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Introduction

A good numerical method for the convection-diffusion equation is important in itself but it is also a test bed for more complex systems such as the Navier-Stokes equations. A finite element method (FEM) combined with a first or second order implicit in time discretization without upwinding works only if a CFL condition is satisfied, a severe constraint if the viscous coefficient is small (the method is also known as Arakawa's scheme in meteorology [START_REF] Jespersen | Arakawa's method is a finite-element method[END_REF]). Hence in the eighties a number of upwinding schemes have been proposed in particular by K. Baba et al [START_REF] Baba | On a conservative upwind finite element scheme for convective diffusion equations[END_REF], J.-P. Benque et al [START_REF] Benque | A finite element method for navier-stokes equations[END_REF] T.J.R. Hughes [START_REF] Hughes | The Finite Element Method[END_REF] and O. Pironneau [START_REF] Pironneau | On the transport-diffusion algorithm and its applications to the navier-stokes equations[END_REF]. Later, in the nineties Finite Volume methods and Discontinuous Galerkin methods were proposed for non-solenoidal convective velocities (see for example A. Ern et al [START_REF] Ern | Discontinuous galerkin methods for friedrichs' systems[END_REF].)

Recently we were faced with the problem of finding a good method for the computation of the probability density of a process via the Kolmogorov forward equation. Here positivity and conservativity are essential. A more subjective criteria is the numerical diffusivity. It became an ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/ opportunity to review the state of the art forty years after the above mentioned methods were proposed, what R. Glowinski would call a rear-guard battle. Nevertheless, the following methods are popular:

• The Primal Characteristic-Galerkin method (PCGM) proposed in [START_REF] Pironneau | On the transport-diffusion algorithm and its applications to the navier-stokes equations[END_REF] is very precise but known to diverge in some cases when the viscosity is zero [START_REF] Suli | Convergence and non-linear stability of the lagrange-galerkin method for the navier-stokes equations[END_REF] and it is not conservative.

It is convergent when mass-lumping is used [START_REF] Pironneau | Stability and convergence of a galerkin-characteristics finite element scheme of lumped mass type[END_REF] but then it is too diffusive. • The Dual Characteristic-Galerkin method (DCGM) proposed in [START_REF] Benque | A finite element method for navier-stokes equations[END_REF] by J.P. Benque et al. was never shown to converge except possibly when the initial and convected triangulations are intersected. • T.J.R. Hughes' streamline upwinding method (SUPG) [START_REF] Hughes | The Finite Element Method[END_REF], also called Galerkin Leastsquare upwinding [START_REF] Johnson | Finite element methods for linear hyperbolic equation[END_REF], easy to implement, conservative and convergent but numerically diffusive, even when the upwinding parameter is tuned to the problem.

In the present note we study the DCGM with numerical quadrature for the nonlinear integral, prove that it is conservative, L 2 -stable and convergent when the diffusion coefficient ν is not zero. Proposition 5, below, shows that the method is O(h + h 2 /δt ) when ν h 2 /δt ; δt is the time step and h is the size of the edges of the triangulation.

The numerical section shows the superiority of DCGM over all 4 above cited methods. But DCGM is difficult to program. Indeed it is hard (but not computer intensive) to find in which element of the triangulation lies a given point, a well known problem of computational geometry [START_REF] Preparata | Computational Geometry[END_REF].

Note also that the paper analyzes only the case of homogeneous Neumann condition. It ends with a numerical test with non-homogenous Dirichlet conditions for the Navier-Stokes equations, but the error analysis does not apply and it seems that it is numerically sensitive to the choice of the time step.

The Dual Characteristic-Galerkin Method

Given a real parameter ν > 0, a bounded open set Ω of R d , d = 2, 3, a smooth velocity field a : Ω × (0, T ) → R d and an initial condition u 0 : R d → R, we wish to find u : Ω × (0, T ) → R such that, at all time t ∈ (0, T ),

∂ t u + a • ∇u -ν∆u = 0, u(0) = u 0 in Ω, ∂ n u = 0 on ∂Ω. ( 1 
)
Let ā be the extension of a by zero outside Ω. Define:

η(t ) = ā(η(t )), η(0) = x and η ± (x) = η(±δt ).
Recall that

∂ t u(x, t ) + a(x) • ∇u(x, t ) = lim δt →0 1 δt [u(x, t ) -u(η -(x), t -δt )].
We assume that ∇•a = 0 and a•n = 0 at the boundary Γ := ∂Ω, so that η ± (Ω) = Ω and det∇η ± = 1. Hence two variational formulations of the problem discretized in time are feasible,

Ω ( 1 δt (u n û -u n-1 • η -û) + ν∇u n • ∇ û) = 0 ∀ û ∈ H 1 (Ω), (P r i mal f or m), Ω ( 1 δt (u n û -u n-1 û • η + ) + ν∇u n • ∇ û) = 0 ∀ û ∈ H 1 (Ω), (Dual f or m). ( 2 
)
We have used η + (η -(x)) = x and,

Ω f (x)g (η -(x)) = η -(Ω) g (y) f (η + (y))/det∇η -(y) = Ω g (y) f (η + (y)). (3) 
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A spatial discretization with the Finite Element Method (FEM) of the first line in (2) leads to the Primal Characteristic-Galerkin method (PCGM); on the second line it leads to the Dual Characteristic-Galerkin method (DCGM): finds u n ∈ V h such that

Ω u n h ûh + δt ν∇u n h • ∇ ûh = i ∈I u n-1 h (ξ i ) ûh (η i )ω i , ∀ ûh ∈ V h , (4) 
where,

• Ω is polygonal so as to be covered by a triangulation ∪ k T k .

• The points {ξ i } i ∈I and positive weights {ω i } i ∈I define a quadrature rule which must be exact at least for continuous piecewise-P 2 functions on the triangulation. We assume that the quadrature is defined on triangles so as to write

i ∈I f (ξ i )ω i := k i ∈I (T k ) f (ξ i )ω i k , I = ∪ k I (T k ). ( 5 
)
Example 1. In 2D one may choose the quadrature points at the mid edges and ω i k = 1 3 , but more precise formulae are permitted.

• η i ∈ Ω is an approximation of η + with |η i -η + (ξ i )| ≤ C δt 2 . For example η + a (x) = x + a(x)δt + σ 2 δt 2 a(x) • ∇a(x), σ = 0 or 1, η i = η + a (ξ i ). (6) 
• V h is the P 1 continuous finite element space.

Proposition 2. DCGM conserves mass in the sense that

Ω u n h = Ω u 0 h , ∀n.
Proof: Simply replace ûh by 1 in the scheme.

Proposition 3. Assume that the triangulation is regular, in the sense of [START_REF] Ph | Finite Element Methods (Part 1), volume Handbook of Numerical Analysis II[END_REF](p131) , i.e. for all triangles, the ratio of largest edge to the radius of the inscribed circle is bounded independently of h.Then DCGM is stable:

u n h νδt ≤ 1 + |detA|δt 2 +C h 2 ν u n-1 h νδt where v νδt := (|v| 2 0 + δt ν|∇v| 2 0 ) 1 2
, C is a generic constant and h is the length of the longest edges in the triangulation.

Proof: The proof is given in 2D with the quadrature at the mid-edges (Example 1) and scheme [START_REF] Hughes | The Finite Element Method[END_REF].

The discrete Cauchy-Schwarz inequality applied to the right hand-side of (4) combined with the choice ûh = u n h in (4), leads to

u n h 2 νδt ≤ i ∈I u n-1 h (ξ i ) 2 ω i 1 2 i ∈I u n h (η i ) 2 ω i 1 2 ≤ u n-1 h νδt i ∈I u n h (η i ) 2 ω i 1 2 , ( 7 
)
because the quadrature is exact for (u n-1 h ) 2 and because

|u n-1 h | 0 ≤ u n-1 h νδt .
The map ξ → η + a (ξ) defined by ( 6) transforms a triangle T k of the triangulation into T k and {η i , ω i } i ∈I is a quadrature rule which is almost exact on P 2 functions of T k . We will show that, for some C ,

k i ∈I (T k ) u n h (η i ) 2 ω i k ≤ 1 +C ( h 2 ν + δt 2 ) u n h 2 νδt . ( 8 
)
Proof of (8) in the linear case Assume that a is linear in x = (x, y) T with ∇ • a = 0, and consider the case σ = 0 in [START_REF] Hughes | The Finite Element Method[END_REF],

η + (x) = x + δt a(x) = x + δt a 0 1 a 0 2 + δt ∂ x a 1 x + ∂ y a 1 y ∂ x a 2 x -∂ x a 1 y = η + a (x).
It is not quite an isometry because det∇(x

+ aδt ) = 1 -[(∂ x a 1 ) 2 + ∂ y a 1 ∂ x a 2 ]δt 2 .
Consider the quadrature at the mid edges with weight ω i k = 1 3 |T k |, the area of T k . A triangle (q 1 , q 2 , q 3 ) is transformed by η + into the triangle (q 1 , q2 , q3 ) with qj = q j + δt a 0 + δt (∇a) T q j . Obviously a mid edge 1 2 (q j 1 + q j 2 ) of T k is mapped into a mid edge of T k . Therefore, the only error is due to the variation of the area of the triangle:

| T k | =det∇(x + δt a)|T k |. Indeed, as u n h (η + ) is affine on T k and because of (3), i ∈I (T k ) u n h (η i ) 2 ω i k = |(u h • η + ) 2 | 0, T k = (1 -δt 2 det∇a)|u 2 h | 0,T k ,
because the quadrature is exact for

P 2 functions; | f | 0,T is the integral of f on T .

Proof in the general case

Consider a triangle T k and a Taylor expansion of a about x 0 , the center of T k ,

a(x) = a 0 + A(x -x 0 ) + 1 2 (x -x 0 ) ⊗ (x -x 0 ) : Φ(x).
With scheme [START_REF] Hughes | The Finite Element Method[END_REF], for some bounded function Ψ,

η + a (x) = x + δt a 0 + A(x -x 0 ) + 1 2 (x -x 0 ) ⊗ (x -x 0 ) : Φ(x) + σ 2 δt Aa 0 + A 2 (x -x 0 ) + a 0 ⊗ (x -x 0 ) : Φ(x) + (x -x 0 ) ⊗ (x -x 0 )Ψ(A, Φ, ∇Φ It is of the form η + a (x) = η l (x) + δt (x -x 0 ) ⊗ (x -x 0 ) : Ψ 1 where η l (x) := x + δt (a 1 + A 1 (x -x 0 )
), and where a 1 , A 1 , Ψ 1 are affine in δt .

Recall the notation η i := η + a (ξ i ) and let η i l := η l (ξ i ). The segment [η i l , η i ] cuts a finite number of edges of the triangulation. Let these intersections be {ξ i j } J -1 1 . With the convention that ξ i 0 := η i l and ξ i J := η i , we can write

u n h (η i ) 2 -u n h (η i l ) 2 = 0≤ j ≤J -1 (u n h (ξ i j +1 ) 2 -u n h (ξ i j ) 2 ).
Each term is continuously differentiable, so the following Taylor expansion is valid,

u n h (η i ) 2 -u n h (η i l ) 2 = 2 0≤ j ≤J -1 u n h (x i j ) • ∇u n j (x i j )(ξ i j +1 -ξ i j ) ≤ 2 max j |u n h (x i j ) • ∇u n j (x i j )| |η i -η i l |,
where

x i j ∈ [ξ i j , ξ i j +1 ]. Let x i M = arg max j |u n h (x i j ) • ∇u n j (x i j )|. Then we have found x i M ∈ [η i , η i l ] such that, u n h (η i ) 2 ≤ u n h (η i l ) 2 + 2|u n h (x i M ) • ∇u n j (x i M )| |η i -η i l |.
By hypothesis ∇•a = 0, so A is as above . Hence, x → η l (x) being affine (see [START_REF] Jespersen | Arakawa's method is a finite-element method[END_REF]

), i ∈I (T k ) u n h (η i l ) 2 ω i k is bounded by (1 -detA 1 δt 2 )|u n h | 2 0,T k . Now |η i -η i l | = δt (ξ i -x 0 ) ⊗ (ξ i -x 0 ) : Ψ 1 |, so, i ∈I (T k ) u n h (η i )) 2 ω i k ≤ (1 -detA 1 δt 2 )|u n h | 2 0,T k + h 2 δt Ψ 1 ∞ i ∈I (T k ) 2|u n h (x i M ) • ∇u n h (x i M )|ω i k A discrete Cauchy-Schwarz inequality leads to, 2|u n h (x i M )||∇u n h (x i M )| ≤ u n h (x i M ) 2 + |∇u n h (x i M )| 2 ≤ 1 νδt u n h (x i M ) 2 + νδt |∇u n h (x i M )| 2 .
At the cost of a multiplicative constant we may replace x i M by ξ j (i ) , the nearest quadrature point in the triangle of x i M and obtain,

k i ∈I (T k ) 2|u n h (x i M ) • ∇u n h (x i M )|ω i k ≤ C νδt k i ∈I (T k ) u n h (ξ j (i ) ) 2 + νδt |∇u n h (ξ j (i ) )| 2 ω i k ≤ C νδt u n h 2 νδt .
The last inequality holds for a regular triangulation because each quadrature point occurs at most N times, finite, and the ω i k differs from ω

j (i ) k
at most by the ratio R of areas of triangles:

k,i ∈I (T k ) u n h (ξ j (i ) ) 2 + νδt |∇u n h (ξ j (i ) )| 2 ω i k ≤ k,i ∈I (T k ) max ω i k ω j (i ) k u n h (ξ j (i ) ) 2 + νδt |∇u n h (ξ j (i ) )| 2 ω j (i ) k ≤ R N k,i ∈I (T k ) u n h (ξ i ) 2 + νδt |∇u n h (ξ i )| 2 ω i k .
In the end,

k i ∈I (T k ) u n h (η i ) 2 ω i k ≤ 1 + |detA|δt 2 +C h 2 ν u n h 2 νδt .
This proves [START_REF] Johnson | Finite element methods for linear hyperbolic equation[END_REF] and completes the proof of Proposition 3.

Error Estimates

Let u n e ∈ H 1 (Ω) be the solution of the continuous problem (1) discretized in time and with the same η + a as in the discrete case; then let u n eh ∈ V h be the projection of u n e in the sense that

Ω (u n e û + νδt ∇u n e ∇ û) = Ω u n-1 e • û • η + a , ∀ û ∈ H 1 (Ω), , Ω (u n eh ûh + νδt ∇u n eh ∇ ûh ) = Ω (u n e ûh + νδt ∇u n e ∇ ûh ) ∀ ûh ∈ V h . ( 9 
)
Lemma 4. Let n h = u n hu n eh defined by [START_REF] Baba | On a conservative upwind finite element scheme for convective diffusion equations[END_REF]. Then,

n h 2 νδt ≤ 1 +C ( h 2 ν + δt 2 ) n-1 h 2 νδt +C h 2 n-1 h νδt . ( 10 
)

Proof

Let Q be the quadrature [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF],

Q Ω (v, w) := i ∈I v(ξ i )w(ξ i )ω i = k Q T k (v, w), Q T k (v, w) = i ∈I (T k ) v(ξ i )w(ξ i )ω i k . Then ∀ ûh ∈ V h , Ω n h ûh + δt ν∇ n h • ∇ ûh = Q Ω (u n-1 h , ûh • η + a ) - Ω u n-1 e • ûh • η + a = Q Ω ( n-1 h , ûh • η + a ) +Q Ω (u n-1 eh , ûh • η + a ) - Ω u n-1 e • ûh • η + a Consequently n h 2 νδt = Q Ω ( n-1 h , n-1 h • η + a ) +Q Ω (u n-1 eh -u n-1 e , n-1 h • η + a ) +Q Ω (u n-1 e , n-1 h • η + a ) - Ω u n-1 e • n-1 h • η + a .
A discrete Schwartz inequality is applied to the first term on the right and then [START_REF] Johnson | Finite element methods for linear hyperbolic equation[END_REF],

Q Ω ( n-1 h , n-1 h • η + a ) ≤ 1 +C ( h 2 ν + δt 2 ) n-1 h 2 νδt C. R. Mathématique -Draft, 13th December 2023
The second term is handled in the same way,

Q Ω (u n-1 eh -u n-1 e , n-1 h • η + a ) ≤ 1 +C ( h 2 ν + δt 2 ) n-1 h νδt • u n-1 eh -u n-1 e 0 ≤ C h 2 1 +C ( h 2 ν + δt 2 ) n-1 h νδt .
Finally the third term is bounded by the quadrature error on T k for u n-1 e

• (η + ) -1 , Q Ω (u n-1 e , n-1 h • η + a ) - Ω u n-1 e • n-1 h • η + a ≤ (1 +C δt 2 )h 2 u n-1 e • (η + a ) -1 3 • n-1 h νδt .
Let us gather the pieces

n h 2 νδt ≤ 1 +C ( h 2 ν + δt 2 ) n-1 h 2 νδt +C h 2 n-1 h νδt (11) Proposition 5. n h νδt ≤ 0 h νδt +C h 2 δt 1 +C ( h 2 ν + δt 2 ) n . ( 12 
)
Proof Recurrence ( 10) is of the type

(ε n ) 2 -(ε n-1 ) 2 ≤ α(ε n ) 2 + βε n with ε n = n h νδt , β = C h 2 and α = C ( h 2 ν + δt 2 )
. It is rewritten as

ε n -ε n-1 ≤ ε n-1 ε n + ε n-1 (αε n-1 + β) ≤ αε n-1 + β ⇒ ε n ≤ ε 0 (1 + α) n +C h 2 n-1 j =0 (1 + α) j ≤ ε 0 (1 + α) n + (1 + α) n -1 α C h 2 .
The result derives from the fact that n ≤ T /δt and (1

+ α) n -1 ≤ nα(1 + α) n-1 .
Remark 6. Notice that the sequence is closed to the solution of the ODE in time ε = 1 2δt (αε + β),

ε(t ) + β α = (ε(0) + β α ) exp(t α 2δt ), approximated by ε(t ) ≈ ε(0)(1 + t α 2δt ) + t β 2δt when h 2 << νδt ,
because then α δt << 1. So, at best, a tighter argument will only improve the constants in [START_REF] Pironneau | Stability and convergence of a galerkin-characteristics finite element scheme of lumped mass type[END_REF].

Remark 7. To derive the total error from n h is standard. The time discretization being first order it produces and extra O(δt ) term , so the total error is of order δt + h 2 ν , provided h 2 < νδt . Notice that here too, as for Primal Characterisic-Galerkin methods, δt should not be chosen too small.

Numerical Tests

The Rotating Gaussian Bell

A point x 0 = (x 0 1 , x 0 2 ) T convected by a(x) = (-x 2 , x 1 ) T is in fact rotated at time t to x 0 (t ) = (x 0 1 cos t + x 0 2 sin t , -x 0 1 sin t + x 0 2 cos t ) T . Consider

u e (x, t ) = e -r |x-x 0 (t )| 2 1+4νr t 1 + 4νr t ( 13 
)
It verifies [START_REF] Benque | A finite element method for navier-stokes equations[END_REF] and ∂ n u e ≈ 0 if r is large and ν is small.
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A Delaunay-Voronoi mesh generator is used for the triangulations of the unit circle. We tested 3 meshes with 926, 3601 and 14071 vertices, corresponding respectively to N = 100, 200 and 400 boundary vertices. The corresponding number of time steps chosen are 33, 66 and 133.

The other parameters are x 0 1 = 0.35, x 0 2 = 0,T = 2π, ν = 10 -4 or 0.01, r = 10.

Convergence Study

In this section ν = 10 -4 . The differential equation is discretized by ( 6) with σ = 1. V h is constructed with the linear continuous triangular finite element method and the nonlinear integral is approximated with the mid-edges as quadrature points of Example 1 or a 9-points quadrature per triangle [START_REF] Hecht | New developments in freefem++[END_REF].

Figure 1 shows the convergence rate and Figure 2 shows the Gaussian bell after one turn. It is difficult to see the difference with the exact solution.

A discontinuous function is subject to the rotating field to test the robustness with respect to discontinuity. Results are on Figure 3. Finally, as shown by Figure 4 u h need not be zero at the boundary. Figures 2, 3 and4 have been computed with N = 200. Table 1 shows the positivity and conservativity of the method. 

Comparison with other methods

In this section ν = 0.01 and by default N = 200.

We ran the same tests with 4 other popular methods: PCGM [START_REF] Pironneau | On the transport-diffusion algorithm and its applications to the navier-stokes equations[END_REF], SUPG [START_REF] Hughes | The Finite Element Method[END_REF], DDG [START_REF] Ern | Discontinuous galerkin methods for friedrichs' systems[END_REF] and no upwinding [START_REF] Jespersen | Arakawa's method is a finite-element method[END_REF]. Streamline Upwinding Galerkin (SUPG) reads:

Ω ( u n h -u n-1 h δt + a • ∇u)(w h + αa • ∇w h ) + Ω ν∇u n h • ∇w h = 0
for all w h ∈ V h ; α = 0.3 in the numerical test.

With homogeneous Dirichlet conditions the Dual Discontinuous-Galerkin (DDG) methods is:

Ω (( u n h -u n-1 h δt + a • ∇u n h )w h + ν∇u n h • ∇w h ) + E w h (α|n • a| - 1 2 n • a)[u n h ] = 0
for all w h ∈ V h ; α = 0.5 in the numerical test. Here E is the set of inner edges and [b] is the jump of b across an edge of E . Finally the centered method which keeps the convective terms as is

Ω (( u n h -u n-1 h δt + a • ∇u n h )w h + ν∇u n h • ∇w h ) = 0 ∀w h ∈ V h .
A CFL condition δt ≤ c(ν)h 2 is necessary for stability, so the method is not viable for small ν.

Figure 5 shows the horizontal cross sections of the Gaussian bell in the x direction after one turn for all 5 methods. Obviously PCGM and DCGM perform better, with the advantage that DCGM is convervative and convergence is proved. The level lines of the Gaussian bell after one turn are shown on Figures 6,7, 8 and 10 and the positivity and conservativity on Table 2. Finally the convergence rates are shown in Figure 9.

Application to the Kolmogorov Equation for Heston's Model

Let E[ f ] be the expected value of a random f . In quantitative finance Heston's model [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF] is, 

d X t = X t (r d t + Y t dW 1 t ), d Y t = κ(θ -Y t )d t + λ Y t dW 2 t , E[dW 1 t dW 2 t ] = ρ, X 0 = N(µ, σ), Y 0 = N(µ , σ ). ( 14 

Non Homogeneous Dirichlet Conditions

Equation ( 3) is wrong when a • n| Γ = 0. To compensate with the fact that η -(Ω) = Ω, a correction must be added (resp. subtracted) outside (resp. inside) Γ if a • n| Γ is negative (reps. positive). For Dirichlet conditions u = u Γ , we propose to replace (4) by: find u n hu Γ ∈ V 0h such that

Ω u n h ûh + δt ν∇u n h • ∇ ûh - Γ δt a • nu n h ûh = i ∈I u n-1 h (ξ i ) ûh (η i )ω i , ∀ ûh ∈ V 0h , (16) 
This formulation was tested on the Navier-Stokes equations for the backward step problem, using the P 2 -P 1 element. Results are on Figure 12. However the results are better without the boundary integral on right, so something is afoot, the problem is open. 

Figure 1 .

 1 Figure 1. Plot (log-log scales) of L 2 error versus vertices number and effect of quadratures on the precision.

Figure 2 .

 2 Figure 2. Gaussian Bell after one turn and exact solution. The level lines of both surfaces are very near to each others. Level lines values are as in Fig. 3.

Figure 3 .

 3 Figure 3. u 0 = 1 (x-0.3) 2 +y 2 <0.15 and u T h after one turn. Notice there is almost no oscillation and no numerical diffusion.

Figure 4 .

 4 Figure 4. Gaussian bell crossing the boundary, because initially x 0 = 0.5, after one turn and exact solution.

Figure 10 .

 10 Figure 10. Bell computed with N = 100 and with the centered FEM (i.e. without upwinding). There are ten times more time steps to perform a turn. Phase error, maximum error and flatness error are visible.

2 +

 2 r xu κ(θy)u -∇ 2 : x 2 y λx y λx y λ 2 y u 2 = 0, u |t =0 = G µ,σ (x)G µ ,σ (y), (15)where G is the Gaussian curve. ThenP T = R (Kx) + u T (x, y). Computing P T for large T is a challenge because it is essential to keep havingR 2 + u t = 1 for all t and u(x, y) ≥ 0 for all x ≥ 0, y ≥ 0. We computed u T at T = 10 with DCGM when r = 0.03, K = 75, µ = 50, κ = 2, θ = 0.1, λ = 0.2, ρ = -0.5, µ = 0.75, σ = 10, σ = 0.1. The results are in Figure 11 after 1500 time iterations and a mesh of 150 × 150 vertices. No negative values are observed and by construction R 2 + u = 1.

Figure 11 .

 11 Figure 11. The level lines of the PDF of Heston's model at time T=10.
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Figure 12 .

 12 Figure 12. Stationary solution of the Navier-Stokes equation at Reynold 50. The level lines of the horizontal component of the fluid velocity are shown. The color scale is the same as that of Figure 3. The size of the recirculation is 3 times the height of the step as expected [10].

Table 1 .

 1 Positivity, Conservativity and Convergence

	N	min u h	max u h	Ω u h	L 2 -error
	100	-1.13689e-08 0.643741 0.156945	0.0112869
	200	1.94281e-11 0.664612 0.156998 0.00282539
	400	1.94281e-11 0.665645 0.156962 0.000763338
	Exact	1.94281e-11 0.665268 0.156965	0

  ) Plot of x → u h (x, 0) computed by the 5 methods, at N = 100 (left), N = 200 (middle) and N = 400 (right) .
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Table 2 .

 2 Comparison of the methods at N=200 after one turn.It is popular to set the (undiscounted) price of a "Put" to be P T = E(K -X T ) + at time T where K is the "strike". Here the random process t → {X t , Y t } is driven by its initial conditions {X 0 , Y 0 } and the two normal Brownian motions t → W i t , i = 1, 2 with correlation ρ. The initial conditions are Gaussian random variables of means µ, µ and standard deviations σ, σ . The parameters r, κ, θ and λ are positive real numbers. Kolmogorov's theorem gives the PDF u ∈ L 2 (R 2 + ) of {X t , Y t }: for all {x, y, t } ∈ R 2

	Method	min u h	max u h	Ω u h	L 2 -error
	u e intorpolated 1.94281e-11 0.66339 0.156984	
	PCGM	1.94281e-11 0.662813 0.156777 0.00277886
	DCGM	1.94281e-11 0.664612 0.156998 0.00282539
	SUPG	1.94281e-11 0.40193 0.157103 0.0893023
	DDG	2.27941e-06 0.448727 0.157102 0.0847009
	Centered	1.94281e-11 0.400491 0.157099 0.0894042

+ × (0, T ),

∂ t u + ∇ •
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