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In this paper, we investigate the stability of the transmission problem for Rayleigh beam model with heat conduction. First, we reformulate our system into an evolution equation and prove our problem's well-posedness. Next, we demonstrate the resolvent of the operator is compact in the energy space, then by using the general criteria of Arendt-Batty, we prove that the thermal dissipation is enough to stabilize our model. Finally, a polynomial energy decay rate has been obtained which depends on the mass densities and the moments of inertia of the Rayleigh beams.

Introduction

In this paper, we study the stability of a transmission problem for Rayleigh beam model with heat conduction ρ 1 u ttα 1 u xxtt + β 1 u xxxx + γ θ xx = 0, (x, t) ∈ (0, L 0 ) × (0, +∞),

(1.1) ρ 2 y ttα 2 y xxtt + β 2 y xxxx = 0, (x, t) ∈ (L 0 , L) × (0, +∞), (

ρ 0 θ tκ θ xxγ u xxt = 0, (x, t) ∈ (0, L 0 ) × (0, +∞),

with boundary conditions θ(0, t) = θ(L 0 , t) = 0, t ∈ (0, +∞), (1.4) u(0, t) = u x (0, t) = 0, t ∈ (0, +∞),

y(L, t) = y x (L, t) = 0, t ∈ (0, +∞), (1.6) transmission conditions u(L 0 , t) = y(L 0 , t), t ∈ (0, +∞),

u x (L 0 , t) = y x (L 0 , t), t ∈ (0, +∞), (1.8)

β 1 u xx (L 0 , t) = β 2 y xx (L 0 , t), t ∈ (0, +∞), (1.9) 
γ θ x (L 0 , t) + β 1 u xxx (L 0 , t)α 1 u xtt (L 0 , t)β 2 y xxx (L 0 , t) + α 2 y xtt (L 0 , t) = 0, t ∈ (0, +∞), (1.10) and initial data (u(x, 0), u t (x, 0), θ(x, 0)) = (u 0 (x), u 1 (x), θ 0 (x)) , x ∈ (0, L 0 ),

(y(x, 0), y t (x, 0)) = (y 0 (x), y 1 (x)) , x ∈ (L 0 , L),

where, for i = 1, 2, ρ i > 0 is the mass density per unit volume, α i > 0 is the moment of inertia of the crosssections, β i > 0 is the stiffness constant, while ρ 0 > 0 and κ > 0 represent, respectively, the specific heat and the thermal conductivity. Here 0 < L 0 < L and γ is a non-zero real number. The model at hand describes a Rayleigh beam formed of two distinct materials, one of which is sensitive to thermal differences and the other of which is unaffected by temperature changes. In other words, the material has a limited thermoelastic effect [START_REF] Rivera | The transmission problem for thermoelastic beams[END_REF][START_REF] Rivera | A transmission problem for thermoelastic plates[END_REF].

The stabilization of the Rayleigh beam equation retains the attention of many authors. In this regard, different types of damping have been introduced to the Rayleigh beam equation and several uniform and polynomial stability results have been obtained. Rao [START_REF] Rao | A compact perturbation method for the boundary stabilization of the Rayleigh beam equation[END_REF] studied the stabilization of Rayleigh beam equation subject to a positive internal viscous damping. Using a constructive approximation, he established the optimal exponential decay rate. There exists many papers concerning the stability with different types of damping [START_REF] Mercier | Optimal energy decay rate for Rayleigh beam equation with only one dynamic boundary control[END_REF][START_REF] Bassam | Optimal energy decay rate of Rayleigh beam equation with only one boundary control force[END_REF][START_REF] Wehbe | Optimal energy decay rate for Rayleigh beam equation with dynamical boundary controls[END_REF][START_REF] Lagnese | Modelling analysis and control of thin plates[END_REF][START_REF] Lagnese | Uniform stabilization of a thin elastic plate by nonlinear boundary feedback[END_REF][START_REF] Lagnese | Boundary stabilization of thin plates[END_REF][START_REF] Lagnese | Recent progress in exact boundary controllability and uniform stabilizability of thin beams and plates[END_REF].

In [START_REF] Wang | Stability of an interconnected system of Euler-Bernoulli beam and heat equation with boundary coupling[END_REF], the authors are concerned with the stability of an interconnected system of an Euler-Bernoulli beam and a heat equation with boundary coupling. The boundary temperature of the beam is fed as the boundary moment of the Euler-Bernoulli equation and the boundary angular velocity of the Euler-Bernoulli beam is fed into the boundary heat flux of the heat equation. It is shown that the spectrum of the closed-loop system consists of only two branches: one along the real axis and the other along two parabolas that are symmetric to the real axis and open to the imaginary axis. The asymptotic expressions of both eigenvalues and eigenfunctions are obtained. With a careful estimate of the resolvent operator, the completeness of the root subspaces of the system is verified. The Riesz basis property and exponential stability of the system are then proved. Moreover, it is shown that the semigroup generated by the system operator is of Gevrey class δ > 2.

In [START_REF] Zhang | Stabilization of the Euler-Bernoulli equation via boundary connection with heat equation[END_REF], the authors studied the stabilization problem for a coupled PDE system in which the beam (1-dimensional or 2-dimensional) and heat equations are coupled at the boundary conditions. Moreover, a dissipative damping is produced in the heat equation via the boundary connections only. In the first part, the authors considered the asymptotic behavior of the 1-dimensional coupled system mainly by the Riesz basis approach. By using a detailed spectral analysis for the system operator, they obtained asymptotic expressions for the spectrum and the corresponding eigenvectors. The authors further obtained a spectrum-determined growth condition by showing the Riesz basis property of the eigenvectors. Then, based on the spectral distribution, they deduced the Gevrey regularity of the semigroup for the system and the exponential decay rate of the system energy. In the second part, the authors investigated the asymptotic behavior of the 2-dimensional coupled PDE system by using the frequency domain method. By estimating the uniform boundedness of the norm of the resolvent operator along the imaginary axis, they showed that the 2d coupled system is also exponentially stable when an additional dissipation in the boundary of the plate part exists. We mention some papers studied the stability of different system under heat conduction [START_REF] Muñoz Rivera | On exponential stability for thermoelastic plates: comparison and singular limits[END_REF][START_REF] Muñoz Rivera | Transmission problems in (thermo)viscoelasticity with Kelvin-Voigt damping: nonexponential, strong, and polynomial stability[END_REF][START_REF] Muñoz Rivera | Magneto-thermo-elasticity-large-time behavior for linear systems[END_REF][START_REF] Akil | Stability of piezoelectric beam with magnetic effect under (Coleman or Pipkin)-Gurtin thermal law[END_REF][START_REF] Quintanilla | Decay for thermoelastic Green-Lindsay plates in bounded and unbounded domains[END_REF][START_REF] Fernández Sare | Stability of abstract thermoelastic systems with inertial terms[END_REF][START_REF] Mori | Global well-posedness and polynomial decay for a nonlinear Timoshenko-Cattaneo system under minimal Sobolev regularity[END_REF][START_REF] Avalos | Exponential stability of an uncontrolled thermoelastic system with varying boundary conditions[END_REF][START_REF] Avalos | Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation[END_REF][START_REF] Avalos | Exponential stability of a thermoelastic system without mechanical dissipation[END_REF][START_REF] Avalos | Heat-wave interaction in 2-3 dimensions: optimal rational decay rate[END_REF][START_REF] Avalos | The null controllability of thermoelastic plates and singularity of the associated minimal energy function[END_REF][START_REF] Avalos | Exact-approximate boundary reachability of thermoelastic plates under variable thermal coupling[END_REF][START_REF] Avalos | Boundary controllability of thermoelastic plates via the free boundary conditions[END_REF][START_REF] Avalos | Exact-approximate boundary controllability of thermoelastic systems under free boundary conditions[END_REF][START_REF] Avalos | Uniform stability of nonlinear thermoelastic plates with free boundary conditions[END_REF][START_REF] Avalos | Lack of time-delay robustness for stabilization of a structural acoustics model[END_REF][START_REF] Guesmia | The effect of the heat conduction of types I and III on the decay rate of the Bresse system via the vertical displacement[END_REF][START_REF] Guesmia | Stability and instability results for Cauchy laminated Timoshenko-type systems with interfacial slip and a heat conduction of Gurtin-Pipkin's law[END_REF][START_REF] Youkana | A general decay and optimal decay result in a heat system with a viscoelastic term[END_REF][START_REF] Ammari | Determining the potential in a wave equation without a geometric condition. Extension to the heat equation[END_REF][START_REF] Ammari | Logarithmic stability in determining two coefficients in a dissipative wave equation. Extensions to clamped Euler-Bernoulli beam and heat equations[END_REF][START_REF] Nicaise | Stability of the heat and of the wave equations with boundary time-varying delays[END_REF][START_REF] Najdi | Weakly locally thermal stabilization of Bresse systems[END_REF][START_REF] Abdallah | Stability results of a distributed problem involving Bresse system with history and/or Cattaneo law under fully Dirichlet or mixed boundary conditions[END_REF][START_REF] Aissa | Well-posedness and direct internal stability of coupled non-degenrate Kirchhoff system via heat conduction[END_REF][START_REF] Dell'oro | Exponential stability of Timoshenko-Gurtin-Pipkin systems with full thermal coupling[END_REF][START_REF] El Arwadi | On the theoretical and numerical stability of the thermoviscoelastic Bresse system[END_REF][START_REF] Youssef | Stabilization for the transmission problem of the Timoshenko system in thermoelasticity with two concentrated masses[END_REF][START_REF] Youssef | Asymptotic behavior of the transmission problem of the Bresse beam in thermoelasticity[END_REF][START_REF] Feng | Polynomial and exponential decay rates of a laminated beam system with thermodiffusion effects[END_REF]. Now, we mention some papers concerning a transmission wave-heat system. In [START_REF] Zhang | Stability analysis of an interactive system of wave equation and heat equation with memory[END_REF], the author studied the stability analysis of an interaction system comprised of a wave equation and a heat equation with memory, where the hereditary heat conduction is due to Gurtin-Pipkin law or Coleman-Gurtin law. First, she showed the strong asymptotic stability of solutions to this system. Then, the exponential stability of the interaction system is obtained when the hereditary heat conduction is of Gurtin-Pipkin type. Further, she showed the lack of uniform decay of the interaction system when the heat conduction law is of Coleman-Gurtin type. In [START_REF] Dell'oro | Optimal decay for a wave-heat system with Coleman-Gurtin thermal law[END_REF], the authors extended the result of [START_REF] Zhang | Stability analysis of an interactive system of wave equation and heat equation with memory[END_REF] by proving the optimal polynomial decay rate of type 1/t when the heat conduction law is of Coleman-Gurtin type.

To our best knowledge, the transmission problem for Rayleigh beam with heat conduction is not treated in the literature. The goal of this paper is to fix this gap by considering System (1.1)-(1.12).

The paper is organized as follows: In Section 2, we formulate the System (1.1)-(1.12) into an evolution equation Φ t = AΦ, Φ(0) = Φ 0 = (u 0 , y 0 , u 1 , y 1 , θ 0 ) (see (2.14)). Next, Section 3 is divided into two subsections. In subsection 3.1 we study the well-posedness of Problem (1.1)- (1.12). According to Lumer-Phillips theorem (see [START_REF] Liu | Semigroups associated with dissipative systems[END_REF][START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]), we prove that the operator A is m-dissipative. In Subsection 3.2, we prove the strong stability of (1.1)-(1.12). Firstly, we prove that the the operator A has a compact resolvent on the energy space. Next, we prove the strong stability of System (1.1)-(1.12) by using Arendt-Batty Theorem. In Section 4, we prove the polynomial stability of System (1.1)-(1.12). The decay rate of the energy depends on the physical coefficients. We obtain the following result:

• A polynomial energy decay rate of type t -2 if ρ 1 ≥ ρ 2 and α 1 ≥ α 2 .
• A polynomial energy decay rate of type t -1 if ρ 1 < ρ 2 or α 1 < α 2 . We use Borichev-Tomilov Theorem combining with a specific multiplier technics and a particular attention of the sharpness of the estimates to optimize the results.

Formulation of the Problem

We start this section by defining the energy of a solution of System (1.1)-(1.12) by

E(t) = 1 2 L0 0 ρ 1 |u t | 2 + α 1 |u xt | 2 + β 1 |u xx | 2 + ρ 0 |θ| 2 dx + 1 2 L L0 ρ 2 |y t | 2 + α 2 |y xt | 2 + β 2 |y xx | 2 dx.
Multiplying (1.1) and (1.3) by u t and θ, respectively, integrating by parts over (0, L 0 ) with respect to x and taking the sum of the resulting equations, we get

1 2 d dt L0 0 ρ 1 |u t | 2 + α 1 |u xt | 2 + β 1 |u xx | 2 + ρ 0 |θ| 2 dx + κ L0 0 |θ x | 2 dx + [(γ θ x + β 1 u xxx -α 1 u xtt ) u t -β 1 u xx u xt -γ u xt θ] L0 0 = 0. (2.1)
Next, multiplying (1.2) by y t , integrating by parts over (L 0 , L) with respect to x, we obtain

1 2 d dt L L0 ρ 2 |y t | 2 + α 2 |y xt | 2 + β 2 |y xx | 2 dx + [(β 2 y xxx -α 2 y xtt ) y t -β 2 y xx y xt ] L L0 = 0. (2.2)
Adding (2.1) and (2.2), then using the boundary condition (1.4)-(1.10), we infer that

E ′ (t) = -κ L0 0 |θ x | 2 dx ≤ 0.
Hence, System (1.1)-(1.12) is dissipative in the sense that its energy is non increasing with respect to the time t.

We start our study by formulating problem (1.1)-(1.12) in an appropriate Hilbert space:

• We introduce the following spaces:

           H 1 L (0, L 0 ) = u ∈ H 1 (0, L 0 ) | u(0) = 0 , H 1 R (L 0 , L) = y ∈ H 1 (L 0 , L) | y(L) = 0 , V 1 = (u, y) ∈ H 1 L (0, L 0 ) × H 1 R (L 0 , L) | u(L 0 ) = y(L 0 ) , W 1 = (u, y) ∈ H 2 (0, L 0 ) × H 2 (L 0 , L) ∩ V 1 | u x (0) = y x (L) = 0, u x (L 0 ) = y x (L 0 ) . Set L 1 = L 2 (0, L 0 ) × L 2 (L 0 , L), L 2 = L 2 (0, L 0 ) × L 2 (L 0 , L) × L 2 (0, L 0 ), V 2 = V 1 × L 2 (0, L 0 ), W 2 = W 1 × H 1 0 (0, L 0 ).
• Let (u, y, θ) be a regular solution of System (1.1)-(1.12). Let û, ŷ, θ ∈ W 2 . Multiplying (1.1), (1.2), and

(1.3) by û, ŷ, and θ, respectively, integrating by parts over (0, L 0 ), (L 0 , L), and (0, L 0 ), respectively and then taking the sum, we derive

L0 0 ρ 1 u tt û + α 1 u xtt ûx dx + L L0 ρ 2 y tt ŷ + α 2 y xtt ŷx dx -γ L0 0 θ x ûx -u xt θx dx +β 1 L0 0 u xx ûxx dx + β 2 L L0 y xx ŷxx dx + ρ 0 L0 0 θ t θ dx + κ L0 0 θ x θx dx -(α 1 u xtt -β 1 u xxx ) û + β 1 u xx ûx + κθ x θ L0 0 -(α 2 y xtt -β 2 y xxx ) ŷ + β 2 y xx ŷx L L0 +γ θ x û -u xt θ L0 0 = 0. (2.3) Since û, ŷ, θ ∈ W 2 , then û(0) = ûx (0) = ŷ(L) = ŷx (L) = θ(0) = θ(L 0 ) = 0, û(L 0 ) = ŷ(L 0 ), ûx (L 0 ) = ŷx (L 0 ).
Using the above boundary conditions in (2.3), we get

L0 0 ρ 1 u tt û + α 1 u xtt ûx dx + L L0 ρ 2 y tt ŷ + α 2 y xtt ŷx dx + γ L0 0 u xt θx -θ x ûx dx +β 1 L0 0 u xx ûxx dx + β 2 L L0 y xx ŷxx dx + ρ 0 L0 0 θ t θ dx + κ L0 0 θ x θx dx + (β 2 y xx (L 0 ) -β 1 u xx (L 0 )) ŷx (L 0 ) + (γθ x (L 0 ) + β 1 u xxx (L 0 ) -α 1 u xtt (L 0 ) -β 2 y xxx (L 0 ) + α 2 y xtt (L 0 )) ŷ (L 0 ) = 0.
Using the boundary conditions (1.9) and (1.10) in the above equation, we obtain

L0 0 ρ 1 u tt û + α 1 u xtt ûx dx + L L0 ρ 2 y tt ŷ + α 2 y xtt ŷx dx + γ L0 0 u xt θx -θ x ûx dx +β 1 L0 0 u xx ûxx dx + β 2 L L0 y xx ŷxx dx + ρ 0 L0 0 θ t θ dx + κ L0 0 θ x θx dx = 0.
Equivalently, the variational equation of problem (1.1)-(1.12) is given by

β 1 L0 0 u xx ûxx dx + β 2 L L0 y xx ŷxx dx +κ L0 0 θ x θx dx + γ L0 0 u xt θx -θ x ûx dx + L0 0 ρ 1 u tt û + α 1 u xtt ûx dx + L L0 ρ 2 y tt ŷ + α 2 y xtt ŷx dx + ρ 0 L0 0 θ t θ dx = 0.
(2.4)

• We identify L 1 with its dual L ′ 1 and L 2 with its dual L ′ 2 , so that we have the following continuous embeddings:

W 2 ⊂ V 2 ⊂ L 2 ⊂ V ′ 2 ⊂ W ′ 2 , W 1 ⊂ V 1 ⊂ L 1 ⊂ V ′ 1 ⊂ W ′ 1 .
(2.5)

• We introduce the following bilinear forms:

for Z = (u, y) , Ẑ = (û, ŷ) ∈ W 1 : a Z, Ẑ = β 1 u xx , ûxx L 2 (0,L0) + β 2 y xx , ŷxx L 2 (L0,L) , for Φ = (u, y, θ) , Φ = û, ŷ, θ ∈ W 2 : b Φ, Φ = γ L0 0 u x θx -θ x ûx dx + κ θ x , θx L 2 (0,L0) , for U = (u, y, θ) , Û = û, ŷ, θ ∈ V 2 : c U, Û = ρ 1 u, û L 2 (0,L0) + α 1 u x , ûx L 2 (0,L0) + ρ 2 y, ŷ L 2 (L0,L) +α 1 y x , ŷx L 2 (L0,L) + ρ 0 θ, θ L 2 (0,L0)
.

(2.6)

Here and below, •, • L 2 (0,L0) and •, • L 2 (L0,L) denote the usual inner product of L 2 (0, L 0 ) and L 2 (L 0 , L), respectively, and

• L 2 (0,L0) and • L 2 (L0,L) their corresponding norms. The form a(•, •) (resp. c(•, •)) is a bilinear continuous coercive form on W 1 × W 1 (resp. on V 2 × V 2 ), while b(•, •) is a bilinear continuous form on W 2 × W 2 and satisfies ℜ {b (Φ, Φ)} = κ θ x , θ x L 2 (0,L0) = κ L0 0 |θ x | 2 dx, ∀ Φ = (u, y, θ) ∈ W 2 .
(2.7)

• We define the operators C ∈ L (V 2 , V ′ 2 ), B ∈ L (W 2 , W ′ 2 ), and A 0 ∈ L (W 1 , W ′ 1 ) by                    CU, Û V ′ 2 ×V2 := c U, Û , ∀ U = (u, y, θ) , Û = û, ŷ, θ ∈ V 2 , BU, Û W ′ 2 ×W2 = b U, Û , ∀ U = (u, y, θ) , Û = û, ŷ, θ ∈ W 2 , A 0 Z, Ẑ W ′ 1 ×W1 = a Z, Ẑ , ∀ Z = (u, y) , Ẑ = (û, ŷ) ∈ W 1 , A 1 Z = (A 0 Z, 0) , ∀Z = (u, y) ∈ W 1 .
(2.8)

The operator

C (resp. A 0 ) is an isomorphism of V 2 onto V ′ 2 (resp. W 1 onto W ′ 1 )
and is the canonical isomorphism, so we can introduce c (•, •) (resp. a (•, •) as a scalar product on V 2 (resp. on W 1 ), i.e.,

     U 2 V2 = U, Û V2 = c U, Û = CU, Û V ′ 2 ×V2 , ∀ U = (u, y, θ) , Û = û, ŷ, θ ∈ V 2 , Z 2 W1 = Z, Ẑ W1 = a Z, Ẑ = A 0 Z, Ẑ W ′ 1 ×W1 , ∀ Z = (u, y) , Ẑ = (û, ŷ) ∈ W 1 .
(2.9)

• The variational equation (2.4) can be written in terms of the above operators as an equation in W ′ 2 as follows:

C (u tt , y tt , θ t ) + B (u t , y t , θ) + A 1 (u, y) = 0 in W ′ 2 .
(2.10) Furthermore, assume that B (u t , y t , θ)

+ A 1 (u, y) ∈ V ′ 2 , then we obtain that (u tt , y tt , θ t ) + C -1 (B (u t , y t , θ) + A 1 (u, y)) = 0 in V 2 .
Defining v = u t and z = y t , then (2.10) can be written as

(v, z, θ) t = -C -1 (B (v, z, θ) + A 1 (u, y)) .
• We introduce the following energy space:

H = W 1 × V 2 .
For all Φ = (Φ 1 , Φ 2 ) ∈ H and Φ = Φ1 , Φ2 ∈ H, such that Φ 1 = (u, y) , Φ 2 = (v, z, θ) , Φ1 = (û, ŷ) , and Φ2 = v, ẑ, θ , it is easy to check that the space H is a Hilbert space over C equipped with the following inner product

Φ, Φ H = Φ 1 , Φ1 W1 + Φ 2 , Φ2 V2 = a Φ 1 , Φ1 + c Φ 2 , Φ2 = β 1 L0 0 u xx ûxx dx + β 2 L L0 y xx ŷxx dx + L0 0 ρ 1 vv + α 1 v x vx dx + L L0 ρ 2 z ẑ + α 2 z x ẑx dx + ρ 0 L0 0 θ θ dx.
(2.11)

Hereafter, we use U H to denote the corresponding norm.

• For all Φ = (Φ 1 , Φ 2 ) ∈ H, such that Φ 1 = (u, y) and Φ 2 = (v, z, θ) , we define the unbounded linear operator

A : D (A) ⊂ H → H by AΦ = v, z, -C -1 (BΦ 2 + A 1 Φ 1 ) , (2.12 
) with domain

D (A) = {Φ = (Φ 1 , Φ 2 ) ∈ W 1 × V 2 | (Φ 1 , Φ 2 ) ∈ W 1 × W 2 , BΦ 2 + A 1 Φ 1 ∈ V ′ 2 } . (2.13) 
• If Φ = (u, y, v, z, θ) is a regular solution of System (1.1)-(1.12), then we rewrite this system as the following evolution equation

Φ t = AΦ, Φ(0) = Φ 0 , (2.14) 
where Φ 0 = (u 0 , y 0 , u 1 , y 1 , θ 0 ).

Well-Posedness and Strong Stability

3.1. Well-posedness of the problem. For the well-posedness of Problem (1.1)-(1.12), according to Lumer-Phillips theorem (see [START_REF] Liu | Semigroups associated with dissipative systems[END_REF][START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]), we need to prove that the operator A is m-dissipative. Hence, we shall prove the following proposition. Proof. We first prove that A is monotone. For this aim, let Φ = (Φ 1 , Φ 2 ) ∈ H, such that Φ 1 = (u, y) and Φ 2 = (v, z, θ) , using the definitions (2.9), (2.11), (2.13), and (2.12), we have

AΦ, Φ H = v, z, -C -1 (BΦ 2 + A 1 Φ 1 ) , (Φ 1 , Φ 2 ) H = (v, z) , Φ 1 W1 -C -1 (BΦ 2 + A 1 Φ 1 ) , Φ 2 V2 = a ((v, z) , Φ 1 ) -BΦ 2 + A 1 Φ 1 , Φ 2 V ′ 2 ×V2
. Since Φ ∈ D(A); i.e., Φ 2 ∈ W 2 and Φ 1 ∈ W 1 , then using (2.5), the last equation of (2.8), and second-third equations of (2.8) in the above equation, we obtain

AΦ, Φ H = a ((v, z) , Φ 1 ) -BΦ 2 -A 1 Φ 1 , Φ 2 W ′ 2 ×W2 = a ((v, z) , Φ 1 ) -BΦ 2 , Φ 2 W ′ 2 ×W2 -A 0 Φ 1 , (v, z) W ′ 1 ×W1 = a ((v, z) , Φ 1 ) -b (Φ 2 , Φ 2 ) -a (Φ 1 , (v, z)) .
Finally, taking the real parts of the above equation, then using (2.7), we get

ℜ { AΦ, Φ H } = -κ L0 0 |θ x | 2 dx ≤ 0. (3.1)
We next prove the maximality. For f = (g, h)

∈ H = W 1 × V 2 , such that g = (g 1 , g 2 ) and h = (h 1 , h 2 , ζ) , we show the existence of Φ = (Φ 1 , Φ 2 ) ∈ D (A), such that Φ 1 = (u, y) and Φ 2 = (v, z, θ), unique solution of the equation Φ -AΦ = F, (3.2) 
that is

Φ 1 -(v, z) = g, Φ 2 + C -1 (BΦ 2 + A 1 Φ 1 ) = h.
Since the operator C is an isomorphism of V 2 onto V ′ 2 , then the above system is equivalent to

Φ 1 = (v, z) + g, CΦ 2 + BΦ 2 + A 1 Φ 1 = Ch. (3.3)
Inserting the first equation of (3.3) in the second equation, we obtain that

CΦ 2 + BΦ 2 + A 1 (v, z) = Ch -A 1 g. (3.4) Since h ∈ V 2 , g ∈ W 1
, and the operator

C (resp. A 0 ) is an isomorphism of V 2 onto V ′ 2 (resp. W 1 onto W ′ 1 )
, then using (2.5) and the definition of A 1 (see last equation of (2.8)), we get

R := Ch -A 1 g ∈ W ′ 1 × L 2 (0, L 0 ).
Using the above equation in (3.4), we get

CΦ 2 + BΦ 2 + A 1 (v, z) = R in W ′ 1 × L 2 (0, L 0 ). (3.5) 
We define the operator

D ∈ L (W 2 , W ′ 2 ) by for Z = (Z 1 , θ) , Ẑ = Z 2 , θ ∈ W 2 , such that Z 1 = (v, z) , Ẑ2 = (v, ẑ) : DZ, Ẑ W ′ 2 ×W2 := CZ + BZ + A 1 Z 1 , Ẑ W ′ 2 ×W2 = c Z, Ẑ + b Z, Ẑ + a Z 1 , Ẑ1 .
From (2.7) and (2.9), we have

ℜ DZ, Ẑ W ′ 2 ×W2 = Z 2 V2 + κ L0 0 |θ x | 2 dx + Z 1 2 W1 ≥ min (1 + κ) Z 2 W2 .
So, by using Lax-Milgram lemma, for all T ∈ W ′ 2 , we get that DZ = T has a unique solution

Z = (v, z, θ) ∈ W 2 . Consequently, since R ∈ W ′ 1 × L 2 (0, L 0 ) ⊂ W ′ 1 × H -1 (0, L 0 ) = W ′ 2
, we get that (3.5) has a unique solution

Φ 2 = (v, z, θ) ∈ W 2 . Next, we define Φ 1 := (v, z) + g. Since g, (v, z) ∈ W 1 , we get Φ 1 ∈ W 1 . Consequently, (Φ 1 , Φ 2 ) ∈ W 1 × W 2 is the unique solution of (3.3). In addition, since h ∈ V 2 , Φ 2 ∈ W 2 ⊂ V 2 ,
and the operator C is an isomorphism of V 2 onto V ′ 2 , we get

BΦ 2 + A 1 Φ 1 = Ch -CΦ 2 ∈ V ′ 2 .
Thus, (3.2) has a unique solution Φ := (Φ 1 , Φ 2 ) ∈ D (A) , completing the proof of the proposition.

Thanks to Lumer-Phillips theorem (see [START_REF] Liu | Semigroups associated with dissipative systems[END_REF][START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]), we deduce that A generates a C 0 -semigroup of contractions e tA t≥0 in H and therefore Problem (2.14) is well-posed. Then, we have the following result.

Theorem 3.2. For any Φ 0 ∈ H, the Problem (2.14) admits a unique weak solution

Φ := e tA Φ 0 ∈ C (R + ; H) . Moreover, if Φ 0 ∈ D (A) , then Φ ∈ C (R + ; D (A)) ∩ C 1 (R + ; H) .

3.2.

Strong stability of the system. Our main result in this part is the following theorem.

Theorem 3.3. The semigroup of contractions e tA t≥0 is strongly stable on H in the sense that

lim t→+∞ e tA Φ 0 H = 0, ∀ Φ 0 ∈ H.
For the proof of Theorem 3.3: First we will prove that the the operator A has a compact resolvent on the energy space H. Then, we will establish that A has no eigenvalues on the imaginary axis. The proof for Theorem 3.3 relies on the subsequent lemmas.

Lemma 3.4. Let Φ = (Φ 1 , Φ 2 ) ∈ D (A), such that Φ 1 = (u, y)
, and Φ 2 = (v, z, θ). Then, we have

(v, z) ∈ W 1 , (3.6) θ ∈ H 2 (0, L 0 ) ∩ H 1 0 (0, L 0 ), (3.7) 
(u, y) ∈ W 1 ∩ H 3 (0, L 0 ) × H 3 (L 0 , L) , (3.8 
)

β 1 u xx (L 0 ) = β 2 y xx (L 0 ). (3.9)
In particular, the resolvent (I -A) -1 of A is compact on the energy space H.

Proof. The proof is divided into 3 steps.

• Step 1. In this step, we write the variational problem and we prove (3.6). For this aim, let

f = (g, h) ∈ H = W 1 × V 2 and Φ = (Φ 1 , Φ 2 ) ∈ D (A), such that AΦ = f, (3.10) 
where

g = (g 1 , g 2 ), h = (h 1 , h 2 , h 3 ) , Φ 1 = (u, y) , and Φ 2 = (v, z, θ). Equation (3.10) is equivalent to (v, z) = (g 1 , g 2 ) ∈ W 1 , BΦ 2 + A 1 Φ 1 = -Ch ∈ V ′ 2 ⊂ W ′ 2 .
From the first equation of the above system, we obtain (3.6). For all Z = (φ, ϕ, ψ) ∈ W 2 , using the above equation, (2.5), and (2.8), one gets

BΦ 2 + A 1 Φ 1 , Z V ′ 2 ×V2 = -Ch, Z V ′ 2 ×V2 , BΦ 2 + A 1 Φ 1 , Z W ′ 2 ×W2 = -c (h, Z) , b (Φ 2 , Z) + a (Φ 1 , (φ, ϕ)) = -c (h, Z) .
Using (2.6) in the above equation, we obtain that for all (φ, ϕ, ψ) ∈ W 2 :

β 1 L0 0 u xx φ xx dx + β 2 L L0 y xx ϕ xx dx -γ L0 0 θ x φ x dx + κ L0 0 θ x ψ x dx = -ρ 0 L0 0 h 3 ψ dx -γ L0 0 (g 1 ) x ψ x dx - L0 0 ρ 1 h 1 φ + α 1 (h 1 ) x φ x dx - L L0 (ρ 2 h 2 ϕ + α 2 (h 2 ) x ϕ x ) dx.
(3.11)

• Step 2. In this step, we prove (3.7) and

θ(x) = - γ κ g 1 (x) + ρ 0 κ x 0 x1 0 h 3 (x 2 ) dx 2 dx 1 , ∀x ∈ (0, L 0 ). (3.12) 
For this aim, setting φ = 0, ϕ = 0, and ψ ∈ H 1 0 (0, L 0 ) in (3.11), we obtain

κ L0 0 θ x ψ x dx = - L0 0 γ (g 1 ) x ψ x + ρ 0 h 3 ψ dx ∀ψ ∈ H 1 0 (0, L 0 ) . (3.13)
The left hand side of (3.13) is a bilinear continuous coercive form on H 1 0 (0, L 0 ) × H 1 0 (0, L 0 ), while the right hand side is a linear continuous form on H 1 0 (0, L 0 ). Then, using Lax-Milgram lemma, we deduce that there exists unique θ ∈ H 1 0 (0, L 0 ) solution of the variational problem (3.13). Applying classical regularity arguments, we infer that θ ∈ H [START_REF] Avalos | The null controllability of thermoelastic plates and singularity of the associated minimal energy function[END_REF], then using integration by parts, we obtain

1 0 (0, L 0 ) ∩ H 2 (0, L 0 ), hence we get (3.7). Consequently, setting ψ ∈ C ∞ c (0, L 0 ) ⊂ H 1 0 (0, L 0 ) in (3.
L0 0 (-κθ xx -γ (g 1 ) xx + ρ 0 h 3 ) ψ dx = 0, ∀ ψ ∈ C ∞ c (0, L 0 ) .
Thus, by applying Corollary 4.24 in [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF], we get

κθ xx = -γ (g 1 ) xx + ρ 0 h 3 ∈ L 2 (0, L 0 ), a.e. x ∈ (0, L 0 ).
Solving the above differential equation (taking into consideration that (g 1 , g 2 ) ∈ W 1 ; i.e., g 1 (0) = (g 1 ) x (0) = 0), we obtain (3.12).

• Step 3. In this step, we prove (3.8) and (3.9). For this aim, setting (φ, ϕ) ∈ W 1 , and ψ = 0 in (3.11), then using (3.12), we obtain

β 1 L0 0 u xx φ xx dx + β 2 L L0 y xx ϕ xx dx = -κ -1 L0 0 γ (g 1 ) x -ρ 0 x 0 h(x 2 ) dx 2 φ x dx - L0 0 ρ 1 h 1 φ + α 1 (h 1 ) x φ x dx - L L0 (ρ 2 h 2 ϕ + α 2 (h 2 ) x ϕ x ) dx, ∀ (φ, ϕ) ∈ W 1 . (3.14)
The left hand side of (3.14) is a bilinear continuous coercive form on W 1 × W 1 , while the right hand side is a linear continuous form on W 1 . Then, using Lax-Milgram lemma, we deduce that there exists unique (u, y) ∈ W 1 solution of the variational problem (3.14). Now, fix

(ν, µ) ∈ C ∞ c (0, L 0 ) × C ∞ c (L 0 , L) such that L0 0 ν dx = L0 0 µ dx = 1.
For any function (ν, μ) ∈ W 1 , we define

           φ(x) = x 0 ν(x 1 ) - L0 0 ν(x 2 ) dx 2 ν(x 1 ) dx 1 , ∀x ∈ (0, L 0 ), ϕ(x) = - L x μ(x 1 ) - L L0 μ(x 2 ) dx 2 µ(x 1 ) dx 1 , ∀(L 0 , L). (3.15) Indeed, the function (φ, ϕ) ∈ C 1 (0, L 0 ) × C 1 (L 0 , L) and φ(0) = φ(L 0 ) = ϕ(L 0 ) = ϕ(L) = φ x (0) = φ x (L) = 0 and ϕ x (L 0 ) = ϕ x (L 0 ) = ν(L 0 ) = μ(L 0 ).
Thus (φ, ϕ) ∈ W 1 , and consequently, by substituting (3.15) in (3.14), we derive

β 1 L0 0 u xx νx dx -β 1 L0 0 ν dx L0 0 u xx ν x dx + β 2 L L0 y xx μx dx -β 2 L L0 μ dx L L0 y xx µ x dx = -κ -1 L0 0 γ (g 1 ) x -ρ 0 x 0 h(x 2 ) dx 2 ν - L0 0 ν(x 2 ) dx 2 ν dx -ρ 1 L0 0 h 1 x 0 ν(x 1 ) - L0 0 ν(x 2 ) dx 2 ν(x 1 ) dx 1 dx -α 1 L0 0 (h 1 ) x ν - L0 0 ν(x 2 ) dx 2 ν dx +ρ 2 L L0 h 2 L x μ(x 1 ) - L L0 μ(x 2 ) dx 2 µ(x 1 ) dx 1 dx -α 2 L L0 (h 2 ) x μ - L L0 μ(x 2 ) dx 2 u dx. (3.16)
We have

-ρ 1 L0 0 h 1 x 0 ν(x 1 ) - L0 0 ν(x 2 ) dx 2 ν(x 1 ) dx 1 dx = -ρ 1 L0 0 x 0 h 1 (x 1 ) dx 1 x x 0 ν(x 1 )dx 1 dx + L0 0 L0 0 h 1 (x 1 ) x1 0 ν(x 2 ) dx 2 dx 1 ν dx.
In the above equation, for the first term, using integration by parts, we get

-ρ 1 L0 0 h 1 x 0 ν(x 1 ) - L0 0 ν(x 2 ) dx 2 ν(x 1 ) dx 1 dx = ρ 1 L0 0 x 0 h 1 (x 1 ) dx 1 - L0 0 h 1 (x 1 ) dx 1 + L0 0 h 1 (x 1 ) x1 0 ν(x 2 ) dx 2 dx 1 ν dx.
(3.17)

By the same way, using integration by parts, we get

ρ 2 L L0 h 2 L x μ(x 1 ) - L L0 μ(x 2 ) dx 2 µ(x 1 ) dx 1 dx = -ρ 2 L L0 L x h 2 (x 1 ) dx 1 - L L0 h 2 (x 1 ) dx 1 + L L0 h 2 (x 1 ) L x1 µ(x 2 ) dx 2 dx 1 μ dx. (3.18)
Next, we have

-κ -1 L0 0 γ (g 1 ) x -ρ 0 x 0 h(x 2 ) dx 2 ν - L0 0 ν(x 2 ) dx 2 ν dx = -κ -1 L0 0 γ (g 1 ) x -ρ 0 x 0 h(x 2 ) dx 2 - L0 0 γ (g 1 ) x -ρ 0 x 0 h(x 2 ) dx 2 ν dx ν dx, (3.19) 
-α 1 L0 0 (h 1 ) x ν - L0 0 ν(x 2 ) dx 2 ν dx = -α 1 L0 0 (h 1 ) x - L0 0 (h 1 ) x ν dx ν dx, (3.20) 
and

-α 2 L L0 (h 2 ) x μ - L L0 μ(x 2 ) dx 2 u dx = -α 2 L L0 (h 2 ) x - L L0 (h 2 ) x µ dx μ dx. (3.21)
Replacing (3.17)-(3.21) in (3.16), we obtain

β 1 L0 0 u xx νx dx + β 2 L L0 y xx μx dx = L0 0 χ 1 ν dx + L L0 χ 2 ν dx, ∀ (ν, μ) ∈ W 1 , (3.22) 
where

χ 1 (x) = - γ κ (g 1 ) x (x) -α 1 (h 1 ) x (x) + ρ 0 κ x 0 h(x 2 ) dx 2 + ρ 1 x 0 h 1 (x 1 ) dx 1 +β 1 L0 0 u xx ν x dx -ρ 1 L0 0 h 1 (x 1 ) dx 1 + ρ 1 L0 0 h 1 (x 1 ) x1 0 ν(x 2 ) dx 2 dx 1 + 1 κ L0 0 γ (g 1 ) x -ρ 0 x 0 h(x 2 ) dx 2 ν dx + α 1 L0 0 (h 1 ) x ν dx ∈ L 2 (0, L 0 )
and

χ 2 (x) = -α 2 (h 2 ) x (x) -ρ 2 L x h 2 (x 1 ) dx 1 + β 2 L L0 y xx µ x dx + ρ 2 L L0 h 2 (x 1 ) dx 1 -ρ 2 L L0 h 2 (x 1 ) L x1 µ(x 2 ) dx 2 dx 1 + α 2 L L0 (h 2 ) x µ dx ∈ L 2 (L 0 , L). Taking (ν, μ) ∈ C 1 c (0, L 0 ) × C 1 c (L 0 , L) ⊂ W 1 in (3.22), we get that ∀ (ν, μ) ∈ C 1 c (0, L 0 ) × C 1 c (L 0 , L) : β 1 L0 0 u xx νx dx + β 2 L L0 y xx μx dx = L0 0 χ 1 ν dx + L L0 χ 2 ν dx, (3.23) 
thus, by using the definition of H 1 (see page 202 in [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]), we get (u xx , y xx ) ∈ H 1 (0, L 0 ) × H 1 (L 0 , L), and consequently (3.8) holds true. Back to (3.23), using integration by parts in the left hand side, one derives

L0 0 (-β 1 u xxx -χ 1 ) ν dx + L L0 (-β 2 y xxx -χ 2 ) μ dx = 0, ∀ (ν, μ) ∈ C 1 c (0, L 0 ) × C 1 c (L 0 , L) ,
consequently, by applying Corollary 4.24 in [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF], we obtain β 1 u xxx = χ 1 for a.e. x ∈ (0, L 0 ) andβ 2 y xxx = χ 2 for a.e. x ∈ (L 0 , L).

(3.24)

Finally, using integration by parts in the left hand side of (3.22), then using (3.24) and taking μ(L 0 ) = ν(L 0 ) = 1, it holds that

β 1 u xx (L 0 ) -β 2 y xx (L 0 ) = 0,
thus, we obtain (3.9).

• Step 4. In this step, we prove that the resolvent (I -A) -1 of A is compact on the energy space H. For this aim, let f ∈ H and Φ ∈ D (A), such that (I -A) Φ = f. Since A is monotone, it follows that

f 2 H ≥ Φ 2 H + AΦ 2 H .
The result follows from the above inequality and (3.6)- (3.8). This completes the proof of the lemma. Lemma 3.5. For all λ ∈ R, we have

ker (iλI -A) = {0},
where ker (iλI -A) denotes the Kernel of iλI -A.

Proof. Let λ ∈ R, such that iλ is an eigenvalue of the operator A and Φ = (Φ 1 , Φ 2 ) ∈ D (A) a corresponding eigenvector, where Φ 1 = (u, y) and Φ 2 = (v, z, θ) . Therefore, we have

AΦ = iλΦ. (3.25) 
Similar to (3.1), we get

0 = ℜ iλΦ, Φ H = ℜ AΦ, Φ H = -κ L0 0 |θ x | 2 dx.
Consequently, we deduce that θ x = 0, a.e. x ∈ (0, L 0 ).

Since θ ∈ H 1 0 (0, L 0 ) (i.e., θ(0) = θ(L 0 ) = 0), we get θ = 0, a.e. x ∈ (0, L 0 ). (3.26) 
Next, writing (3.25) in a detailed form gives

(v, z) = (iλ u, iλ y) , C -1 (BΦ 2 + A 1 Φ 1 ) + iλΦ 2 = 0.
Since the operator C is an isomorphism of V 2 onto V ′ 2 , then the above system is equivalent to

(v, z) = (iλ u, iλ y) , BΦ 2 + A 1 Φ 1 + iλ CΦ 2 = 0. (3.27)
Inserting the first equation of (3.27) in the second one, then using (3.26), we obtain that

A 1 (u, y) + B (iλ u, iλ y, 0) -λ 2 C (u, y, 0) = 0, in V ′ 2 ⊂⊂ W ′ 2 .
For all Z = (φ, ϕ, ψ) ∈ W 2 , using the above equation, (2.5), and (2.8), we get

0 = A 1 (u, y) + B (iλ u, iλ y, 0) -λ 2 C (u, y, 0) , (φ, ϕ, ψ) V ′ 2 ×V2 = A 1 (u, y) + B (iλ u, iλ y, 0) , (φ, ϕ, ψ) W ′ 2 ×W2 -λ 2 C (u, y, 0) , (φ, ϕ, ψ) V ′ 2 ×V2
= a ((u, y) , (φ, ϕ)) + iλb ((u, y, 0) , (φ, ϕ, ψ))λ 2 c ((u, y, 0) , (φ, ϕ, ψ)) .

Using (2.6) in the above equation, we obtain

β 1 L0 0 u xx φ xx dx + β 2 L L0 y xx ϕ xx dx + γ L0 0 u x ψ x dx = λ 2 L0 0 ρ 1 uφ + α 1 u x φ x dx + λ 2 L L0 (ρ 2 yϕ + α 2 y x ϕ x ) dx, ∀ (φ, ϕ, ψ) ∈ W 2 .
(3.28)

Now, setting φ = 0, ϕ = 0, and

ψ ∈ C ∞ c (0, L 0 ) ⊂ H 1 0 (0, L 0 ) in (3.28), we get γ L0 0 u x ψ x dx = 0, ∀ψ ∈ C ∞ c (0, L 0 ) .
In the above equation, using integration by parts, we see that

L0 0 u xx ψdx = 0, ∀ψ ∈ C ∞ c (0, L 0 ) .
Therefore, by applying Corollary 4.24 in [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF], we have

u xx = 0, a.e. x ∈ (0, L 0 ). Since u ∈ H 2 (0, L 0 ) and u(0) = u x (0) = 0, one derives u = 0, a.e. x ∈ (0, L 0 ). (3.29)
Since (u, y) ∈ W 1 , then from (3.29) and by the help of Lemma 3.4, we obtain

y ∈ H 3 (L 0 , L) and y(L) = y x (L) = y(L 0 ) = y x (L 0 ) = y xx (L 0 ) = 0. (3.30) 
Next, setting (φ, ϕ) ∈ W 1 and ψ = 0 in (3.28), then using (3.29), one has

β 2 L L0 y xx ϕ xx dx = λ 2 L L0 (ρ 2 yϕ + α 2 y x ϕ x ) dx, ∀ (φ, ϕ) ∈ W 1 .
Using integration by parts, after that using (3.30) and the fact that ϕ x (L 0 ) = 0, we get

-β 2 L L0 y xxx ϕ x dx = λ 2 L L0 (ρ 2 y -α 2 y xx ) ϕ dx, ∀ (φ, ϕ) ∈ W 1 . (3.31) Taking (φ, ϕ) ∈ C 1 c (0, L 0 ) × C 1 c (L 0 , L) ⊂ W 1 in (3.22), we find that -β 2 L L0 y xxx ϕ x dx = λ 2 L L0 (ρ 2 y -α 2 y xx ) ϕ dx, ∀ ϕ ∈ C 1 c (L 0 , L) , (3.32) 
thus, by using the definition of H 1 (see page 202 in [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]), we get y xxx ∈ H 1 (L 0 , L). Again, using integration by parts in the right hand side of (3.32), we infer

L L0 β 2 y xxxx -λ 2 (ρ 2 y -α 2 y xx ) ϕ dx = 0, ∀ ϕ ∈ C 1 c (L 0 , L) .
Consequently, by applying Corollary 4.24 in [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF], then using (3.30), we obtain

β 2 y xxxx + α 2 λ 2 y xx -ρ 2 λ 2 y = 0, x ∈ (L 0 , L). (3.33)
Using integration by parts in the left hand side of (3.31), after that using (3.33) and the fact that φ(L) = 0,

then taking φ(L 0 ) = ϕ(L 0 ) = 1, one has y xxx (L 0 ) = 0. (3.34)
Therefore, from (3.30), (3.33) and (3.34), we get

β 2 y xxxx + α 2 λ 2 y xx -ρ 2 λ 2 y = 0, x ∈ (L 0 , L), (3.35) 
y(L) = y x (L) = y(L 0 ) = y x (L 0 ) = y xx (L 0 ) = y xxx (L 0 ) = 0. (3.36)
Multiplying (3.35) by 2 (x -L) y xxx , integrating by parts over (L 0 , L), then taking the real parts, we find

β 2 L L0 (x -L) |y xxx | 2 x dx + α 2 λ 2 L L0 (x -L) |y xx | 2 x dx -ρ 2 λ 2 L L0 (x -L) |y x | 2 x dx -4ρ 2 λ 2 L L0 |y x | 2 dx -2ρ 2 λ 2 ℜ [(x -L) yy xx -((x -L) y) x y x ] L L0 = 0.
Using integration by parts and the boundary conditions of (3.36), we arrive at

-β 2 L L0 |y xxx | 2 dx -α 2 λ 2 L L0 |y xx | 2 dx -3ρ 2 λ 2 L L0 |y x | 2 dx = 0.
Consequently, from the above equation and the boundary conditions of (3.36), we obtain

y = 0.
Finally, from the above equation, first equation of (3.27), (3.26), and (3.29), we get Φ = 0. The proof is thus complete.

Proof of Theorem 3.3. From Lemma 3.4, we have that the operator A has a compact resolvent. In addition, from Lemma (3.5), we get that the operator A has no pure imaginary eigenvalues. Thus, we get the conclusion by applying Arendt and Batty theorem (see Theorem A.2 and Corollary A.3).

Polynomial Stability

In this section, we will prove the polynomial stability of System (1.1)-(1.12). Our main results in this part are the following theorems. then for all initial data Φ 0 ∈ D(A), there exists a constant C > 0 independent of Φ 0 such that the energy of System (1.1)-(1.12) satisfies the following estimation

E 1 (t) ≤ C t 2 Φ 0 2 D(A) , ∀t > 0. Theorem 4.2. If ρ 1 < ρ 2 or α 1 < α 2 , (4.2) 
then for all initial data Φ 0 ∈ D(A), there exists a constant C > 0 independent of Φ 0 such that the energy of System (1.1)-(1.12) satisfies the following estimation

E 1 (t) ≤ C t Φ 0 2 D(A) , ∀t > 0.
From Lemma 3.4 and Lemma 3.5, we have seen that iR ⊂ ρ(A), then for the proof of Theorems 4.1 and 4.2, according to Borichev and Tomilov [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF] (see Theorem A.4), we need to prove that

sup λ∈R 1 |λ| ℓ (iλI -A) -1 L(H) < ∞, (4.3) 
where ℓ = 1 (resp. ℓ = 2) if condition (4.1) (resp. condition (4.2)) holds. We will argue by contradiction. We suppose that there exists

{(λ n , Φ n := (Φ n 1 , Φ n 2 ))} n≥1 ⊂ R * + × D (A) , such that λ n → +∞, Φ n H = 1, (4.4) 
and there exists a sequence

F n := (g n , h n ) ∈ H, such that λ ℓ n (iλ n I -A)Φ n = F n → 0 in H, (4.5) 
where

Φ n 1 = (u n , y n ) , Φ n 2 = (v n , z n , θ n ) , g n = (g n 1 , g n 2 )
, and h n = (h n 1 , h n 2 , h n 3 ) . We will check condition (4.3) by finding a contradiction with Φ n H = 1 such as Φ n H = o(1). By detailing Equation (4.5), we get the following system

iλ n Φ n 1 -(v n , z n ) -λ -ℓ n g n = 0, in W 1 iλ n Φ n 2 + C -1 (BΦ n 2 + A 1 Φ n 1 ) -λ -ℓ n h n = 0, in V 2 .
(4.6)

The proof of Theorems 4.1 and 4.2 is divided into several lemmas.

Lemma 4.3. For all ℓ ≥ 0, the solution (Φ n 1 , Φ n 2 ) ∈ D(A) of System (4.6) satisfies the following asymptotic behavior estimations

β 1 u n xxx + α 1 λ -ℓ n (h n 1 ) x + α 1 λ 2 n u n x + γθ n x + iα 1 λ 1-ℓ n (g n 1 ) x x -ρ 1 λ 2 n u n = ρ 1 λ 1-ℓ n λ -1 n h n 1 + ig n 1 , (4.7 
)

β 2 y n xxx + α 2 λ -ℓ n (h n 2 ) x + α 2 λ 2 n y n x + iα 2 λ 1-ℓ n (g n 2 ) x x -ρ 2 λ 2 n y n = ρ 2 λ 1-ℓ n λ -1 n h n 2 + ig n 2 , (4.8) 
-κθ n xx + iρ 0 λ n θ n -iγλ n u n xx = λ -ℓ n (ρ 0 h n 3 -γ (g n 1 ) xx ) . (4.9)
In addition, we have

β 1 u n xxx + α 1 λ -ℓ n (h n 1 ) x ∈ H 1 (0, L 0 ) , β 2 y n xxx + α 1 λ -ℓ n (h n 2 ) x ∈ H 1 (L 0 , L) , (4.10) 
and

β 1 u n xxx (L 0 ) -β 2 y n xxx (L 0 ) + λ 2 n (α 1 u n x (L 0 ) -α 2 y n x (L 0 )) + γθ n x (L 0 ) +λ -ℓ n (α 1 (h n 1 ) x (L 0 ) -α 2 (h n 2 ) x (L 0 )) + iλ 1-ℓ n (α 1 (g n 1 ) x (L 0 ) -α 2 (g n 2 ) x (L 0 )) = 0. (4.11)
Proof. For all Z = (φ, ϕ, ψ) ∈ W 2 , using the second equation of (4.6) and equations (2.5) and (2.9), we get

0 = iλ n Φ n 2 + C -1 (BΦ n 2 + A 1 Φ n 1 ) -λ -ℓ n h n , Z V2 = iλ n CΦ n 2 + BΦ n 2 + A 1 Φ n 1 -λ -ℓ n Ch n , Z V ′ 2 ×V2 = iλ n c (Φ n 2 , Z) + BΦ n 2 + A 1 Φ n 1 , Z V ′ 2 ×V2 -λ -ℓ n c (h n , Z) .
Since Φ n ∈ D(A); i.e., Φ n 2 ∈ W 2 and Φ n 1 ∈ W 1 , then using (2.5), the last equation of (2.8), and second-third equations of (2.8) in the above equation, we obtain

0 = iλ n c (Φ n 2 , Z) + BΦ n 2 + A 1 Φ n 1 , Z V ′ 2 ×V2 -λ -ℓ n c (h n , Z) = iλ n c (Φ n 2 , Z) + BΦ n 2 + A 1 Φ n 1 , Z W ′ 2 ×W2 -λ -ℓ n c (h n , Z) = a ((u n , y n ) , (φ, ϕ)) + b ((v n , z n , θ n ) , (φ, ϕ, ψ)) + iλ n c ((v n , z n , θ n ) , (φ, ϕ, ψ)) -λ -ℓ n c ((h n 1 , h n 2 , h n 
3 ) , (φ, ϕ, ψ)) . Consequently, from the above equation and (2.6), we find

β 1 L0 0 u n xx φ xx dx + β 2 L L0 y n xx ϕ xx dx + γ L0 0 v n x ψ x -θ n x φ x dx + κ L0 0 θ n x ψ x dx iλ n L0 0 ρ 1 v n φ + α 1 v n x φ x dx + iλ n L L0 (ρ 2 z n ϕ + α 2 z n x ϕ x ) dx + iρ 0 λ n L0 0 θ n ψ dx = ρ 0 λ -ℓ n L0 0 h n 3 ψ dx + λ -ℓ n L0 0 ρ 1 h n 1 φ + α 1 (h n 1 ) x φ x dx +λ -ℓ n L L0 (ρ 2 h n 2 ϕ + α 2 (h n 2 ) x ϕ x ) dx, ∀ (φ, ϕ, ψ) ∈ W 2 .
(4.12)

On the other hand, from first equation of (4.6), we have

v n = iλ n u n -λ -ℓ n g n 1 in H 2 (0, L 0 ), z n = iλ n y n -λ -ℓ n g n 2 in H 2 (L 0 , L). (4.13)
Inserting the last equations in (4.12), we infer that

β 1 L0 0 u n xx φ xx dx + β 2 L L0 y n xx ϕ xx dx + κ L0 0 θ n x ψ x dx + iγλ n L0 0 u n x ψ x dx -γ L0 0 θ n x φ x dx -λ 2 n L0 0 ρ 1 u n φ + α 1 u n x φ x dx -λ 2 n L L0 (ρ 2 y n ϕ + α 2 y n x ϕ x ) dx + iρ 0 λ n L0 0 θ n ψ dx = ρ 0 λ -ℓ n L0 0 h n 3 ψ dx +γ λ -ℓ n L0 0 (g n 1 ) x ψ x dx + iλ 1-ℓ n L0 0 ρ 1 g n 1 φ + α 1 (g n 1 ) x φ x dx + iλ 1-ℓ n L L0 (ρ 2 g n 2 ϕ + α 2 (g n 2 ) x ϕ x ) dx +λ -ℓ n L0 0 ρ 1 h n 1 φ + α 1 (h n 1 ) x φ x dx + λ -ℓ n L L0 (ρ 2 h n 2 ϕ + α 2 (h n 2 ) x ϕ x ) dx, ∀ (φ, ϕ, ψ) ∈ W 2 .
In the above equation, using integration by parts and equation (3.8), we obtain

- L0 0 β 1 u n xxx + α 1 λ -ℓ n (h n 1 ) x φ x dx + L0 0 λ 2 n (α 1 u n xx -ρ 1 u n ) + γθ n xx -ρ 1 λ -ℓ n h n 1 + iλ 1-ℓ n (α 1 (g n 1 ) xx -ρ 1 g n 1 ) φ dx - L L0 β 2 y n xxx + α 2 λ -ℓ n (h n 2 ) x ϕ x dx + L L0 λ 2 n (α 2 y n xx -ρ 2 y n ) -ρ 2 λ -ℓ n h n 2 + iλ 1-ℓ n (α 2 (g n 2 ) xx -ρ 2 g n 2 ) ϕ dx + L0 0 -κθ n xx + iρ 0 λ n θ n -iγλ n u n xx -ρ 0 λ -ℓ n h n 3 + γ λ -ℓ n (g n 1 ) xx ψ dx + β 1 u n xx φ x L0 0 + β 2 [y n xx ϕ x ] L L0 - α 1 λ 2 n u n x + γθ n x + iα 1 λ 1-ℓ n (g n 1 ) x φ L0 0 -α 2 λ 2 n y n x + iα 2 λ 1-ℓ (g n 2 ) x ϕ L L0 + (iγλ n u n x + κθ n x -γ (g n 1 ) x ) ψ L0 0 = 0, ∀ (φ, ϕ, ψ) ∈ W 2 . (4.14) 
Since Φ n ∈ D (A) and (φ, ϕ, ψ) ∈ W 2 , then from (2.13) and (3.9), we have the following boundary conditions

φ(0) = φ x (0) = ϕ(L) = ϕ x (L) = ψ(0) = ψ(L 0 ) = 0 φ(L 0 ) = ϕ(L 0 ), φ x (L 0 ) = ϕ(L 0 ), β 1 u n xx (L 0 ) = y n xx (L 0
). Substituting the above boundary conditions in (4.14), we derive that

- L0 0 β 1 u n xxx + α 1 λ -ℓ n (h n 1 ) x φ x dx + L0 0 λ 2 n (α 1 u n xx -ρ 1 u n ) + γθ n xx -λ -ℓ n ρ 1 h n 1 + iλ 1-ℓ n (α 1 (g n 1 ) xx -ρ 1 g n 1 ) φ dx - L L0 β 2 y n xxx + α 2 λ -ℓ n (h n 2 ) x ϕ x dx + L L0 λ 2 n (α 2 y n xx -ρ 2 y n ) -ρ 2 λ -ℓ n h n 2 + iλ 1-ℓ n (α 2 (g n 2 ) xx -ρ 2 g n 2 ) ϕ dx + α 2 λ 2 n y n x (L 0 ) + iα 2 λ 1-ℓ n (g n 2 ) x (L 0 ) -α 1 λ 2 n u x (L 0 ) -γθ n x (L 0 ) -iα 1 λ 1-ℓ n (g n 1 ) x (L 0 ) φ(L 0 ) + L0 0 -κθ n xx + iρ 0 λ n θ n -iγλ n u n xx -ρ 0 λ -ℓ n h n 3 + γ λ -ℓ n (g n 1 ) xx ψ dx = 0, ∀ (φ, ϕ, ψ) ∈ W 2 .
(4.15)

• Taking (φ, ϕ, ψ) = (0, 0, ψ) ∈ {0} × {0} × C 1 c (0, L 0 ) ⊂ W 2 in equation (4.15), one finds L0 0 -κθ n xx + iρ 0 λ n θ n -iγλ n u n xx -ρ 0 λ -ℓ n h n 3 + γ λ -ℓ n (g 1 ) n xx ψ dx = 0, ∀ ψ ∈ C 1 c (0, L 0 ) ,
and consequently, we get

-κθ n xx + iρ 0 λ n θ n -iγλ n u n xx -ρ 0 λ -ℓ n h n 3 + γ λ -ℓ n (g 1 ) n xx = 0, a.e.
x ∈ (0, L 0 ). Hence, (4.9) holds true.

• Taking (φ, ϕ, ψ) = (φ, 0, 0) ∈ C 1 c (0, L 0 ) × {0} × {0} ⊂ W 2 in equation (4.15), we get L0 0 β 1 u n xxx + α 1 λ -ℓ n (h n 1 ) x φ x dx = L0 0 λ 2 n (α 1 u n xx -ρ 1 u n ) + γθ n xx -ρ 1 λ -ℓ n h n 1 + iλ 1-ℓ n (α 1 (g n 1 ) xx -ρ 1 g n 1 ) φ dx, ∀ φ ∈ C 1 c (0, L 0 ) . (4.16) Since λ 2 n (α 1 u n xx -ρ 1 u n ) + γθ n xx -ρ 1 λ -ℓ n h n 1 + iλ 1-ℓ n (α 1 (g n 1 ) xx -ρ 1 g n 1 ) ∈ L 2 (0, L 0 ), we get β 1 u n xxx + α 1 λ -ℓ n (h n 1 )
x ∈ H 1 (0, L 0 ) . Thus, we get the first estimation of (4.10). Consequently, integrating by parts (4.16), we obtain

∀ φ ∈ C 1 c (0, L 0 ) : L0 0 β 1 u n xxx + α 1 λ -ℓ n (h n 1 ) x x + λ 2 n (α 1 u n xx -ρ 1 u n ) + γθ n xx -ρ 1 λ -ℓ n h n 1 + iλ 1-ℓ n (α 1 (g n 1 ) xx -ρ 1 g n 1 ) φ dx = 0.
Thus, one has

β 1 u n xxx + α 1 λ -ℓ n (h n 1 ) x x +λ 2 n (α 1 u n xx -ρ 1 u n )+γθ n xx -ρ 1 λ -ℓ n h n 1 +iλ 1-ℓ n (α 1 (g n 1 ) xx -ρ 1 g n 1 )
= 0, a.e. x ∈ (0, L 0 ). Hence, we derive (4.7).

• By the same way, taking (φ, ϕ, ψ) = (0, ϕ, 0)

∈ {0} × C 1 c (0, L 0 ) × {0} ⊂ W 2 in equation (4.15), one gets β 2 y n xxx + α 1 λ -ℓ n (h n 2 ) x ∈ H 1 (L 0 , L) and 
β 2 y n xxx + α 2 λ -ℓ n (h n 2 ) x x + λ 2 n (α 2 y n xx -ρ 2 y n ) -ρ 2 λ -ℓ n h n 2 + iλ 1-ℓ n (α 2 (g n 2 ) xx -ρ 2 g n 2 )
= 0, a.e. x ∈ (L 0 , L). Thus, we find (4.8) and the second estimation of (4.10).

• Taking φ(L 0 ) = ϕ(L 0 ) = 1 and ψ = 0 in (4.15), then using integration by parts for the first and third terms, we obtain

L0 0 β 1 u n xxx + α 1 λ -ℓ n (h n 1 ) x x + λ 2 n (α 1 u n xx -ρ 1 u n ) + γθ n xx -ρ 1 λ -ℓ n h n 1 + iλ 1-ℓ n (α 1 (g n 1 ) xx -ρ 1 g n 1 ) φ dx L L0 β 2 y n xxx + α 2 λ -ℓ n (h n 2 ) x x + λ 2 n (α 2 y n xx -ρ 2 y n ) -ρ 2 λ -ℓ n h n 2 + iλ 1-ℓ n (α 2 (g n 2 ) xx -ρ 2 g n 2 ) ϕ dx -β 1 u n xxx (L 0 ) -α 1 λ -ℓ n (h n 1 ) x (L 0 ) + β 2 y n xxx (L 0 ) + α 2 λ -ℓ n (h n 2 ) x (L 0 ) +α 2 λ 2 n y n x (L 0 ) + iα 2 λ 1-ℓ n (g n 2 ) x (L 0 ) -α 1 λ 2 n u n x (L 0 ) -γθ n x (L 0 ) -iα 1 λ 1-ℓ n (g n 1 )
x (L 0 ) = 0. Substituting (4.7) and (4.8) in the above equation, we obtain (4.11). The proof is thus complete. From (4.4) and (4.13), we remark that

u n xx L 2 (0,L0) = O (1) , λ n u n x L 2 (0,L0) = O (1) , λ n u n x L 2 (0,L0) = O (1) , y n xx L 2 (L0,L) = O (1) , λ n y n x L 2 (L0,L) = O (1) , λ n y n x L 2 (L0,L) = O (1) .
(4.17)

From now, we denote by m 1 a positive constant number, such that m 1 independent of n and 0 < m 1 < 1, also we denote by K j a positive constant number independent of n and ǫ j,n is a positive number such that lim λn→∞ ǫ j,n = 0. Proof. Taking the inner product of (4.5) with Φ n in H, then using Cauchy Schwarz inequality, we get

-ℜ AΦ n , Φ n H = ℜ (iλ n I -A)Φ n , Φ n H ≤ λ -ℓ n F n H Φ n H . Now, similar to Equation (3.1), we have 0 ≤ L0 0 |θ n x | 2 dx ≤ - 1 κ ℜ AΦ n , Φ n H ≤ ǫ 1,n λ -ℓ n , (4.19) 
where ǫ 1,n = κ -1 F n H Φ n H . Using (4.4) and (4.5), we get ǫ 1,n → 0. Hence, from (4. [START_REF] Aissa | Well-posedness and direct internal stability of coupled non-degenrate Kirchhoff system via heat conduction[END_REF], we obtain the first asymptotic estimate of (4.18). Since θ n ∈ H 1 0 (0, L 0 ), using (4.19) and Poincaré's inequality, we infer that

0 ≤ L0 0 |θ n | 2 dx ≤ K p L0 0 |θ n x | 2 dx ≤ - 1 κ ℜ AΦ n , Φ n H ≤ ǫ 2,n λ -ℓ n , (4.20) 
where K p is the Poincaré constant and ǫ 2,n = K p ǫ 1,n → 0. Hence, from (4.20), we get the second asymptotic estimate of (4.18). The proof is thus complete.

Lemma 4.5. For all ℓ ≥ 0, the solution (Φ n 1 , Φ n 2 ) ∈ D(A) of System (4.6) satisfies the following asymptotic behavior estimations

L0 0 |u n xx | 2 dx = o λ -ℓ n , (4.21 
)

|u n xx | ∞ = o λ 1-ℓ 2 n . (4.22)
For the proof of Lemma 4.5, we need the following lemmas.

Lemma 4.6. For all ℓ ≥ 0, the solution

(Φ n 1 , Φ n 2 ) ∈ D(A) of System (4.6) satisfies the following asymptotic behavior estimation λ -2 n u n xxx 2 L 2 (0,L0) ≤ K 1 1 + λ -1 n 2 u n xx 2 L 2 (0,L0) + ǫ 3,n λ -ℓ n . (4.23) Proof. First, since u n xx + α 1 β 1 λ -ℓ n h n 1 ∈ H 2 (0, L 0 )
, then applying (A.1), we obtain

u n xxx + α 1 β 1 λ -ℓ n (h n 1 ) x L 2 (0,L0) ≤ K 6 u n xxxx + α 1 β 1 λ -ℓ n (h n 1 ) xx 1 2
L 2 (0,L0)

u n xx + α 1 β 1 λ -ℓ n h n 1 1 2
L 2 (0,L0)

+K 7 u n xx + α 1 β 1 λ -ℓ n h n 1 L 2 (0,L0)
.

Thus

u n xxx L 2 (0,L0) ≤ K 6 u n xxxx + α 1 β 1 λ -ℓ n (h n 1 ) xx 1 2
L 2 (0,L0)

u n xx + α 1 β 1 λ -ℓ n h n 1 1 2 L 2 (0,L0) +K 7 u n xx L 2 (0,L0) + α 1 β 1 (K 7 + 1) λ -ℓ n (h n 1 ) x L 2 (0,L0) ,
In the above inequality, using the first estimation of (A.6), we get

u n xxx 2 L 2 (0,L0) ≤ 3K 2 6 u n xxxx + α 1 β 1 λ -ℓ n (h n 1 ) n xx L 2 (0,L0) u n xx + α 1 β 1 λ -ℓ n h n 1 L 2 (0,L0) +3K 2 7 u n xx 2 L 2 (0,L0) + 3α 2 1 β -2 2 (K 7 + 1) 2 λ -2ℓ n (h n 1 ) x 2 L 2 (0,L0) . Consequently, one derives λ -2 n u n xxx 2 L 2 (0,L0) ≤ 3K 2 6 λ -2 n u n xxxx + α 1 β 1 λ -ℓ n (h n 1 ) n xx L 2 (0,L0) u n xx L 2 (0,L0) + 3K 2 7 λ -2 u n xx 2 L 2 (0,L0) +3K 2 6 α 1 β -1 1 λ -ℓ-2 n u n xxxx + α 1 β 1 λ -ℓ n (h n 1 ) n xx L 2 (0,L0) h n 1 L 2 (0,L0) +3α 2 1 β -2 2 (K 7 + 1) 2 λ -2ℓ-2 n (h n 1 ) x 2 L 2 (0,L0) . (4.24)
Next, from (4.7) and (4.9), we obtain

λ -2 n u n xxx + α 1 β 1 λ -ℓ n (h n 1 ) x x L 2 (0,L0) ≤ α 1 β -1 1 u n xx L 2 (0,L0) + β -1 1 ρ 1 u n L 2 (0,L0) +γβ -1 1 λ -2 n θ n xx L 2 (0,L0) + β -1 1 λ -1-ℓ n λ -1 n ρ 1 h n 1 + i (ρ 1 g n 1 -α 1 (g n 1 ) xx ) L 2 (0,L0) , (4.25) 
and

γβ -1 1 λ -2 n θ n xx L 2 (0,L0) ≤ γ 2 β -1 1 κ -1 λ -1 n u n xx L 2 (0,L0) + γβ -1 1 κ -1 ρ 0 λ -1 n θ n L 2 (0,L0) +γβ -1 1 κ -1 λ -2-ℓ n ρ 0 h n 3 -γ (g n 1 ) xx L 2 (0,L0) . (4.26)
Now, substituting (4.26) in (4.25), we find

λ -2 n u n xxx + α 1 β 1 λ -ℓ n (h n 1 ) x x L 2 (0,L0) ≤ α 1 + γ 2 κ -1 λ -1 n β -1 1 u n xx L 2 (0,L0) + β -1 1 ρ 1 u n L 2 (0,L0) +γβ -1 1 κ -1 ρ 0 λ -1 n θ n L 2 (0,L0) + β -1 1 λ -1-ℓ n λ -1 n ρ 1 h n 1 + i (ρ 1 g n 1 -α 1 (g n 1 ) xx ) L 2 (0,L0) +γβ -1 1 κ -1 λ -2-ℓ n ρ 0 h n 3 -γ (g n 1 ) xx L 2 (0,L0) . (4.27)
Since u ∈ H 3 (0, L 0 ) with u(0) = u x (0) = 0, using Poincaré's inequality, we obtain that there exists Kp > 0 independent of n, such that

u n L 2 (0,L0) ≤ Kp u n xx L 2 (0,L0) .
Inserting the above inequality into (4.27), we derive

λ -2 n u n xxx + α 1 β 1 λ -ℓ n (h n 1 ) x x L 2 (0,L0) ≤ α 1 + ρ 1 Kp + γ 2 κ -1 λ -1 n β -1 1 u n xx L 2 (0,L0) +γβ -1 1 κ -1 ρ 0 λ -1 n θ n L 2 (0,L0) + ǫ 4,n λ -1-ℓ n , (4.28) 
where

ǫ 4,n = β -1 1 ρ 1 λ -1 n h n 1 + i (ρ 1 g n 1 -α 1 (g n 1 ) xx ) L 2 (0,L0) + γβ -1 1 κ -1 λ -1 n ρ 0 h n 3 -γ (g n 1 ) xx L 2 (0,L0) .
Since h n 1 → 0, h n 3 → 0, g n 1 → 0 and (g n 1 ) xx → 0 in L 2 (0, L 0 ), then ǫ 4,n → 0. Substituting (4.28) in (4.24), we get

λ -2 n u n xxx 2 L 2 (0,L0) ≤ 3K 2 6 α 1 + ρ 1 Kp + γ 2 κ -1 λ -1 n β -1 1 + 3K 2 7 λ -2 n u n xx 2 L 2 (0,L0) +3K 2 6 γβ -1 1 κ -1 ρ 0 λ -1 n θ n L 2 (0,L0) u n xx L 2 (0,L0) + ǫ 5,n λ -ℓ n , (4.29) 
where

ǫ 5,n = 3K 2 6 ǫ 4,n λ -1 n + 3K 2 6 α 1 β -1 1 α 1 + ρ 1 Kp + γ 2 κ -1 λ -1 n β -1 1 h n 1 L 2 (0,L0) u n xx L 2 (0,L0) +3K 2 6 α 1 β -1 1 γβ -1 1 κ -1 ρ 0 λ -ℓ-1 n θ n L 2 (0,L0) h n 1 L 2 (0,L0) +3K 2 6 α 1 β -1 1 ǫ 4,n λ -2ℓ-1 n h n 1 L 2 (0,L0) + 3α 2 1 β -2 2 (K 7 + 1) 2 λ -ℓ-2 n (h n 1 ) x 2 L 2 (0,L0) .
From (4.17), (4.20), the fact that

h n 1 → 0 and (h n 1 ) x → 0 in L 2 (0, L 0 ), we obtain ǫ 5,n → 0. Next, taking p = λ -1 n u n xx L 2 (0,L0) and q = 3K 2 6 γβ -1 1 κ -1 ρ 0 θ n L 2 (0,L0) in (A.
3), then using (4.20), one gets

3K 2 6 γβ -1 1 κ -1 ρ 0 λ -1 n θ n L 2 (0,L0) u n xx L 2 (0,L0) ≤ λ -2 n u n xx 2 2 + 9K 4 6 γ 2 β -2 1 κ -2 ρ 2 0 θ n 2 L 2 (0,L0) 2 ≤ λ -2 n u n xx 2 2 + 9K 4 6 γ 2 β -2 1 κ -2 ρ 2 0 ǫ 2,n 2 λ -ℓ n .
Inserting the above inequality in (4.29), we have

λ -2 n u n xxx 2 L 2 (0,L0) ≤ 3K 2 6 α 1 + ρ 1 Kp + γ 2 κ -1 λ -1 n β -1 1 + 3K 2 7 + 1 2 λ -2 u xx 2 L 2 (0,L0) + ǫ 3,n λ -ℓ n ,
where

ǫ 3,n = ǫ 5,n + 9K 4 6 γ 2 β -2 1 κ -2 ρ 0 ǫ 2,n 2 → 0.
In the above inequality, let

K 1 = max 3K 2 6 β -1 1 α 1 + ρ 1 Kp , 3K 2 6 β -1 1 γ 2 κ -1 , 3K 2 7 + 1 2 , it holds that λ -2 n u n xxx 2 L 2 (0,L0) ≤ K 1 1 + λ -1 n + λ -2 n u n xx 2 L 2 (0,L0) + ǫ 3,n λ -ℓ n ≤ K 1 1 + λ -1 n 2 u n xx 2 L 2 (0,L0) + ǫ 3,n λ -ℓ n .
Hence, we get (4.23).

Lemma 4.7. For all ℓ ≥ 0, the solution (Φ n 1 , Φ n 2 ) ∈ D(A) of System (4.6) satisfies the following asymptotic behavior estimation

K 2 λ -4 n θ n x 4 L 2 (0,L0) u n xxx 4 L 2 (0,L0) ≤ m 1 u n xx 8 L 2 (0,L0) + ǫ 6,n λ -4ℓ n , (4.30) 
where

K 2 = 64κ 4 γ -4 .
Proof. First, using the first estimation of (A.6) for (4.23), we get

λ -4 n u n xxx 4 L 2 (0,L0) ≤ 2K 2 1 1 + λ -1 n 4 u n xx 4 L 2 (0,L0) + 2ǫ 2 3,n λ -2ℓ n .
Consequently, we have

K 2 λ -4 n θ n x 4 L 2 (0,L0) u n xxx 4 L 2 (0,L0) ≤ 2K 2 1 K 2 1 + λ -1 n 4 θ n x 4 L 2 (0,L0) u n xx 4 L 2 (0,L0) +2ǫ 2 3,n λ -2ℓ n θ n x 4 L 2 (0,L0) . (4.31) 
From (4.19), we obtain

2ǫ 2 3,n λ -2ℓ n θ n x 4 L 2 (0,L0) ≤ 2ǫ 2 1,n ǫ 2 3,n λ -4ℓ n . (4.32) 
Next, taking a = u n xx 4

L 2 (0,L0) and b = 2K 2 1 K 2 1 + λ -1 n 4 θ n x 4
L 2 (0,L0) in (A.4), then using (4.19), we derive

2K 2 1 K 2 1 + λ -1 n 4 θ n x 4 L 2 (0,L0) u n xx 4 L 2 (0,L0) ≤ m 1 u n xx 8 L 2 (0,L0) + K 4 1 K 2 2 1 + λ -1 n 8 θ n x 8 L 2 (0,L0) m 1 ≤ m 1 u n xx 8 L 2 (0,L0) + K 4 1 K 2 2 1 + λ -1 n 8 ǫ 4 1,n m 1 λ -4ℓ n . (4.33) 
Substituting (4.32) and (4.33) in (4.31), we get (4.30), where

ǫ 6,n = 2ǫ 2 1,n ǫ 2 3,n + K 4 1 K 2 2 1 + λ -1 n 8 ǫ 4 1,n m 1 → 0. Lemma 4.8. For all ℓ ≥ 0, the solution (Φ n 1 , Φ n 2 ) ∈ D(A) of System (4.6
) satisfies the following asymptotic behavior estimation

λ -2 n |θ n x (L 0 )| 2 + |θ n x (L 0 )| 2 2 ≤ K 3 θ n x 2 L 2 (0,L0) u n xx 2 L 2 (0,L0) + ǫ 7,n λ -2ℓ n , (4.34) 
where

K 3 = 16γ 2 κ -2 .
Proof. First, let's take

P (x) = cos L 0 -x L 0 π .
Then, we have

P (0) = -1, P (L 0 ) = 1, |P | ∞ = 1, |P ′ | ∞ = π L -1 0 . (4.35) 
Next, from (4.9), we have

θ n xx = iκ -1 ρ 0 λ n θ n -iγκ -1 λ n u n xx -κ -1 λ -ℓ n (ρ 0 h n 3 -γ (g n 1 ) xx ) .
Multiplying the above equation by 2P λ -1 n θ n x in L 2 (0, L 0 ), taking the real parts, then using integration by parts and (4.35), we get

λ -1 n |θ n x (L 0 )| 2 + |θ n x (L 0 )| 2 = λ -1 n L0 0 P ′ |θ n x | 2 dx + 2κ -1 ρ 0 ℜ i L0 0 P θ n θ n x dx -2γκ -1 ℜ i L0 0 P u n xx θ n x dx -2κ -1 λ -ℓ-1 n λℜ L0 0 P (ρ 0 h n 3 -γ (g n 1 ) xx ) θ n x dx .
Consequently, we obtain

λ -1 n |θ n x (L 0 )| 2 + |θ n x (L 0 )| 2 ≤ π L -1 0 λ -1 n θ n x 2 L 2 (0,L0) + 2κ -1 ρ 0 θ n x L 2 (0,L0) θ n L 2 (0,L0) +2γκ -1 θ n x L 2 (0,L0) u n xx L 2 (0,L0) + 2κ -1 λ -ℓ-1 n ρ 0 h n 3 -γ (g n 1 ) xx L 2 (0,L0) θ n x L 2 (0,L0
) . Thus, using (4.35) and the first estimation of (A.6) in the above inequality, one has

λ -2 n |θ n x (L 0 )| 2 + |θ n x (L 0 )| 2 2 ≤ 16γ 2 κ -2 θ n x 2 L 2 (0,L0) u n xx 2 L 2 (0,L0) + 4π 2 L -2 0 λ -2 n θ n x 4 L 2 (0,L0) +6κ -2 ρ 2 0 θ n x 2 L 2 (0,L0) θ n 2 L 2 (0,L0) + 16κ -2 λ -2ℓ-2 n ρ 0 h n 3 -γ (g n 1 ) xx 2 L 2 (0,L0) θ n x 2 L 2 (0,L0) . Consequently, we get λ -2 n |θ n x (L 0 )| 2 + |θ n x (L 0 )| 2 2 ≤ K 3 θ n x 2 L 2 (0,L0) u n xx 2 L 2 (0,L0) + ǫ 7,n λ -2ℓ n , (4.36) 
where

ǫ 7,n = 4π 2 L -2 0 λ -2+2ℓ n θ n x 4 L 2 (0,L0) + 6κ -2 ρ 2 0 λ 2ℓ n θ n x 2 L 2 (0,L0) θ n 2 L 2 (0,L0) +16κ -2 λ -2 n ρ 0 h n 3 -γ (g n 1 ) xx 2 L 2 (0,L0) θ n x 2 L 2 (0,L0) . Using (4.19)-(4.20) and the fact that h n 3 -γ (g 1 ) n xx → 0 in L 2 (0, L 0 ), we find 0 ≤ ǫ 7,n ≤ 4π 2 L -2 0 λ -2 n ǫ 2 1,n + 6κ -2 ǫ 1,n ǫ 2,n + 16κ -2 λ -2-ℓ n ǫ 1,n h n 3 -γ (g n 1 ) xx 2 
L 2 (0,L0) → 0. Hence, from (4.36), we get (4.48). Lemma 4.9. For all ℓ ≥ 0, the solution (Φ n 1 , Φ n 2 ) ∈ D(A) of System (4.6) satisfies the following asymptotic behavior estimation

λ -2 n |u n xx | 4 ∞ ≤ K 4 1 + λ -1 n 2 u n xx 4 L 2 (0,L0) + ǫ 8,n λ -2ℓ n , (4.37) 
Proof. First, since u n xx ∈ H 1 (0, L 0 ), then applying (A.2), we obtain

|u n xx | ∞ ≤ K 8 u n xxx 1 2 L 2 (0,L0) u n xx 1 2
L 2 (0,L0) + K 9 u n xx L 2 (0,L0) , consequently, using the second estimation of (A.6), one has

|u n xx | 4 ∞ ≤ 8K 4 8 u n xxx 2 L 2 (0,L0) u n xx 2 L 2 (0,L0) + 8K 4 9 u n xx 4 L 2 (0,L0) . (4.38) 
Substituting (4.23) in (4.38), we derive

λ -2 n |u n xx | 4 ∞ ≤ 8K 4 8 K 1 1 + λ -1 n 2 + 8K 4 9 λ -2 n u n xx 4 L 2 (0,L0) + 8K 4 8 ǫ 3,n λ -ℓ n u n xx 2 L 2 (0,L0) . (4.39) 
Taking p = u n xx L 2 (0,L0) and q = 8K 4 8 ǫ 3,n λ -ℓ n in (A.3), we obtain

ǫ 3,n λ -ℓ n u n xx 2 L 2 (0,L0) ≤ u n xx 4 L 2 (0,L0) 2 + 32K 8 8 ǫ 2 3,n λ -2ℓ n .
Substituting the above equation in (4.39), we see that

λ -2 n |u n xx | 4 ∞ ≤ 8K 4 8 K 1 1 + λ -1 n 2 + 8K 4 9 λ -2 n + 1 2 u n xx 4 L 2 (0,L0) + 32K 8 8 ǫ 2 3,n λ -2ℓ n .
Hence (4.37) holds true, with K 4 = 2 max 8K Lemma 4.10. For all ℓ ≥ 0, the solution (Φ n 1 , Φ n 2 ) ∈ D(A) of System (4.6) satisfies the following asymptotic behavior estimation

K 5 λ -4 n |θ n x (L 0 )| 2 + |θ n x (0)| 2 2 |u n xx | 4 ∞ ≤ 4m 1 u n xx 8 L 2 (0,L0) + ǫ 9,n λ -4ℓ n , (4.40) 
where K 5 = 256κ 4 γ -4 .

Proof. First, from (4.37) and (4.34), we get

K 5 λ -4 n |θ n x (L 0 )| 2 + |θ n x (0)| 2 2 |u n xx | 4 ∞ ≤ K 3 K 5 θ n x 2 L 2 (0,L0) u n xx 2 L 2 (0,L0) ǫ 8,n λ -2ℓ n +K 3 K 5 K 4 1 + λ -1 n 2 θ n x 2 L 2 (0,L0) u n xx 2 L 2 (0,L0) u n xx 4 L 2 (0,L0) +K 5 K 4 1 + λ -1 n 2 ǫ 7,n λ -2ℓ n u n xx 4 L 2 (0,L0) + K 5 ǫ 7,n ǫ 8,n λ -4ℓ n . (4.41) 
Now, taking a = u n xx 4 L 2 (0,L0) and

K 5 K 4 1 + λ -1 n 2 ǫ 7,n λ -2ℓ n in (A.
3), we obtain

K 5 K 4 1 + λ -1 n 2 ǫ 7,n λ -2ℓ n u n xx 4 L 2 (0,L0) ≤ m 1 u n xx 8 L 2 (0,L0) + K 2 5 K 2 4 1 + λ -1 n 4 ǫ 2 7,n 4m 1 λ -4ℓ n . (4.42) 
Next, taking

c = K 3 K 5 K 4 1 + λ -1 n 2 θ n x 2 L 2 (0,L0) , b = u n xx 2 L 2 (0,L0) , and a = u n xx 4
L 2 (0,L0) in (A.5), then using (4.19), we find

K 3 K 5 K 4 1 + λ -1 n 2 θ n x 2 L 2 (0,L0) u n xx 2 L 2 (0,L0) u xx 4 L 2 (0,L0) ≤ 2m 1 u n xx 8 L 2 (0,L0) + K 4 3 K 4 5 K 4 4 1 + λ -1 n 8 ǫ 4 1,n 64m 3 1 λ -4ℓ n . (4.43) 
Also, taking

a = ǫ 8,n λ -2ℓ n , b = u n xx 2 L 2 (0,L0) , and c = 16γ 2 κ -2 K 5 θ n x 2
L 2 (0,L0) in (A.5), then using (4.19), we have 

K 3 K 5 θ n x 2 L 2 (0,L0) u n
ǫ 9,n = K 5 ǫ 7,n ǫ 8,n + K 2 5 K 2 4 1 + λ -1 n 4 ǫ 2 7,n 4m 1 + K 4 3 K 4 5 K 4 4 1 + λ -1 n 8 ǫ 4 1,n 64m 3 1 + m 1 ǫ 2 8,n + 1024γ 8 κ -8 K 4 5 ǫ 4 1,n m 3 1 → 0.
Proof of Lemma 4.5. First, from (4.9), we have

u n xx = iκγ -1 λ -1 n θ n xx + γ -1 ρ 0 θ n + iγ -1 λ -ℓ-1 n (ρ 0 h n 3 -γ (g n 1 ) xx ) .

Multiplying the above equation by u n

xx in L 2 (0, L 0 ), then taking the real parts and using integration by parts, we get

u n xx 2 L 2 (0,L0) = -κγ -1 λ -1 n ℜ i L0 0 θ n x u n xxx dx + κγ -1 λ -1 n ℜ {iθ n x (L 0 ) u n xx (L 0 ) -iθ n x (0) u n xx (0)} +γ -1 ρ 0 ℜ L0 0 θ n u n xx dx + γ -1 λ -ℓ-1 n ℜ i L0 0 (ρ 0 h n 3 -γ (g n 1 ) xx ) u n xx dx .
Consequently, using Cauchy Schwarz inequality, we obtain

u n xx 2 L 2 (0,L0) ≤ κγ -1 λ -1 n θ n x L 2 (0,L0) u n xxx L 2 (0,L0) + κγ -1 λ -1 n (|θ n x (L 0 )| + |θ n x (0)|) |u n xx | ∞ +γ -1 ρ 0 θ n L 2 (0,L0) u n xx L 2 (0,L0) + γ -1 λ -ℓ-1 n ρ 0 h n 3 -γ (g n 1 ) xx L 2 (0,L0) u n xx L 2 (0,L0) . (4.45) 
Using the second estimation of (A.6) in (4.45), one finds On the other hand, we have 

u n xx 8 L 2 (0,L0) ≤ 64κ 4 γ -4 λ -4 n θ n x 4 L 2 (0,L0) u n xxx 4 L 2 (0,L0) + 64κ 4 γ -4 λ -4 n (|θ n x (L 0 )| + |θ n x (0)|) 4 |u n xx | 4 ∞ +64γ -4 θ n 4 L 2 (0,L0) u n xx 4 L 2 (0,L0) + 64γ -4 ρ 4 0 λ -4ℓ-4 n ρ 0 h n 3 -γ (g n 1 ) xx 4 L 2 (0,L0) u n
(|θ n x (L 0 )| + |θ n x (0)|) 4 ≤ 4 |θ n x (L 0 )| 2 + |θ n x (0)| 2 2 . ( 4 
u n xx 8 L 2 (0,L0) ≤ m 1 u n xx 8 L 2 (0,L0) + K 2 λ -4 n θ n x 4 L 2 (0,L0) u n xxx 4 L 2 (0,L0) +K 5 λ -4 n |θ n x (L 0 )| 2 + |θ n x (0)| 2 2 |u n xx | 4 ∞ + 1024ρ 8 0 γ -8 ǫ 4 2,n m 1 + 64γ -4 λ -4 n ρ 0 h n 3 -γ (g n 1 ) xx 4 L 2 (0,L0) u n xx 4 L 2 (0,L0) λ -4ℓ n . ( 4 
u n xx 8 L 2 (0,L0) ≤ 6m 1 u n xx 8 L 2 (0,L0) + ǫ 10,n λ -4ℓ n , (4.50) 
where

ǫ 10,n = ǫ 6,n + ǫ 9,n + 1024γ -8 ρ 8 0 ǫ 4 2,n m 1 + 64γ -4 λ -4 n ρ 0 h n 3 -γ (g n 1 ) xx 4 L 2 (0,L0) u n xx 4 L 2 (0,L0) .
Using (4.17 L 2 (0,L0) ≤ ǫ 10,n → 0. Thus, we obtain (4.21). Finally, substituting (4.21) in (4.37), we obtain (4.22). The proof is thus complete. Lemma 4.11. For all ℓ ≥ 0, the solution (Φ n 1 , Φ n 2 ) ∈ D(A) of System (4.6) satisfies the following asymptotic behavior estimations

L0 0 |v n | 2 dx = o λ ℓ1 n , L0 0 |v n x | 2 dx = o λ ℓ1 n , (4.51) 
L L0 |y n xx | 2 dx = o λ ℓ1 n , L L0 |z n | 2 dx = o λ ℓ1 n , L L0 |z n x | 2 dx = o λ ℓ1 n , (4.52) 
where

ℓ 1 = 1 -ℓ, if α 1 ≥ α 2 , 2 -ℓ, if α 1 < α 2 .
Proof. The proof will be split into several steps:

Step 1. In this step, we prove the following asymptotic behavior estimates:

L0 0 |u n x | 2 dx = o λ -ℓ n , L0 0 |u n | 2 dx = o λ -ℓ n , |u n x | ∞ = o λ -ℓ 2 n , |u n | ∞ = o λ -ℓ 2 n . (4.53) 
In fact, since u ∈ H 3 (0, L 0 ) with u n (0) = u n x (0) = 0, then using (4.21), Poincaré's inequality and trace theorem, we get (4.53).

Step 2. In this step, we prove the following asymptotic behavior estimate:

λ 2 n L0 0 α 1 |u n x | 2 + ρ 1 |u n | 2 dx -β 1 L0 0 |u n xx | 2 dx +λ 2 n L L0 α 2 |y n x | 2 + ρ 2 |y n | 2 dx -β 2 L L0 |y n xx | 2 dx = o λ -ℓ n . (4.54) 
For this aim, first, multiplying (4.7) by -u n in L 2 (0, L 0 ), then taking the real parts, using integration by parts and the fact that u n (0) = u n x (0) = 0, we obtain

λ 2 n L0 0 α 1 |u n x | 2 + ρ 1 |u n | 2 dx -β 1 L0 0 |u n xx | 2 dx + β 1 ℜ {u n xx (L 0 )u n x (L 0 )} -ℜ β 1 u n xxx (L 0 ) + α 1 λ -ℓ n (h n 1 ) x (L 0 ) + λ 2 n α 1 u n x (L 0 ) + γθ n x (L 0 ) + iλ -ℓ+1 n (g n 1 ) x (L 0 ) u n (L 0 ) = -ρ 1 λ -ℓ n ℜ L 0 λ -1 n h n 1 + ig n 1 λ n u dx -α 1 λ -ℓ n ℜ L0 0 (h n 1 ) x u n x dx +λ -ℓ n ℜ i L 0 (g n 1 ) x λ n u n x dx -γℜ L0 0 θ n x u n x dx . (4.55) 
Next, multiplying (4.8) by -y n in L 2 (L 0 , L), then taking the real parts, using integration by parts and the fact that y n (L) = y n x (L) = 0, one derives

λ 2 n L L0 α 2 |y n x | 2 + ρ 2 |y n | 2 dx -β 2 L L0 |y n xx | 2 dx -β 2 ℜ {y n xx (L 0 )y n x (L 0 )} +ℜ β 2 y n xxx (L 0 ) + α 2 λ -ℓ n (h n 2 ) x (L 0 ) + λ 2 n α 2 y n x (L 0 ) + iλ -ℓ+1 n (g n 2 ) x (L 0 ) y n (L 0 ) = -ρ 2 λ -ℓ n ℜ L L0 λ -1 n h n 2 + ig n 2 λ n y n dx -α 2 λ -ℓ ℜ L L0 (h n 2 ) x y n x dx +λ -ℓ n ℜ i L L0 (g n 2 ) x λ n y n x dx . (4.56) 
Adding (4.55) and (4.56), then using (3.9), (4.11), and the fact that u n (L 0 ) = y n (L 0 ), u n x (L 0 ) = y n x (L 0 ), we find

λ 2 n L0 0 α 1 |u n x | 2 + ρ 1 |u n | 2 dx -β 1 L0 0 |u n xx | 2 dx + λ 2 n L L0 α 2 |y n x | 2 + ρ 2 |y n | 2 dx -β 2 L L0 |y n xx | 2 dx = -ρ 1 λ -ℓ n ℜ L 0 λ -1 n h n 1 + ig n 1 λ n u n dx -α 1 λ -ℓ n ℜ L0 0 (h n 1 ) x u n x dx +λ -ℓ n ℜ i L 0 (g n 1 ) x λ n u n x dx -ρ 2 λ -ℓ n ℜ L L0 λ -1 n h n 2 + ig n 2 λ n y n dx -α 2 λ -ℓ n ℜ L L0 (h n 2 ) x y n x dx + λ -ℓ n ℜ i L L0 (g n 2 ) x λ n y n x dx -γℜ L0 0 θ n x u n x dx .
(4.57) Using (4.17), the fact that Step 3. In this step, we prove the following asymptotic behavior estimate:

h n = (h n 1 , h n 2 , h n 3 ) → 0 in V 2 and g n = (g n 1 , g n 2 ) → 0 in W 1 , it holds that -ρ 1 λ -ℓ n ℜ L 0 λ -1 n h n 1 + ig n 1 λ n u n dx -α 1 λ -ℓ n ℜ L0 0 (h n 1 ) x u n x dx +λ -ℓ n ℜ i L 0 (g n 1 ) x λ n u n x dx -ρ 2 λ -ℓ n ℜ L L0 λ -1 n h n 2 + ig n 2 λ n y n dx -α 2 λ -ℓ n ℜ L L0 (h n 2 ) x y n x dx + λ -ℓ n ℜ i L L0 (g n 2 ) x λ n y n x dx = o λ -ℓ n . ( 4 
λ 2 n L0 0 -α 1 |u n x | 2 + ρ 1 |u n | 2 dx + 3β 1 L0 0 |u n xx | 2 dx + λ 2 n L L0 -α 2 |y n x | 2 + ρ 2 |y n | 2 dx +3β 2 L L0 |y n xx | 2 dx + λ 2 n (L -L 0 ) (α 1 -α 2 ) |u n x (L 0 )| 2 + (ρ 1 -ρ 2 ) |u n (L 0 )| 2 = o λ 1-ℓ n . (4.60) 
For this aim, first, multiplying (4.7) by 2 (x -L) u x in L 2 (0, L 0 ), taking the real parts, then using integration by parts and the fact that u n (0) = u n x (0) = 0, we get

λ 2 n L0 0 -α 1 |u n x | 2 + ρ 1 |u n | 2 dx + 3β 1 L0 0 |u n xx | 2 dx -2 (L -L 0 ) ℜ β 1 u n xxx (L 0 ) + α 1 λ -ℓ n ((h n 1 ) x (L 0 ) + iλ n (g n 1 ) x (L 0 )) +α 1 λ 2 n u x (L 0 ) + γθ n x (L 0 ) u n x (L 0 ) -2β 1 ℜ {u n xx (L 0 )u n x (L 0 )} +β 1 (L -L 0 ) |u n xx (L 0 )| 2 -β 1 L |u n xx (0)| 2 +λ 2 n (L -L 0 ) α 1 |u n x (L 0 )| 2 + ρ 1 |u n (L 0 )| 2 = 2ρ 1 λ -ℓ n ℜ L0 0 (x -L) λ -1 n h n 1 + ig n 1 λ n u n x dx +2α 1 λ -ℓ n ℜ L0 0 (h n 1 ) x ((x -L) u n x ) x dx + 2α 1 λ 1-ℓ n ℜ i L0 0 (g n 1 ) x ((x -L) u n x ) x dx +2γℜ L0 0 θ n x ((x -L) u n x ) x dx . (4.61)
Next, multiplying (4.8) by 2 (x -L) y n x in L 2 (L 0 , L), taking the real parts, then using integration by parts and the fact that y n (L) = y n x (L) = 0, we obtain Adding (4.61) and (4.62), then using (3.9), (4.11), and the fact that u n (L 0 ) = y n (L 0 ), u n x (L 0 ) = y n x (L 0 ), we get

λ 2 n L L0 -α 2 |y n x | 2 + |y n | 2 dx + 3β 2 L L0 |y n xx | 2 dx +2 (L -L 0 ) ℜ β 2 y n xxx (L 0 ) + α 2 λ -ℓ n ((h 2 ) n x (L 0 ) + iλ n (g n 2 ) x (L 0 )) + α 2 λ 2 n y n x (L 0 ) y n x (L 0 ) +2β 2 ℜ {y n xx (L 0 )y n x (L 0 )} -β 2 (L -L 0 ) |y n xx (L 0 )| 2 -λ 2 n (L -L 0 ) α 2 |y n x (L 0 )| 2 + ρ 2 |y n (L 0 )| 2 = 2ρ 2 λ -ℓ n ℜ L L0 (x -L) λ -1 n h n 2 + ig n 2 λ n y n x dx + 2α 2 λ -ℓ n ℜ L L0 (h n 2 ) x ((x -L) y n x ) x dx +2α 2 λ 1-ℓ n ℜ i L L0 (g n 2 ) x ((x -L) y n x ) x dx .
λ 2 n L0 0 -α 1 |u n x | 2 + ρ 1 |u n | 2 dx + 3β 1 L0 0 |u n xx | 2 dx + λ 2 n L L0 -α 2 |y n x | 2 + ρ 2 |y n | 2 dx +3β 2 L L0 |y n xx | 2 dx + λ 2 n (L -L 0 ) (α 1 -α 2 ) |u n x (L 0 )| 2 + λ 2 n (L -L 0 ) (ρ 1 -ρ 2 ) |u n (L 0 )| 2 = β 1 (β 1 -β 2 ) β 2 (L -L 0 ) |u n xx (L 0 )| 2 + β 1 L |u n xx (0)| 2 +2ρ 1 λ -ℓ n ℜ L0 0 (x -L) λ -1 n h n 1 + ig n 1 λ n u n x dx +2ρ 2 λ -ℓ n ℜ L L0 (x -L) λ -1 n h n 2 + ig n 2 λ n y n x dx +2α 1 λ 1-ℓ n ℜ i L0 0 (g n 1 ) x ((x -L) u n x ) x dx + 2α 2 λ 1-ℓ n ℜ i L L0 (g n 2 ) x ((x -L) y n x ) x dx +2α 1 λ -ℓ n ℜ L0 0 (h n 1 ) x ((x -L) u n x ) x dx + 2α 2 λ -ℓ n ℜ L L0 (h n 2 ) x ((x -L) y n x ) x dx +2γℜ L0 0 θ n x (u n x + (x -L) u n xx ) dx . (4.63) 
From (4.22), it holds that

β 1 (β 1 -β 2 ) β 2 (L -L 0 ) |u n xx (L 0 )| 2 + β 1 L |u n xx (0)| 2 = o λ 1-ℓ n . ( 4 

.64)

Using (4.17), the fact that

h n = (h n 1 , h n 2 , h n 3 ) → 0 in V 2 and g n = (g n 1 , g n 2 ) → 0 in W 1 , we derive +2ρ 1 λ -ℓ n ℜ L0 0 (x -L) λ -1 n h n 1 + ig n 1 λ n u n x dx + 2α 1 λ 1-ℓ n ℜ i L0 0 (g n 1 ) x ((x -L) u n x ) x dx +2ρ 2 λ -ℓ n ℜ L L0 (x -L) λ -1 n h n 2 + ig n 2 λ n y n x dx + 2α 2 λ 1-ℓ n ℜ i L L0 (g n 2 ) x ((x -L) y n x ) x dx +2α 1 λ -ℓ n ℜ L0 0 (h n 1 ) x ((x -L) u n x ) x dx + 2α 2 λ -ℓ n ℜ L L0 (h n 2 ) x ((x -L) y n x ) x dx = o λ 1-ℓ n . (4.65) 
On the other hand, using Cauchy-Schwarz inequality, (4.18), (4.21) and (4.53), we obtain Step 4. In this step, we will prove (4.51)-(4.52). First, adding (4.54) and (4.60), we find that 

2γℜ L0 0 θ n x (u n x + (x -L) u n xx ) dx = o λ -ℓ n . ( 4 
2ρ 1 λ 2 n L0 0 |u n | 2 dx + 2β 1 L0 0 |u n xx | 2 dx + 2ρ 2 λ 2 n L L0 |y n | 2 dx + 2β 2 L L0 |y n xx | 2 dx +λ 2 n (L -L 0 ) (α 1 -α 2 ) |u n x (L 0 )| 2 + (ρ 1 -ρ 2 ) |u n (L 0 )| 2 = o λ 1-ℓ n . ( 4 
         λ 2 n L0 0 |u n | 2 dx = o λ 1-ℓ n , λ 2 n L L0 |y n | 2 dx = o λ 1-ℓ n , L L0 |y n xx | 2 dx = o λ 1-ℓ n , λ 2 n |u n x (L 0 )| 2 = o λ 1-ℓ n , λ 2 n |u n (L 0 )| 2 = o λ 1-ℓ n . ( 4 
α 1 λ 2 n L0 0 |u n x | 2 dx + α 2 λ 2 n L L0 |y n x | 2 dx = o λ 1-ℓ n .
Consequently, we obtain 

λ 2 n L0 0 |u n x | 2 dx = o λ 1-ℓ n and λ 2 n L L0 |y n x | 2 dx = o λ 1-ℓ n . ( 4 

Conclusion and open problems

4.1. Conclusion. In this paper, we investigate the stability of a transmission Rayleigh beam with heat conduction. A polynomial energy decay rate has been obtained which depends on the physical constant. We obtain the following result:

• A polynomial energy decay rate of type t -2 if ρ 1 ≥ ρ 2 and α 1 ≥ α 2 .

• A polynomial energy decay rate of type t -1 if ρ 1 < ρ 2 or α 1 < α 2 . (see for example Theorem 3.1 in [START_REF] Wehbe | Stability results of an elastic/viscoelastic transmission problem of locally coupled waves with non smooth coefficients[END_REF], Theorem 5.1 in [START_REF] Akil | Stability results of coupled wave models with locally memory in a past history framework via nonsmooth coefficients on the interface[END_REF] and [START_REF] Dell'oro | On the stability of Bresse and Timoshenko systems with hyperbolic heat conduction[END_REF]). Depending on the boundary conditions and the transmission conditions, this approach and the construction of the vector (U n ) are not feasible and the question is still an open problem. (OP2) What happened if we consider a heat conduction with memory, where the hereditary heat conduction is due to Coleman-Gurtin law or Gurtin-Pipkin law? (See for instance [START_REF] Akil | Stability of piezoelectric beam with magnetic effect under (Coleman or Pipkin)-Gurtin thermal law[END_REF][START_REF] Dell'oro | On the stability of Bresse and Timoshenko systems with hyperbolic heat conduction[END_REF][START_REF] Zhang | Stability analysis of an interactive system of wave equation and heat equation with memory[END_REF][START_REF] Dell'oro | Optimal decay for a wave-heat system with Coleman-Gurtin thermal law[END_REF])

Appendix A. Notions of stability and theorems used

We introduce here the notions of stability that we encounter in this work.

Definition A.1. Assume that A is the generator of a C 0 -semigroup of contractions e tA t≥0 on a Hilbert space H. The C 0 -semigroup e tA t≥0 is said to be 1. strongly stable if lim t→+∞ e tA x 0 H = 0, ∀ x 0 ∈ H;

3. polynomially stable if there exist two positive constants C and α such that e tA x 0 H ≤ Ct -α Ax 0 H , ∀ t > 0, ∀ x 0 ∈ D (A) .

We now look for necessary conditions to show the strong stability of the C 0 -semigroup e tA t≥0 . We will rely on the following result obtained by Arendt and Batty in [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF].

Theorem A.2 (Arendt and Batty in [START_REF] Arendt | Tauberian theorems and stability of one-parameter semigroups[END_REF]). Assume that A is the generator of a C 0 -semigroup of contractions e tA t≥0 on a Hilbert space H. If 1. A has no pure imaginary eigenvalues, 2. σ (A) ∩ iR is countable, where σ (A) denotes the spectrum of A, then the C 0 -semigroup e tA t≥0 is strongly stable.

Corollary A.3. If the resolvent (I -A) -1 of A is compact, then the spectrum of A only consists of eigenvalues of A (see Theorem 6.29 in [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF]). Thus, the state of Theorem A.2 lessens to A has no pure imaginary eigenvalues.

For necessary conditions to show the polynomial stability of the C 0 -semigroup e tA t≥0 , we will rely on the frequency domain approach method that has been obtained by Batty in [START_REF] Batty | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF], Borichev and Tomilov in [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF], Liu and Rao in [START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF].

Theorem A.4 (Batty in [START_REF] Batty | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF], Borichev and Tomilov in [START_REF] Borichev | Optimal polynomial decay of functions and operator semigroups[END_REF], Liu and Rao in [START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF]). Assume that A is the generator of a strongly continuous semigroup of contractions e tA t≥0 on H. If σ (A) ∩ iR = ∅, then for a fixed ℓ > 0 the following conditions are equivalent 1. sup x 0 D(A) ∀ t > 0, x 0 ∈ D (A), for some C > 0.

We will recall two forms of Gagliardo-Nirenberg inequality (see [START_REF] Liu | Semigroups associated with dissipative systems[END_REF]) which will be used in this work.

Theorem A.5.

1. There are two positive constants K 6 and K 7 such that, for any ζ ∈ H 2 (0, L 0 ), we have 2. There are two positive constants K 8 and K 9 such that, for any ψ ∈ H 1 (0, L 0 ), we have

ζ x L 2 (0,L0) ≤ K 6 ζ xx
|ψ| ∞ ≤ K 8 ψ x 1 2
L 2 (0,L0) ψ 1 2

L 2 (0,L0) + K 9 ψ L 2 (0,L0) . (A.2)

We will recall Young inequality and we will prove some inequalities that will be used in this work.

Lemma A.6.

1. For all positive numbers p and q, the Young inequality is given by p q ≤ p 2 2 + q 2 2 .

(A.3)

2. For all 0 < m 1 < 1 and for all positive numbers a and b, we have 
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 31 The unbounded linear operator A is m-dissipative in the energy space H.

Theorem 4 . 1 .

 41 If ρ 1 ≥ ρ 2 and α 1 ≥ α 2 ,(4.1)

Lemma 4 . 4 .

 44 For all ℓ ≥ 0, the solution (Φ n 1 , Φ n 2 ) ∈ D(A) of System (4.6) satisfies the following asymptotic behavior estimation L0 0 |θ n x | 2 dx = o λ -ℓ n and L0 0 |θ n | 2 dx = o λ -ℓ n . (4.18)

xx 2 L 2 ≤ m 1 u n xx 8 L 2 ( 1 ≤ m 1 u n xx 8 L 2 (

 2282182 (0,L0) ǫ 8,n λ -2ℓ n 42)-(4.44) in (4.41), we get (4.40), where

xx 4 L 2 (Taking a = u n xx 4 L 2 4 L 2 ( 0 ,L0) ≤ m 1 u n xx 8 L 2 (

 424242082 (0,L0) and b = 64γ -4 ρ 4 0 θ n 4 L 2 (0,L0) in (A.4), then using (4.20), we get64γ -4 θ n 4 L 2 (0,L0) u n xx

) and h n 3 -γ (g n 1 ) 1 -6m 1 ) λ 4ℓ n u n xx 8 L 2

 31182 xx → 0 in L 2 (0, L 0 ), we get ǫ 10,n → 0. Thus, from (4.50), we get ((0,L0) ≤ ǫ 10,n .

The result follows from Theorem A. 4 .

 4 4.13), (4.53), (4.70), (4.71), and the fact that g n = (g n 1 , g n 2 ) → 0 in W 1 , we get (4.51)-(4.52). The proof is thus complete. Proof of Theorem 4.1. When α 1 ≥ α 2 and ρ 1 ≥ ρ 2 , we choose ℓ = 1, then from Lemmas 4.4, 4.5, and 4.11, we get Φ n H = o(1) which contradicts (4.4). This implies that sup Proof of Theorem 4.2. When α 1 < α 2 or ρ 1 < ρ 2 , we choose ℓ = 2, then from Lemmas 4.4, 4.5, and 4.11, we get Φ n H = o(1) which contradicts (4The result follows from Theorem A.4.

4. 2 .

 2 Open Problems. In this part, we present some open problems:(OP1) The optimality of the polynomial decay rate of the System (1.1)-(1.12). But, we conjecture that the polynomial energy decay rate obtained in Theorem 4.1 and Theorem 4.2 is optimal. The idea of the proof is to find a sequence(λ n ) n ⊂ R * + with |λ n | → +∞ and a sequence of vectors (U n ) n ⊆ D(A) such that (iλ n -A)U n = F n is bounded in H and lim n→+∞ λ -2+ε n U n H = ∞.

1 2 L 2 2 L 2

 12222 (0,L0) ζ 1 (0,L0) + K 7 ζ L 2 (0,L0) . (A.1)

ab ≤ m 1 a 2 + b 2 4m 1 . (A. 4 ) 3 .c 4 64m 3 1 . (A. 5 ) 2 + b 2 c 2 4m 1 ≤ m 1 a 2 + m 1 b 4 + c 4 64m 3 1 ≤ a 2 + b 4 m 1 + c 4 64m 3 1 ,

 14315212121 For all 0 < m 1 < 1 and for all positive numbers a, b, and c, we havea b c ≤ a 2 + b 4 m 1 + Proof. Firstly, taking p = √ 2m 1 a and q = b √ 2m 1 in the young inequality (A.3), we get (A.4). Secondly, for all 0 < m 1 < 1 and for all positive numbers a, b, and c, using (A.4), we geta b c ≤ m 1 ahence, we get (A.5).We will recall the relations between p norms on R m .Lemma A.7. For all a = (a 1 , . . . , a m ) ∈ R m , we have

  Case 1. If α 1 ≥ α 2 and ρ 1 ≥ ρ 2 , then substituting (4.21) in (4.67), one derives

.67)

We distinguish two cases:

  .69) Thus, from (4.13), (4.68), (4.69), and the fact that g = (g 1 , g 2 ) → 0 in W 1 , we get (4.51)-(4.52). Case 2. If α 1 < α 2 or ρ 1 < ρ 2 , then substituting (4.21) and (4.53) in (4.67), we infer