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Abstract

One of the most important technological challenges in the railway context nowadays is reducing the noise
produced by the interaction between the train wheels and the track surface, that is the rolling noise. Introducing
viscoelastic damping in the railway structure is one method to mitigate this rolling noise. In the paper, we
investigate the impact of damping in the vibrational response of railway tracks using different viscoelastic models
and parameters available in the literature. For this purpose, the main focus here is on developing an advanced
numerical model in which viscoelastic models representing the rail foundation and/or pad are implemented in the
framework of the Semi-Analytical Finite Element (SAFE) method. Linear or nonlinear viscoelastic models are
considered, compared and effectively implemented for accelerance computation. The obtained numerical strategy
leads to affordable and accurate predictions on dynamic features of the railway structure compared to classical
methods.
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1. Introduction

Reducing the noise level generated by railway traffic has been an important technological challenge of
the last two decades, as well as an attractive research topic that gave rise to many scientific contributions
(e.g. see [1,2] for an overview). It is still a crucial societal issue nowadays, due to the increase of rail
transport in highly populated areas. A specificity of the railway noise is that it originates from various
sources, encompassing aerodynamics phenomena as well as vibrations of the train structure, equipments
and ground.

We here focus on the vibrations of railway tracks that entail rolling noise, which is the main noise
source for train speeds between 80 km/h and 300 km/h. The dynamic behavior of the rails, in both
vertical and lateral directions and over a large frequency range, is indeed a strong source of noise during
the train passing through. Rail and wheel roughnesses generate vibrations of the rail and its environment
(wheel, sleepers. . . ) and produce noise through acoustic radiation (Figure 1). In this context, modeling
and simulating the vibrational response of the rail subjected to the dynamic train loading has received
considerable interest and has progressively become a procedure of choice for optimal design purposes.
Engineering models for predicting the rolling noise of conventional railways, including ballasted and slab
tracks, are now well established [2]. Several approaches are available in the literature to analyze wave
propagation along the rail, associated with analytical, semi-analytical, or numerical methods. They are
based on fundamentals of structural dynamics under moving loads [3], and they usually consider the rail
as an infinite domain along its longitudinal direction.

Figure 1. Rolling noise generation mechanism (from [2]).

On the one hand, many works have proposed analytical studies of the rail dynamical response by
considering simple models based on beam theory, associated with various representations of the loading
and foundation (e.g., using a continuous Winkler foundation model). They usually address the problem
in the frequency domain with Fourier’s transform [4,5]. However, all these models have some drawbacks
: (i) the coupling between torsion and horizontal bending vibrations is not taken into account; (ii) the
deformation of the cross-section, which is not negligible for medium and high frequencies, is not considered;
(iii) wave modes other than those predicted by the beam theory can not be observed (in particular for
high frequency solicitations).

On the other hand, numerical full 3D analysis of the problem as performed in [6,7,8] may appear costly
when considering the specific geometry of the studied waveguide-type rail structure, with uniform geomet-
ric properties of the cross-section along the longitudinal axis. It may also be computationally expensive
when the frequency increases as the mesh size needs to be decreased, even when taking advantage of the
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periodic support, such as in the wave finite element method (WFEM). The WFEM method considers a
single periodic element using a 3D FEM meshing [9]. Similarly to the WFEM method, the semi-analytical
finite element (SAFE) takes into account the periodicity of the rail representing it with a single element.
Nevertheless, in the SAFE method, the FEM mesh is applied to the constant cross section (2D) while
analytical harmonic functions are considered in the longitudinal direction (1D).

In order to circumvent the previously mentioned drawbacks, we deal with the SAFE-based method
in the present paper. It was originally developed in [10,11] before being applied and enhanced in several
contributions [12,13,14,15]. It shares similarities with the so-called spectral finite element (SFE) approach
developed in [16]. In the SAFE method, the rail vibration is described by means of a waveguide model
along the longitudinal direction z, while deformations of the 2D cross-section according to the (x,y) plane
are captured by means of a finite element model. The resulting waveguide-FEM model thus yields a
displacement field with a spatial evolution under the form φ(x, y).ejkz; it is given analytically in the
longitudinal direction (with harmonic description of waves travelling through the rail) and numerically
in the transverse directions (for the description of section modes). Moreover, a periodic representation
is given to the discrete rail support in the longitudinal direction, with simple mass-spring systems; the
periodic structure of the track is further exploited using the Floquet principle [17,18], restricting the
analysis to a portion (single periodic cell) of the rail with prescribed transfer matrix. Because of the
constant cross-section of the rail, the applied FEM discretization of a 2D domain (in order to compute
displacements in the cross-section) highly decreases the overall computational cost compared to full
3D numerical analyses. Nonetheless, the SAFE method leads to an accurate representation of vibration
phenomena, and a quantitative analysis of the resulting noise, for a given configuration of the railway track
infrastructure. Recently, the SAFE method was complemented with a specific numerical strategy based
on an iterative second-order Arnoldi reduction (SOAR) technique [19] in order to circumvent stability
issues for low frequencies [15]. Here, we go one step further by extending the numerical approach to a
richer class of material behaviors.

Railway track systems have been under continuous development and many different structural archi-
tectures have been introduced to fulfill specifications. In order to reduce railway track vibrations, elastic
elements or additional masses are usually inserted in the vicinity of the rail (e.g., elastic rail pads) or
under the track (e.g., non-ballasted floating slab track). They enable to reduce forces with excitation
frequencies above the resonance frequency [20,21,22]. Nowadays, railway engineers aim at developing new
means to decrease noise levels.

A promising technological advance is the use of elements made of dampening materials. Several recent
works focus, indeed, to better understand, both theoretically and numerically, the role of viscoelastic
damping in vibration control in railways applications [23,24,25,26]. One possibility is to insert such ma-
terials in the rail support or foundation, replacing the traditional ballast. These can be modeled as linear
or nonlinear viscoelastic dampers for the analysis. Railway track designers currently investigate how such
elements could be advantageously used in order to minimize the acoustic pollution. Nevertheless, taking
into account viscous effects with potential highly nonlinear behavior (which may significantly change the
vibrational response of the railway track) in numerical modeling is often associated with the introduction
of numerical complexities. Here again, most of the research works dealing with viscoelastic effects in the
dynamical response of railway tracks use beam models. The dynamical analysis of beams resting on a
viscoelastic foundation under moving loads has been extensively investigated. In [27,28], the response
of an infinite Timoshenko beam on a viscoelastic foundation to a harmonic moving load is studied by
means of the dynamic stiffness matrix, as a function of the velocity and frequency of the load. In [29], the
dynamic stability of a Timoshenko beam supported by a Pasternak viscoelastic foundation subjected to
compressive axial loading is investigated. Nevertheless, all these studies suffer from the same shortcomings
listed above for models based on beam theory.

The main objective of this work is to effectively implement and analyze the capabilities of the SAFE
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numerical method in accounting for viscoelastic damping in the vibrational behavior of rail and associated
accelerance, using viscoelastic parameters available in the literature. In order to get reliable information
for comparison and optimization, we propose to extend the framework of the SAFE method in the
presence of (possibly nonlinear) viscoelastic effects. We thus develop and implement a novel SAFE-based
numerical approach similar to the method proposed in [15] and extend it to take into account a set of
viscoelastic material models to represent the rail environment (support, foundation) in the semi-analytical
formulation. This requires to adapt the solution scheme, in particular for the nonlinear case where a
Newton-Raphson algorithm is additionally employed. The main change in the numerical scheme occurs
when computing the impedance matrix of the rail support where a loop over the frequency domain is
added in order to compute the complex stiffness of viscoelastic materials. Propagative wavenumbers and
corresponding vibration modes of the rail are then computed as a function of the excitation frequency.
The outputs of the approach, in terms of vertical accelerances over the whole frequency range, permit
to numerically and accurately quantify the action of dampening features of the rail environment. For
illustration purpose, several viscoelastic models are considered even though the objective is not to compare
them.

The paper is organized in five parts. After a literature review and introduction in Section 1, we introduce
in Section 2 the railway structure and the SAFE-based model. In Section 3, we present the viscoelastic
models used in this work. Next, we detail the implementation procedure of the viscoelastic material in
the rail support, which is the originality of this paper. In Section 4, the performance of the approach
is analyzed through several numerical experiments. Finally, conclusion and prospects of this work are
addressed in Section 5.

2. Railway track model and Semi-Analytical Finite Element (SAFE) method

2.1. Railway track model

In this section we introduce the railway track model and its mechanical components. The railway track
is made of two parts:

(i) a substructure, corresponding to the foundation, made of the ballast (for standard architectures)
and possibly other layers (in the case of multi-layered foundation). The ballast may be replaced with
concrete pavement in rigid tracks, which usually requires the additional use of viscoelastic elements
in order to reduce noise emission;

(ii) a superstructure, called slab, located above the foundation. It is composed of the rail and the rail
support, for instance the sleeper and rail pads.

The rail, in direct contact with the train wheels, has a specific constant transverse cross-sectional profile
(see Figure 2). The geometry of this profile, as well as material properties of the rail, are standardized.
The rail is attached to sleepers by means of rail pads and fastenings. These sleepers permit the transfer
of forces between the rail and the foundation, as well as to maintain a constant distance between parallel
rails. Rail pads and fastenings transfer and dampen the vertical load between the rail and sleepers.

The railway track shown in Figure 2 has specific features : (i) the rail cross-section has constant
physical and geometrical properties in the longitudinal direction, so that a waveguide model may be used
to study wave propagation in the rail; (ii) the structure is periodic, so that a single periodic segment (cell)
may be studied. In the following, we describe the SAFE numerical method that refers to such modeling
ingredients.
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Figure 2. Standardized rail profile (here with norm 60E1), from [30] (left); Periodic 3D rail element, from[15] (right).

2.2. Basic principles of the SAFE method

The SAFE method is based on a specific, cheap, but still accurate modeling of the wave propagation
problem inside a waveguide-like rail with deformable cross-section as shown in [15,31]. The method de-
veloped here is similar to the one proposed in [15], including the use of the Arnoldi reduction strategy.
The method focuses on a single periodic segment of the rail (Figure 2). The principle is to mix a FEM
representation of the transverse deformation (i.e., over a 2D domain alone) and an analytical harmonic
representation of the propagation along the longitudinal direction (taking advantage of the constant rail-
way cross-section). In this section, the rail and its environment are supposed elastic; the viscoelastic
behavior will be described in Section 3. The support with ballast is considered as a linear elastic com-
ponent that translates and rotates, while rail pads are modeled by means of local equally spaced springs
at the contact points along the rail foot and the sleeper (circular black points in Figure 3). To take into
account the pad width, this latter is modelled with Nn groups of springs. Those springs only account for
translational displacements. The sleeper, linking the rail and the ballast, is supposed to be a rigid body.

Figure 3. Model for the rail and support components (pad, sleeper, ballast), from [11] (left); Zoom on the model of the
periodic support with mass-spring system [15] (right).

The steps of the SAFE method to compute the vibratory behavior of the rail are the following:

(i) Computation of propagation modes in a free rail, that is without any loading or imposed boundary
condition. After defining a FE mesh in the cross-section of the rail, free waves are determined from
a quadratic eigenvalue problem (see below). Any displacement of the rail is then written as a linear
combination of these wave modes;

(ii) Introduction of boundary conditions by taking into account the structural rail environment (sleepers,
rail pad and ballast), with linear elastic or viscoelastic coupling between the rail and the sleeper,
and between the sleeper and the ballast. A transfer matrix is used to perform the coupling between
adjacent periodic cells;

(iii) Computation of the forced response with external loading applied to the rail.
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2.3. Formulation of the SAFE method for the computation of free waves

We provide here basics on the SAFE formulation, but more detailed information about the derivation
of equations of the SAFE method is found in [15,31]. The formulation of the SAFE method leans on
the separation of variables between the transverse directions (x, y) and the longitudinal direction z. A
displacement mode is written as:

u(x, y, z, t) = φ(x, y).p(z, t) (1)

in which p(z, t) = ej(kz−ωt) is the wave propagation function in the longitudinal direction, with k the
wavenumber and ω the angular frequency. φ(x, y) is the 3D deformation mode shape of the cross-section,
computed with FEM. It is written as φ(x, y) = N(x, y)Φ with N(x, y) the matrix constructed from 2D
shape functions, and Φ the vector of nodal displacements.

Using the principles of the virtual works on a periodic element of length L, we obtain the dynamics
equations of the rail : [

B0p+ [B1 − B2]
∂p

∂z
− B3

∂2p

∂z2
+ M

∂2p

∂t2

]
Φ = 0[

B2p(0, t) + B3
∂p

∂z
(0, t)

]
Φ + G0 −

1

2
F0 = 0

−
[
B2p(L, t) + B3

∂p

∂z
(L, t)

]
Φ + GL +

1

2
FL = 0

(2)

with M the mass matrix, G0/L and F0/L vectors associated respectively to the force reaction by the sleeper
and the force from adjacent elements at the extremities. The last two equations from (2) correspond to
force projections at both ends of the rail section. With p(z, t) = ej(kz−ωt) (straight track) and κ = jk,
the first relation reads:[

B0 − ω2M + κ[B1 − B2]− κ2B3

]
Φ = 0 or

[
K0 + κK1 + κ2K2

]
Φ = 0 (3)

with K0 = B0 − ω2M and K2 = −B3 some symmetric matrices (in the undamped case), and K1 =
B1 − B2 a skew-symmetric matrix. Equation (3) drives wave propagation in a free rail. It is a quadratic
eigenvalue problem whose solutions represent free wave modes in an infinite rail free of external actions
and support [11].

The couples (k,Φ) solutions of the system (3) may be computed for each value of the angular frequency
ω, making calculations expensive. An alternative model reduction strategy is used in [11,15], requiring
computations for a single arbitrary frequency value (e.g. 100 Hz). The N couples (k,Φ) associated with
least decaying waves are selected to form a basis in order to compute solutions for other frequencies, with
projection of matrices Kj over the defined basis. In [11], it is shown that using modes computed at a
100 Hz frequency leads to an accurate representation of the track vibration phenomena over a frequency
interval [50,5000] Hz. In [31], the basis is computed using the second-order Arnoldi reduction. In this case,
the reduced basis is independent of the frequency value. The same strategy is used in the present work.

The general form of the displacement of the rail cross-section in the longitudinal position z is thus
written as:

U(z) =

N∑
j=1

(αje
kjzϕj + βje

−kjzψj) = FϕE(z)Wα + FψE−1(z)Wβ (4)

with Fϕ and Fψ some matrices whose columns are ϕj and ψj , representing the separation of waves
propagating in positive and negative directions. The matrices Wα, Wβ and E(z) are diagonal matrices
built with αj , βj and ekjz, respectively. Coefficients αj and βj are obtained from a global computation
taking into account boundary conditions and forces applied on the rail.
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2.4. Computation of free waves in an infinite rail with periodic supports

The periodic feature of the support (represented by sleepers and rail pads) is taken into account in the
SAFE method. As shown in Figure 3, the sleeper is represented by a rigid mass. The connection between
the sleeper and the ballast considers the 6 degrees of freedom of the sleeper (3 translations + 3 rotations)
whereas the connection between the sleeper and the rail only permits translations in the 3 directions. The
force of the sleeper on the rail is obtained from the following steps:

(i) the dynamic equations (translation and rotation) for the sleeper are written:

−KbU +

Nn∑
i=1

Kpi (U
r
i −Us

i ) = −msω
2U ; −Cbθ +

Nn∑
i=1

PiKpi (U
r
i −Us

i ) = −ω2Jsθ (5)

with Kb the translation stiffness matrix of the ballast, Kpi the translation stiffness matrix of a pad,
ms the sleeper mass, Cb the rotation stiffness matrix of the ballast, and Js the sleeper matrix of
inertia. Vectors U and θ represent displacements and rotations of the sleeper, respectively. Vectors
Ur
i and Us

i represent displacements of contact points of the rail and sleeper, respectively. The
matrix Pi is the rotational operator at contact points of coordinates (xi, yi, zi); the link between
the displacement of contact points of the sleeper and the generalized displacement/rotation of the
sleeper is Us

i = U− Piθ.

(ii) from the previous relations, and assuming that Kpi = Kp/Nn (i = 1, . . . , n), the displacement and
rotation of the sleeper are calculated:

U =

Nn∑
i=1

ZUi KpUr
i ; θ =

Nn∑
i=1

ZθiKpUr
i (6)

with

ZUi = A−1(I− BZθi ) ; Zθi = (D− CA−1B)−1(Pi − CA−1)

A = Kb +NnKp −msω
2I ; B = CT = −Kp(

Nn∑
j=1

Pj) ; D = Cb +

Nn∑
j=1

PjKpPj − ω2Js
(7)

(iii) from the displacement and rotation of the sleeper, the force generated by pad spring i on the sleeper
is recovered as:

fi = Kp(Ur
i −Us

i ) =

Nn∑
j=1

Kp(δijI− ZUj Kp + PiZθjKp)Ur
j (8)

(iv) the global force F(z) of the sleeper on the rail is eventually computed as F(z) =
∫
A
NT f(z)dA. It

is related to the rail displacement through the impedance matrix of the rail support Ap, such that
F(z) = ApU.

Then, in order to compute the free waves for the rail with periodic support, two ingredients are em-
ployed:
• The continuity of the displacement and equilibrium of forces at the interfaces between periodic cells

Ωn and Ωn+1 are written:

U(n+1)(0) = U(n)(L) ; F
(n+1)
0 = −F

(n)
L (9)

Using (2), (4), and the matrix operator Ap, it yields:
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(
FϕW(n+1)

α + FψW(n+1)
β

)
−
(
FϕE(L)W(n)

α + FψE−1(L)W(n)
β

)
= 0(

FϕDkW(n+1)
α − FψDkW(n+1)

β

)
−
(
FϕDkE(L)W(n)

α − FψDkE−1(L)W(n)
β

)
− B−13 Ap

(
FϕE(L)W(n)

α + FψE−1(L)W(n)
β

)
= 0

(10)

where Dk is a diagonal matrix containing wavenumbers kj . These relations lead to the following
transfer equation:

γ(n+1) = (I + H−1G)Lγ(n) = Tγ(n) (11)

with

γ(n) =

W(n)
α

W(n)
β

 ; H =

 FϕDk −FψDk
Fϕ Fψ

 ; G =

 B−13 ApFϕ B−13 ApFψ
0 0

 ; L =

E(L) 0

0 E−1(L)


(12)

T = (I + H−1G)L is the transfer matrix between two elements.
• the Floquet principle γ(n+1) = λγ(n), with scalar λ depending on frequency, is again used to relate

solutions between adjacent periodic cells. It yields the eigenvalue problem:

(I + H−1G)Lγ = λγ (13)

which may again be seen as a quadratic eigenvalue problem, and whose solutions permit to determine
wave propagation features along the rail. The solution for a periodic supported rail with applied
force is detailed in [15,31].

3. Introduction of viscoelastic behaviors in the SAFE method

In this section, we present the viscoelastic models used in this work and the implementation in the
SAFE method.

3.1. Models of viscoelastic dampers

Viscoelastic dampers are widely used in engineering applications in order to control vibration of struc-
tures and associated noise [32]. In this section, we shortly present the viscoelastic models considered in
this work and their parameters. In order to implement a viscoelastic damper in the SAFE method, one
needs to derive its frequency-dependent complex stiffness. We note E′ = Er(1+jη) the complex stiffness,
whose real part Er is the storage modulus, η is the loss factor and the product Erη is the loss modulus.
Here, we consider that the translation and rotation stiffnesses have the same numerical value (but not the
same dimension). We also choose an isotropic behavior which means that the stiffness in the viscoelas-
tic models is independent of the direction. Table 1 shows the complex stiffness of the following models
: Zener, generalized Maxwell model (GMM), Golla-Hughes-McTavish (GHM) and fractional derivative
(FD) [33]. The parameters needed to compute the complex stiffness in Table 1 are: k-stiffness, ωn-natural
frequency, ρ-relaxation time, ζ-damping ratio, α- order of derivation (FD model), c-dissipation coefficient,
andαn-gain (GHM model).

Another model implemented in this work is the cubic displacement stiffness (Duffing oscillator, we refer
to this model as nonlinear (NL)), whose associated behavior is written as F (t) = kLu(t)+cLu̇(t)+kNLu

3(t)
where the parameter kNL is the stiffness related to the nonlinear term. This type of model is used in several
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Table 1
Linear elastic ballast and pad properties [33]

Model Complex stiffness

Zener E′ze = k1 + k2
jωρ2

1+jωρ2

GMM E′GMM = k0 +
∑n

m=1
kn

jωρm
1+jωρm

GHM E′GHM = k0

(
1 +
∑N

n=1
αn

ω2+2ζnωnω

ω2+2ζnωnω+ω
2
n

)
FD E′FD =

k0+k∞(ρjw)α

1+(ρjw)α

works in which the ballast is modeled as a viscoelastic foundation. Dealing with a cubic displacement
stiffness in the model requires the use of numerical methods for nonlinear solution such as Picard or
Newton-Raphson methods (see section 3.3).

3.2. Viscoelastic models parameters

Some references determined the dynamic railpad and ballast properties for materials applied in the
railway context. For example, the parameters of a Kelvin-Voigt model are estimated between 20 Hz and
2500 Hz in [34] . The stiffness and damping of elastomeric pads and ballast, in the frequency 20 Hz and
2500 Hz, are derived in [35]. Due to the lack of data concerning viscoelastic materials applied in the
railway structure in the frequency range of our interest (50-5000 Hz), in this work we adopted parameters
found in the literature concerning viscoelastic materials applied in the engineering context for damping of
structures, notably from [33]. Those parameters are derived from experimental data within the frequency
range considered here and they are in the same order of magnitude as the values reported in [34,35].

The parameters for the FD model, α = 0.7, ρ = 0.004 s, k0 = 3.62×105 N/m , k∞ = 1.24×108 N/m are
adopted from [33]. The parameters for the Duffing oscillator are adopted from experimental data in [36]:
kL = 35.03× 106 N/m, kNL = 4× 1014 N/m3 and cL = 1732.50× 103 Ns/m.

In the case of GHM and GMM models, the parameters (properties and number of oscillators/elements)
are computed from different sets of experimental data with different viscoelastic materials, given in [33] on
complex stiffness (storage modulus and loss factor from tests performed in the frequency range of interest
in this work (50-5000 Hz)). We use experimental data for viscoelastic materials to estimate parameters
using a least-square minimization. For the GMM model, the number of Maxwell elements in parallel for
the best minimization of the least-square objective function is 6. The obtained parameters are shown
in Table 2. The relaxation time values were chosen experimentally from [33] so that to cover the whole
measurement time.

The calculated parameters for the GHM are shown in Table 3. Three oscillators are necessary to obtain
the best minimization of the least-square objective function [37]. In this minimization we adopted ζn = 1
[33]. Concerning the Zener model, we used the parameters values from reference [38], that are k1 = 62×106

N/m, k2 = 9.6× 106 N/m and c2 = 7× 105 Ns/m for its dissipation coefficient, with ρ2 = c2/k2 yielding
0.073.

The storage modulus and loss factor obtained from equations in Table 1 are shown in Figure 4. We
observe that the storage modulus is almost constant except for the GHM model. The GMM model has
the highest storage modulus value. As regards the loss factor, the Zener model has a constant and almost
null value, whereas we observe a decrease of loss factor with respect to frequency for the FD and GMM
models. The loss factor of the GHM models increases considerably from 50 Hz to 3000 Hz and then
decreases slightly at 5000 Hz.
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Table 2
Parameters of the GMM model

Stiffness (N/m) Value Relaxation time (s) Value

k0 2.46x106 - -

k1 0.247x109 ρ1 2x10-2

k2 0.247x109 ρ2 2x10-1

k3 0.347x109 ρ3 2

k4 0.947x109 ρ4 20

k5 0.347x109 ρ5 200

k6 0.147x109 ρ5 2000

Table 3
Parameters of the GHM model with 3 oscillators.

α1 ω1 (rad s−1) α2 ω2 (rad s−1) α3 ω3 (rad s−1) ζ(1,2,3) k0 (N/m)

28.27 39559.1 8.99 4409 1.728 460.2 1 5.17x106

(a) (b)

Figure 4. (a) Storage modulus and (b) loss factor of the viscoelastic models.

3.3. Implementation of viscoelastic models in rail support

The novelty in the present work lies in applying viscoelastic damping in the mechanical components
of the rail such as the ballast and pad in the SAFE method. The use of a viscoelastic model implies the
modification of the impedance matrix of the rail Ap introduced in Section 2.4. In the case one wants to
introduce one of the linear viscoelastic models or the nonlinear FD model in the ballast, the respective
viscoelastic complex stiffnesses are introduced directly in (5), with Kb = E′I et Cb = E′′I, with E′′

being the rotational complex stiffness. We consider that the translational complex stiffness E′ and the
rotational complex stiffness E′′ have the same numerical value. In this work, for the pad we use the
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linear elastic behavior with reference parameters from Table 4 or the Kelvin-Voigt model as proposed for
instance in [22] with Kp = E′KV I. The identity matrix renders the hypothesis that the translation stiffness
is similar in all translation directions and the rotation stiffness is similar for all rotation directions in the
ballast. In the case of the Duffing oscillator considered in the ballast and the Kelvin Voigt model in the
pad, the dynamic equations for the sleeper (see equation (5)) are modified and the system of nonlinear
equations of the sleeper’s displacement and rotation as function of the rail displacement reads:

msüx + (kL +Nnk
p
x)ux + cLu̇x +

Nn∑
i=1

kpx (−yiθz) + kNLu
3
x =

Nn∑
i=1

kpx ur
xi

msüy +
(
kL +Nnk

p
y

)
uy + cLu̇y +

Nn∑
i=1

kpy (xiθz) + kNLu
3
y =

Nn∑
i=1

kpy ur
yi

msüz + (kL +Nnk
p
z)uz + cLu̇z +

Nn∑
i=1

kpz (yiθx − xiθy) + kNLu
3
z =

Nn∑
i=1

kpz ur
zi

Jxθ̈x +

(
eL +

Nn∑
i=1

y2i k
p
z

)
θx + dL θ̇x +

Nn∑
i=1

kpzyi (uz − xiθy) + cNLθ
3
x =

Nn∑
i=1

kpz yi u
r
zi

Jy θ̈y +

(
eL +

Nn∑
i=1

x2i k
p
z

)
θy + dL θ̇y −

Nn∑
i=1

kpzxi (uz + yiθx) + cNLθ
3
y =

Nn∑
i=1

−kpz xi ur
zi

Jz θ̈z +

(
eL +

Nn∑
i=1

kpyx
2
i + kpxy

2
i

)
θz + dL θ̇z +

Nn∑
i=1

(
kpyxiuy − kpxyiux

)
+ cNLθ

3
z =

Nn∑
i=1

kpy xi u
r
yi − kpx yiur

xi.

(14)
with kpz = kpy = kpx the direction components of the complex stiffness in the pad, ui and θi being
respectively the displacement and rotation in each direction (i = x, y, z). The parameters kL et eL are
respectively the translation and rotational stiffnesses and they have the same numerical value, eL =
35.03 × 106 N.m/rad (see section 3.2 for kL), even though not the same dimension. Moreover, dL is the
rotational damping coefficient and cL the translational damping coefficient. In addition, we consider
similar numerical values for those coefficients, with dL = 1732.50× 103 N.m.s/rad (see section 3.2 for cL).
We also consider that the translational and rotational stiffnesses in the nonlinear terms in the Duffing
oscillator have the same numerical value, that is cNL = 4.1014 N.m/rad3 (see section 3.2 for kNL). Among
the various methods to solve nonlinear equations such as (14), the force harmonic balance method [39,40]
is the most popular when the frequency domain is considered. The sleeper displacement solution of the
nonlinear equation is written in the following form:

u(t) =

N∑
k=1

(ak cos(kωt) + bk sin(kωt)) . (15)

The sleeper displacement in the complex domain is written as u(t) = Uejωt with U = a
2 + −bj

2 . In
order to solve (14), we can apply the harmonic balance method with a single term for each component of
displacement and rotation:

ux = a1 cos(ωt) + a2 sin(ωt); uy = a3 cos(ωt) + a4 sin(ωt)

uz = a5 cos(ωt) + a6 sin(ωt); θx = a7 cos(ωt) + a8 sin(ωt)

θy = a9 cos(ωt) + a10 sin(ωt); θz = a11 cos(ωt) + a12 sin(ωt).

(16)
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The nonlinear system J (a) = 0 obtained with (14) and (16) has 12 unknowns assembled in a vector
a = [a1...a12]. For each degree of freedom (translation and rotation) there are two constants to calculate
and the Newton-Raphson method is applied. For a given frequency ωi, the iterative method shown in
Algorithm 1 depends on the initial solution a0 that is taken as the solution of the previous converged
vector (ai−1). The Jacobian matrix is noted J.

Algorithm 1 Computing Ap(ωi) using a viscoelastic model for the (i)-th frequency

Input: k = 0 and a0 (a0 = 0 for i = 1)
Compute Kp = E′KV (ωi)I or Kp = E′L for the pad
if GMM, GHM, Zener or FD model then

Kb = E′(ωi)I and Cb = E′′(ωi)I, then solve (5) to compute U(ωi)
else (Duffing oscillator, see (14))

while e > 10−6 do
k = k + 1
a(k+1) = a(k) − J(a(k), ωi)

−1J (a(k), ωi)

e =
∣∣∣a(k+1)−a(k)

a(k)

∣∣∣
end while
Compute U(ωi)
a0 = a(k+1) initial guess for computing Ap(ωi+1) for i > 1

end if

solve F(z) = Ap(ωi)U(ωi) to compute Ap(ωi)

In the numerical implementation, with respect to the linear elastic behavior, the introduction of a
viscoelastic model requires adding a loop in frequency over Algorithm 1 in order to compute the frequency-
dependent complex stiffness.

4. Numerical results

In the first part of this section, the parameters used in the SAFE numerical model are introduced.
Secondly, an analysis of the results obtained with the SAFE method in the linear elastic case (reference
case) for the rail dynamic behavior is conducted for its mid-span cross-section and above the sleeper cross-
section. We analyze the frequency behavior using as measure the accelerance, defined as the acceleration
per unit of input force. In the third part of this section, the frequency behavior of a sleeper-viscoelastic
ballast system is computed in order to investigate how each viscoelastic model behaves in a 1D vertical
vibration problem. The properties of the viscoelastic models are those found from the minimization process
in Section 3.2 or directly from the literature. Then, we apply some viscoelastic models only in the ballast
using the SAFE method and we compare with a Timoshenko beam model. Next, we analyze the vertical
accelerance response by introducing a viscoelastic behavior only in the ballast and then in the ballast and
in the pad (using a Kelvin-Voigt model for the pad). Finally, a general analysis of accelerance variation
is performed for the entire longitudinal length of a SAFE element by introducing the viscoelastic models
in the ballast and in the pad. The number of modes for the reduced basis and the number of elements
in the cross-section mesh (for type UI60 rail) are 50 and 137, respectively. Those values guarantee modes
and mesh convergence for elastic and viscoelastic models.
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4.1. Reference linear elastic properties and parameters in the SAFE model

The properties of the SAFE components and linear elastic ballast obtained from [31] and used as the
linear elastic reference solution are described in this section. Table 4 shows the linear elastic properties
of the ballast and pad. Table 5 shows the rail and sleeper properties.

Table 4
Linear elastic ballast and pad properties [31]

DirectionKb(N/m) Cb(N.m/rad) loss factor : Kb and Cb Kp(N/m) loss factor : Kp

x 108 2x108 0.8 7x108 0.2

y 9x108 2.5x108 0.8 4x108 0.2

z 9.5x108 2x108 0.8 8x108 0.2

Table 5
Rail and sleeper properties [31]

Parameter Value

Rail - Young Modulus (MPa) 210

Rail - Poisson’s ratio 0.3

Rail - loss factor 0.0001

Rail - density (kg.m−3) 7850

sleeper - half mass (m) (Kg) 122

Distance between two sleepers (ms) 0.6

sleeper - second moment if inertia Jx (m4) 0.64

sleeper - second moment if inertia Jy (m4) 1.32

sleeper - second moment if inertia Jz (m4) 1.14

number of contact points pad/rail (Nn) 15

Rail and sleeper contact points are the nodes at the rail foot for a given mesh. In this work, the cross-
section mesh has 137 elements and 15 nodes at rail foot, as shown in Figure 5. The point location at
which an effort is applied and the response is measured is the top of the rail. This point represents the
contact between the rail and the wheel of a train (representing the rolling noise source).

4.2. Rail frequency response analysis using linear elastic ballast and pad given by SAFE method

In this section we analyze the frequency behavior of the the top of the rail cross-section (see Figure 5).
Figure 6 shows the vertical accelerance measured at the top of the rail at mid-span and above the sleeper
of a SAFE element using the elastic properties and parameters from Tables 4 and 5. Four frequency
regions limited by remarkable frequency peaks can be distinguished :

(i) In the first region, below the first frequency peak, the rail response is controlled by the ballast
stiffness. The first frequency peak represents the rail and the ballast oscillating in phase without
rail cross-section deformation. In that region, the rail response is similar at mid-span and above the
sleeper.
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Figure 5. Rail geometry, mesh and force application and measure point.

(ii) In the second region, between the first and second frequency peaks, the rail response is governed
by the sleeper. There is an anti-resonance frequency where the accelerance decreases substantially.
This corresponds to the system ballast-sleeper-pad acting as an absorber. The second frequency
peak corresponds to the sleeper and rail vibrating in opposition of phase.

(iii) In the third frequency region, the rail response is progressively uncoupled from the sleeper and
ballast. The third frequency peak represents the ’pinned-pinned’ frequency, where the semi-wave
length of bending waves is the same as the distance between the sleepers. Above the sleeper, the
pinned-pinned point is an anti-resonance mode.

(iv) Finally, beyond the third frequency peak, the response of the rail is free from the sleeper and ballast
influence. The cross-section deformation and pad stiffness govern the fourth region.

Figure 6. Vertical accelerance at mid-span and extremity (above the sleeper) of a SAFE element considering linear elastic
constituents (the four frequency regions are depicted).
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4.3. Study of a sleeper-viscoelastic ballast system

In order to study the vertical frequency response of the viscoelastic models, a simple 1D sleeper-
viscoelastic ballast system is proposed. The sleeper mass is given in table 5. Figure 7 shows the vertical
accelerance response of the sleeper in a frequency range 50 Hz - 5000 Hz. The resonance frequencies of
the Zener, FD and GHM models are, respectively, about 150 Hz, 200 Hz and 700 Hz. We observe that the
sleeper response using the Duffing oscillator (NL model) ballast and the GHM ballast are close to linear.
The different responses observed are due to distinct complex moduli depicted in Figure 4. At 50 Hz, the
accelerance depends on the complex moduli value. For example, the accelerance is higher for the GHM
model as its stiffness is smaller compared to the other viscoelastic models. As the frequency is increased,
we can observe the effect of dissipation (loss factor effect). For example, for the GHM model, the loss
factor increases the damping and there is no peak in the accelerance. Nevertheless, for the GMM and FD
models, the reduction in the loss factor with respect to frequency fosters the accelerance peaks.

Figure 7. Vertical accelerance response for a sleeper-viscoelastic ballast model

4.4. Rail frequency response using viscoelastic ballast and comparisons with the Timoshenko beam model

We consider the infinite Timoshenko beam model with periodic support proposed in [2] in order to
compare with the SAFE model. The distance between two supports is 0.6 m, the same as what is adopted
for the SAFE simulations. Figure 8 shows the comparison for the beam model with the SAFE model
at mid-span of a SAFE element considering four different viscoelastic models. For each one, we observe
the four different frequency regions, as explained in section 4.2. Below the pinned-pinned frequency, the
vertical accelerance is similar between the beam and SAFE models. Above the pinned-pinned frequency,
the accelerances peaks are different. This is explained by the deformation of the rail cross-section taken
into account in the SAFE model [15], showing its relevance for the analysis of rail vibration in the
frequency range considered here. The cross-section deformation appears as a deformation of the rail foot
in a vertical movement (called ”foot flapping”, foot bending as a cantilever) or as a deformation of the
rail web in the case of a lateral movement (”web bending”) [15].
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(a) (b)

(c) (d)

Figure 8. Vertical accelerance of SAFE and beam model on periodic support at mid-span : (a) Zener, (b) FD, (c) GMM

and (d) GHM.

4.5. Viscoelastic models applied only in the ballast

The rail vertical accelerances using viscoelastic models only in the ballast at mid-span of the SAFE
element are shown in Figure 9 (a). A significative vertical response of the rail due to viscoelastic ballast
effect is observed particularly in the low-frequency range. The first frequency peak corresponding to rail
and sleeper vibration in phase is dictated by the system ballast-sleeper shown in Figure 6 (a). The first
anti-resonance frequency is observed for all models except for the nonlinear one (NL) 1 . For the GMM
model, this point is quite shifted from the other models and occurs around 700 Hz. The second frequency
peak corresponding to sleeper and rail vibrating in opposition of phase is similar for Zener, GHM, FD and
linear elastic models. From a frequency of about 1000 Hz to 5000 Hz, the vibration behavior is similar for
elastic and viscoelastic models and the pinned-pinned frequency is similar. As explained in Figure 6(a)
for the sleeper-ballast model, the influence of the frequency dependent complex moduli is also observed
in Figure 9(a), notably at low frequency, corresponding to the first region depicted in Figure 6(b). For
example, the accelerance at the first frequency peak for the GHM model is less pronounced compared to

1. As a remark, we verified that the parameters used for the Duffing nonlinear model work in the nonlinear domain by
setting kNL = 0 and we observed that the main effect is changing the accelerance at low frequency (below 400 Hz).
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the other models due to its important dissipation (increasing loss factor with respect to frequency, see
Figure 4(b)). On the other hand, for the Zener model, the high accelerance peak at the first frequency
peak is due to its low dissipation, as depicted in Figure 4(b). A similar pattern is observed for the vertical
accelerance above the sleeper (Figure 9(b)).

The vertical accelerance in a section of the rail, above the sleeper, is shown in Figure 9 (b). Identically
to the mid-span case, the rail response is quite similar for all viscoelastic models and the linear elastic
model above the pinned-pinned frequency. Moreover, the first frequency peak for each viscoelastic model
is similar to the mid-span case and the pinned-pinned anti-resonance frequency is unchanged.

(a) (b)

Figure 9. Viscoelastic model only in the ballast : Vertical accelerance at mid-span (a) and (b) Vertical accelerance above

the sleeper.

4.6. Introduction of viscoelastic models in the ballast and in the pad

In this second study case, the pads are also modeled with a viscoelastic material. This comes from
the fact that some rails have a configuration called slabtrack in which the rail and sleeper are linked by
viscoelastic materials. Here, the Kelvin-Voigt model for the pad is used in the same time with various
viscoelastic models for the ballast. The use of Kelvin-Voigt model is proposed for instance in [22]. The
value of the damping constant which is calculated in these works and which is used here is 105 N.s.m−1.
The stiffness parameters for each direction are taken as the reference values from Table 4. Figure 10 (a)
shows the vertical accelerance at mid-span. Introducing the Kelvin-Voigt model in the pad results in a
variation of the vertical accelerance from the linear elastic model in the whole frequency range, notably
above 1000 Hz. However, the pinned-pinned frequency remains unchanged. However, in a section above
the sleeper, the pinned-pinned frequency changes and increases slightly as shows Figure 10 (b). The rail
response above the pinned-pinned frequency is quite similar for all viscoelastic models. The influence of
the complex moduli, as in the previous cases, is also observed at low frequencies.

4.6.1. Remarks on numerical results with the Duffing oscillator model in the ballast
Numerical problems solving (5) arise when a viscoelastic model is introduced in the pad. Singular

Jacobian matrix and non-convergence occur when using the Kelvin-Voigt model or any other viscoelastic
model reported in this work. In the case the pad is a linear elastic model, convergence is reached after 1746
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(a) (b)

Figure 10. Viscoelastic model in the ballast and in the pad : (a) Vertical accelerance at mid-span and (b) Vertical accelerance
above the sleeper.

iterations considering all frequency steps (CPU time about 0.3 s) for a criterion of 10−6 in the relative
error in the Newton-Raphson method. The initial solution a0 for each frequency step is the converged
solution of the last step.

4.7. General analysis : variation of accelerance due to viscoelastic damping in vertical direction

A general analysis of accelerance from the reference linear elastic model is eventually performed for each
viscoelastic model at various longitudinal positions of a SAFE element. Let l = Lc be the longitudinal
position in a SAFE element. In this analysis, c is taken from 0.5 to 1, this interval representing a position
variation from mid-span to element extremity (above the sleeper). Due to the symmetry of the element,
one does not need to perform calculations in the entire length span. In the following, the results are
separated in three different application cases. The properties of the viscoelastic models are the same as
those used in the previous sections.

4.7.1. Case 1: Application of viscoelastic models only in the ballast
In this first case, viscoelastic models are only applied to the ballast. The accelerance variation for the

Zener and FD models are depicted in Figure 11 (a) and (b). Most of the accelerance increase appears at
low frequency below 500 Hz and accelerance decrease is higher at specific frequencies such as 1000 Hz,
2000 Hz and 3000 Hz. The variation at those frequencies is uniform along the longitudinal position. Above
3000 Hz, the variation is close to zero. Similar variation patterns are observed for the GHM and GMM
viscoelastic models and they are not represented here.

In order to study how accelerance changes in the overall SAFE element, the mean accelerance variation
for each longitudinal position is computed over the frequency domain. Figure 12 (a) shows that it is
almost constant with respect to c for each viscoelastic model. All viscoelastic models show an overall
increase in accelerance, except the GHM model.
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4.7.2. Case 2: Application of viscoelastic models in the ballast and Kelvin-Voigt model in the pad
In this second case, the viscoelastic models are applied to the ballast and a Kelvin-Voigt model for the

pad. The accelerance variations for Zener and FD models are depicted in Figure 11 (c) and (d). Differently
to the first case, accelerance increases mostly at low frequencies and increases at some specific frequencies
such as 1000 Hz, 2000 Hz, 3000 Hz and 4500 Hz. However, these variations are no longer uniform along
the SAFE element span. For instance, the variation is higher at 3000 Hz for positions in the interval
0.65 < c < 0.85 and at 4500 Hz in the interval 0.5 < c < 0.6 and 0.7 < c < 0.9. Similar results are
observed for GHM and GMM models, they are not represented here.

Figure 12 (b) shows the mean accelerance variation with respect to c. An overall decrease in accelerance
is observed for all viscoelastic models. Moreover, the accelerance reduction is more important at c = 0.95
and the slope is similar for all viscoelastic models. The GHM model brings more accelerance reduction
than the other models.

4.7.3. Case 3: Application of viscoelastic models in the ballast and in the pad
In this third case, the viscoelastic models are applied to the ballast and to the pad in pairs (e.g Zener

model at the ballast and the pad at the same time). The vertical accelerance variation in this case is shown
in Figure 11 (e) and (f). Similarly to the first case, the accelerance increases mostly at low frequencies
and is uniform along the SAFE element span. An important decrease is observed at 1000 Hz, 2000 Hz,
3000 Hz and 4500 Hz. The same behavior is observed for the GHM and GMM models. Figure 12 (c)
shows the mean accelerance variation with respect to c. An overall increase in accelerance is observed,
except for the GHM model.

5. Conclusions and prospects

In this work, we developed an accurate and cheap tool for analysing the effect of viscoelasticity in the
rail vibration. We introduced linear and nonlinear viscoelastic behaviors in the ballast and in the pad
in the SAFE method. The linear and nonlinear viscoelastic parameters were obtained either from the
literature or by fitting the experimental data of storage modulus and loss modulus.

We analyzed the vertical accelerance of the top of the rail when a force is applied on it. When a
viscoelastic model is applied only in the ballast, it is observed that the accelerance variation occurs
mostly below the third frequency peak of the structure (1000 Hz). However, when a viscoelastic model is
applied also in the pad, accelerance variation is observed in the whole frequency range.

We compared the SAFE method for some viscoelastic models applied in the ballast with a 1D Tim-
oshenko beam model with periodic viscoelastic support. The comparison reveals that the beam model
is not able to reproduce accelerances peaks because of the lack of cross-section deformation of the rail
foot that appears in high frequency during a vertical excitation of the rail (foot flapping). In addition, in
this work we proposed a solution for introducing the Duffing oscillator in the ballast. Using the harmonic
balance method and the Newton-Raphson method, the numerical solution is successful when the Duffing
oscillator is combined with linear elastic and Kelvin-Voigt pad. In this case, the results are satisfactory
regarding the calculation time and numerical accuracy.

The main change in the code SAFE with respect to the linear elastic material is the implementation
of the frequency-dependent complex stiffness of the viscoelastic materials, used for the calculation of the
rail impedance. That operation is straightforward and no time-consuming. That model can be applied
for the study and development of viscoelastic materials that can potentially mitigate the rolling noise.

As a perspective, we intend to implement some reduced order modeling (ROM) techniques. The ROM
method is a powerful tool to provide rich information to designers, in terms of virtual charts that can
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be produced for various parameters of the system for further decision-making. It has already been ap-
plied in [41,42,43,44,45,46,47,48] to elastodynamics problems. We intend to work with the PGD (Proper
Generalized Method), in order to efficiently compute multi-parametrized solutions and conduct tractable
optimization studies for the viscoelastic models.
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Vertical accelerance variation from the linear elastic case as function of span position c. Figures (a) and (b) are
for Zener and FD models in case 1. Figures (c) and (d) are for Zener and FD models in case 2. Figures (e) and (f) are for
Zener and FD models in case 3.
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(a) (b) (c)

Figure 12. Mean accelerance variation in the vertical direction : (a) Case 1, (b) Case 2 and (c) Case 3.
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[41] Barbarulo A, Riou H, Kovalevsky L, Ladevèze P. Pgd-vtcr : A reduced order model technique to solve medium frequency

broad band problems on complex acoustical systems. Journal of Mechanical Engineering, 60(5):307–313, 2014.
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