-Based Indexes. P2H+ [33] is a 2-hop-based reacha-
bility index for alternation-based reachability queries. The index
utilizes the 2-hop index as the framework and adds SPLSs to deal
with path constraints. The 2-hop indexing algorithm is extended

SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA Chao Zhang, Angela Bonifati, and M. Tamer Özsu

to build the P2H+ index by leveraging the transitivity of 2-hop
reachability and SPLSs. The indexing algorithm of P2H+ performs
backward and forward BFSs from vertices sorted in a total order
according to vertex degree (from high degree to low degree), during
which pruning rules are applied to skip redundant traversal. In
addition, the indexing algorithm can guarantee that the built index
does not contain any redundancy, which is achieved by prioritizing
the visiting of edges with labels that are already contained in the
SPLSs of the paths from 𝑣 to current frontier vertices during the
BFS from each vertex 𝑣 .

DLCR [10], one of the state-of-the-art indexes, extends P2H+
to support graph updates, including edge insertions and deletions.
When an edge is updated, DLCRwill identify a set of nodes that need
to perform backward and forward BFSs to reflect the update into the
index. The BFS performed for edge updates only needs to traverse
paths that contain the updated edges. During the BFS traversal,
DLCR further identifies affected vertices that require additional
index updates to either remove redundancy (in the case of edge
insertion) or keep the index correct (in the case of edge deletion). In
general, in the case of edge insertion, the newly inserted edge could
make existing index entries redundant, which needs to be deleted.
For each index entry 𝐼𝐸 in DLCR, there might be index entries that
are redundant because of 𝐼𝐸 so that the set of such redundant index
entries, referred to as 𝑅𝐼𝐸, is not included in DLCR. However, if the
updates for reflecting the changes caused by a deleted edge require
deleting 𝐼𝐸, index entries in 𝑅𝐼𝐸 might become non-redundant so
that they need to be inserted into DLCR to keep the index correct.

4.2 Indexes for Concatenation-Based Queries
A concatenation of edge labels defines a sequence, and the corre-
sponding path constraint in 𝑄𝑟 (𝑠, 𝑡, 𝛼) enforces that the edge-label
sequence of an 𝑠-𝑡 path must be an arbitrary number of repeats of
the sequence of concatenated edge labels defined under the Kleene
operator in 𝛼 , e.g., 𝑄𝑟 (𝐿, 𝐵, worksFor · friendOf)∗) = 𝑡𝑟𝑢𝑒 in Fig-
ure 1(b). A concatenation-based reachability query is also known
as recursive label-concatenated (RLC) query.

The problem of indexing concatenation-based reachability queries
is first studied by Zhang et al. [52] which proposes the RLC index.
To index such queries, the minimum repeats (MR) of edge-label
sequence are recorded, e.g., the MR of the path (L, worksFor, D,
friendOf, H, worksFor, G, friendOf, B) is (worksFor, friendOf),
and theMR is helpful in processing𝑄𝑟 (𝐿, 𝐵, worksFor·friendOf)∗).
The RLC index leverages the 2-hop index framework and records,
additionally, MRs of edge-label sequences. Recording theMRsmight
be prohibitive due to the presence of infinite MRs of 𝑠-𝑡 paths as
a result of directed cycles on the paths. In order to deal with this
challenge, the concatenation length under the Kleene operator in 𝛼
is leveraged to guide the computation of MRs. The second challenge
is that MRs do not necessarily have the transitive property, e.g., it
is unfeasible to derive the MR of an 𝑠-𝑡 path given that the MRs of
an 𝑠-𝑢 path and a 𝑢-𝑡 path are (𝑙1) and (𝑙2), respectively. Thus, the
indexing algorithm of the RLC index separates the index building
process into two phases: the first phase computes all the possible
MRs for any (𝑠, 𝑡), and the second phase selects the transitive MRs
to build the index. Pruning rules are proposed to avoid redundant
computation and recording in the index.

5 OPEN CHALLENGES
The state-of-the-art plain reachability indexes can be built for a
large graph efficiently, e.g., BFL can be built in a few seconds on
graphs with millions of vertices, with an index size of only a few
hundred megabytes. The main challenge is that these advanced
indexing techniques, i.e., partial indexeswith guided graph traversal,
are mainly designed for static graphs. The only approaches that can
deal with graph updates are DAGGER [51], IP [47], and DBL [29].
However, the dynamic approach adopted in IP is based on DAGGER
that could be no faster than BFS [55], and DBL can only support
insertion-only graphs. Having partial indexes, which can process
queries and deal with graph updates of insertions and deletions
efficiently, is highly interesting.

A partial index only records partially reachability information in
an input graph, so that they can scale to large graphs. 𝑄𝑟 (𝑠, 𝑡) can
be processed by performing online traversal that can be guided by
using index lookups in partial indexes. Let 𝑣 be a current frontier
vertex during the online traversal from 𝑠 . In a partial index without
false positives, if the index lookup for evaluating the reachability
from 𝑣 to 𝑡 returns true, the online traversal can immediately termi-
nate. In the case of a partial index without false negatives, the online
traversal does not need to visit the outgoing neighbours of 𝑣 if the
index lookup for evaluating the reachability from 𝑣 to 𝑡 returns
false. From the evolution of plain reachability indexing techniques
over the last three decades, we observe that partial indexes play an
important role in making reachability indexes scale to large graphs,
i.e., obtaining efficient query processing with realistic indexing cost.
More importantly, partial indexes that do not have false negatives
in query results using only index lookups (e.g., GRAIL, Ferrari, IP,
and BFL) have demonstrable advantages. That is because if a ver-
tex 𝑡 is not reachable from 𝑠 , 𝑄𝑟 (𝑠, 𝑡) can stop immediately, and in
real-world graphs there will be many such vertices 𝑠 .

According to Table 2, the only partial index for path-constrained
reachability queries is the landmark index. However, landmark
index is a partial index without false positives, which means that if
the index returns false, the online traversal for query processing has
to continue. As noted above, in real-world graphs, it is likely that
there will be many vertices that might not be reachable from a given
source vertex, and, therefore, it would be interesting to have a partial
index without false negatives for path-constrained reachability
queries. Equally importantly, we observe that the index construction
cost of path-constrained reachability indexes is high and takes hours
of indexing for graphs with millions of vertices [10, 12, 33, 52]. This
also calls for the design of partial indexes without false negatives.
Analogously, practical issues of updates on dynamic graphs should
be also taken into account for the integration into GDBMSs.

Another important challenge for path-constrained reachability
indexes is that the existing solutions can only deal with a specific
type of path constraint 𝛼 , as shown in Table 2. However, real-world
query log analysis [6] has shown that practical path constraints
have many more types. It will be of great interest to have one
indexing technique for general path constraints and thus the entire
fragment of regular path queries [5].

Finally, the parallel computation of indexes (e.g., parallel 2-hop
indexing [22]) is also worth exploring.

An Overview of Reachability Indexes on Graphs SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA

REFERENCES
[1] Serge Abiteboul and Victor Vianu. 1997. Regular Path Queries with Constraints.

In Proc. 16th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database
Systems. 122–133. https://doi.org/10.1145/263661.263676

[2] R. Agrawal, A. Borgida, and H. V. Jagadish. 1989. Efficient Management of
Transitive Relationships in Large Data and Knowledge Bases. In Proc. ACM
SIGMOD Int. Conf. on Management of Data. 253–262. https://doi.org/10.1145/
67544.66950

[3] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and
Domagoj Vrgoč. 2017. Foundations of Modern Query Languages for Graph
Databases. ACM Comput. Surv. 50, 5, Article 68 (2017), 40 pages. https://doi.org/
10.1145/3104031

[4] Marc Barthélemy. 2011. Spatial networks. Physics Reports 499, 1 (2011), 1–101.
https://doi.org/10.1016/j.physrep.2010.11.002

[5] Angela Bonifati, George Fletcher, Hannes Voigt, Nikolay Yakovets, and H. V.
Jagadish. 2018. Querying Graphs. Morgan & Claypool Publishers. https://doi.
org/10.2200/S00873ED1V01Y201808DTM051

[6] Angela Bonifati, Wim Martens, and Thomas Timm. 2019. Navigating the Maze
of Wikidata Query Logs. In Proc. 28th Int. World Wide Web Conf. 127–138. https:
//doi.org/10.1145/3308558.3313472

[7] Ramadhana Bramandia, Byron Choi, and Wee Keong Ng. 2010. Incremental
Maintenance of 2-Hop Labeling of Large Graphs. IEEE Trans. Knowl. and Data
Eng. 22, 5 (2010), 682–698. https://doi.org/10.1109/TKDE.2009.117

[8] Jing Cai and Chung Keung Poon. 2010. Path-Hop: Efficiently Indexing Large
Graphs for Reachability Queries. In Proc. 19th ACM Int. Conf. on Information and
Knowledge Management. 119–128. https://doi.org/10.1145/1871437.1871457

[9] Li Chen, Amarnath Gupta, and M. Erdem Kurul. 2005. Stack-Based Algorithms
for Pattern Matching on DAGs. In Proc. 31st Int. Conf. on Very Large Data Bases.
493–504. https://dl.acm.org/doi/10.5555/1083592.1083651

[10] Xin Chen, You Peng, SiboWang, and Jeffrey Xu Yu. 2022. DLCR: Efficient Indexing
for Label-Constrained Reachability Queries on Large Dynamic Graphs. Proc.
VLDB Endowment 15, 8 (2022), 1645–1657. https://doi.org/10.14778/3529337.
3529348

[11] Y. Chen and Y. Chen. 2008. An Efficient Algorithm for Answering Graph
Reachability Queries. In Proc. 24th Int. Conf. on Data Engineering. 893–902.
https://doi.org/10.1109/ICDE.2008.4497498

[12] Yangjun Chen and Gagandeep Singh. 2021. Graph Indexing for Efficient Evalua-
tion of Label-constrained Reachability Queries. ACM Trans. Database Syst. 46, 2,
Article 8 (2021), 50 pages. https://doi.org/10.1145/3451159

[13] James Cheng, Silu Huang, Huanhuan Wu, and Ada Wai-Chee Fu. 2013. TF-
Label: A Topological-Folding Labeling Scheme for Reachability Querying in a
Large Graph. In Proc. ACM SIGMOD Int. Conf. on Management of Data. 193–204.
https://doi.org/10.1145/2463676.2465286

[14] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability and
Distance Queries via 2-Hop Labels. SIAM J. on Comput. 32, 5 (2003), 1338–1355.
https://doi.org/10.1137/S0097539702403098

[15] Klyne Graham, J. Carroll Jeremy, and McBride Brian. 2014. RDF 1.1 Concepts
and Abstract Syntax. W3C Recommendation. (25 Feb. 2014). https://www.w3.
org/TR/rdf11-concepts.

[16] Claudio Gutierrez and Juan F. Sequeda. 2021. Knowledge Graphs. Commun. ACM
64, 3 (2021), 96–104. https://doi.org/10.1145/3418294

[17] Haixun Wang, Hao He, Jun Yang, P. S. Yu, and J. X. Yu. 2006. Dual Labeling:
Answering Graph Reachability Queries in Constant Time. In Proc. 22nd Int. Conf.
on Data Engineering. 75–75. https://doi.org/10.1109/ICDE.2006.53

[18] Kathrin Hanauer, Christian Schulz, and Jonathan Trummer. 2022. O’Reach: Even
Faster Reachability in Large Graphs. ACM J. Exp. Algorithmics 27, Article 4.2
(2022), 27 pages. https://doi.org/10.1145/3556540

[19] M.R. Henzinger and V. King. 1995. Fully dynamic biconnectivity and transitive
closure. In Proc. 36th Annual Symp. on Foundations of Computer Science. 664–672.
https://doi.org/10.1109/SFCS.1995.492668

[20] H. V. Jagadish. 1990. A Compression Technique to Materialize Transitive Closure.
ACM Trans. Database Syst. 15, 4 (1990), 558–598. https://doi.org/10.1145/99935.
99944

[21] Ruoming Jin, Hui Hong, HaixunWang, Ning Ruan, and YangXiang. 2010. Comput-
ing Label-Constraint Reachability in Graph Databases. In Proc. ACM SIGMOD Int.
Conf. on Management of Data. 123–134. https://doi.org/10.1145/1807167.1807183

[22] Ruoming Jin, Zhen Peng, Wendell Wu, Feodor Dragan, Gagan Agrawal, and Bin
Ren. 2020. Parallelizing Pruned Landmark Labeling: Dealing with Dependencies
in Graph Algorithms. In Proc. 34th Annual Int. Conf. on Supercomputing. Article
11, 13 pages. https://doi.org/10.1145/3392717.3392745

[23] Ruoming Jin, Ning Ruan, Saikat Dey, and Jeffrey Yu Xu. 2012. SCARAB: Scaling
Reachability Computation on Large Graphs. In Proc. ACM SIGMOD Int. Conf. on
Management of Data. 169–180. https://doi.org/10.1145/2213836.2213856

[24] Ruoming Jin, Ning Ruan, Yang Xiang, and Haixun Wang. 2011. Path-Tree: An
Efficient Reachability Indexing Scheme for Large Directed Graphs. ACM Trans.
Database Syst. 36, 1, Article 7 (2011), 44 pages. https://doi.org/10.1145/1929934.
1929941

[25] Ruoming Jin and Guan Wang. 2013. Simple, Fast, and Scalable Reachability
Oracle. Proc. VLDB Endowment 6, 14 (2013), 1978–1989. https://doi.org/10.14778/
2556549.2556578

[26] Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 2009. 3-HOP: A High-
Compression Indexing Scheme for Reachability Query. In Proc. ACM SIGMOD Int.
Conf. on Management of Data. 813–826. https://doi.org/10.1145/1559845.1559930

[27] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. 2008. Efficiently An-
swering Reachability Queries on Very Large Directed Graphs. In Proc. ACM
SIGMOD Int. Conf. on Management of Data. 595–608. https://doi.org/10.1145/
1376616.1376677

[28] Mikaela Koutrouli, Evangelos Karatzas, David Paez-Espino, and Georgios A
Pavlopoulos. 2020. A Guide to Conquer the Biological Network Era Using Graph
Theory. Front. Bioeng. Biotechnol. 8 (2020), 34. https://doi.org/10.3389/fbioe.2020.
00034

[29] Qiuyi Lyu, Yuchen Li, Bingsheng He, and Bin Gong. 2021. DBL: Efficient Reacha-
bility Queries on Dynamic Graphs. In Proc. 26th Int. Conf. on Database Systems for
Advanced Applications. 761–777. https://doi.org/10.1007/978-3-030-73197-7_52

[30] Nav Mathur. 2021. White Paper: Neo4j for Financial Services. https://neo4j.com/
whitepapers/financial-services-neo4j.

[31] Florian Merz and Peter Sanders. 2014. PReaCH: A fast lightweight reachability
index using pruning and contraction hierarchies. In In Proc. 22th European Symp.
on Algorithms. 701–712. https://doi.org/10.1007/978-3-662-44777-2_58

[32] Mark Newman. 2010. Networks: An Introduction. Oxford University Press. https:
//doi.org/10.1093/acprof:oso/9780199206650.001.0001

[33] You Peng, Ying Zhang, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2020. Answer-
ing Billion-Scale Label-Constrained Reachability Queries within Microsecond.
Proc. VLDB Endowment 13, 6 (2020), 812–825. https://doi.org/10.14778/3380750.
3380753

[34] Liam Roditty. 2013. Decremental Maintenance of Strongly Connected Compo-
nents. In Proc. 24th Annual ACM-SIAM Symp. on Discrete Algorithms. 1143–1150.
https://doi.org/10.1137/1.9781611973105.82

[35] Liam Roditty and Uri Zwick. 2004. A Fully Dynamic Reachability Algorithm for
Directed Graphs with an Almost Linear Update Time. In Proc. 36th Annual ACM
Symp. on Theory of Computing. 184–191. https://doi.org/10.1145/1007352.1007387

[36] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer
Özsu. 2017. The Ubiquity of Large Graphs and Surprising Challenges of Graph
Processing. Proc. VLDB Endowment 11, 4 (2017), 420–431. https://doi.org/10.
1145/3186728.3164139

[37] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M Tamer
Özsu. 2020. The ubiquity of large graphs and surprising challenges of graph
processing: extended survey. VLDB J. 29, 2 (2020), 595–618. https://doi.org/10.
1007/s00778-019-00548-x

[38] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar,
Renzo Angles, Walid G. Aref, Marcelo Arenas, Maciej Besta, Peter A. Boncz,
Khuzaima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig, Bern-
hard Haslhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana Iamnitchi,
Vasiliki Kalavri, Hugo Kapp, Wim Martens, M. Tamer Özsu, Eric Peukert, Stefan
Plantikow, Mohamed Ragab, Matei Ripeanu, Semih Salihoglu, Christian Schulz,
Petra Selmer, Juan F. Sequeda, Joshua Shinavier, Gábor Szárnyas, Riccardo Tom-
masini, Antonino Tumeo, Alexandru Uta, Ana Lucia Varbanescu, Hsiang-Yun
Wu, Nikolay Yakovets, Da Yan, and Eiko Yoneki. 2021. The future is big graphs:
A community view on graph processing systems. Commun. ACM 64, 9 (2021),
62–71. https://doi.org/10.1145/3434642

[39] R. Schenkel, A. Theobald, and G.Weikum. 2005. Efficient creation and incremental
maintenance of the HOPI index for complex XML document collections. In Proc.
21st Int. Conf. on Data Engineering. 360–371. https://doi.org/10.1109/ICDE.2005.57

[40] S. Seufert, A. Anand, S. Bedathur, and G. Weikum. 2013. FERRARI: Flexible and
efficient reachability range assignment for graph indexing. In Proc. 29th Int. Conf.
on Data Engineering. 1009–1020. https://doi.org/10.1109/ICDE.2013.6544893

[41] J. Su, Q. Zhu, H. Wei, and J. X. Yu. 2017. Reachability Querying: Can It Be
Even Faster? IEEE Trans. Knowl. and Data Eng. 29, 3 (2017), 683–697. https:
//doi.org/10.1109/TKDE.2016.2631160

[42] Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM J. on
Comput. 1, 2 (1972), 146–160. https://doi.org/10.1137/0201010

[43] Silke Trißl and Ulf Leser. 2007. Fast and Practical Indexing and Querying of Very
Large Graphs. In Proc. ACM SIGMOD Int. Conf. on Management of Data. 845–856.
https://doi.org/10.1145/1247480.1247573

[44] Lucien D.J. Valstar, George H.L. Fletcher, and Yuichi Yoshida. 2017. Landmark
Indexing for Evaluation of Label-Constrained Reachability Queries. In Proc. ACM
SIGMOD Int. Conf. on Management of Data. 345–358. https://doi.org/10.1145/
3035918.3035955

[45] Renê Rodrigues Veloso, Loïc Cerf, Wagner Meira Jr., and Mohammed J. Zaki.
2014. Reachability Queries in Very Large Graphs: A Fast Refined Online Search
Approach. In Proc. 17th Int. Conf. on Extending Database Technology. 511–522.
https://openproceedings.org/EDBT/2014/paper_166.pdf

[46] Hao Wei, Jeffrey Xu Yu, Can Lu, and Ruoming Jin. 2014. Reachability Querying:
An Independent Permutation Labeling Approach. Proc. VLDB Endowment 7, 12
(2014), 1191–1202. https://doi.org/10.14778/2732977.2732992

https://doi.org/10.1145/263661.263676
https://doi.org/10.1145/67544.66950
https://doi.org/10.1145/67544.66950
https://doi.org/10.1145/3104031
https://doi.org/10.1145/3104031
https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.1145/3308558.3313472
https://doi.org/10.1145/3308558.3313472
https://doi.org/10.1109/TKDE.2009.117
https://doi.org/10.1145/1871437.1871457
https://dl.acm.org/doi/10.5555/1083592.1083651
https://doi.org/10.14778/3529337.3529348
https://doi.org/10.14778/3529337.3529348
https://doi.org/10.1109/ICDE.2008.4497498
https://doi.org/10.1145/3451159
https://doi.org/10.1145/2463676.2465286
https://doi.org/10.1137/S0097539702403098
https://www.w3.org/TR/rdf11-concepts
https://www.w3.org/TR/rdf11-concepts
https://doi.org/10.1145/3418294
https://doi.org/10.1109/ICDE.2006.53
https://doi.org/10.1145/3556540
https://doi.org/10.1109/SFCS.1995.492668
https://doi.org/10.1145/99935.99944
https://doi.org/10.1145/99935.99944
https://doi.org/10.1145/1807167.1807183
https://doi.org/10.1145/3392717.3392745
https://doi.org/10.1145/2213836.2213856
https://doi.org/10.1145/1929934.1929941
https://doi.org/10.1145/1929934.1929941
https://doi.org/10.14778/2556549.2556578
https://doi.org/10.14778/2556549.2556578
https://doi.org/10.1145/1559845.1559930
https://doi.org/10.1145/1376616.1376677
https://doi.org/10.1145/1376616.1376677
https://doi.org/10.3389/fbioe.2020.00034
https://doi.org/10.3389/fbioe.2020.00034
https://doi.org/10.1007/978-3-030-73197-7_52
https://neo4j.com/whitepapers/financial-services-neo4j
https://neo4j.com/whitepapers/financial-services-neo4j
https://doi.org/10.1007/978-3-662-44777-2_58
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.14778/3380750.3380753
https://doi.org/10.14778/3380750.3380753
https://doi.org/10.1137/1.9781611973105.82
https://doi.org/10.1145/1007352.1007387
https://doi.org/10.1145/3186728.3164139
https://doi.org/10.1145/3186728.3164139
https://doi.org/10.1007/s00778-019-00548-x
https://doi.org/10.1007/s00778-019-00548-x
https://doi.org/10.1145/3434642
https://doi.org/10.1109/ICDE.2005.57
https://doi.org/10.1109/ICDE.2013.6544893
https://doi.org/10.1109/TKDE.2016.2631160
https://doi.org/10.1109/TKDE.2016.2631160
https://doi.org/10.1137/0201010
https://doi.org/10.1145/1247480.1247573
https://doi.org/10.1145/3035918.3035955
https://doi.org/10.1145/3035918.3035955
https://openproceedings.org/EDBT/2014/paper_166.pdf
https://doi.org/10.14778/2732977.2732992

SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA Chao Zhang, Angela Bonifati, and M. Tamer Özsu

[47] Hao Wei, Jeffrey Xu Yu, Can Lu, and Ruoming Jin. 2018. Reachability Querying:
An Independent Permutation Labeling Approach. VLDB J. 27, 1 (2018), 1–26.
https://doi.org/10.1007/s00778-017-0468-3

[48] Kun Xu, Lei Zou, Jeffery Xu Yu, Lei Chen, Yanghua Xiao, and Dongyan Zhao.
2011. Answering Label-Constraint Reachability in Large Graphs. In Proc. 20th
ACM Int. Conf. on Information and Knowledge Management. 1595–1600. https:
//doi.org/10.1145/2063576.2063807

[49] Yosuke Yano, Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast and
Scalable Reachability Queries on Graphs by Pruned Labeling with Landmarks and
Paths. In Proc. 22nd ACM Int. Conf. on Information and Knowledge Management.
1601–1606. https://doi.org/10.1145/2505515.2505724

[50] Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki. 2010. GRAIL: Scalable
Reachability Index for Large Graphs. Proc. VLDB Endowment 3, 1–2 (2010),
276–284. https://doi.org/10.14778/1920841.1920879

[51] Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki. 2013. DAGGER: A Scalable
Index for Reachability Queries in Large Dynamic Graphs. arXiv:1301.0977

[52] Chao Zhang, Angela Bonifati, Hugo Kapp, Vlad Ioan Haprian, and Jean-Pierre
Lozi. 2022. A Reachability Index for Recursive Label-Concatenated Graph Queries.

arXiv:2203.08606
[53] Junfeng Zhou, Jeffrey Xu Yu, Yaxian Qiu, Xian Tang, Ziyang Chen, and Ming Du.

2023. Fast Reachability Queries Answering Based on RCNRCN Reduction. IEEE
Trans. Knowl. and Data Eng. 35, 3 (2023), 2590–2609. https://doi.org/10.1109/
TKDE.2021.3108433

[54] Junfeng Zhou, Shijie Zhou, Jeffrey Xu Yu, Hao Wei, Ziyang Chen, and Xian
Tang. 2017. DAG Reduction: Fast Answering Reachability Queries. In Proc. ACM
SIGMOD Int. Conf. on Management of Data. 375–390. https://doi.org/10.1145/
3035918.3035927

[55] Andy Diwen Zhu, Wenqing Lin, Sibo Wang, and Xiaokui Xiao. 2014. Reachability
Queries on Large Dynamic Graphs: A Total Order Approach. In Proc. ACM
SIGMOD Int. Conf. on Management of Data. 1323–1334. https://doi.org/10.1145/
2588555.2612181

[56] Lei Zou, Kun Xu, Jeffrey Xu Yu, Lei Chen, Yanghua Xiao, and Dongyan Zhao.
2014. Efficient Processing of Label-Constraint Reachability Queries in Large
Graphs. Inf. Syst. 40 (March 2014), 47–66. https://doi.org/10.1016/j.is.2013.10.003

https://doi.org/10.1007/s00778-017-0468-3
https://doi.org/10.1145/2063576.2063807
https://doi.org/10.1145/2063576.2063807
https://doi.org/10.1145/2505515.2505724
https://doi.org/10.14778/1920841.1920879
https://arxiv.org/abs/1301.0977
https://arxiv.org/abs/2203.08606
https://doi.org/10.1109/TKDE.2021.3108433
https://doi.org/10.1109/TKDE.2021.3108433
https://doi.org/10.1145/3035918.3035927
https://doi.org/10.1145/3035918.3035927
https://doi.org/10.1145/2588555.2612181
https://doi.org/10.1145/2588555.2612181
https://doi.org/10.1016/j.is.2013.10.003

	Abstract
	1 Introduction
	2 Background
	2.1 Plain reachability
	2.2 Path-constrained reachability
	2.3 Reachability processing

	3 Plain Reachability Indexes
	3.1 Tree-Cover-Based Indexes
	3.2 2-Hop-Based Indexes
	3.3 Approximate Transitive Closure
	3.4 Other Techniques

	4 Path-Constrained Reachability Indexes
	4.1 Indexes for Alternation-Based Queries
	4.2 Indexes for Concatenation-Based Queries

	5 Open Challenges
	References

