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The Radiative Transfer Equations are at the core of the modeling and simulations of the effect of greenhouse gases on the atmosphere's temperature. However to handle realistic scatterings by clouds we need to handle polarization and work with Vector Radiative Transfer Equations. In this article we present a formulation based on integral quantities and an iterative method for which convergence and monotonicity is proven for Rayleigh scattering with polarization, namely a nonlinear system of 2 partial differential equations with 2 variables, angle and altitude, and a continuous parameter, the frequencies coupled with a nonlinear equation coupling the light variables and the temperature. Realistic numerical simulations are given using parameters taken from satellite measurements.

Introduction

To understand the effect of greenhouse gases (GHG) on Earth's temperature one needs to solve a very complex system which includes radiative transfer equations (RTE), ocean and atmosphere fluid equations, chemistry for biosphere, ice caps phase change etc. Whether we can gain insights from RTE only is hard to say but worth trying. Even for RTE alone there are many modeling issues and simplifications as explained in [START_REF] Fowler | Mathematical geoscience[END_REF] [START_REF] Fowler | Mathematical geoscience[END_REF]). As this article is an extension of earlier mathematical and numerical studies for RTE by the author [START_REF] Pironneau | A fast and accurate numerical method for radiative transfer in the atmosphere[END_REF] [START_REF] Pironneau | A fast and accurate numerical method for radiative transfer in the atmosphere[END_REF] and collaborators, (Bardos-Pironneau(2020) [START_REF] Bardos | Radiative transfer for the greenhouse effect[END_REF], [START_REF] Golse | Stratified radiative transfer in a fluid and numerical applications to earth science[END_REF] [START_REF] Golse | Stratified radiative transfer in a fluid and numerical applications to earth science[END_REF] and Hecht et al (2023) [START_REF] Golse | Radiative transfer for variable 3d atmospheres[END_REF]), we shall assume that the atmosphere is stratified, so as to reduce the computational domain to a vertical line above ground. Light comes from the sun, crosses the atmosphere and is partially reflected by the ground and, going back into the atmosphere, combined with infrared radiations coming from Earth according to Planck's law for black bodies. Clouds absorb, scatter light and polarize it.

Here we explore the effect of polarization on RTE. To do so, we switch to the vector model of (Pomraning (1998) [11]), constructed from the general equations for Stokes' vector [START_REF] Chandrasekhar | Radiative Transfer[END_REF] [START_REF] Chandrasekhar | Radiative Transfer[END_REF], [START_REF] Mishenko | Radiative Transfer Theory: from Maxwell's equations to Practical Applications[END_REF] [START_REF] Mishenko | Radiative Transfer Theory: from Maxwell's equations to Practical Applications[END_REF]), in which only two equations are retained, instead of 4, the last two components of the Stokes vector being ignored. For our purpose this model has a clear advantage: it is a 2 equations extension of the one equation model studied in [START_REF] Golse | Stratified radiative transfer in a fluid and numerical applications to earth science[END_REF] and by letting one parameter (β in (1.3)) to zero, the vector model becomes scalar. This property is also a key to the generalization of mathematical results on existence and uniqueness proved in [START_REF] Golse | Stratified radiative transfer in a fluid and numerical applications to earth science[END_REF]. Similar ideas for the numerical algorithms, "iterations on the sources", lead to a monotone and convergent scheme. The second part of the article is about the numerical implementation in C++, its performance and the applications to GHG. Part of the difficulty is due to the very rough dependency of the absorption with respect to the light frequency as shown by Figure 1. If the percentage of carbone dioxide is increased, for example, absorption becomes larger for certain frequencies; this change of opacity affects the solution including the atmosphere's temperature. The numerical results show that a change of absorption in the frequency range of opacity of CO 2 lead to an increase of temperature when computed with an IR source and a decrease when computed with a sunlight source. Both situations are analyzed separately. But in both cases the effect of a change of opacity on the polarization is very large. Be it noted, the present analysis is mathematical and numerical and it is beyond its scope to elaborate on the physical consequences of the preliminary numerical results.

Modeling

We propose to compute the temperature T and the irradiance I above ground in an atmosphere which absorbs and scatters electromagnetic radiations which we call "light" for convenience. If the light is the sum of independent monochromatic polarized rays, it is characterized by the Stokes vector [I, Q, U, V ] T , function of the direction of the ray ω, the spatial coordinates x in the physical domain Ω, the time t and the frequency ν. The general Vector Radiative Transfer Equations (VRTE) are

1 c ∂ t I + ω∇I + K(x)I = S 2 Z(x, ω ′ → ω)Idω ′ + S(x, ω), for all ω ∈ S 2 .
K is the extinction matrix, Z is the phase scattering matrix from ω ′ to ω and S is the source term while c is the speed of light. The thickness of the troposphere is ∼ 10km. If the ground and clouds are flat and the light source is uniform then nothing depends on the horizontal coordinates. Let z be the altitude above ground, the equations reduce to

µ∂ z I + κI = 1 2 1 -1 Z(z, µ ′ → µ)I(z, µ ′ )dµ ′ + S,
where µ = cos θ with θ the angle of ω with the vertical and K = κI. The time dependence has been neglected because c ≫ 1.

1.1. Rayleigh-Thomson Scattering. For a given β ∈ [0, 1], let the phase scattering matrix be Z = R(α 1 )MR(α 2 ) where the (Mueller) matrix M corresponds to a combination of β times Rayleigh scattering and 1 -β times isotropic scatterings [START_REF] Chandrasekhar | Radiative Transfer[END_REF],[10], [11] ,

M = 3β 8π ⎛ ⎜ ⎜ ⎜ ⎝ (ω ⋅ ω ′ ) 2 0 0 0 0 1 0 0 0 0 ω ⋅ ω ′ 0 0 0 0 ω ⋅ ω ′ ⎞ ⎟ ⎟ ⎟ ⎠ + (1 -β) 4π ⎛ ⎜ ⎜ ⎜ ⎝ 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 -2ω ⋅ ω ′ ⎞ ⎟ ⎟ ⎟ ⎠
, where ω ′ and ω are the incident and scattered rays directions; R(α) is a rotation matrix of angle 2α which is a complex function of ω, ω ′ and the reference frame [10]. If the light source is unpolarized then U = V = 0 [11] and the light can be described either by two orthogonal components I l , I r in the reference frame, or by the irradiance I = I l + I r and the polarization Q = I l -I r :

µ∂ z I l + κI l = 3βσ s 8 1 -1 ([2(1 -µ ′2 )(1 -µ 2 ) + µ ′2 µ 2 ]I l + µ 2 I r )dµ ′ + (1 -β)σ s 4 1 -1 [I l + I r ]dµ ′ + σ a 2 B(T (z)), µ∂ z I r + κI n+1 r = 3βσ s 8 1 -1 (µ ′2 I l + I r )dµ ′ + (1 -β)σ s 4 1 -1 [I l + I r ]dµ ′ + σ a 2 B(T (z)), (1.1) where B is the (rescaled) Planck function B(T ) = ν 3 (e ν T -1). Notation 1. The absorption κ(ν) and scattering σ s (ν, z) = κa s (ν, z) define σ a (ν, z) = κ -σ s = κ(1 -a s )
. We need a s ∈ [0, 1) for all ν and z.

Note that both righthand sides of (1.1) are proportional to κ which may depend on altitude z. But when κ = ρ(z)κ ′ (ν) both equations can be divided by ρ and z changed into the optical thickness ∫ z 0 ρ(y)dy. Hence we may assume that κ is not a function of z.

The temperature T (z) is linked to I by R+ σ a B(T ) -1 2 1 -1 Idµ dν = 0. (1.2)
Equivalently, (1.2) can be coupled with linear combinations of (1.1),

µ∂ z I + κI = σ a B + σ s 2 1 -1 Idµ ′ + βσ s 4 P 2 (µ) 1 -1 [P 2 I -(1 -P 2 )Q]dµ ′ , µ∂ z Q + κQ = - βσ s 4 (1 -P 2 (µ)) 1 -1 [P 2 I -(1 -P 2 )Q]dµ ′ , (1.3) 
where P 2 = 1 2 (3µ 2 -1). To study the effect of GHG we shall solve system (1.1)-(1.2), or equivalently system (1.3)-(1.2), for several values of κ, a s , β, with boundary conditions modeling the unpolarized infrared radiations o intensity S E , rising from Earth, a black body at T E ∼ 300K, escaping vertically in the troposphere: for all µ ∈ (0, 1),

I(0, µ) = S E B(T E )µ, Q(0, µ) = 0, I(Z, -µ) = 0, Q(0, -µ) = 0. (1.4)
1.2. Iterative Solution. Consider the following iterations, 

µ∂ z I n+1 l + κI n+1 l = 3βσ s 8 1 -1 ([2(1 -µ ′2 )(1 -µ 2 ) + µ ′2 µ 2 ]I n l + µ 2 I n r )dµ ′ + (1 -β)σ s 4 1 -1 [I n l + I n r ]dµ ′ + σ a 2 B n µ∂ z I n+1 r + κI n+1 r = 3βσ s 8 1 -1 (µ ′2 I n l + I n r )dµ ′ + (1 -β)σ s 4 1 -1 [I n l + I n r ]dµ ′ + σ a 2 B n R+ σ a B ν (T n+1 )dν = R+ σ a 1 2 1 -1 (I n l + I n r )dµdν ∀z. (1.
I m dµ, m = n + 1, n.
By adding the first two equations of (1.5), the system becomes, (1.4) plus

µ∂ z I n+1 + κI n+1 ≤ σ a B n + ( 5 8 β + 1 2 )σ s J n 0 , ∀µ, z, ν, R+ σ a B(T n+1 )dν = R+ σ a J n+1 0 dν ∀z. (1.6)
The method of characteristics shows that all solutions of µ∂ z I + κI = S(z, µ) satisfy

I(z, µ) = 1 µ>0 ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ I(0, µ)e -κ z µ + z 0 e κ y-z µ µ S(y, µ)dy ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ + 1 µ<0 ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ I(Z, µ)e κ Z-z µ - Z z e -κ y-z µ µ S(y, µ)dy ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ . When S(z, -µ) = S(z, µ), I(0, µ) = S E B(T E )µ, I(Z, -µ) = 0, µ ≥ 0, then I(z, µ) = S E B(T E )µ + e -κ z µ + Z 0 e -κ y-z µ µ S(y, µ)dy, µ ∈ (-1, 1) (1.7) and S ≤ σ a B n + ( 5β 4 + 1)σ s J n 0 .
Therefore, an integration in µ leads to

J n+1 0 (z) ≤ S E 2 E 3 (κz)B(T E ) + Z 0 1 2 E 1 (κ z -y )(σ a B n + ( 5β 4 + 1)σ S J n 0 )dy.
where E 3 and E 1 are exponential integrals,

E q (x) ∶= 1 0 µ q-2 e - x µ dµ.
Multiply the above by σ a and integrate in z and ν,

Z 0 R+ σ a J n+1 0 dνdz ≤ Z 0 R+ σ a (z) S E 2 E 3 (κz)B(T E )dνdz + R+ Z 0 Z 0 1 2 σ a (z)E 1 (κ z -y )dz σ a (y)B n (y) +( 5β(y) 4 + 1)σ s (y)J n 0 (y) dydν.
It is shown in [START_REF] Golse | Stratified radiative transfer in a fluid and numerical applications to earth science[END_REF] (Lemma 6.1) that

1 2 sup 0≤y≤Z Z 0 E 1 (κ z -y )κdz ≤ C 1 (κ) ∶= 1 2 R+ κE 1 (κz)dz < 1.
Consequently and because

E 3 ≤ 1 2 E 1 , Z 0 R+ σ a J n+1 0 dνdz ≤ C 1 (κ M ) R+ S E 2 (1 -a m )B(T E )dν + R+ (1 -a m )C 1 (κ M ) Z 0 (σ a B n + ( 5 4 β + 1)σ s J n 0 )dydν,
where κ M = sup ν κ and a m = inf ν a s . Finally, by using the last equation of (1.6), we can replace σ a B n by σ a J n 0 . Then, denoting

H n ∶= Z 0 R+ σ a J n 0 dνdz and R = C 1 (κ M )(1 -a m ) R+ S E 2 B(T E )dν,
we have shown that

H n+1 ≤ R + C 1 (κ M ) 1 -a m 1 -a M (1 + 5 4 β M a M )H n .
It implies that H n is bounded by

(ηH 0 + R) (1 -η) if η ∶= C 1 (κ M ) 1 -a m 1 -a M (1 + 5 4 β M a M ) < 1. (1.8)
All variables being positive, it implies that J n , B n , T n are bounded too.

1.4. Monotony. First notice that T → B(T ) is monotone in the sense that T n ≥ T ′n implies B(T n ) ≥ B(T ′n ). Then observe that, all coefficients being positive, I n l,r ≥ I ′n l,r imply that I n+1 l,r ≥ I ′n+1 l,r . Finally, the linearity of I → J 0 in the last equation of (1.5) implies that T n+1 ≥ T ′n+1 . Let us apply this argument to {T n-1 , I n-1 i,r } instead of {T ′n , I ′n i,r }. It shows that

T n ≥ T n-1 , I n l,r ≥ I n-1 i,r ⇒ T n+1 ≥ T n , I n+1 l,r ≥ I n i,r
. The above results are summarized in the following theorem.

Theorem 1. If (1.8) holds, the solution T * , L * l,r of (1.1)(1.2) exists; the system is equivalent to (1.3)(1.2). It can be reached numerically from above or below by iterations (1.5) and these are monotone increasing and decreasing respectively and bounded.

To reach it from below simply set T 0 = 0, I 0 l,r = 0, then by the positivity of the coefficients I 1 l,r ≥ 0 and T 1 ≥ 0, automatically starting the iterations appropriately. To reach it from above one needs to find T 0 > T * , I 0 l,r ≥ I * l,r . The proof for decreasing monotony is more complicated; the reader may check that the proof in [START_REF] Golse | Stratified radiative transfer in a fluid and numerical applications to earth science[END_REF] can be adapted. The convergence is probably superlinear as in the scalar case. Uniqueness may also be proved as in [START_REF] Golse | Stratified radiative transfer in a fluid and numerical applications to earth science[END_REF]. The bound (1.8) is probably not optimal, yet κ M can be made small by a change of variable z.

Implementation with Integrals

It makes more sense to work with (1.3), the system for the irradiance I and polarization Q, so as to observe the increasing effect of Q when β is increased. Denote

J 2 (z) = 1 2 1 -1 µ 2 Idµ K 0 (z) = 1 2 1 -1 Qdµ, K 2 (z) = 1 2 1 -1 µ 2 Qdµ.
Then

µ∂ z I + κI = σ a B + σ s J 0 + βσ s 4 P 2 (µ)(3J 2 -J 0 -3K 0 + 3K 2 ) µ∂ z Q + κQ = - βσ s 4 (1 -P 2 (µ))(3J 2 -J 0 -3K 0 + 3K 2 )
Let these be used in (1.7) and integrated in µ after multiplication by µ q ,

J q (z) = 1 2 1 -1 µ q I(z, µ)dµ = 1 2 B(T E )E q+3 (κz) + 1 2 Z 0 (E q+1 (κ z -y )S 0 (y) + E q+3 (κ z -y )S 2 (y)) dy.
with

S 0 = σ a B + σ s J 0 - 3βσ s 8 (J 2 -1 3 J 0 -K 0 + K 2 ) S 2 = 9βσ s 8 (J 2 -1 3 J 0 -K 0 + K 2 ).
Similarly (recall that no non-zero input on Q comes from the boundaries),

K p (z) = 1 2 Z 0 E q+1 (κ z -y )S ′ 0 (y) + E q+3 (κ z -y )S ′ 2 (y) dy, with S ′ 0 = 9βσ s 8 (J 2 -1 3 J 0 -K 0 + K 2 ) S ′ 2 = - 9βσ s 8 (J 2 -1 3 J 0 -K 0 + K 2 )
. So at each iteration we only need to compute, for q = 0, 2,

H q (ν, z) ∶= 9 16 Z 0 E q+1 (κ z -y )βσ s [J 2 (y) -1 3 J 0 (y) -K 0 (y) + K 2 (y)
]dy, and then set

J q (z) = 1 2 B(T E )E q+3 (κz) + 1 2 Z 0 E q+1 (κ z -y )(σ a B + σ s J 0 )dz - 1 3 H q + H q+2 , K p (z) = H q -H q+2 ,
and update T by solving (1.2).

Numerical Results

As air density is approximately ρ(z) = ρ 0 (1 -az), with ρ 0 = 1.225 ⋅ 10 -3 , a = 0.375, a change of vertical coordinate is made to remove this dependency; the physical altitude is restored at the end for graphics. Due to Planck's law for black bodies, Earth emits (µ > 0) infrared radiations upward. The frequency spectrum of interest is ν ∈ (0, 20 ⋅ 10 14 ). It is convenient to rescale some variables:

ν ′ = 10 -14 ν, T ′ = T 4798 , B(T ) = B 0 ν ′3 e ν ′ T ′ -1
, with B 0 = 1.4744 ⋅ 10 -8 .

We may work with B B 0 and I B 0 . We consider 2 cases: Case 1: 1 µ≥0 I(0, µ) = 2.5B( 300 4798 )µ. It corresponds to an infrared radiation from the Earth surface at T E = 300K. The intensity 2.5 is chosen so as to obtain meaningful temperatures. Case 2: 1 µ≥0 I(0, µ) = 2 ⋅ 10 -3 B( 5700 4798 )µ. As the Sun temperature is 5700K, the sunlight comes from far, crosses the troposphere unaffected [START_REF] Fowler | Mathematical geoscience[END_REF]; the part which is reflected from the Earth surface rises vertically in the atmosphere. The choice of the intensity 2 ⋅ 10 -3 is justified in [START_REF] Golse | Stratified radiative transfer in a fluid and numerical applications to earth science[END_REF]. The Rayleigh scattering factor is chosen arbitrarily, β = 1 2 . Non-isotropic scattering is activated between altitude Z 1 = 5000m and Z 2 = 8000m and frequency dependent proportionally to ν 6 above Z 2 in the range (ν 1 , ν 2 ). The final formula is

a s (z, ν) = 0.71 z∈(Z 1 ,Z 2 ) + 0.31 z>Z 2 1 ν∈(ν 1 ,ν 2 ) ( ν ν 2 ) 6 . with ν 1 = 0.6, ν 2 = 1.5.
Absorption coefficient κ is digitalized from Gemini measurements www.gemini.edu/observing/telescopes-and-sites/sites#Transmission truncated above 1. Figure 1 shows κ versus wavelength c ν. To assess the sensitivity of the temperature to the presence of GHG like carbon dioxide which absorb rays of wavelengths in 2 -5µm and 14 -18µm we modifyed κ to be κ 1 = max(0.5, 1.5κ) in these 2 wave ranges 1 On the numerical side, for the discretization there are 60 altitude stations, 485 frequencies corresponding to a non-uniform grid of wavelength in [START_REF] Bardos | Radiative transfer for the greenhouse effect[END_REF]20)µm. The number of iterations is 15. The computing time is a few seconds per run.

3.1. Results. The monotony of the iterative process is displayed in Figure 2. It is clear that by starting below (resp. above) the solution the values of the temperature at z = 300m are increasing (resp. decreasing). Note that 15 iterations are sufficient to obtain a 3 digit precision.

In Figure 3 Temperature versus altitude is displayed for Case 1 & 2 for 2 different ν → κ, the Gemini values and the Gemini ν → κ 1 modified due to an increase of CO 2 as shown in Figure 1. The main points are

• For Case 1 (IR light coming from Earth) the CO 2 increases the temperature from 23.8 to 24.2 at the surface and from -52.8 to -51.5 at z = 10km. • For Case 2 (Visible light coming from the sun and reflected by the Earth) the effect of the CO 2 is a drastic reduction of temperature. • In both cases the influence of the cloud is seen as an inflection in the temperature. In Figure 4, with κ-Gemini, the integrals of intensities over all ray directions are shown, namely ν → J 0 and the polarization ν → K 0 at ground and 10km levels. J 0 increases with altitude while K 0 decreases. In Figure 4 and 6 the effect of adding an added opacity in the range 14-18µm is seen very strongly on K 0 (0). Notice that the polarization is particularly strong at ground level near ν = 3 18 and since Q(0, µ) = 0 when µ > 0 it is entirely due to rays pointing downward.

Conclusion

In this article the methodology developed in (Golse-Pironneau (2022) [START_REF] Golse | Stratified radiative transfer in a fluid and numerical applications to earth science[END_REF]) for the numerical solution of the RTE has been extended to include Rayleigh scattering with polarization. The equations have been shown to be well posed and the numerical method based on "iterations on the source" has been shown to be monotone and convergent as in the scalar case. The method is not hard to program and the execution time is a few seconds. The opacity of GHG has a striking effect on the polarization. For the temperature the effect is small on IR radiations and large with solar light. Convergence of the temperature at altitude 300m during the iterations. In solid line when it is started with T 0 = 0, in dashed line when it intial temperature is 180°C. Notice the monotonicity of both curves.

Whether this modeling of the atmosphere is sufficient to explain the greenhouse effect of CO 2 is debatable but, at least, it goes in the right direction (see [START_REF] Dufresne | Greenhouse effect: The relative contributions of emission height and total absorption[END_REF] [START_REF] Dufresne | Greenhouse effect: The relative contributions of emission height and total absorption[END_REF]). Generalization to 3D as in (Hecht et al. (2022) [START_REF] Golse | Radiative transfer for variable 3d atmospheres[END_REF]) and [START_REF] Golse | Radiative transfer for variable 3d atmospheres[END_REF][9]) for a non-stratified atmosphere looks possible. 

5 ) 1 . 3 .

 513 Boundedness. Denote I n+1 = I n+1 l

  Figure 1.Absorption κ from the Gemini experiment, versus wavenumber (3 ν). In dotted lines, the modification to construct κ1 to account for the opacity of CO2.
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 3 Figure 3. Case 1 (top) & Case 2 (bottom).Temperature versus altitude. The dashed curve is computed with κ1 to account for CO2.
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 415 Figure 4. Case 1 (top) & Case 2 (bottom) with κ. Total light intensity J0 and polarized K0 versus wave length at ground level and altitude 10km.
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 6 Figure 6. Case 2 with κ1. Total light intensity J0 and polarized K0 versus wave length at ground level and altitude 10km.
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