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ABSTRACT
To date, query performance prediction (QPP) in the context of content-
based image retrieval remains a largely unexplored task, especially
in the query-by-example scenario, where the query is an image.
To boost the exploration of the QPP task in image retrieval, we
propose the first benchmark for image query performance predic-
tion (iQPP). First, we establish a set of four data sets (PASCAL
VOC 2012, Caltech-101, ROxford5k and RParis6k) and estimate the
ground-truth difficulty of each query as the average precision or
the precision@𝑘 , using two state-of-the-art image retrieval models.
Next, we propose and evaluate novel pre-retrieval and post-retrieval
query performance predictors, comparing them with existing or
adapted (from text to image) predictors. The empirical results show
that most predictors do not generalize across evaluation scenarios.
Our comprehensive experiments indicate that iQPP is a challenging
benchmark, revealing an important research gap that needs to be ad-
dressed in future work. We release our code and data as open source
at https://github.com/Eduard6421/iQPP, to foster future research.

CCS CONCEPTS
• Information systems → Information retrieval query pro-
cessing; Information retrieval; Test collections; Retrieval ef-
fectiveness; Retrieval tasks and goals.
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1 INTRODUCTION
Query performance prediction (QPP) (also known as query difficulty
prediction or query difficulty estimation) is the task of estimating
the effectiveness of a set of search results retrieved in response to a
query, without relevance judgments [11]. QPP is extremely impor-
tant in identifying poorly performing queries, which might require
the use of a more powerful retrieval system or a query expansion
method to improve the search results. By predicting the perfor-
mance of queries, the system can optimize the search, presenting
the most relevant information to the user. This can lead to a better
user experience and increased satisfaction. Furthermore, a better
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understanding of query difficulty can also suggest improvements
to the underlying algorithms and systems used in information re-
trieval, leading to more effective and efficient systems in the future.
Hence, QPP is a crucial component for achieving effective retrieval
results and improving the overall search experience. The impor-
tance of QPP has been widely recognized in text retrieval [3, 10–
13, 18, 24–26, 35, 39, 40, 43, 44, 51, 54–56, 58, 63–65, 69, 76, 77],
being an actively studied task nowadays [1, 2, 9, 14–16, 22, 32, 60].
However, in the context of content-based image retrieval (CBIR),
the QPP task received comparably lower attention from the re-
search community, with only a few studies addressing the topic
[33, 34, 42, 45, 46, 68, 70–72, 74]. Furthermore, only a handful of
papers [42, 46, 68, 72] study query difficulty prediction in the query-
by-example scenario, where the query is an image.

Since we consider that QPP in text and image retrieval is equally
important, the goal of this work is to raise the level of exploration
of QPP in the image domain to the same level of exploration cur-
rently observed in the text domain. To this end, we propose the
first benchmark for image query difficulty prediction, which we
term iQPP, in the context of query-by-example content-based image
retrieval, where images have to be retrieved given an image query.
Our benchmark comprises four data sets (PASCAL VOC 2012 [21],
Caltech-101 [41], ROxford5k [49] and RParis6k [49]), two image
retrieval systems [50, 53], as well as several pre-retrieval and post-
retrieval query performance predictors, for which we deliver the
predicted and ground-truth performance levels for two effective-
ness measures. The data sets are chosen based on their popularity,
aiming to accommodate a high variety of images, from landmark
photos to pictures of various object classes. The retrieval systems
are chosen due to their state-of-the-art performance coupled with
the availability of the open source models. Since research on image
QPP is scarce, we turn our attention to proposing several novel
predictors along with our benchmark. First of all, we propose four
novel pre-retrieval predictors, namely (𝑖) the magnitude of the re-
construction error of denoising [73] or masked [28] auto-encoders
trained on the database, (𝑖𝑖) the density of the k-means cluster to
which the query image embedding is assigned, (𝑖𝑖𝑖) the confidence
distribution of a classification head attached to the embedding layer
of the retrieval model, and (𝑖𝑣) the score predicted by a fine-tuned
ViT model [20]. We note that the first three pre-retrieval predic-
tors are unsupervised, while the last one is supervised on labeled
training queries. Second of all, we propose four novel post-retrieval
predictors, namely (𝑣) a query feedback method redesigned for the
image domain, (𝑣𝑖) the intersection over union (IoU) ratio for the
results retrieved while iteratively removing the most discrimina-
tive features, (𝑣𝑖𝑖) the dispersion (variance) of the embeddings of
the retrieved results, and (𝑣𝑖𝑖𝑖) the difficulty score predicted by a
regression model applied on all the other predictors. Among the
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proposed post-retrieval predictors, only the last one is supervised.
We compare the proposed predictors with existing methods for
image difficulty [30, 67] or query performance [68] prediction, as
well as the standard deviation of predicted relevance scores, which
was originally proposed for QPP in the text domain [13].

We carry out a comprehensive set of experiments on the four
aforementioned data sets to evaluate the capacity of the designated
predictors in predicting the ground-truth difficulty of the queries.
As in previous studies [16, 25], we employ the Pearson correlation
and the Kendall 𝜏 correlation as evaluation measures. Our results in-
dicate that supervised and post-retrieval predictors tend to achieve
better performance. However, the empirical evidence shows that
the image QPP task is far from being solved, since none of the
existing or proposed predictors can surpass a Kendall 𝜏 of 0.65,
and there is no predictor to consistently surpass its competitors
on all four data sets. This observation indicates that there is an
important research gap in image QPP, which needs to be addressed
in future work. To ensure the reproducibility of the results and
foster future research, we release our code and data as open source
at https://github.com/Eduard6421/iQPP.

In summary, our contributions are threefold:

• We develop the first benchmark for image query perfor-
mance prediction in the query-by-example CBIR setting.

• We propose eight novel pre-retrieval and post-retrieval im-
age query performance predictors.

• We present extensive experiments on the four image data
sets included in our benchmark.

2 RELATEDWORK
2.1 QPP in ad-hoc text retrieval
Query performance prediction became popular in the mid-2000s
in ad-hoc text retrieval [7, 11]. Since then, researchers explored
QPP using a broad range of approaches, giving rise to various cate-
gories of predictors. For example, query performance predictors can
be categorized into pre-retrieval and post-retrieval. Pre-retrieval
predictors aim to predict query performance prior to querying
the document collection, while post-retrieval ones imply carry-
ing out a search before estimating effectiveness [7]. Some popular
pre-retrieval predictors are term rareness, specificity or distribu-
tion [17, 27, 61, 79], term ambiguity [17, 44] and query complex-
ity [23, 44]. Hauff et al. [25] analyzed 22 pre-retrieval predictors
and concluded that the predictors jointly considering the query
and the collection are better than the ones only considering the
query. They also observed that the performance of predictors de-
pends on the test collection and the underlying retrieval model.
Due to the extra available information, post-retrieval predictors are
usually more effective, although less efficient [65]. Many of these
predictors mainly consider the homogeneity, magnitude or variance
of the retrieved document scores [7, 11, 62, 65, 78]. For example,
the clarity score [11] measures the term distribution probability of
the retrieved documents and the term distribution probability of
the whole collection [11]. Other post-retrieval predictors measure
the divergence or stability of the retrieved document list when
the query is perturbed using relevance feedback [81], sub-queries
[75] or different scoring functions [4]. Individual predictors may

have high variance [10, 32, 76] and are not robust across collec-
tions. Thus, some studies have considered combining predictors.
For non-supervised methods, studies have focused on analyzing
classes of queries or the link between system/query features and ef-
fectiveness, using for example factorial analysis [6, 19]. Supervised
methods represent however the most common means to combine
predictors in QPP, comprising approaches based on linear combina-
tions [10, 32, 58, 80], genetic algorithms [5], and neural networks
[14, 76]. Supervised predictors are usually evaluated using k-fold
or leave-one-out cross-validation [7].

To our knowledge, there is no clear benchmark for text QPP.
However, there are some common practices. First, several collec-
tions are used in a study, allowing researchers to evaluate the robust-
ness of a predictor across collections. QPP for ad-hoc search relies
mostly on TREC collections1 [10, 25, 75]. Evaluation encompasses
several aspects, such as the measure used to assess the retrieval
system performance, and the one used to evaluate the QPP ac-
curacy. As performance measures, researchers employ the usual
ad-hoc retrieval effectiveness measures, e.g. average precision (AP),
NDCG, or precision at a certain cut-off point of the retrieved list
[10, 25, 32, 57, 75, 79]. The prediction accuracy is measured by con-
sidering the actual effectiveness and the predicted performance.
To evaluate this relation, most of the studies consider the Pear-
son correlation. Since the link between the two measures may not
be linear, Kendall and Spearman correlations are often employed
as additional measures [10, 25, 32, 57, 75, 79]. We follow similar
evaluation principles in constructing our iQPP benchmark.

Different for the mainstream area studying QPP in ad-hoc text re-
trieval, we underline that studies on QPP in image retrieval require
new predictors adapted to the image domain, as well as distinct data
sets, containing images instead of text documents. Hence, research
on image QPP naturally diverges to a different direction, specific
to the image domain. We cover this direction in the next section.

2.2 QPP in image search
One of the first contributions on QPP in the image domain is the
work of Xing et al. [74]. The authors used query words and con-
text information to compute a set of four text-based pre-retrieval
features and train a model for QPP in image retrieval. Subsequent
studies turned their attention to post-retrieval predictors. Tian et
al. [71] focused on QPP for web image search, where the query is
a piece of text and the results are images. The authors proposed
the visual clarity score inspired from the clarity score defined for
texts [11], which measures the difference in the distribution of the
top retrieved images and the whole collection. They also use the
coherence score based on the visual similarity among the retrieved
images. In a later study, Tian et al. [70] introduced an approach
to reconstruct an image query based on the images returned in
response to a text query. They estimated query performance via
the differences between the ranked lists of the text query and the
reconstructed image query. Nie et al. [45] presented a two-stage
pipeline for QPP. In the first stage, ranked image lists are classified
into person-related and non-person-related. In the second stage,
the relevance probability of the query is estimated via graph-based
learning, as well as visual content. The authors adapt the visual

1Text REtrieval Conference (http://trec.nist.gov)
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content representation to the class predicted in the first stage. Jia
et al. [33, 34] introduced a post-retrieval predictor that divides
the retrieved images into pseudo-positive and pseudo-negative via
pseudo-relevance feedback. Next, a voting scheme is applied to
label the images as relevant or not. The pseudo-relevance labels are
further used to provide an estimate for the AP.

To our knowledge, there are only a few studies [42, 46, 68, 72]
that try to predict the performance of image queries. Li et al. [42]
proposed a post-retrieval predictor that examines the top ranked
images using the clarity score, the spatial consistency of local de-
scriptors, and the appearance consistency of global features. The
method is specifically designed for image retrieval models based on
the bag-of-visual-words [31, 47]. Pedronette et al. [46] proposed an
unsupervised post-retrieval predictor based on the cluster hypothe-
sis [38], considering that the images belonging to a highly effective
ranked list should appear in the ranked lists of each other. The
authors study different ways to measure the density of reciprocal
references among retrieved images, conducting experiments on rel-
atively small data sets (each of about 1,000 images). Sun et al. [68]
proposed a supervised post-retrieval predictor that transforms the
ranked list of images into a similarity or correlation matrix which
is further given as input to a convolutional neural network (CNN).
Valem et al. [72] extended the work of Sun et al. [68] by generating
synthetic ranked lists as training data for the CNN, requiring a
more complex training procedure.

As related studies on QPP in ad-hoc text retrieval, methods study-
ing QPP in image search commonly employ AP and NDCG as
effectiveness measures, and the Pearson coefficient as query per-
formance prediction measure [42, 45, 46, 68, 72].

Most of the above studies, e.g. [33, 34, 45, 70, 71, 74], predict the
performance of text queries in CBIR. Our study is among the few
works [42, 46, 68, 72] studying the performance of image queries. To
the best of our knowledge, we are the first to propose a benchmark
for image QPP in image retrieval. The benchmark includes four
data sets, two retrieval models, and twelve predictors. Among the
considered predictors, there are eight novel QPP approaches, adding
to the novelty of our study. Furthermore, we are the first to propose
pre-retrieval predictors for image queries.

3 PROBLEM FORMULATION
Let D = {𝑥1, 𝑥2, ...., 𝑥𝑛} be a collection (database) of images, where
𝑛 is the number of images inside the collection. Given a query
image 𝑞, an image retrieval system 𝑅 returns a ranked list of 𝑘
images denoted as 𝜌𝑞,𝑅 =

[
𝑥
(𝑞,𝑅)
1 , 𝑥

(𝑞,𝑅)
2 , ..., 𝑥

(𝑞,𝑅)
𝑘

]
, where 𝑘 ≤ 𝑛

and 𝑥 (𝑞,𝑅)
𝑖

∈ D is the 𝑖-th most similar image to 𝑞, as evaluated by
𝑅. A retrieval model is a tuple 𝑅 = (𝑓 , 𝛿), where 𝑓 : Rℎ×𝑤 → R𝑑 is a
model, e.g. neural network, that maps each input image 𝑥𝑖 of ℎ ×𝑤
pixels to a𝑑-dimensional embedding vector 𝑣𝑖 , and 𝛿 : R𝑑×R𝑑 → R
is a distance or similarity function. To obtain the ranked list, the
model 𝑓 is applied to the query 𝑞 (online) and the images 𝑥𝑖 ∈ D
(offline). Then, the measure 𝛿 is applied on each pair of embedding
vectors 𝑣𝑞 and 𝑣𝑖 , and, based on the returned distance or similarity
values, the images are sorted in descending or ascending order,
respectively. Let 𝜌𝑞 =

[
𝑥
(𝑞)
1 , 𝑥

(𝑞)
2 , ..., 𝑥

(𝑞)
𝑘

]
denote the ground-truth

ranked list of the most similar 𝑘 images from D to the query image

𝑞. Let R𝑘 denote the set of all possible ranked lists of 𝑘 images.
Let 𝑃 : R𝑘 × R𝑘 → R be a performance measure, e.g. average
precision or precision@𝑘 , that estimates the effectiveness of the
retrieval system 𝑅 on the query 𝑞, considering the ground-truth
and predicted rankings. For any query image 𝑞 and retrieval model
𝑅, the goal of QPP is to predict the value returned by 𝑃

(
𝜌𝑞, 𝜌𝑞,𝑅

)
,

without having access to the ground-truth list 𝜌𝑞 .

4 PRE-RETRIEVAL PREDICTORS
To save space and avoid reiterating through the predictors presented
here in a later section, we include hyperparameter choices in the
current section. We use the same presentation format for the post-
retrieval predictors described in Section 5.

4.1 Baselines
The baselines presented below were previously used for generic
image difficulty estimation [30, 67]. We repurpose them as pre-
retrieval query performance predictors.
Generic image difficulty. Ionescu et al. [30] proposed an image
difficulty predictor trained on a data set collected with the help
of human annotators. The ground-truth difficulty score of each
image is based on measuring the average time taken by human
annotators to search for different objects (present or missing) in
the respective image. The image difficulty predictor is based on
an ensemble of VGG networks [66] pre-trained on ImageNet [59],
where the classification layer is replaced with a Support Vector
Regression (SVR) model. We reproduce the original difficulty re-
gressor of Ionescu et al. [30] and apply it on each query image.
As discussed in [30], the image difficulty regressor scores images
on a continuous scale, such that images with one object in a plain
background receive low scores, and images with many objects in a
complex scene (background) receive high scores.
Number of objects divided by their area. In object detection,
Soviany et al. [67] observed that the number of detected objects and
the total area covered by the objects are positively and negatively
correlated with image difficulty [30], respectively. In other words,
an image depicting one object covering the entire image is easy for
visual search, while an image depicting multiple objects covering a
small area, e.g. because the objects are photographed from far away,
is difficult. Thus, following the intuition of Soviany et al. [67] and
transposing it to image QPP, the performance of an image query
can be estimated as the number of objects divided by their average
bounding box area. LetB = {𝑏1, 𝑏2, ..., 𝑏𝑚} be the set of𝑚 bounding
boxes detected in query image 𝑞 by a pre-trained object detector,
namely a Faster R-CNN [52] with a ResNet-50 [29] backbone. Let
ℎ𝑖 and 𝑤𝑖 denote the height and width of bounding box 𝑏𝑖 . The
difficulty score of an image 𝑞 is defined as follows:

𝑠 (𝑞,B) = 𝑚

1
𝑚

∑𝑚
𝑖=1𝑤𝑖 · ℎ𝑖

. (1)

4.2 Proposed
Auto-encoder reconstruction.We train two types of auto-encoders
(AEs) to reconstruct the images in the collection D, namely denois-
ing AEs [73] and masked AEs [28]. A denoising AE corrupts input
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images with Gaussian noise and learns to reconstruct the origi-
nal (uncorrupted) inputs. By adding noise, the AE avoids learning
the identity mapping. Masked auto-encoders represent a modern
attempt to learn discriminative representations by dividing input
images into a grid of patches and eliminating a significant amount
of patches (typically 75%). A masked AE learns to reconstruct the
missing patches. Both AE models embed images into a latent mani-
fold that captures the most important patterns in the training data
distribution. Auto-encoders are known for their capacity to repre-
sent images from the training distribution very well. However, as
soon as an image from a different distribution is given as input, AEs
exhibit poor reconstruction capabilities. We leverage this property
and propose to train a denoising or masked AE on the collection
of images D and apply it on the query image 𝑞. Intuitively, if the
query image can be accurately reconstructed by the model, then
the query is likely to be easy, i.e. a low reconstruction error means
that the query image belongs to the training data distribution. In
contrast, a query image that is poorly reconstructed by the model
indicates that it is not well represented by the training distribution.
Moreover, we consider that the higher the reconstruction error, the
farther away the query image is from the training distribution.

The denoising AE is based on a convolutional architecture. The
encoder is composed of four convolutional layers with ReLU acti-
vations and 2D batch normalization, while the decoder is formed
of four convolutional layers with ReLU activations and nearest
neighbor upsampling applied between layers. The masked AE is
based on transformer blocks. The encoder uses an embedding di-
mension of 768 and comprises 18 transformer blocks, each with 16
attention heads. The decoder is lighter, having only 8 transformer
blocks based on 512-dimensional embeddings. We employ Adam
[36] and the mean squared error (MSE) to train both AEs. We set
the learning rate to 10−3 and the mini-batch size to 12 for both
models. During inference, the MSE is used as effectiveness score
for the query images.
K-means cluster density.We propose to cluster the embedding
vectors given by themodel 𝑓 for all images in the collectionD, using
k-means clustering. The embedding of the query image 𝑣𝑞 = 𝑓 (𝑞)
is assigned to one of the clusters denoted as 𝐶 𝑗 , represented by the
centroid 𝑐 𝑗 , where 1 ≤ 𝑗 ≤ 𝐾 and 𝐾 is the number of clusters. We
consider that the query is easy if the cluster 𝐶 𝑗 has many points
densely packed together, and hard if the cluster 𝐶 𝑗 has only a few
points spread over a large area. Aside from the cluster density,
which is the same for all queries assigned to cluster𝐶 𝑗 , the relation
between a query and the cluster centroid provides another clue
about the difficulty of the query. More precisely, the farther the
embedding 𝑣𝑞 is from the cluster centroid, the more difficult the
query. We combine the aforementioned conjectures into a closed
form equation and compute the difficulty score 𝑠 (𝑞) of query 𝑞 as
follows:

𝑠 (𝑞) =
𝛿 (𝑐 𝑗 , 𝑣𝑞) + 𝑣𝑎𝑟 (𝐶 𝑗 )

|𝐶 𝑗 |
, (2)

where |𝐶 𝑗 | is the cardinal of cluster𝐶 𝑗 and 𝑣𝑎𝑟 (𝐶 𝑗 ) is the variance of
cluster𝐶 𝑗 . We tune the hyperparameter𝐾 taking values between 50
and 300, with a step of 50. We obtain optimal results with 𝐾 = 150.

Confidence distribution of self-supervised classificationhead.
We propose to equip the embedding model 𝑓 with a softmax classifi-
cation head and train it on the image database D. After embedding
each query with the model 𝑓 , we additionally pass it through the
classification head to obtain a class distribution. We conjecture that
easy queries are likely to be assigned to one class with high confi-
dence. At the same time, hard queries will be assigned to multiple
classes with various confidence levels, indicating that the classifier
is not certain what class label should be assigned to the query im-
age. We alternatively employ two measures to estimate the class
confidence distribution: dispersion and kurtosis.

Since not all image collections have class labels attached, we
train the classification head in a self-supervised manner. Following
Caron et al. [8], we first cluster the embedding vectors 𝑣𝑖 into
𝐾 clusters via k-means. Then, we use the cluster assignments as
target class labels for our classification head. The head comprises
two hidden layers of 50 neurons each with ReLU activations, and a
softmax layer. We employ the Adam optimizer [36] with a learning
rate of 10−4 to minimize the cross-entropy loss. During training,
the embedding model 𝑓 is frozen. We tune the number of clusters
in the range 50-300, at a step of 50. The optimal value for 𝐾 is 150.
Fine-tuned ViT. Visual transformers [20] are a family of deep
learning architectures that apply the self-attention mechanism to
visual data. This allows the model to handle long-range dependen-
cies and spatially-varying information in images, recently leading
to improved performance in tasks such as image classification, seg-
mentation, and generation. The power of these models relies on
using a two-stage training process: (𝑖) large scale pre-training and
(𝑖𝑖) fine-tuning on downstream tasks. Following this procedure,
we propose to fine-tune a visual transformer (ViT) model [20] to
predict the performance levels of training query images. We select
the ViT-B16 backbone pre-trained on ImageNet [59], and fine-tune
it on the QPP task for 100 epochs with the Adam optimizer. We
tune the learning rate (considering 10−2, 10−3 and 10−4 as possible
values) and the mini-batch size (considering 8, 16 and 32 as possible
values) using grid-search.

5 POST-RETRIEVAL PREDICTORS
All post-retrieval predictors take into account the returned list of
results. Since we use the precision@100 to determine the ground-
truth effectiveness of queries, we set 𝑘 = 100 and use the top 𝑘
retrieved results for the post-retrieval predictors presented below.

5.1 Baselines
Score variance.We use the score variance introduced by Cummins
et al. [13] as our first baseline post-retrieval predictor. The score
variance behaves as an estimator for the influence of characteristics
that are not related to the query. Because of its simplicity, this
predictor can be applied to imageswithout any adaptation. Formally,
the estimated query performance is computed as follows:

𝑠 (𝑞) = 𝑣𝑎𝑟
(
𝛿

(
𝑣𝑞, 𝑣

(𝑞,𝑅)
𝑖

))
. (3)

Correlation-based CNN. Sun et al. [68] proposed to train a CNN
on similarity or correlation matrices. A ranked list of images is
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turned into a matrix by computing the pairwise similarities be-
tween all pairs of returned images. The authors found that the best
approach to determine the pairwise similarity between two images
is to pass them through another CNN and compute the similarity
between the resulting embedding vectors. To obtain these embed-
ding vectors, we employ the embedding model 𝑓 which comes with
the retrieval system. In our case, the model 𝑓 is a ResNet-101 [29].

The CNN that learns to predict query performance based on
similarity matrices is formed of three convolutional-pooling blocks,
followed by two dense layers. We use the exact same configuration
for the CNN as Sun et al. [68]. The model is optimized to minimize
the mean squared error between the ground-truth and the predicted
query performance. Following Sun et al. [68], we train the CNN
for 100 epochs with the Adam optimizer. We tune the learning
rate (considering 10−2, 10−3 and 10−4 as possible values) and the
mini-batch size (considering 8, 16 and 32 as possible values) using
grid-search.

5.2 Proposed
Adapted query feedback. Our first post-retrieval predictor is a
redesigned version of the query feedback proposed by Zhou et
al. [81]. In text retrieval, the query feedback is computed as the
overlap between the ranked lists retrieved by a system for the
original query and the expanded query, respectively. The query
expansion is performed considering the list of documents retrieved
for the original query. In the image domain, we perform query
expansion by finding the median image in the list 𝜌𝑞,𝑅 returned
by the system 𝑅 for the query 𝑞. We define the median image as
the image 𝑞′ ∈ 𝜌𝑞,𝑅 having the closest embedding to the average
embedding of the returned list:

𝑞′ = argmin
𝑥
(𝑞,𝑅)
𝑖

∈𝜌𝑞,𝑅
𝛿
©«𝑓

(
𝑥
(𝑞,𝑅)
𝑖

)
,
1
𝑘

𝑘∑︁
𝑗=1

𝑓

(
𝑥
(𝑞,𝑅)
𝑗

)ª®¬ , (4)

where 𝑓 is the embedding model. Finally, our adapted query feed-
back is given by the IoU ratio between 𝜌𝑞,𝑅 and 𝜌𝑞′,𝑅 .
Iterative removal of discriminative features. We propose an
approach for QPP inspired by the unmasking technique of Koppel et
al. [37]. The technique was initially proposed for the task of text au-
thor identification, serving as an estimator for how distinguishable
texts are from each other. The method relies on gradually removing
distinguishable features learned by a linear classifier, leveraging
the idea that if two texts are written by the same author, then they
should differ by a relatively small amount of features.

We adapt the aforementioned principle with the purpose of
identifying the level of similarity between the query and the re-
trieved images. We take the top 𝑘 retrieved images and compute
the Hadamard product between their embeddings and the query
embedding 𝑣𝑞 to identify the features with higher correlation. We
sort the features in descending order of the correlation and remove
the top𝑚 features from the embeddings of the query and the data-
base images. This process is repeated 𝑙 times. To measure query
performance, we employ the IoU score computed over the sets of
images retrieved at all iterations. Intuitively, if a query is easy to
handle, systematic removals of features should not strongly deter

Table 1: Important statistics about the data sets included in
the iQPP benchmark.

Data set #images #train queries #test queries

PASCAL VOC 2012 17,125 700 700
Caltech-101 9,146 700 700
ROxford5k 5,063 - 70
RParis6k 6,392 - 70

the original answer, as the query exhibits a larger set of highly cor-
related features. We employ grid-search to perform hyperparameter
tuning, obtaining optimal results with𝑚 = 50 and 𝑙 = 15.
Embedding variance. Inspired by the intuition behind the predic-
tor based on score variance [65], we propose a predictor based on
estimating the variance of the embeddings of the retrieved images.
Formally, the effectiveness of query 𝑞 is estimated by:

𝑠 (𝑞) = 𝑣𝑎𝑟 (𝑓 (𝜌𝑞,𝑅)), (5)

where 𝑓 is the embedding model and 𝜌𝑞,𝑅 is the list of 𝑘 images
returned by the system 𝑅, as defined in Section 3. From another
perspective, we can regard the predictor defined in Eq. (5) as a post-
retrieval version of the pre-retrieval predictor based on k-means
cluster density defined in Eq. (2). Indeed, the returned images 𝜌𝑞,𝑅
are likely to have a high overlap with the images in cluster 𝐶 𝑗 .
The overlap is higher, as the query image is closer to the cluster
centroid.
Meta-regressor. We propose a meta-regression model to lever-
age the results of all of the previously described methods. We first
normalize the values of all the other predictors between 0 and
1. Next, we train a Support Vector Regression (SVR) model and
employ grid-search to identify the optimal values of the penalty
term 𝐶 ∈ {0.1, 1, 10, 100}, the fraction of support vectors 𝜈 ∈
{0.1, 0.25, 0.5, 0.75}, and the kernel type (linear or RBF). We identify
𝐶 = 100, 𝜈 = 0.25 and the Radial Basis Function (RBF) kernel as the
optimal choices.

6 BENCHMARK RESOURCES
6.1 Data sets
To evaluate the performance of the predictors, we assemble a lineup
of four image data sets to form our novel benchmark, namely PAS-
CAL VOC 2012 [21], Caltech-101 [41], ROxford5k [49] and RParis6k
[49]. While ROxford5k and RParis6k are well established CBIR data
sets, we repurpose PASCAL VOC 2012 and Caltech-101 to accom-
modate the QPP task. The well-established ROxford5k and RParis6k
data sets consist of 70 queries each. To achieve a more robust eval-
uation on PASCAL VOC 2012 and Caltech-101, we establish a set of
700 test queries for these two data sets, increasing the number of
queries by an order of magnitude compared to the well-established
ROxford5k and RParis6k, as shown in Table 1.

In Figure 1, we illustrate two queries (one easy and one hard) per
data set, and the top five results for each query. Note that ROxford5k
and RParis6k contain landmark images, while PASCAL VOC 2012
and Caltech-101 contain images of various objects.
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Figure 1: Examples of easy (highperformance) andhard (low
performance) queries from the four data sets included in the
iQPP benchmark. For each query, we show the top five re-
sults returned by the system of Radenović et al. [50] to bet-
ter illustrate the performance levels of the chosen queries.
Best viewed in color.

PASCAL VOC 2012. PASCAL VOC 2012 [21] is a data set of 17,125
images covering a wide range of computer vision tasks such as
image segmentation, object detection and object recognition. It
contains a broad array of real-life scenes, depicting more than 20
object categories. The data set provides annotations for bounding
boxes, object classes and contours.

Our work increases the value of the data set by supplementing
the available tasks with an additional entry, that of content-based
image retrieval. We generate a selection of query images which
are held out from the image list. We consider two variations of
the retrieval process: easy and hard. For the easy track, we crop
the bounding boxes of random objects and use the cropped objects
as query images, marking as positive any image that contains the
searched object class. The difficult track focuses on multi-object
queries (illustrating certain activities, e.g. person riding a bike, cats
playing), marking as positive any image that contains all of the ob-
ject classes seen in the query image. We generate 350 single-object
queries and 350 multi-object queries for evaluation purposes. For
supervised predictors, we generate an equally large and identically
balanced set of queries (700) for training.
Caltech-101. Caltech-101 [41] is an object recognition data set,
which we repurpose to address the CBIR task. The data set consists
of images depicting objects from one of 100 object classes. Addi-
tional images are provided to represent a visual clutter (background)
class. The data set contains 9,146 images. We keep 700 images as
training queries and another 700 images as test queries.

ROxford5k. ROxford5k [49] is a version of the Oxford5k [47] data
set curated by Radenović et al. [49]. Oxford5k is a popular object
retrieval data set that contains images depicting landmarks from
the city of Oxford. The curation consists of annotation corrections,
new queries and multiple difficulty tracks. ROxford5k is composed
of 5,063 images, out of which 70 are held out as queries. The data
samples are split into four different categories based on how clearly
they depict the subject: easy, hard, negative and unclear. Images
labeled as easy have minor viewpoint changes and illumination
conditions similar to the query, while images labeled as hard have
more difficult viewing conditions. Unclear images depict landmarks
that cannot be accurately identified without contextual information.
Since ROxford5k [49] comes with only 70 queries, we propose
to evaluate supervised predictors using a 5-fold cross-validation
procedure. We publicly release the folds with the benchmark.
RParis6k. RParis6k [49] is an enhancement of Paris6k [48] consist-
ing of 6,392 images and 70 queries. The data set follows an identical
structure to ROxford5k, since it is also curated by Radenović et
al. [49]. RParis6k contains various landmarks from the city of Paris
from multiple viewing points and illumination conditions. To eval-
uate supervised query performance predictors, we employ 5-fold
cross-validation. As for ROxford5k, we make the folds public to
facilitate future comparisons.

6.2 Evaluation protocol
To assess the difficulty level of a query, we consider two alternative
measures of retrieval effectiveness, namely the average precision
(AP) and the precision for the top 𝑘 retrieved results (P@𝑘). The
precision@𝑘 is given by the number of true positive images divided
by 𝑘 . The recall is given by the ratio between the number of true
positive images and the number of images labeled as positive for
the query. The AP is given by the area under the precision-recall
curve, which takes into account all possible thresholds 𝑘 . Although
P@10 is sometimes used in text QPP [75], we found that a high
percentage of the test queries (between 29% and 82%, depending
on the data set) have a P@10 score of 1. For a better estimation of
query difficulty, we decided to use P@100.

To estimate the performance level of a predictor, we employ the
Pearson and Kendall 𝜏 correlation coefficients between the predicted
and the actual effectiveness levels of all test queries, following
the conventional evaluation procedure in text QPP [10, 22, 75, 79].
Moreover, we apply a Student’s t-test at a confidence score of 0.01
to test significance [54]. Although some data sets separate queries
into different difficulty tracks, we aim to evaluate the capacity of
predictors to estimate the actual AP or P@100 scores rather than
classifying the queries as easy or hard, since we consider that the
regression task is more suitable for revealing the true abilities of
the predictors.

6.3 Image retrieval models
The first image retrieval system used in our benchmark was pro-
posed by Radenović et al. [50]2. The model is based on fine-tuning
a convolutional neural network on a large set of annotation-free
images. The authors leverage the use of geometry and camera

2https://github.com/filipradenovic/cnnimageretrieval-pytorch

https://github.com/filipradenovic/cnnimageretrieval-pytorch
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Table 2: Pearson and Kendall 𝜏 correlations of the query performance predictors on PASCALVOC 2012 and Caltech-101, which
contain images of various object classes. Underlined results are significantly better than the randomchance baseline, according
to a Student’s t-test with a p-value lower than 0.01. The top pre-retrieval and post-retrieval scores are highlighted in bold.
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Random 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Pr
e-
re
tr
ie
va
l

#objects / area [67] 0.02 0.22 0.03 0.25 0.02 0.27 0.03 0.25 0.01 0.08 0.01 0.04 0.04 0.06 0.03 0.04
Image difficulty [30] 0.25 0.19 0.33 0.23 0.32 0.24 0.31 0.22 −0.01 −0.02 −0.07 −0.07 0.00 −0.02 −0.07 −0.06
Denoising AE 0.15 0.16 0.06 0.08 0.11 0.12 0.08 0.09 0.03 0.02 0.06 0.03 0.12 0.07 0.13 0.07
Masked AE 0.11 0.11 0.01 0.05 0.01 0.06 −0.01 0.03 −0.04 −0.04 0.01 0.00 0.03 0.02 0.09 0.05
Class head kurtosis 0.05 0.08 0.09 0.07 0.12 0.09 0.12 0.08 0.16 0.17 0.26 0.30 0.23 0.17 0.13 0.10
Class head dispersion 0.08 0.09 0.13 0.08 0.17 0.11 0.17 0.10 0.25 0.20 0.48 0.38 0.32 0.23 0.21 0.15
Cluster density 0.13 0.12 0.00 0.01 −0.02 −0.04 −0.01 −0.01 0.15 0.09 0.41 0.24 −0.13 0.09 −0.03 −0.4

✓ Fine-tuned ViT 0.04 0.02 0.20 0.10 0.17 0.06 0.14 0.05 0.54 0.38 0.27 0.15 0.65 0.47 0.41 0.20

Po
st
-r
et
rie

va
l Score Variance [13] 0.02 0.05 −0.02 0.02 0.23 0.19 0.26 0.20 0.11 0.01 0.21 0.01 0.51 0.51 0.30 0.39

✓ Correlation CNN [68] 0.27 0.07 0.32 0.16 0.32 0.15 0.26 0.11 0.83 0.65 0.76 0.51 0.78 0.60 0.71 0.50
Adapted query feedback 0.23 0.16 0.37 0.21 0.41 0.26 0.41 0.24 0.60 0.43 0.60 0.46 0.56 0.40 0.60 0.44
Iterative removal 0.16 0.13 0.35 0.20 0.41 0.26 0.40 0.23 0.57 0.41 0.57 0.42 0.31 0.20 0.40 0.23
Embedding Variance 0.29 0.20 0.33 0.21 0.43 0.22 0.37 0.20 0.28 0.20 0.49 0.28 0.26 0.18 0.49 0.26

✓ Meta-regressor 0.36 0.28 0.45 0.29 0.51 0.34 0.48 0.30 0.71 0.53 0.72 0.51 0.76 0.57 0.70 0.49

positioning of 3D models returned by a structure-from-motion
framework to guide the selection of matching and non-matching
image pairs, eliminating the need for manually annotated data. The
proposed architecture employs a novel pooling layer with trainable
parameters that induce a particular case of the generalized mean
(GeM).

The second image retrieval system from iQPP was introduced
by Revaud et al. [53]3. The authors apply a histogram binning ap-
proximation to make the AP differentiable, enabling its use as a loss
function for training deep networks. The system uses a ResNet-101
[29] backbone pre-trained on ImageNet [59]. Following Radenović
et al. [50], a GeM pooling layer is integrated into the architecture.

7 BENCHMARK RESULTS
We group our experiments based on the type of images from the
chosen data sets. Hence, in Section 7.1, we present the results on
data sets composed of images of various natural or man-made
objects, namely PASCAL VOC 2012 and Caltech-101. In Section 7.2,
we discuss the results on ROxford5k and RParis6k, as both data
sets contain landmark images. Finally, we make a few observations
about the overall results in Section 7.3.

7.1 Results on PASCAL VOC and Caltech-101
We report the results on PASCAL VOC 2012 and Caltech-101 in
Table 2. We discuss the reported results below, making several
interesting observations.

3https://github.com/naver/deep-image-retrieval

Results of pre-retrieval predictors. On PASCAL VOC, the best
pre-retrieval predictors are the baselines based on image difficulty
or the number of objects divided by their area (see the first two
rows after the random baseline in Table 2). These pre-retrieval pre-
dictors mainly rely on the presence of multiple objects from various
object categories inside the query image, e.g. people, cars or dogs,
being suitable for PASCAL VOC queries. However, the two base-
line predictors exhibit poor performance on Caltech-101 images,
which typically contain only one object per image. Interestingly, on
PASCAL VOC, image difficulty gives a better Pearson correlation,
while the number of objects divided by their area gives a better
Kendall 𝜏 . This observation points towards the importance of using
multiple correlation measures to better assess predictors’ behavior.

On Caltech-101, the best pre-retrieval predictor for the AP mea-
sure is the fine-tuned ViT. However, when we consider P@100 as
the ground-truth query performance, the fine-tuned ViT is sur-
passed by the classification head dispersion in one scenario. Some
predictors seem to be better suited for certain effectiveness mea-
sures. To find robust predictors across effectiveness measures, it
is thus important to include more than a single measure to esti-
mate ground-truth query performance. Finally, we observe that
the two data sets have distinct top scoring pre-retrieval predictors,
demonstrating that it is not sufficient to use a single data set to find
generic predictors.
Results of post-retrieval predictors.The baseline predictor based
on score variance seems to be a suitable estimator for the system
of Revaud et al. [53]. However, the predictions given by score vari-
ance for the system of Radenović et al. [50] are close to random
chance. These results demonstrate that predictors can depend on

https://github.com/naver/deep-image-retrieval
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Table 3: Pearson and Kendall 𝜏 correlations of the query performance predictors on ROxford5k and RParis6k, which contain
landmark images. Underlined results are significantly better than the random chance baseline, according to a Student’s t-test
with a p-value lower than 0.01. The top pre-retrieval and post-retrieval scores are highlighted in bold.
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Random 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.02 0.01
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#objects / area [67] 0.17 0.05 0.14 0.03 0.16 0.02 −0.05 0.04 0.01 −0.01 −0.17 −0.16 0.00 −0.07 −0.12 −0.19
Image difficulty [30] −0.04 −0.04 −0.18 −0.11 −0.11 −0.10 0.12 0.09 −0.06 −0.03 −0.04 0.05 −0.19 −0.06 −0.09 −0.01
Denoising AE −0.07 −0.02 −0.04 0.06 −0.07 −0.03 0.06 0.09 −0.18 −0.20 0.31 0.19 0.02 0.00 0.45 0.28
Masked AE 0.10 0.07 0.22 0.20 −0.09 0.07 0.11 0.11 −0.21 −0.20 0.18 0.14 0.10 0.02 0.40 0.26
Class head kurtosis 0.27 0.20 0.20 0.18 0.28 0.18 0.00 0.04 0.19 0.18 −0.01 −0.09 0.18 0.00 0.04 −0.07
Class head dispersion 0.34 0.24 0.27 0.23 0.35 0.21 0.12 0.10 0.34 0.24 0.27 0.23 0.35 0.21 0.12 0.10
Cluster density 0.22 0.02 0.38 0.14 0.01 −0.05 0.23 0.01 0.32 0.22 0.36 0.21 0.20 0.17 0.23 0.17

✓ Fine-tuned ViT 0.41 0.31 0.40 0.21 0.43 0.28 0.36 0.22 0.18 0.21 0.23 0.17 0.25 0.24 0.38 0.38
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l Score variance [13] 0.01 −0.02 0.21 0.22 0.27 0.28 0.41 0.35 0.41 0.17 0.45 0.35 −0.02 0.02 −0.38 −0.12

✓ Correlation CNN [68] 0.43 0.30 0.69 0.49 0.60 0.44 0.90 0.62 0.65 0.33 0.77 0.55 0.56 0.46 0.66 0.37
Adapted query feedback 0.22 0.11 0.36 0.24 0.42 0.29 0.77 0.52 0.33 0.13 0.56 0.32 0.32 0.16 0.32 0.26
Iterative removal 0.28 0.22 0.31 0.33 0.36 0.23 0.75 0.53 0.30 0.17 0.40 0.19 0.35 0.14 0.50 0.32
Embedding variance 0.30 0.15 0.54 0.32 0.34 0.23 0.84 0.57 0.51 0.27 0.69 0.45 0.36 0.18 0.47 0.40

✓ Meta-regressor 0.49 0.37 0.62 0.51 0.58 0.45 0.88 0.65 0.69 0.51 0.76 0.60 0.37 0.37 0.65 0.56
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Figure 2: Image queries from PASCAL VOC 2012 displayed
in increasing order of predicted performance, from left to
right. Examples are illustrated for three of the best unsuper-
vised predictors: iterative feature removal (top row), adap-
tive query feedback (middle row), and embedding variance
(bottom row). Best viewed in color.

the reference system. By including multiple retrieval systems in our
benchmark, we are able to identify predictors that are inconsistent
across different retrieval models.

On PASCAL VOC 2012, our largest data set, the meta-regressor
outperforms all competing predictors, leveraging the use of infor-
mation from the other predictors to surpass them. However, this
does not happen on Caltech-101, where the best predictor is the
correlation-based CNN. Regardless of the data set, it is clear that

supervised post-retrieval predictors are generally better, surpass-
ing the unsupervised post-retrieval predictors. Another expected
outcome is that post-retrieval predictors obtain superior results
compared with pre-retrieval predictors.

The proposed unsupervised post-retrieval predictors (adapted
query feedback, iterative feature removal and embedding variance)
reach reasonably good correlation levels, always surpassing the
random predictor baseline by statistically significant margins. To
further analyze the behavior of these predictors, we illustrate some
randomly chosen queries from PASCAL VOC 2012 in Figure 2, or-
ganizing them in increasing order of predicted performance. The
figure shows that all three predictors find query images with fewer
objects and plain background as more likely to exhibit high perfor-
mance. In contrast, images with multiple objects, photographed in
poor illumination conditions are associated with low performance
levels. In summary, we find strong connections between the visual
content of queries and the performance scores predicted by the
unsupervised post-retrieval predictors.

7.2 Results on ROxford5k and RParis6k
We report the results on ROxford5k and RParis6k in Table 3.
Results of pre-retrieval predictors. Since the ROxford5k and
RParis6k data sets contain landmark images, the predictors based
on image difficulty and the number of objects divided by their
area obtain generally poor performance. This happens because the
images contain landmarks, such as the Eiffel Tower, rather than
objects, such as dogs and horses.
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The denoising and masked auto-encoders are better correlated
with P@100 than with the AP measure, likely because P@100 as-
sociates higher penalties to queries with very few positive results.
Since these queries likely reside in a sparse area of the data distri-
bution (due to the low number of similar images), AE models are
unable to reconstruct the corresponding queries very well. This
observation shows the importance of using more than one ground-
truth query performance metric to find predictors that are robust
across multiple target performance measures, supporting our deci-
sion to use both the AP and P@100 measures for our benchmark.

Among the pre-retrieval predictors, the fine-tuned ViT obtains
the best results in most cases. This is rather unsurprising, since ViT
is a supervised predictor, while all the other pre-retrieval predictors
are unsupervised. Interestingly, the ViT model is often challenged
by the classification head dispersion. We thus consider the latter
model as the best unsupervised pre-retrieval predictor on the ROx-
ford5k and RParis6k data sets.
Results of post-retrieval predictors. The post-retrieval predic-
tor based on score variance obtains inconsistent results, being the
weakest post-retrieval predictor. Except for the score variance, the
post-retrieval predictors surpass the pre-retrieval ones in the major-
ity of cases. Comparing the unsupervised post-retrieval predictors
among each other, we observe that embedding variance provides
the best scores, generally surpassing the iterative feature removal
and the adapted query feedback, respectively.

The best post-retrieval predictors are the supervised ones, namely
the correlation-based CNN and the meta-regressor. In 9 out 16 cases,
the meta-regressor obtains the best correlations. In the other 7 cases,
the correlation-based CNN outperforms all competing predictors.
Interestingly, we observe that there are 5 situations where the
correlation-based CNN gives a better Pearson correlation than the
meta-regressor, while the meta-regressor surpasses the correlation-
based CNN in terms of Kendall 𝜏 . This shows the importance of
using multiple measures to evaluate QPP methods, indicating that
our decision to consider both Pearson and Kendall 𝜏 for iQPP is use-
ful in finding predictors that are consistent across QPP evaluation
measures.

7.3 Generic discussion
Our empirical results reveal that many predictors are only suit-
able for certain data sets (for example, image difficulty for PAS-
CAL VOC), ground-truth measures (for example, auto-encoders
for P@100), retrieval systems (for example, score variance for the
system of Revaud et al. [53]) or correlation coefficients (for example,
the correlation-based CNN for the Pearson correlation). Hence, the
results demonstrate the importance of building a comprehensive
benchmark based on multiple data sets, retrieval systems and met-
rics, to establish the generalization capacity of predictors and their
robustness to variations of the above components.

The iQPP benchmark includes a high variety of scenarios, being
difficult to find a single predictor that is consistently better over all
scenarios. However, there are some generic observable trends. First,
we notice that post-retrieval predictors generally obtain higher
correlations than pre-retrieval predictors. Second, we observe that
supervised predictors generally outperform the unsupervised ones.
The meta-regressor appears to be the best predictor, being closely
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(a) Correlations for PASCAL VOC.
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(b) Correlations for Caltech-101.
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(c) Correlations for ROxford5k.
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(d) Correlations for RParis6k.

Figure 3: Correlation plots between the ground-truth perfor-
mance given by the P@100 measure for the system of Re-
vaud et al. [53], and the query performance predicted by the
meta-regressor. The intensity of red is proportional to the
density of points in the corresponding region.

followed by the correlation-based CNN, confirming the observed
trends. Since high Pearson or Kendall 𝜏 correlation scores can be
sometimes misleading, we illustrate the correlation plots between
the ground-truth query performance and the performance predicted
by the meta-regressor in Figure 3. We observe that the plots cor-
respond to the reported numbers, i.e. the higher correlations on
Caltech-101, ROxford5k and RParis6k, and the lower correlation on
PASCAL VOC 2012 are visually confirmed by the plots in Figure 3.

8 CONCLUSION
In this paper, we introduced the first benchmark for image QPP,
comprising four data sets, two retrieval systems and twelve query
performance predictors. We studied a wide variety of query per-
formance predictors for CBIR, including state-of-the-art methods
[30, 67, 68], adaptations of text QPP methods [13], as well as novel
proposals. Our benchmark shows that the problem of QPP in image
search is still open, as none of the predictors obtained high per-
formance across all data sets and retrieval methods. The empirical
results show that our new benchmark exhibits a high variety of
evaluation scenarios, representing a real challenge for current and
future work on QPP. We thus envision our benchmark as a stepping
stone for future research on QPP in the image domain.

In future work, we aim to increase the value of our benchmark by
expanding the pool of data sets and retrieval methods. Furthermore,
we aim to study novel predictors by leveraging the insights gained
from our current experiments. We also plan to delve deeper into
the analysis of queries, and separately study easy and hard queries.
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