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Abstract. In the last decades, Internet of Things objects have been
increasingly integrated into smart environments. Nevertheless, new issues
emerge due to numerous reasons such as fraudulent attacks, inconsistent
sensor behaviours, and network congestion. These anomalies can have a
drastic impact on the global Quality of Service in the Local Area Network.
Consequently, contextual anomaly detection using network traffic meta-
data has received a growing interest among the scientific community. The
detection of temporal anomalies helps network administrators anticipate
and prevent such failures. In this paper, we propose RESIST, a Robust
transformEr developed for unSupervised tIme Series anomaly deTection.
We introduce a robust learning strategy that trains a Transformer to
model the nominal behaviour of the network activity. Unlike competing
methods, our approach does not require the availability of an anomaly-
free training subset. Relying on a contrastive learning-based robust loss
function, RESIST automatically downweights atypical corrupted training
data, to reduce their impact on the training optimization. Experiments
on the CICIDS17 public benchmark dataset show an improved accuracy
of our proposal in comparison to recent state-of-the-art methods.

Keywords: Unsupervised anomaly detection · Robust Transformers ·
Self and Co-attention · Network traffic anomaly detection.

1 Introduction

With the substantial increase of network anomalies in modern communication
networks, anomaly detection has gained considerable interest over the last few
years. The classical detectors, i.e., signature-based detectors, identify anomalies
based on a predefined set of rules that models known attack signatures. These
signatures must repeatedly be updated to integrate new attacks. Despite their
effectiveness in identifying known threats, these systems fail to detect new
emerging anomalies, e.g., zero-day attacks and non-malicious faults. To address
these limitations, all the more present with the development of the Internet
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of Things (IoT), contextual anomaly detection becomes of big interest in the
network analysis landscape.

Anomaly Detection (AD) in time series is a broad research field affecting
numerous application domains such as network and object monitoring, medical
data analysis, fraud detection, and network intrusion detection [8]. In such fields,
detecting outliers mainly relies on the temporal continuity assumption, defined by
Aggrawal [1] as “the fact that the patterns in the data are not expected to change
abruptly unless there are abnormal processes at work.” As such, a temporal
outlier is an abrupt change in the data pattern, which results in a discontinuity
of the data with its local context. This assumption makes temporal AD more
challenging than the classical unsupervised punctual AD, since considering the
ordinal causality between observations is of paramount importance.

Numerous extensive studies have been carried out in the field of temporal AD.
Contributions have shifted their focus towards semi-supervision, a.k.a., One-Class
Classification. Here, an algorithm is first trained to model the nominal patterns
of the anomaly-free training data. Then, any deviation from the trained model
is flagged as an outlier. Despite yielding encouraging results in some specific
applications, these classical anomaly detectors generally assume the availability
of anomaly-free training data, and their performance drastically declines in the
presence of corrupted observations. Unfortunately, in real-world applications,
the data collection process is prone to contamination, as the training data may
be corrupted with an unknown fraction of outliers. For example, in network
intrusion detection, diverse anomalies may occur during the collection of the
training network trace, due to faulty sensors, traffic congestions, and security
attacks. The manual filtering of training anomalies is laborious, because of
increasing data volumes and the diversity of emergent anomalies. This motivates
the development of robust unsupervised temporal anomaly detectors, insensitive
to training contamination.

In this paper, we propose RESIST, a Robust transformEr designed for unSu-
pervised tIme Series anomaly deTection. We introduce a novel training strategy
that identifies and downweights the impact of contaminants. RESIST is trained to
mine the common temporal correlations that link successive sliding windows. Only
common patterns are modelled and instance-specific rare patterns are ignored,
since they may be caused by training corrupted data. RESIST training optimizes
the robust Geman-Mcclure loss function, to reduce the impact of training outliers.

This paper is organized as follows: Section II introduces related work in
temporal AD, and focuses particularly on Transformers for robust AD. Section
III presents our contribution: RESIST. Section IV depicts the datasets used in
our experiments, the training protocols, and the experimental results. Finally,
conclusions and perspectives are drawn.

2 Related Work

Time series AD is an active research field that has drawn increasing attention
in the data mining and machine learning community [5, 8].
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Time series AD mainly include four main families: density-based, clustering-
based, prediction-based, and reconstruction-based methods. Density-based meth-
ods rely on a local density criterion to identify outliers. Observations that have
few adjacent neighbours are considered anomalous. Density-based methods, such
as Local Outlier Factor (LOF) [6] and Deep Autoencoding Gaussian Mixture
Model (DAGMM) [32], are extensively used in non-temporal anomaly detection.
Many works extend these classical methods to time series anomaly detection, by
restricting the local density criterion to local sliding windows [2]. Cluster-based
methods firstly determine the optimal set of clusters that model the nominal
data. Then, these clusters are used as a reference for normality: the anomaly
score is defined as the distance to the closest cluster centre. The most com-
mon cluster-based anomaly detectors include Support Vector Data Description
(SVDD) [22], and Deep-SVDD [16]. Similarly, numerous studies have been carried
out to adapt such methods to temporal AD [2]. Prediction-based methods train
a model to forecast a posterior observation using only past data. Anomalies are
points that are different from their predictions. Various models were developed
within this category, ranging from AutoRegressive Integrated Moving Average
(ARIMA) [31], to Long Short-Term Memory recurrent neural networks [9]. Finally,
reconstruction-based methods learn to compress the nominal data points into a
low-dimensional representation and reconstruct the original data based on these
compressed encodings. In other words, these methods learn to extract the most
important information of the norm by mapping the data into a subspace of lower
dimensionality, with the least reconstruction error. Since anomalies generally
comprise non-representative features, it is harder to project them in this subspace
without loss of information, which results in a larger reconstruction error. The
most common reconstruction-based anomaly detectors are AutoEncoders. They
are extensively used to identify non-temporal anomalies [13, 15, 14, 20]. To extend
this approach to time series data, Su et al. [20] propose a hybrid method that
combines a Variational AutoEncoder (VAE) and a Gated Recurrent Unit (GRU).
While the GRU learns the temporal correlations of the input sequences, the
VAE is trained to map the observations into a latent stochastic space. Similarly,
Malhotra et al. [13] propose an LSTM-AE, tailored for time series AD.

Within the reconstruction-based category, a series of recent studies has shown
the advantage of using Transformers over classical methods [7]. Benefiting from the
self-attention mechanism and parallel computations, Transformer-based anomaly
detectors show a higher detection performance and a more efficient training
process [26]. Some recent studies, e.g., TranAD [23] and MT-RVAE [25], propose
combining the Transformer-based architecture with common generative models,
Generative Adversarial Networks (GANs) and VAEs, to further improve the
model performance and robustness to training contaminations.

Alternatively, Xu et al. [27] renovate the self-attention mechanism by introduc-
ing a new AnomalyAttention module, specifically tailored for unsupervised time
series anomaly detection. Their method, called AnomalyTransformer, is based on
the intuition that, due to the rarity of anomalies, it is harder to find an association
spread over the whole sequence. The authors remark that the self-attentions
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of anomalous points generally tend to be located in their adjacent data points.
Consequently, AnomalyTransformer leverages this adjacent concentration bias to
make anomalous points more distinguishable. The authors formalize the adjacent
concentration bias by defining the Association Discrepancy (AssDis) criterion. For
each data point, the Association Discrepancy quantifies the disparity between the
local attention relative to the adjacent points and the global attention with the
whole series. As it is difficult to find a global mapping that links anomalous points
with the whole sequence, both local and global self-attentions are mostly localized
in the surrounding. As such, anomalies have smaller Association Discrepancy
than nominal points. After training, AnomalyTransformer is used to assess the
anomalousness of new samples. For a test data matrix X ∈ RT×d, containing T
consecutive data points of dimension d, and its reconstruction X̂ ∈ RT×d, the
anomaly score is computed as follows:

AnomalyScore(X) = Softmax(−AssDis)
∥∥∥X− X̂

∥∥∥2
2
. (1)

The classical reconstruction error is amplified with a term inversely proportional to
the AssDis. Since anomalies have smaller AssDis than inliers, their reconstruction
error is amplified, which improves anomaly detection performance.

AnomalyTransformer shows that encouraging global attention spread over the
entire sequence improves Transformer anomaly detection performance. Despite
being more robust than vanilla Transformers, AnomalyTransformer attention is
still restricted to the input sequence and lacks longer-term dependencies extracted
from historical sequences. In fact, time-series data are usually split into fixed-
length consecutive segments using a sliding window. The reference of normality
in AnomalyTransformer is bounded to a single segment and ignores all previous
windows. Even though anomalies are rare, the same anomaly may occur twice in
the same window. In this case, the adjacent concentration bias becomes invalid, as
anomalous observation self-attention is no longer limited to its surroundings. This
is why we propose RESIST, which addresses this limitation, by extending the
adjacent concentration prior to accounting for historical long-range properties.

3 Method

Unlike AnomalyTransformer, we propose to extend the Transformer attention
to cover the historical data, in order to reject unusual observations. We hypothesize
that rejecting training contaminants requires building pairwise associations not
only between data points of the same sequence but also with instances of previous
segments. The main intuition is that nominal instances present a regular behaviour
shared across multiple segments. That is, reconstructing nominal sequences using
either self-information extracted from the current input (i.e., self-reconstruction)
or using relevant information extracted from the history (i.e., cross-reconstruction)
would lead to similar results. In contrast, since anomalies are rare and different,
building inter-sequence associations (or similarities) is more difficult and less
informative. Building on this insight, we propose RESIST, a Robust transformEr
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for unSupervISed Time-series anomaly detection. RESIST is trained to reconstruct
input sequences using a hybrid representation that combines local intra-sequence
information as well as global properties, shared between multiple segments. Firstly,
we introduce a Siamese training strategy that ensures that the model pays equal
attention to the input sequence as well as to the previous ones. Secondly, we train
RESIST with a robust loss function to reduce the impact of large reconstruction
errors caused by training outliers. In the following, we detail our contributions
and the hypotheses that we will analyze in the experimental part. First, we depict
a global architecture overview of RESIST to present its main building blocks.
Then, we present each component separately. Finally, we present our hypotheses,
the corresponding experimental protocols and results.

3.1 RESIST Architecture

RESIST presents an encoder-decoder architecture, comprised of four main
components: a positional encoding and embedding layer, a siamese encoder, a
fusion layer, and a decoder (cf. Figure 1). Similar to vanilla Transformers [24],
the original data is firstly encoded using the linear embedding and the positional
encoding units. Both encoder and decoder are composed of stacked identical
blocks, where each block contains a multi-head attention unit followed by a
Feed-Forward Network (FFN) layer.

RESIST takes as input K non-overlapping sequences Xw
t = (xw

t−K+1, ...,x
w
t ):

an input sequence xw
t and its K − 1 previous sequences. Here, each sequence

is composed of w consecutive data points xw
t = (xt−w+1, ...,xt), where xt ∈ Rd

is an observation of dimension d, recorded at the timestamp t. In Figure 1, we
illustrate our method for K = 2. Firstly, the linear embedding and the positional
encoding units encode the input sequences (xw

t−K+1, ...,x
w
t ) and output the K

embedded sequences (ewt−K+1, ..., e
w
t ). Secondly, the encoder extracts from each

embedded sequence ewt a low-dimensional latent encoding zwt . Then, the fusion
layer aggregates these encodings into a single representation. The decoder maps
the fusion encoding to the input space in order to reconstruct the original sequence
xt. Finally, RESIST minimizes the Geman-McClure robust function between the
reconstructed sequence x̂w

t and the original one xw
t .

After presenting the global architecture of our method, we will thoroughly
review each component in the following Sections.

Siamese Encoder RESIST encoder, illustrated in Figure 1, learns to project K
consecutive sequences into K low-dimensional embeddings. The encoder receives
a sequence xw

t and its associated history, which contains the K − 1 sequences
preceding xw

t . It models the point-wise correlations between xw
t and the history.

Then, it learns to project these data into a common reduced space of dimension
denc ∈ N∗, where common data points share similar representations. This task is
notoriously hard for anomalies, since they present non-representative uncommon
patterns. For this reason, we propose an encoder with a Siamese architecture,
with K identical sub-networks that share the same parameters. Input sequences
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Fig. 1. RESIST architecture.

Multi-head
Self-attention

Feed-Forward
Layer (ReLU)

Self-attention Unit

Layer Norm

Layer Norm
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Fig. 3. Co-attention unit

are simultaneously processed using these networks. The sequences that share
common proprieties have close encodings.

Unlike classical Siamese Neural Networks, our encoder is not trained to
learn a similarity metric between input sequences. Its objective is to reduce the
data dimensionality to only keep the most important information. Each siamese
encoder sub-network is composed of a stack of N = 2 identical blocks. Each block
comprises two sub-modules: a multi-head attention unit followed by a FFN layer
(cf. Figures 2 and 3). While the attention mines the temporal correlations in the
data, the FFN layers are used for dimensionality reduction.

The Siamese encoder is a hybrid composition of both Self-Attention (SA) and
Co-Attention (CA) units. While the SA units are used to extract the contextual
properties of the current sequence, the CA unit is destined to extract inter-segment
properties and only keep common relationships.

Self-attention and Co-attention Module Attention modules are intended to
mine pairwise interactions between data points. We propose to leverage the SA
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and CA layers, initially introduced in multimodal Visual Question Answering
(VQA) [28], to our task of unsupervised AD.

VQA is a visual reasoning task where we train a model to answer a question
concerning an image. Identifying joint visual-linguistic representations is crucial
in VQA. In [28], Yu et al. propose a Transformer-based VQA model where they
introduce a co-attention layer, a.k.a., guided attention layer (see Figure 3). This
layer is mainly designed to model multimodal interactions between a sentence and
an image. The architecture of co-attention is the same as the self-attention layer.
The main difference is that co-attention receives two different input sequences,
a sentence and an image. It extracts the Query from the image and the pair
(Key, Value) from the sentence. Recent studies [21] show the potential of co-
attention to learn contextual representations and to improve model generalization
performance.

We propose to extend CA to our task of unsupervised anomaly detection.
CA can be seen as a module that filters similar data points between a sequence
and the history. Then, it weights the current sequence observations with the
relative normalized similarities. The aim is to guide the reconstruction with inter-
sequence common information and to filter out sequence-specific rare patterns.
This encourages the model to ignore unusual patterns that are only relevant for
a single sequence. Different compositions of CA and SA may result in different
configurations of RESIST. In Section 4.3, we will present these configurations
and we will experimentally evaluate their impact on the AD performance.

Fusion Layer We propose to leverage multiple data views for robust reconstruc-
tion. The fusion layer combines the multiple encodings extracted by RESIST
encoder into a single vector representation. In this work, we propose an addition-
based fusion. This module comprises a fusion layer, followed by a FFN layer.
The RESIST additive fusion strategy is inspired from the well-known manifold
mixup method [30]. The original mixup method was initially proposed for data
augmentation in supervised learning. For two training inputs xi and xj , having
two labels yi and yj , respectively, mixup generates a new training instance, x̂,
using a linear interpolation:

x̂ = βxi + (1− β)xj and ŷ = βyi + (1− β)yj . (2)

ŷ is the corresponding label of x̂. The interpolation term β ∈ [0, 1] is an hyper-
parameter. In other words, mixup trains supervised classifiers to adapt a linear
behaviour in the boundaries between training classes. Mixup reduces classifier
regularization error and makes classifiers more robust to corrupted labels [30].

We extend the mixup method to robust unsupervised anomaly detection.
Similar to the original mixup strategy, mixup fusion merges K instances into
a single vector through linear interpolation. The merged representation of K
encodings (zwt−K+1, ..., z

w
t ) is defined as follow:

ẑwt =
1

K

t∑
i=t−K+1

zwi (3)
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We propose a uniform contribution of all encodings. For K = 2, we have ẑwt =
0.5zwt−1+0.5zwt . When the input sequence xw

t presents common properties relative
to its history, represented by xw

t−1, we expect that the siamese encoder extracts
close latent representations zwt and zwt−1. In this case, the fusion representation
would be similar to the encoding of a vanilla Transformer, i.e., ẑwt ≈ zwt−1. In
contrast, when the current sequence comprises an uncommon pattern, the encoder
self-attention and co-attention modules potentially extract different encodings.
Therefore, the linear interpolation may generate an inconsistent sample and the
reconstruction task become more difficult.

Finally, this compact representation ẑwt is forwarded to the FFN of the fusion
module and the final output is:

Fw
t (z

w
t−K+1, ..., z

w
t ) = ReLU(ẑwt Wf + bf ), (4)

where Wf ∈ Rdenc×df refers to the linear layer weights and bf ∈ Rdf to the bias
vector. denc is the dimension of the fusion module inputs and df is the dimension
of the outputs. In all experiments, we use df = denc = 16.

RESIST Decoder Finally, the RESIST decoder learns to reconstruct the last
sequence of the input using the compact representation that is the output of the
fusion module. It is composed of a stack of N = 2 identical blocks. Each block
comprises two sub-modules: a multi-head self-attention unit followed by a FFN
layer. While Rectified Linear Unit (ReLU) activation function is used in the first
block, the last block is followed by a Sigmoid function to ensure that the output
has the same range as the input [0, 1].

3.2 Robust Training Loss

To hedge against training contaminants, we train RESIST using a robust loss
function. Indeed, the commonly used Mean Squared Error (MSE) is sensitive to
outliers, since squaring large deviations results in the dominance of anomalies
during the training. In contrast, a robust loss can resist noise and anomalies
by reducing the influence of their large reconstruction errors. There have been
numerous studies to explore robust leaning in the presence of outliers. The robust
function list includes Charbonnier loss, Cauchy loss, Geman-McClure loss, and
Welsch loss. Recently, Barron [4] generalizes these common losses in a single
parametric function, ρ(x, α, c), parameterized by the scale c and the robustness
parameter α.

ρ(x, α, c) =


1
2 (

x
c )

2 if α = 2
log( 12 (

x
c )

2 + 1) if α = 0
1− exp(− 1

2 (
x
c )

2) if α = −∞
|α−2|

α ((
( x
c )

2

|α−2| + 1)
α
2 − 1) otherwise

(5)

Particular values of α define common robust losses: L2 loss (α = 2), Char-
bonnier loss (α = 1), Cauchy loss (α = 0), Geman-McClure loss (α = −2), and



RESIST 9

Welsch loss (α = −∞). These cases are visualized in Figure 4, extracted from [4].
We refer the reader to [4] for a detailed description of these losses.

Fig. 4. The general robust loss function proposed in [4].

In particular, we propose to train RESIST by minimizing the Geman-McClure
robust function, which reduces the influence of high reconstruction errors in
gradient computations during training. The Geman-McClure function is:

L(x) = ρ(x, α = −2, c) = 2
(xc )

2

4 + (xc )
2

(6)

where c is a scale parameter that modulates the loss robustness range. In all our
experiments, we set x = λIQR, where IQR is the interquartile range and λ = 0.1.

3.3 Hypotheses

We synthesize our contributions into the following hypotheses:

– Hypothesis 1 (H1) We conjecture that guiding the Transformer recon-
struction with both intra-sequence properties, extracted using SA units, and
inter-sequence pairwise interactions with the history, extracted with CA units,
results in a more robust anomaly detector.

– Hypothesis 2 (H2) We hypothesize that training RESIST with a robust
loss function, and particularly the Geman-McClure loss, reduces the impact
of training noise and anomalies;

4 Experiments and Results

In this section, we explore the validity of the assumed hypotheses on the
benchmark dataset: the Canadian Institute of Cybersecurity Intrusion Detection
System (CICIDS17) evaluation dataset [18]. In addition, we extensively compare
our contribution against common unsupervised anomaly detectors. First, we
provide an overview of the dataset. Then, we develop the training and testing
protocols. Finally, we present and analyze the empirical results.
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4.1 Dataset Description

CICIDS17 [18] is a recent public dataset developed by the Canadian Institute
of Cybersecurity (CIC) for IDS evaluation. Overall, this dataset comprises about
3 million labelled network flows collected over 5 days, starting from July 3, 2017,
and ending on Friday, July 7, 2017. 83% of this traffic is benign and the remaining
17% is anomalous. To collect the traffic, Sharafaldin et al. developed a testbed
containing two networks: an Attack-Network and a Victim-Network. The Victim-
Network comprises three servers, one firewall, two switches and ten interconnected
PCs. One switch was configured to mirror all the traffic passing through the
network. The Attack-Network is a separate network that runs network attacks
on the Victim-Network.

CICIDS17 provides full packet capture of the collected data in pcap files.
In addition, the raw data are processed using CICFlowMeter, a flow-based
feature extractor, to extract metadata from the packet traces. Each flow record
is represented by 85 features: a flow ID, 83 flow metadata features, and a class
label. A detailed description of the 83 flow-based features is presented in [10].
CICIDS2017 comprises 15 classes: a nominal class and 14 attack types, including
DoS, Distributed DoS (DDoS), Web attacks, and Infiltration attacks. This dataset
was extensively used in many recent publications [10], since it covers various
recent attacks and it comprises both punctual and collective anomalies.

4.2 Data Preprocessing

We follow the same preprocessing steps proposed in [11]. Since the original
dataset is voluminous, we focus on the data subset that is collected during
one day: Thursday, July 6 2017. This subset contains 170231 network flow and
represents around 6% of the whole dataset. 98.7% of this traffic is benign and the
remaining 1.3% is anomalous. We rescale numerical features to be in the range
[0, 1], using the min-max normalization method. Then, we randomly split the
benign data into 40% for the training and 60% for testing.

4.3 Training and Testing Protocols

Protocol 1 (P1): Modular Composition of Co-attention and Self-
attention Modules RESIST encoder is composed of two attention-based
components: the self-attention and the co-attention modules. Different combina-
tions of these modules result in different variants. In this section, we study the
performance of RESIST with three modular compositions of these units.

For ease of illustration, we only visualize the RESIST encoder part for the
three configuration. The first variant, RESIST-SS (cf. Figure 5), is the baseline.
This first configuration does not consider the history for data reconstruction. In
this case, only the input sequence flows through self-attention units to gradually
extract the intra-properties of each sequence Then, RESIST-SS decoder is trained
to reconstruct the sequence based only on this self-encoded representation. The
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second configuration, RESIST-SC (cf. Figure 6), considers inter-sequence similari-
ties between the input and the history. Indeed, both sequences are processed using
a first self-attention unit to model intra-sequence relationships. Then, the encoded
representation of the current sequence is processed using a self-attention unit,
while the historical representations are fed into a co-attention unit to introduce
pairwise similarities between consecutive sequences. Finally, the third variant is
RESIST-CC (cf. Figure 7). Here, the input sequence is encoded through cascaded
self-attention units and adjacent sequences are encoded using co-attention units.
The main difference between RESIST-SC and RESIST-CC is that the former
encodes the history with a hybrid encoder that alternates CA and SA, while in
the latter, only CA units are used to encode the previous segments.

Self-attention
unit

Self-attention
unit

RESIST Encoder

Fig. 5. RESIST-SS

Self-attention
unit

Co-attention
unit

Self-attention
unit

RESIST Siamese Encoder

Self-attention
unit

Fig. 6. RESIST-SC

Co-attention
unit

Self-attention
unit

Co-attention
unit

Self-attention
unit

RESIST Siamese Encoder

Fig. 7. RESIST-CC

Protocol 2 (P2): Robust Loss Function In this section, we explore the
importance of the robust loss function to reduce model sensitivity with respect
to anomalies. As previously mentioned in Section 3.2, various robust losses
are developed in the literature, such as Charbonnier loss, Cauchy loss, Geman-
McClure loss, and Welsch loss. In particular, we compare three different training
losses. The first function is the classical L2 loss. Here, we train this first variant
of RESIST with the common L2 loss to study its sensitivity to training outliers,
in the absence of a robust training loss. Then, we compare three common robust
functions: Charbonnier loss, Cauchy loss, and Geman-McClure loss. [4].

Protocol 3 (P3): Comparison with Competing Methods Finally, we
globally compare our contribution against common unsupervised time series
anomaly detectors. In this experiment, we select the best performing configuration
of RESIST: a siamese encoder that comprises a hybrid composition of self and
co-attention units, and trained with the Geman-McClure loss. The baselines
selected in our experiments belong to the different categories of unsupervised
anomaly detection presented in Section 2. These baselines include one-class
classifiers: IF [12], OSVM [22]; density-based methods: LOF [6]; reconstruction-
based algorithms: OmniAnomaly [20], LSTM-AE [13], MSCRED [29], USAD [3],
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and vanilla Transformer [24]. In addition, we assess the performance of robust
Transformers including TranAD [23] and AnomalyTransformer [27].

4.4 Training Parameter Settings and Evaluation Criteria

We follow the well-established protocol used by many recent papers [19].
We transform the input time series into consecutive sub-sequences using non-
overlapped sliding windows of length w = 100. After preliminary tests, we use
the same architecture for all autoencoder-based models. The autoencoders are a
5-layer MLP with 78-32-16-32-78 units. All latent layers are followed by ReLU
activation function. The last layer is followed by a sigmoid function. We use the
Adam optimizer to train all the neural networks, with an initial learning rate of
0.001, and a step-scheduler with a step of 0.5. All models are trained for 100 epochs,
with a batch size of 64 in all experiments, and random parameter initialization. To
limit the impact of random parameter initialization, we repeat each experiment
five times and average the results over these five runs. Regarding Transformer-
based anomaly detectors, we set the dimension of the embedding to 128 and we
use 2-head attention units. In all our experiment, RESIST hyperparameter c is
set as c = 0.1IQR (cf. Equation 6). Similar to the validation protocol adapted
by Ruff et al. [17], the competing methods hyperparameters are tuned on the
predefined validation subset. To minimize hyperparameter selection problems, we
select the optimal hyperparameters that maximize their validation Area Under
the Curve of the Receiver Operating Characteristics (AUROC). This deliberately
grants competing methods an advantage over RESIST. Lastly, all the experiments
were run on a laptop equipped with a 12-core Intel i7-9850H CPU clocked at
2.6GHz and with NVIDIA Quadro P2000 GPU.

4.5 Results

Protocol 1 (P1) : Modular Composition of Co-attention and Self-
attention Modules For a fair comparison, the three variants have the same
architecture and configuration. The three variants use the mixup fusion strategy
and are trained with the same robust loss: Geman-McClure loss. The only
difference between the three variants, is the modular composition of co-attention
and self-attention units. The experimental results of these 3 variants are shown
in Figure 8. These first results highlight that the structure of RESIST encoder
has a significant impact on the global performance, since varying the encoder
composition of self and co-attention units is clearly reflected in the results.

Firstly, RESIST-SS, whose encoder is purely composed of a cascade of self-
attention units, performs poorly compared to the other variants. Indeed, RESIST-
SS is similar to a vanilla Transformer trained to reconstruct the input, using
the robust Geman-McClure loss, and without considering the historical data.
This variant shows the lowest AUROCs in this first set of experiments, with a
mean equal to 76.6%, and with a large standard variation of 5%. The other two
variants, which integrate intra and inter-sequence properties with co-attention
units, globally show better results with reduced standard variations. This confirms
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our first hypothesis (H1), in the sense that guiding the Transformer reconstruction
with both intra-sequence properties and inter-sequence pairwise interactions with
the history results in a more robust anomaly detector.

Furthermore, we note that the hybrid RESIST-SC reports higher AUROC,
80.5%± 0.9, compared to RESIST-SS, 78.8%± 0.3. This advantage is statistically
significant, according to Welch’s test with p-value = 0.05. This observation reveals
that encoding the history with both self-attention and co-attention units is better
than using only co-attention units. In RESIST-SC, the self-attention unit firstly
extracts the intra-dependencies of the history. Then this first representation,
which considers the history local context, is combined with the intermediate
representation of the input. In contrast, RESIST-CC neglects history intra-
sequence context and focuses only on inter-sequence properties. This result is
consistent with other works in VQA [28]. In the following, we will use RESIST-SC
encoder architecture as the basis for all next RESIST variants.

Protocol 2 (P2) : Robust Loss Function Similar to the protocol followed
previously, all the variants share the same configuration, except the training loss
function. The three variants have a hybrid siamese encoder, similar to RESIST-SC
encoder. The results are reported in Figure 9. From this figure, we can see that
the training loss function has a significant influence on the performance. We note
that the results steadily improve when decreasing the robustness parameter α of
the loss function ρ(x, α, c), defined in Section 3.2. Firstly, RESIST-MSE, trained
with the common Euclidean distance, i.e., α = 2, show the worst performance,
with an AUROC around 74%. This result is in line with previous studies, which
state that the mean-squared error is considerably influenced by outliers. Secondly,
the Charbonnier loss, a.k.a, the pseudo-Huber loss, with α = 1, does not improve
the performance (cf. Figure 9). As shown in Figure 4 (left), even though the
gradients of large error are reduced compared to the L2 loss, these gradients
saturate to a non-zero value. That is, even though their contribution is slightly
reduced, training contaminants still contribute to parameter optimization during
the training. Nevertheless, when α ≤ 0, the gradient magnitude decreases and
converges to 0, when the error is higher than the scale parameter c. As such,
large errors are completely ignored and do not impact the training. The speed of
converging to 0 clearly depends on the parameter α. The lower α, the higher the
decreasing speed of large error gradients. Our results confirm this interpretation,
in the sense that RESIST-GM, trained with Geman-McClure loss (α = −2),
exceeds RESIST-Cauchy, trained with Cauchy loss (α = 0), by 2.6% on average.
We can conclude that the second hypothesis (H2) is validated. Training RESIST
with the Geman-McClure loss significantly reduces the impact of anomalies.

Protocol 3 (P3) : Comparison with Competing Methods In this section,
we compare RESIST performance against common unsupervised anomaly detec-
tors, presented in Section 4.3. We aim to demonstrate that RESIST outperforms
these competing methods. The RESIST configuration used in this part is com-
posed of the default architectures: a hybrid siamese encoder, i.e., the encoder



14 N. Najari et al.

RES
IST

-SS

RES
IST

-SC

RES
IST

-CC
0.60

0.65

0.70

0.75

0.80

0.85

AU
RO

C

Fig. 8. Comparison between RESIST
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Fig. 10. Comparison between RESIST and the baselines on CICIDS17 dataset.

of RESIST-SC, the mixup fusion layer, and the robust Geman-McClure loss,
with c = 0.1IQR. The experiment results are reported in Figure 10. Globally,
RESIST achieves superior results compared to all the baselines, on the CICIDS17
dataset, with an average AUROC of 80.6%± 1.3. First, we note that RESIST is
substantially more robust than vanilla Transformers. RESIST improves vanilla
Transformer average AUROC by 10%. Second, the lowest results are reported
with a density-based anomaly detector: LOF. Indeed, detecting contextual and
collective outliers based on the local density of high-dimensional data is challeng-
ing. Surprisingly, Transformer-based anomaly detectors show poor performance
on this dataset, even with a careful tuning of these architectures. TranAD and
AnomalyTranformer report AUROCs of 50.7%±1.0 and 52.4%±2.1. This implies
that these methods are significantly sensitive to training outliers, on this network
traffic dataset. It is however difficult to explain such poor results, despite the
careful fine-tuning of the hyperparameter on the dedicated validation subset.
Third, classical anomaly detectors, i.e., IF and OSVM, give better results than
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deep neural network-based anomaly detectors, including OmniAnomaly, MS-
CRED, Vanilla Transformer, and LSTM-AE. This observation ties well with the
previous study conducted by Lai et al. [11]. We speculate that this might be due
to the fact that the latter are developed for semi-supervised AD. Indeed, they
assume that the training data are anomaly free. In the case of data pollution with
anomalies, this assumption is not respected and consequently, these methods
fail to distinguish both classes. Fourth, RESIST exceeds IF AUROC by 4% and
OSVM AUROC by 3%, on average. These results demonstrate that RESIST is
more robust than these competing anomaly detectors on the CICIDS17 dataset.

5 Conclusion and Perspectives

In this paper, we introduced RESIST, a Robust transformEr designed for
unSupervised tIme Series anomaly detection. Thanks to the modular composition
of self and co-attention units, RESIST learns to reconstruct each input sequence
using a hybrid representation that aggregates both the local information that is
specific to the current input and the global information shared with the history.
Moreover, we proposed a robust training strategy that minimizes the Geman-
McClure function, to reduce the impact of training contaminants. We extensively
studied the contributions of RESIST components in the global performance, and
the experimental evaluation on the CICIDS17 benchmark dataset confirmed that
RESIST outperforms existing unsupervised anomaly detection.
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