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When analyzing patient-reported outcome (PRO) data, sources of differential

item functioning (DIF) can be multiple and there may be more than one covariate

of interest. Hence, it could be of great interest to disentangle their effects. Yet,

in the literature on PRO measures, there are many studies where DIF detection

is applied separately and independently for each covariate under examination.

With such an approach, the covariates under investigation are not introduced

together in the analysis, preventing from simultaneously studying their potential

DIF effects on the questionnaire items. One issue, among others, is that it may

lead to the detection of false-positive effects when covariates are correlated.

To overcome this issue, we developed two new algorithms (namely ROSALI-

DIF FORWARD and ROSALI-DIF BACKWARD). Our aim was to obtain an iterative

item-by-item DIF detection method based on Rasch family models that enable

to adjust group comparisons for DIF in presence of two binary covariates. Both

algorithms were evaluated through a simulation study under various conditions

aiming to be representative of health research contexts. The performance of

the algorithms was assessed using: (i) the rates of false and correct detection

of DIF, (ii) the DIF size and form recovery, and (iii) the bias in the latent variable

level estimation. We compared the performance of the ROSALI-DIF algorithms

to the one of another approach based on likelihood penalization. For both

algorithms, the rate of false detection of DIF was close to 5%. The DIF size and

form influenced the rates of correct detection of DIF. Rates of correct detection

was higher with increasing DIF size. Besides, the algorithm fairly identified

homogeneous differences in the item threshold parameters, but had more

difficulties identifying non-homogeneous differences. Over all, the ROSALI-DIF

algorithms performed better than the penalized likelihood approach. Integrating

several covariates during the DIF detection process may allow a better assessment

Frontiers in Psychology 01 frontiersin.org

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2023.1191107
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2023.1191107&domain=pdf&date_stamp=2023-08-10
https://doi.org/10.3389/fpsyg.2023.1191107
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1191107/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/


fpsyg-14-1191107 August 5, 2023 Time: 14:30 # 2

Dubuy et al. 10.3389/fpsyg.2023.1191107

and understanding of DIF. This study provides valuable insights regarding the

performance of different approaches that could be undertaken to fulfill this

aim.

KEYWORDS

differential item functioning (DIF), measurement invariance (MI), Rasch measurement
theory (RMT), regularization, LASSO, patient-reported outcome (PRO)

1. Introduction

Patient-reported outcome (PRO) measures have gained interest
in health research to take into account patients’ perspectives
on healthcare (Basch, 2017). PRO measures are often obtained
via questionnaires completed by patients. These questionnaires
include several items usually grouped into one or several domains
to measure unobservable constructs (i.e., latent variables) such
as fatigue or anxiety. Studies involving PRO measures often
aim to compare patient levels on a latent variable by means
of group comparisons and/or to study change in the latent
variable. To make valid comparisons, one must ensure that
individuals with different characteristics interpret the items in
the same way and/or that their perception of the items remains
the same over time (Sawatzky et al., 2017). However, patients’
characteristics may interfere with how some items are perceived.
This phenomenon is known as differential item functioning
(DIF). DIF occurs when patients do not interpret items in
the same way according to their group membership and thus
have differing item endorsement probabilities despite having the
same latent variable level. In case of DIF, there is a violation
of the assumption of between-group measurement invariance
(Mellenbergh, 1989; Millsap and Everson, 1993; Millsap, 2011).
Ignoring this lack of measurement invariance may lead to
measurement bias, as observed between-group differences may not
only reflect differences in the targeted latent variable (Rouquette
et al., 2016). Changes in the meaning of the subjective evaluation
of the target construct may also occur over time, leading to
noncomparable data between time points due to a lack of
longitudinal measurement invariance. This phenomenon has been
acknowledged as response shift (Sprangers and Schwartz, 1999;
Vanier et al., 2021).

There is a wide range of DIF detection methods in the
literature. Among them, we can mention the Mantel-Haenszel
method (Holland and Thayer, 1988), the logistic regression
procedure (Rogers and Swaminathan, 1993), the likelihood-ratio
test (Thissen et al., 1986, 1988, 1993) and the Lord’s chi-square
(Wald) test (Lord, 2008). In the literature on PRO measures,
there are many studies where DIF detection is applied separately
and independently for each covariate under examination (i.e., the
analysis is performed one covariate at a time). With such an
approach, the covariates under investigation are not introduced
together in the analysis, preventing from simultaneously studying
their potential DIF effects on the questionnaire items. Yet,
sources of DIF can be multiple (Zumbo, 2007; Zumbo et al.,
2015; Jones, 2019); there may be more than one covariate of
interest, and it may be of great interest to disentangle their

effects. For instance, perception of items might differ according
to gender but also age or health status. Moreover, there may be
situations where two correlated covariates are investigated for DIF,
but only one is really inducing DIF. In such cases, the often-
encountered approach of performing the analysis separately, i.e.,
one covariate at a time, could lead to inferring DIF for the wrong
covariate in addition to the true DIF inducing covariate, due to
the correlation between the two. Employing such an approach
may thus not be appropriate to disentangle DIF effects between
several covariates. Therefore, more elaborated modeling strategies,
allowing researchers to consider simultaneously several potentially
correlated covariates when searching for DIF, could be of great
interest to get more insight into the sources of measurement non-
invariance.

MIMIC-model methods for DIF detection are very popular
in the literature for this purpose (Woods, 2009). This approach
is flexible as it can be parameterized either as: (i) a structural
equation model (assuming linear relationships between the item
responses and the latent variable level) or (ii) a probabilistic model
from item response or Rasch measurement theory (assuming
nonlinear relationships). Theoretically, MIMIC-based analyses
enable the detection of DIF considering simultaneously several
covariates (and their possible interaction) through the introduction
of the covariates’ effects on the latent variable mean and on
the item parameters (Woods, 2009; Chun et al., 2016). DIF
effects are then assessed by statistical testing. Despite their
popularity, the performance of MIMIC methods has been
seldom evaluated. Indeed, Chun et al. (2016) indicated that
no published simulation studies examined the performance of
the MIMIC approaches for DIF detection when investigating
two or more grouping variables and their interaction. Hence,
these authors performed a simulation study to assess the DIF
detection performance of three different MIMIC-based analyses:
(i) the constrained baseline implementation (assumes that all
items other than the one under investigation for DIF are
invariant), (ii) the free baseline implementation (uses a DIF-free
item assumed to be invariant and designated a priori) and (iii)
the sequential-free baseline (uses a DIF-free item assumed to
be invariant and designated based on the constrained baseline
approach). In their simulations, two binary covariates and their
interaction could induce DIF and were under investigation.
While MIMIC methods (free-baseline and sequential-free baseline
implementations) appeared to be efficient for detecting DIF
items, the identification of the covariates inducing DIF seemed
problematic (Chun et al., 2016).

Within the item response theory (IRT) or Rasch measurement
theory (RMT) frameworks, statistical approaches have also been
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recently developed to consider several covariates simultaneously.
On the one hand, we can mention iterative detection methods
such as the IRT with covariates (IRT-C) procedure (Tay et al.,
2013, 2016) and the recursive partitioning approaches [namely
the partial credit model (PCM) tree, PCM-tree (El-Komboz et al.,
2018) and the item-focused tree algorithm, PCM-IFT (Bollmann
et al., 2018)]. Yet, these methods show some limitations. Indeed,
the IRT-C procedure is only designed for dichotomous items, and
the indices on which the procedure relies have been questioned
(Oberski et al., 2013). Besides, the PCM-tree approach makes
it hard to identify which item is affected by DIF (Bollmann
et al., 2018) and the current implemented version of the PCM-
IFT algorithm does not seem to model the covariates’ effect on
the latent variable level (adjusted for DIF when appropriate).
On the other hand, Schauberger and Mair (2020) proposed two
methods based on penalized estimation of IRT or RMT models:
one that only searches for a specific form of DIF having the same
effects across all response categories (evaluated by simulations) and
one that searches for more general forms of DIF not assuming
that DIF has the same effect across all response categories (not
evaluated by simulations). Data on the DIF detection performance
of these penalization-based approaches in case of simultaneous
covariates are lacking as simulations pertained to a specific form
of DIF in polytomous items. In addition, simulated tests were
always composed of 20 items, which is rarely the case in health
research, where the domains of the most commonly used scales
include between 2 and 10 items [e.g., SF-36, HADS or PROMIS-
29 (Zigmond and Snaith, 1983; Ware and Sherbourne, 1992;
Hinchcliff et al., 2011)].

In a broader issue of measurement invariance assessment, the
ROSALI algorithm (Blanchin et al., 2020, 2022; Hammas et al.,
2020) has been proposed in the RMT framework to detect and
adjust for DIF and response shift in the analysis of longitudinal
PRO data (polytomous and dichotomous items) in order to ensure
valid comparisons between groups and over time. Of note, RMT
was chosen to develop the ROSALI algorithm because Rasch family
models possess the specific objectivity property that can be valuable
when some items are missing (Blanchin et al., 2020). ROSALI is
an iterative item-by-item detection algorithm that currently enables
the introduction of one binary covariate in the analysis. It consists
of two main parts that allow to:

- Identify items that function differently between the two
groups defined by the covariate at the first measurement
occasion (first part of ROSALI).

- Determine whether the perception of some items changes
between two time points and assess whether or not these
changes over time are similar in both groups (second
part of ROSALI).

Of note, ROSALI ends by a final model allowing to adjust latent
variable levels comparisons for the lack of invariance previously
evidenced, if appropriate. Simulations showed that ROSALI does
not erroneously infer DIF when DIF has not been simulated
(Blanchin et al., 2022) and its performance to detect DIF are
currently being assessed with one covariate in another study. To
date, there is a will to extend ROSALI to simultaneously consider
several sources of lack of invariance (e.g., gender, country). Thus,

the first part of ROSALI needs to be extended to detect and
adjust for DIF at one time point in presence of several covariates.
However, it is currently unclear whether item-by-item iterative
processes are the best approach or if it would be better to use a
penalization approach that allows searching for DIF in all items
simultaneously.

The aim of this study is twofold:

(1) To extend the first part of ROSALI (dedicated to the detection
of DIF at one time point) to enable the simultaneous
introduction of two binary covariates,

(2) To compare by simulations the detection performance of
this extension to the one obtained with the approach using
likelihood penalization under various conditions, including
moderate numbers of polytomous items (representative
of PRO instrument subscales used in health research),
moderate sample sizes, potentially correlated covariates, and
various forms of DIF.

2. Materials and methods

2.1. Rasch measurement theory

Rasch measurement theory is a family of models derived from
the Rasch model for dichotomous items (Fischer and Molenaar,
1995). For polytomous items, the most flexible model is the PCM
(Masters, 1982; Fischer and Ponocny, 1994), its formulation for a
questionnaire composed of J polytomous items with Mj response
categories for item j (j = 1, ..., J) is given by:

P
(

Xij = x
∣∣∣ θi, δj1, ..., δjMj−1

)
=

exp
(

xθi −
∑x

p = 1 δjp

)
∑Mj−1

l = 0 exp
(

lθi −
∑l

p = 1 δjp

)
The conditional probability that an individual i answers x (=

0, 1, ..., Mj − 1) to item j is a function of:

- The latent variable level of individual i: θi
Where θi is the realization of 2, a random variable assumed
normally distributed (with mean µ and standard deviation
σ). This latent variable is assumed to represent the target
construct (e.g., anxiety).

- The item threshold parameters δjp associated with each
response category p > 0 of item j (1 ≤ p ≤ Mj − 1). δjp
represents the latent variable level at which the probabilities
of answering category p or p− 1 to item j are equal. When
tracing the probability curves of each response category, item
threshold parameters (e.g., δj1) correspond to the intersection
between two adjacent category probability curves as pictured
in Figure 1 (Christensen et al., 2012).

2.2. DIF in RMT

Rasch family models are often used to detect DIF in health
research (Rouquette et al., 2019). Within RMT, DIF has been
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FIGURE 1

Category characteristic curves for a given item j with four response categories under a partial credit model. Item threshold parameters δjp are
indicated by dashed lines.

operationalized as between-group differences in the item threshold
parameters. Dichotomous items are characterized by a single
threshold parameter. Hence, DIF in dichotomous items can only
take on a single form, where category probability curves are
shifted between groups [i.e., parallel uniform DIF (Millsap, 2011)].
However, polytomous items are characterized by several threshold
parameters (one for each response category above 0). Therefore,
between-group differences in the item threshold parameters may
vary in magnitude, direction, or both, leading to numerous
potential DIF forms (Penfield, 2007). For instance, between-group
differences in the item threshold parameters can:

(1) Have the same direction and the same magnitude, e.g.,
Figure 2A.

(2) Have the same direction but vary in magnitude, e.g.,
Figure 2B.

(3) Vary in direction and magnitude, e.g., Figure 2C.

In the manuscript, the forms described in (2) and (3) will be
referred to as non-homogeneous DIF (Bollmann et al., 2018). Of
note, these two forms illustrate respectively the convergent and
divergent differential step functioning introduced by Penfield (2007)
and Penfield et al. (2009). To maintain a consistent terminology
throughout the manuscript, the form described in (1) will be
referred to as homogeneous DIF. Of note, Penfield et al. (2009)
referred to it to as pervasive constant differential step functioning
and many researchers use the term DIF [e.g., (Bollmann et al., 2018;
Schauberger and Mair, 2020)].

The PCM can be used to assess the impact of a binary covariate
C on the latent variable level accounting for a potential DIF induced
by C through the introduction of group effects on the latent variable

level and on the item threshold parameters:

P
(

Xij = x
∣∣∣ θi, Ci, β, δj1, ..., δjMj−1, γj1, ..., γjMj−1

)
=

exp
(

x[θi + β.Ci] −
∑x

p = 1 [δjp + γjp.Ci]
)

∑Mj−1
l = 0 exp

(
l[θi + β.Ci] −

∑l
p = 1 [δjp + γjp.Ci]

) (1)

In addition to the above-mentioned parameters, we have:
- Ci the realization of covariate C for individual i. Ci equals

either 0 (reference group) or 1.
- β the effect of covariate C on the latent variable level

(sometimes referred to as the group effect). β equals the difference
between µ1 and µ0, where µ1 designates the latent variable mean in
the group of individuals with Ci = 1, and µ0 designates the latent
variable mean in the group Ci = 0 (β = µ1 − µ 0).

- γjp the DIF parameters interfering with the item thresholds
and modeling the DIF effects of covariate C. These DIF parameters
operationalize the difference in item threshold parameters between
the groups. Item threshold parameters in the reference group are
δjp and item threshold parameters in the focal group are equal to
δjp+γjp. If there is no DIF on item j, then γjp = 0.

Additional binary covariates can be added in the same way. For
instance, with two covariates C1 and C2, without interaction:

P
(

Xij = x
∣∣∣ θi, C1i , β1, C2i, β2, δj1, ..., δjMj−1, γ

(C1)
j1 , ..., γ

(C1)
jMj−1,

γ
(C2)
j1 , ..., γ

(C2)
jMj−1

)
=

exp
(

x[θi+β1.C1i+β2.C2i]−
∑x

p = 1 [δjp+γ
(C1)
jp .C1i+γ

(C2)
jp .C2i]

)
∑Mj−1

l = 0 exp
(

l[θi+β1.C1i+β2.C2i]−
∑l

p = 1 [δjp+γ
(C1)
jp .C1i+γ

(C2)
jp .C2i]

)
(2)
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FIGURE 2

Category characteristic curves for a given item j affected by differential item functioning (DIF). DIF is operationalized by between-group differences
in the item threshold parameters. These differences are represented by arrows. Graph (A) between-group differences in the item threshold
parameters have the same direction and the same magnitude (homogeneous DIF). Graph (B) between-group differences in the item threshold
parameters have the same direction but vary in magnitude (non-homogeneous DIF) Graph (C) between-group differences in the item threshold
parameters vary in direction and magnitude (non-homogeneous DIF). LV, latent variable.

2.3. DIF detection procedures

2.3.1. Extension of the first part of ROSALI
The first part of the ROSALI algorithm with one binary

covariate has been described elsewhere (Hammas et al., 2020;
Blanchin et al., 2022). We extended this algorithm by adding a
second binary covariate. DIF detection then relies on the following
steps:

Step 1. Estimation of a fully non-invariant PCM where the
two covariates are assumed to induce DIF on all items.
Step 2. Estimation of a fully invariant PCM (no
DIF is assumed).
Step 3. Test of the global occurrence of DIF by comparing the
two previous models using a likelihood-ratio test (LRT).
Step 4. If the LRT is significant, screen all item-covariate pairs
for DIF separately based on the fully non-invariant model.
Otherwise, go to step 6.
Step 5. Forward iterative selection of the significant DIF
item-covariate pairs found in step 4 (starting from the
fully invariant model) and assessment of the form of DIF
involved. A Bonferroni correction is performed to account for
multiple testing.
Step 6. Estimation of a final model giving the covariates effect
on the latent variable level adjusted for DIF (if appropriate).

This extension of the first part of ROSALI will be referred to as
ROSALI-DIF FORWARD. All steps are comprehensively described
in Table 1 alongside statistical considerations. An alternative
version of this algorithm has also been explored, with the same

philosophy, but with an iterative step based on a backward
instead of a forward process where all candidate pairs are tested
simultaneously instead of one-by-one. This alternative version
has been named ROSALI-DIF BACKWARD and is described in
Supplementary Appendix A. Both algorithms are jointly pictured
in Figure 3. Of note, these algorithms were designed to be easily
extendable to the situation where more than two covariates are
under investigation, or when continuous covariates are considered
instead of binary covariates. Both algorithms can be seen as an
iterative MIMIC approach for DIF detection. However, to date, they
do not enable to consider the interaction between the covariates. Of
note, the screening step (step 4) was inspired by the iterative Wald
test procedure (Tay et al., 2015; Cao et al., 2017).

2.3.2. Likelihood penalization approach
A DIF detection method for polytomous items using likelihood

penalization of a PCM or a generalized PCM (GPCM) has been
comprehensively described by Schauberger and Mair (2020). By
using likelihood penalization, the authors translated DIF detection
into a parameter selection problem and aimed to determine which
DIF parameters γ

(C)
jp are worth estimating. The number of DIF

parameters to be estimated depends entirely on the choice of the
tuning parameter which controls the strength of the penalization.
When this parameter is equal to zero, all DIF parameters are
estimated (no penalization). On the contrary, no DIF parameters
are estimated when this parameter tends to +∞.

In practice, PCMs (or GPCMs) are estimated across a wide
range of tuning parameters (one model for each value of tuning
parameter). All estimates of the DIF parameters γ

(C)
jp related to

a given item-covariate pair are then plotted as functions of the
tuning parameter values in graphs called DIF parameters paths (see
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TABLE 1 Comprehensive description of the ROSALI-DIF FORWARD algorithm and statistical considerations.

ROSALI-DIF FORWARD steps Statistical considerations

Step 1: Estimation of a fully non-invariant model (Model A)
A fully unconstrained PCM is estimated in this first step where the two binary
covariates C1 and C2 are assumed to induce DIF on all items

All DIF parameters γ
(C1)
jp and γ

(C2)
jp are freely estimated (∀ j and p) in Equation 2.

Identifiability constraints: the effects of covariates on the latent variable level are
constrained to 0 (β1 = β2 = 0).

Step 2: Estimation of a fully invariant model (Model B)
A fully constrained model assuming no DIF is estimated in this second step.

All DIF parameters γ
(C1)
jp and γ

(C2)
jp are constrained to zero (∀ j and p) in Equation 2.

The effects of covariates on the latent variable level (i.e., β1 and β2) are freely estimated.

Step 3. Test of the global occurrence of DIF
The third step aims to evaluate the global occurrence of DIF by comparing model
A and model B using a likelihood-ratio test.
If the test is not significant, we assume that the covariates do not induce DIF and
the algorithm moves directly to step 6 where the final model is model B.
Otherwise, we proceed to the next step.

Rationale for the likelihood-ratio test:
Model B is nested in Model A
Significance level: 5%

Step 4. Screen item-covariate pairs (Item j, Covariate C) candidate for DIF
detection
From Model A (where the two covariates induce DIF on all items), statistical tests
are performed for each item-covariate pair separately to determine whether the
DIF effect induced by covariate C on item j is significant or not. Candidate pairs are
those associated with significant tests. Measurement invariance is assumed for the
other pairs (anchor pairs). Of note, if no pairs are considered as candidate, the
algorithm goes directly to step 6 where the final model is model B.

Statistical tests: Contrast tests
Null and alternative hypotheses of contrast test for DIF:
H0) ∀ p, γ

(C)
jp = 0 (No DIF)

H1) ∃ p : γ
(C)
jp 6= 0 (DIF)

Significance level: 5%

Step 5. Selection of DIF item-covariate pairs (Item j, Covariate C) among
candidate pairs and assessment of the form of DIF involved
This step is an iterative step that aims to select the item-covariate pairs affected by
DIF among candidate pairs and determine the form of DIF involved. A new model
(Model C) is introduced so that Model C = Model B at the beginning of this step.
From model C, we estimate new models (one for each candidate pair) where the
invariance constraint associated with the pair of interest is relaxed, and other
constraints remain unchanged. From these new models, statistical tests are
performed for each pair to determine whether the DIF effect induced by covariate
C on item j is significant or not. We retain the model with the pair having the most
significant test (smallest p-value) after Bonferroni correction. The associated pair is
assumed to be affected by DIF and will be denoted (item j∗ , covariate C∗).
If there is no significant pair, the algorithm moves to step 6. Otherwise, based on
the retained model, the form of DIF induced by covariate C∗ on item j∗ is assessed
using another test.
Model C is updated to account for the evidenced DIF and its form.
The retained pair will no longer be tested.
Step 5 is repeated over the remaining pairs to be tested. The step ends if no more
pair is retained, if all candidate pairs have been tested, or just before relaxing the
invariance constraint of the last anchor item for a given covariate.

********** Test DIF effect of candidate pairs **********
Null and alternative hypotheses of contrast test for DIF:
H0) ∀ p, γ

(C)
jp = 0 (No DIF)

H1) ∃ p : γ
(C)
jp 6= 0 (DIF)

Significance level:
5%/number of candidate pairs, Bonferroni correction performed to avoid the inflation of
the type I error rate due to multiple testing.

********** Test DIF form on the retained pair **********
Null and alternative hypotheses of contrast test to assess DIF form:
H0) ∀ p, γ

(C∗)
j∗p = γ

(C∗)
j∗ (Homogeneous DIF)

H1) ∃ p, p′: γ(C∗)
j∗p 6= γ

(C∗)
j∗p′

(Non-homogeneous DIF)

Significance level: 5%

*************** Update Model C ***************
If the previous test is significant, the DIF parameters γ

(C∗)
j∗p associated with the retained pair

are freely estimated (non-homogeneous DIF). Otherwise, the DIF parameters γ
(C∗)
j∗p are

estimated but constrained to be constant over all response categories (homogeneous DIF).

Step 6. Estimation of the covariates effect on the latent variable level (Model D)
The last step estimates the effect of the covariates C1 and C2 on the latent variable
level adjusted for the DIF that was previously evidenced, if appropriate, using a
final model called model D.

Model D = Model B if no DIF has been evidenced. Otherwise, model D is equal to the last
version of model C obtained at the end of step 5.

C designates here indistinctly covariates C1 or C2 . This algorithm estimates several PCMs derived from Equation 2 with marginal maximum likelihood estimation. For all PCMs, the variances
of the latent variable distribution across groups are assumed equal.

Figure 4). The optimal tuning parameter is chosen to minimize
the Bayesian information criterion. DIF is evidenced on a given
item-covariate pair if and only if one of the DIF parameters related
to the pair is estimated to be different from 0 (no statistical tests
are performed for this procedure). Two main situations can arise
when searching for DIF as pictured in Figure 4: either the graph
shows an area where the DIF parameters γ

(C)
jp are estimated but

constrained to be equal [graph (A)], or the graph does not show
such an area [graph (B)]. The form of DIF evidenced is therefore
entirely determined by the choice of the tuning parameter.

We chose to evaluate this approach, named PCMLasso,
enabling the detection of both forms of DIF using a PCM.
Of note, the PCMLasso approach relies on a PCM where the
item discrimination parameters are constrained to be equal over
all items. In the ROSALI-DIF algorithms, the discrimination

parameters equal 1 for all items. Besides, neither the ROSALI-DIF
algorithms nor PCM-Lasso enable to consider that the DIF effect of
one covariate may depend on the level of another covariate.

2.4. Simulation study

2.4.1. Data simulation
We simulated the responses of n = 400 or 800 individuals to a

unidimensional questionnaire composed of J = 4 or 7 polytomous
items (item 1, . . ., item J) with M = 4 response categories,
numbered from 0 to M − 1. Individual latent variable levels were
drawn from a standard normal distribution and responses were
generated by a PCM. Item threshold parameters δjp were chosen
to cover all the latent variable continuum (values are given in
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FIGURE 3

Graphical representation of the two ROSALI-DIF algorithms (ROSALI-DIF FORWARD and ROSALI-DIF BACKWARD). DIF, differential item functioning;
LRT, likelihood-ratio test; Nb, number.

FIGURE 4

Graph (A) DIF parameters γ
(C)
jp paths with the PCMLasso approach for a given item-covariate pair in a fictious example (configuration A: the graph

shows an area where the DIF parameters γ
(C)
jp from Equation 2 are estimated but constrained to be equal). When the tuning parameter is large (left of

the graph: λ ∈ [6, 4]), no DIF parameter is estimated since the penalization is strong. In the middle of the graph (λ ∈ [4, 2]), the penalization is not as
strong, allowing the estimation of all DIF parameters (constrained to be equal over the response categories). Finally, at the right of the graph
(λ ∈ [2, 0]), the penalization is weak and the DIF parameters are no longer constrained to be equal over the response categories. If the optimal
tuning parameter λ falls in the area [6, 4], then no DIF is evidenced for the item-covariate pair considered. If it falls in the area [4, 2] (respectively
[2, 0]), then homogeneous (respectively non-homogeneous) DIF is evidenced for the given pair. Graph (B) DIF parameters paths with the PCMLasso
approach for a given item-covariate pair (in this configuration B, the graph does not show an area where the DIF parameters are estimated but
constrained to be equal, i.e., it does not show an area where homogeneous DIF could be evidenced). When the tuning parameter is large (left of the
graph: λ ∈ [6, 4]), no DIF parameter is estimated since the penalization is strong. Then, the penalization decreases, allowing the estimation of a first
DIF parameter (γ(C)

j3 ), then a second (γ(C)
j2 ) and finally a third one (γ(C)

j1 ). If the optimal tuning parameter λ falls in the area [6, 4], then no DIF is
evidenced for the item-covariate pair considered, otherwise, non-homogeneous DIF is evidenced.
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Supplementary Appendix B. Items were numbered from 1 to J so
that δ1p < δ2p < ... < δJp (where δjp stands for the average value
of the item j threshold parameters).

The structure of the questionnaire (number of items and
number of response categories) was chosen to be in accordance
with the unidimensional subscales of PRO instruments commonly
encountered in health research; e.g., SF-36 (Ware and Sherbourne,
1992), QLQ-C30 (Aaronson et al., 1993), HADS (Zigmond and
Snaith, 1983) and PROMIS-29 (Hinchcliff et al., 2011). Regarding
the number of individuals, a wide range of sample sizes can
be found in the literature on PRO measures. DIF can be
investigated in:

(i) Studies on psychometric properties of a PRO instrument.
Anthoine et al. (2014) estimated that sample sizes of such
studies ranged from 24 to 7,906, with a mean sample size of
509 (standard deviation = 1094) and a median equal to 207,

(ii) Analyses of data from observational studies including PRO
measures. Based on our practical experience in France,
cohorts generally contain about 300 to 500 patients [e.g.,
PreKitQol (Sébille et al., 2016), ELCCA (Bourdon et al.,
2016) and FATSEIN (Rotonda et al., 2011)], but some cohorts
are also larger, notably within population-based cohort [e.g.,
VICAN (Bouhnik et al., 2015)],

(iii) Studies on data collected within clinical trials, where sample
size generally range between 100 to 1,000, often equally
distributed between the treatment arms (Glas et al., 2009;
Loubert et al., 2022).

Hence, we chose to set the sample size n at 400 and 800
as it seemed to represent a good compromise. However, smaller
sample sizes are also frequent and larger sample sizes can
also be encountered.

2.4.2. DIF operationalization
DIF was operationalized as between-group differences in

item threshold parameters1 (groups being defined by observed
covariates). For this simulation study, two binary covariates
(denoted C1 and C2) were considered as possibly inducing DIF on
items. Three settings were derived:

Setting No. 1: The two covariates were not correlated and they
each induced DIF on a different item.

Setting No. 2: The two covariates were not correlated and they
induced DIF on the same item.

Setting No. 3: The two covariates were correlated and only
one (i.e., C1) induced DIF on two items. Further details on the
process used to obtain correlated covariates are available in online
Supplementary Appendix B alongside the formulas used for the
DIF-items threshold parameters among each setting.

For each setting, two different forms of DIF were explored:
homogeneous and non-homogeneous DIF. Homogeneous DIF was
operationalized as between-group differences in item threshold
parameters with the same direction and magnitude across the

1 Of note, as we used RMT to simulate and analyze the data, items were
only characterized by item threshold parameters (as there are no other
item parameters in Rasch modeling). DIF could therefore only affect these
parameters.

response categories (i.e., ∀ p, γ
(C)
jp = γ

(C)
j , Figure 2A).

Non-homogeneous DIF was operationalized as between-group
differences in item threshold parameters that varied in magnitude
and/or direction. In our simulations, we only simulated between-
group differences having the same direction but different
magnitudes. Specifically, we shifted item threshold parameters
by increasing values (e.g., Figure 2B). Finally, we varied the
DIF size (weak or medium). Table 2 contains a comprehensive
description of the magnitudes considered for the DIF parameters
γ

(C)
jp according to the DIF size and form. Of note, DIF sizes

were chosen based on previous literature on DIF simulation
(Rouquette et al., 2016; Tay et al., 2016; Bollmann et al., 2018).
A comprehensive summary of the simulation study appears in
Table 2. The combination of all simulation parameters led to 48
scenarios. We added 8 scenarios with no DIF as control scenarios.
Each scenario was replicated 500 times and resulting datasets
were then analyzed with the three DIF detection procedures (i.e.,
ROSALI-DIF algorithms and PCMLasso).

2.4.3. Evaluation criteria
The performance of the three procedures in terms of DIF

detection were evaluated according to different criteria.
Firstly, the rate of false detection of DIF among scenarios with

no simulated DIF was computed as the proportion of datasets
where DIF was wrongly detected on at least one item-covariate
pair at the end of the procedures. We expected this rate to be low,
but with no predefined threshold. As the ROSALI-DIF algorithms
involve a LRT performed at the 5% significance level, we also
considered the proportion of datasets with a significant LRT to
confront it to the nominal rate of 5%. A difference between the
proportion of datasets with a significant LRT and the rate of false
detection of DIF indicates that for some datasets, overall occurrence
of DIF was initially suspected following the LRT, but finally not
retained at the end of the procedure.

Secondly, among scenarios with simulated DIF, we used a set
of criteria to assess the performance of the different procedures
to detect DIF. They are given in Figure 5 by increasing level of
requirement:

- Most flexible criterion: Did the procedure detect DIF on
at least the correct item-covariate pairs (i.e., the pairs on
which DIF was simulated)? The Most Flexible criterion
is satisfied for a given dataset if the procedure correctly
detects DIF on the item-covariate pairs for which it was
simulated, regardless of whether other pairs (for which
DIF was not simulated) are also wrongly flagged.

- Flexible criterion: Did the procedure detect DIF on the
correct item-covariate pairs only? The Flexible criterion is
met on a given dataset if the procedure only detects DIF on
the item-covariate pairs for which DIF has been simulated.
Hence, the criterion is not met if other item-covariate pairs
are wrongly flagged.

- Perfect criterion: Did the procedure exactly detect what
was simulated (i.e., DIF detected only on the correct item-
covariate pairs and form of DIF rightly determined)? The
Perfect criterion is met on a given dataset if the procedure:
i) only detects DIF on the item-covariate pairs for which
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TABLE 2 Simulation plan summary.

Questionnaire and sample features

Number of items (J) J = 4, 7 items

Number of response categories (M) M = 4 response categories per item

Sample size (n) n = 400, 800 simulated individuals

Latent variable (2)

Mean µ, variance σ2 µ = 0, σ2
= 1

Main effect of covariates on latent variable level No main effect of covariate C1 : β1 = 0
No main effect of covariate C2 : β2 = 0

DIF inducing covariates

Setting No. 1 Covariates C1 and C2 are uncorrelated, they each induce DIF on a different item

Setting No. 2 Covariates C1 and C2 are uncorrelated, they both induce DIF on the same item

Setting No. 3 Covariates C1 and C2 are correlated, only covariate C1 induces DIF on two items

DIF items

J = 4 items

Setting No. 1 Covariate C1 induces DIF on item 2 and covariate C2 induces DIF on item 3

Setting No. 2 Covariates C1 and C2 induce DIF on item 2

Setting No. 3 Covariate C1 induces DIF on items 2 and 3

J = 7 items

Setting No. 1 Covariate C1 induces DIF on item 3 and covariate C2 induces DIF on item 5

Setting No. 2 Covariates C1 and C2 induce DIF on item 3

Setting No. 3 Covariate C1 induces DIF on items 3 and 5

DIF form

Homogeneous Same effect (magnitude and direction) of the covariate on all item threshold parameters:
∀ p,γ

(C)
jp = γ

(C)
j

Non-homogeneous The covariate has varying effects across the item threshold parameters

DIF size

Weak

Homogeneous DIF ∀ p, γ
(C)
jp = γ

(C)
j = 0.3

Non homogeneous DIF γ
(C)
j1 = 0.1, γ(C)

j2 = 0.3, γ(C)
j3 = 0.5

Medium

Homogeneous DIF ∀ p, γ
(C)
jp = γ

(C)
j = 0.5

Non Homogeneous DIF γ
(C)
j1 = 0.1, γ(C)

j2 = 0.5, γ(C)
j3 = 0.9

C = C1 or C2 .

DIF has been simulated and ii) recovers the form of DIF
simulated for each pair.

The performance of the ROSALI-DIF algorithms and
PCMLasso were assessed using the proportion of datasets meeting
the Most Flexible, Flexible, and Perfect criteria at the end of
the procedures. Although there is no predefined threshold, high
proportions of datasets meeting the different criteria indicate good
performance of the different procedures.

Subsequently, we studied the difference between the
proportions of datasets meeting the different criteria. For a
given procedure, the proportion of datasets meeting the Most
flexible criterion but not meeting the Flexible criterion indicates in
what proportion the procedure has identified more item-covariate
pairs affected by DIF than simulated. Similarly, the proportion of

datasets meeting the Flexible criterion but not meeting the Perfect
criterion indicates in which proportion the procedure detected the
correct item-covariate pairs on which DIF was simulated (and only
these) but failed to identify the form of DIF involved.

Finally, we assessed the bias in the estimation of the covariates’
effects on the latent variable level (β1 and β2 in Equation 2)
to determine whether the three methods enable for an unbiased
estimation after DIF detection. In addition to bias, we computed
the standard deviation of the βk (k = 1, 2) estimates and the average
model standard errors. We also compared the estimates of the DIF
parameters γ̂

(C)
jp with the true simulated values using boxplots.

Stata software release 16 was used for data generation [simirt
module, version 4.3 (Hardouin, 2013)]. Analyses were performed
using either Stata 16 for ROSALI-DIF algorithms or R 4.1.0 for the
PCMLasso approach (GPCMLasso package version 0.1-5).
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FIGURE 5

Criteria used to evaluate the DIF detection performance of the different procedures.

2.4.4. Summary
We aimed to determine, through a simulation study, whether

the ROSALI-DIF algorithms (FORWARD and BACKWARD) and
PCMLasso were able to recover the DIF conditions that were
simulated, that is: conclude that DIF is absent when DIF has
not been simulated and identify the correct DIF item-covariate
pairs when DIF has been simulated. Scenarios considered within
the simulation study aimed to be representative health research
contexts (quite short questionnaires, polytomous items, and
moderate sample size). We explored three broad settings. The first
one (setting No. 1) aimed to evaluate the procedures’ performance
in a simple situation where two uncorrelated covariates induce DIF
on a different item. The second setting was considered to determine
whether the procedures could disentangle DIF effects when both
covariates induce DIF on the same item. Finally, with setting
No. 3, we determined whether the procedures could correctly
identify the DIF-inducing covariate when to correlated covariates
are introduced in the analysis. As it was an exploratory simulation
study, we had no a priori on which procedure could perform
better. However, we expected that performance would increase
with increasing sample size and DIF size. For the ROSALI-DIF
algorithms, we also expected that we might lack power to identify
non-constant shifts in item thresholds (i.e., non-homogeneous
DIF) as previous issues were found in a longitudinal framework
(Blanchin et al., 2020, 2022).

3. Results

3.1. Rates of false DIF detection – no DIF
scenarios

Table 3 presents the rates of false DIF detection for both
ROSALI-DIF FORWARD and PCMLasso. It additionally gives the
proportion of datasets with a significant LRT for ROSALI-DIF
FORWARD.

The proportions of datasets where DIF was wrongly detected on
at least one item-covariate pair at the end of the algorithm were low
for ROSALI-DIF FORWARD (from 3 to 6%). Neither the sample
size n nor the number of items J seemed to impact these rates.
However, rates of false detection of DIF were usually slightly lower
when the two covariates C1 and C2 were correlated than when they
weren’t. For each scenario, the rate of false detection of DIF was
systematically lower than the rate of datasets with a significant LRT.
It means that for some datasets (1–3%), overall occurrence of DIF
was initially suspected following the LRT, but finally not retained
at the end of the algorithm. Of note, the proportion of datasets
with a significant likelihood-ratio test (LRT) was close to 5% (the
significance level used for this test). Same results were obtained for
ROSALI-DIF BACKWARD (Supplementary Appendix C).

DIF was wrongly detected on at least one item-covariate pair at
the end of the PCMLasso in almost half of the datasets whatever
the scenario. None of the simulation characteristics seemed to
have an impact on these results. As the number of item-covariate
pairs incorrectly flagged for DIF by PCMLasso among the “No
DIF scenarios” remained small (one item-covariate pair on average
among replications where DIF was wrongly inferred), we chose to
continue the investigations in order to draw a comprehensive view
of its performance (despite the high rates of false DIF detection).

3.2. Rates of correct DIF detection – DIF
scenarios

Table 4 presents the proportion of datasets meeting the Most
Flexible, Flexible and Perfect criteria at the end of the procedures
for ROSALI-DIF FORWARD and PCMLasso. Results for ROSALI-
DIF BACKWARD appear in Supplementary Appendix C.

The performance of the three procedures varied depending on
the values of the simulation characteristics. First, all procedures
failed to detect DIF within scenarios with weak DIF and a sample
size of 400: Most Flexible detection rates did not exceed 10% under
these conditions. Therefore, results regarding these scenarios will
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TABLE 3 Rates of false detection of DIF among scenarios with no simulated DIF computed at the end of each procedure (%DIF wrongly detected) and
rates of significant likelihood-ratio tests (%LRT SIG).

ROSALI-DIF FORWARD PCMLasso

n J Corr %LRT SIG %DIF wrongly detected %DIF wrongly detected

400 4 No 5% 4% 50%

400 4 Yes 6% 3% 50%

400 7 No 7% 6% 44%

400 7 Yes 6% 3% 54%

800 4 No 6% 4% 46%

800 4 Yes 5% 3% 47%

800 7 No 6% 5% 48%

800 7 Yes 4% 3% 46%

%DIF wrongly detected: proportion of datasets where DIF was wrongly detected on at least one item-covariate pair at the end of the procedure (i.e., rate of false DIF detection). %LRT SIG:
Proportion of datasets with a significant likelihood-ratio test. Corr: correlation, indicates whether covariates C1 and C2 are correlated (=Yes) or not (=No). The procedures converged on all
datasets. No identifiability issues were encountered. Results are given according to the simulation characteristics n (sample size), J (number of items) and the presence or absence of correlation
between covariates C1 and C 2 .

not be further developed. The following paragraphs focus only on
the results observed when the sample size n equals 800 or when the
DIF size is medium (with either n = 400 or 800).

3.2.1. Performance within settings Nos. 1 and 2
(uncorrelated covariates both inducing DIF)

Whatever the procedure, Most Flexible detection rates were
low when DIF size was weak and n = 800 (from 16 to 34%).
However, when DIF size was medium, Most Flexible detection
rates were moderate when n = 400 (between 35 and 56%) and
high when n = 800 (from 76 to 96%). As a reminder, these
rates indicate to what extent the different procedures are able
to detect DIF on at least the item-covariate pairs on which DIF
was simulated. Best performance regarding Most Flexible detection
rates was observed for ROSALI-DIF FORWARD (ranging from 20
to 96%, mean: 56%) but ROSALI-DIF BACKWARD also showed
quite similar performance (rates did not differ by more than 5%).
The performances of PCMLasso were generally slightly lower (rates
ranging from 16 to 90%, mean: 50%). Of note, the three methods
showed usually higher Most Flexible detection rates when DIF
was non-homogeneous than when it was homogeneous, all other
scenario characteristics being equal, with a maximal difference up
to +17% (mean difference of +8%).

Both ROSALI-DIF algorithms showed poor Flexible detection
rates when DIF size was weak and n = 800 (from 13 to 32%),
moderate Flexible detection rates when DIF size was medium and
n = 400 (from 30 to 49%), and high Flexible detection rates
when DIF size was medium and n = 800 (from 65 to 81%
and 78 to 87% for ROSALI-DIF FORWARD and ROSALI-DIF
BACKWARD, respectively). Regarding PCMLasso, we observed
poor Flexible detection rates in all scenarios except those with a
sample size of 800 and medium DIF size where rates ranged from 37
to 54%. Hence, based on the Flexible criteria, the best-performing
methods are the ROSALI-DIF algorithms. Of note, ROSALI-DIF
BACKWARD outperformed ROSALI-DIF FORWARD when DIF
size was medium and n = 800 (Flexible detection rates of both
methods differed from +5 to +16%) while their performance was
similar under other scenarios. Finally, the three methods showed

generally higher Flexible detection rates when DIF was non-
homogeneous than when it was homogeneous (all other scenario
characteristics being equal), with a maximal difference up to +17%
(mean difference of +7%).

Flexible detection rates were lower than the Most Flexible
detection rates whatever the procedure. It means that, in addition
to the correct DIF item-covariate pairs, all procedures wrongly
detected other pairs (on which DIF was not simulated). Gaps
between the Most Flexible and Flexible detection rates usually
increased with increasing Most Flexible detection rates for all
procedures (the higher the Most Flexible detection rate, the
greater the gap). For both ROSALI-DIF algorithms, gaps also
increased with increasing number of items J. These gaps were
always the smallest for ROSALI-DIF BACKWARD and the
largest for PCMLasso.

Among scenarios with homogeneous DIF, ROSALI-DIF
algorithms both showed Perfect detection rates close to the Flexible
detection rates (e.g., they differed from 4 to 10% for medium
DIF scenarios). Thus, within datasets meeting the Flexible criteria,
both algorithms correctly determined the form of DIF involved
when the simulated DIF was homogeneous. As for PCMLasso,
Perfect detection rates did not exceed 2% indicating that PCMLasso
failed to identify the correct DIF form when the simulated
DIF was homogeneous. Hence, based on the Perfect criterion,
both ROSALI-DIF algorithms outperformed PCMLasso within
scenarios with homogeneous DIF. However, when the simulated
DIF was non-homogeneous, Perfect detection rates associated with
ROSALI-DIF algorithms were substantially lower than Flexible
detection rates (e.g., gaps ranged from 30 to 56% among scenarios
with medium DIF). Hence, both algorithms struggled to identify
the correct form of DIF (i.e., non-homogeneous) among scenarios
meeting the Flexible criteria. On the contrary, PCMLasso showed
Perfect detection rates very close to the Flexible detection rates
(i.e., rates ranging from 49 to 53% when DIF was medium and
n = 800, low rates ranging from 12 to 26% otherwise). It indicates
that once PCMLasso correctly identified the item-covariate pairs
affected by DIF, it also correctly identified the DIF form. Therefore,
when DIF was non-homogeneous, the PCMLasso approach showed
larger Perfect detection rates than the ROSALI-DIF algorithms.
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TABLE 4 Rates of correct DIF detection among DIF scenarios.

Setting DIF form DIF size n J ROSALI-DIF FORWARD PCMLasso

%LRT SIG Most flexible Flexible Perfect Most flexible Flexible Perfect

1 H Weak 400 4 31% 4% 3% 2% 5% 3% 0%

1 H Weak 400 7 27% 5% 4% 3% 6% 3% 0%

1 H Weak 800 4 64% 20% 17% 14% 16% 9% 1%

1 H Weak 800 7 63% 26% 18% 14% 18% 9% 0%

1 H Medium 400 4 85% 39% 34% 29% 35% 17% 0%

1 H Medium 400 7 79% 44% 30% 25% 39% 16% 0%

1 H Medium 800 4 99% 90% 73% 67% 80% 42% 1%

1 H Medium 800 7 99% 91% 66% 59% 83% 46% 2%

1 NH Weak 400 4 33% 5% 4% 1% 8% 6% 5%

1 NH Weak 400 7 31% 4% 2% 0% 6% 3% 3%

1 NH Weak 800 4 68% 29% 25% 3% 27% 18% 17%

1 NH Weak 800 7 62% 27% 18% 2% 23% 14% 12%

1 NH Medium 400 4 91% 56% 49% 6% 49% 26% 25%

1 NH Medium 400 7 79% 51% 35% 5% 49% 24% 23%

1 NH Medium 800 4 100% 96% 77% 31% 88% 49% 49%

1 NH Medium 800 7 100% 96% 65% 24% 90% 52% 51%

2 H Weak 400 4 29% 3% 1% 1% 5% 3% 0%

2 H Weak 400 7 26% 2% 2% 1% 6% 2% 0%

2 H Weak 800 4 68% 23% 20% 18% 17% 9% 0%

2 H Weak 800 7 58% 21% 13% 10% 17% 8% 0%

2 H Medium 400 4 83% 41% 35% 30% 35% 15% 0%

2 H Medium 400 7 82% 41% 30% 25% 43% 15% 1%

2 H Medium 800 4 99% 91% 77% 68% 76% 37% 1%

2 H Medium 800 7 99% 92% 65% 61% 85% 46% 2%

2 NH Weak 400 4 34% 6% 6% 1% 10% 6% 6%

2 NH Weak 400 7 32% 7% 5% 1% 9% 5% 4%

2 NH Weak 800 4 74% 34% 32% 2% 26% 16% 15%

2 NH Weak 800 7 67% 32% 22% 2% 27% 15% 13%

2 NH Medium 400 4 86% 50% 42% 5% 47% 27% 26%

2 NH Medium 400 7 79% 51% 39% 6% 46% 22% 22%
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TABLE 4 (Continued)

Setting DIF form DIF size n J ROSALI-DIF FORWARD PCMLasso

%LRT SIG Most flexible Flexible Perfect Most flexible Flexible Perfect

2 NH Medium 800 4 100% 95% 81% 26% 86% 54% 53%

2 NH Medium 800 7 99% 96% 65% 22% 89% 51% 50%

3 H Weak 400 4 21% 2% 2% 1% 2% 0% 0%

3 H Weak 400 7 23% 2% 2% 2% 1% 1% 0%

3 H Weak 800 4 44% 7% 7% 6% 2% 0% 0%

3 H Weak 800 7 44% 13% 10% 8% 9% 3% 0%

3 H Medium 400 4 58% 19% 18% 13% 7% 2% 0%

3 H Medium 400 7 67% 26% 22% 18% 20% 6% 0%

3 H Medium 800 4 91% 69% 61% 54% 19% 3% 0%

3 H Medium 800 7 96% 78% 62% 56% 60% 21% 1%

3 NH Weak 400 4 24% 3% 2% 0% 3% 1% 1%

3 NH Weak 400 7 28% 2% 1% 0% 4% 1% 1%

3 NH Weak 800 4 48% 13% 11% 1% 8% 4% 4%

3 NH Weak 800 7 52% 17% 13% 2% 15% 6% 6%

3 NH Medium 400 4 73% 31% 28% 5% 22% 8% 8%

3 NH Medium 400 7 75% 38% 31% 6% 34% 16% 16%

3 NH Medium 800 4 98% 86% 73% 25% 58% 19% 19%

3 NH Medium 800 7 98% 85% 66% 26% 78% 34% 33%

%LRT SIG: proportion of datasets with significant likelihood-ratio test, most flexible (%): proportion of datasets where the procedure identified DIF at least on the correct item-covariate pairs (among others), flexible (%): proportion of datasets where the procedure
identified DIF on the correct item-covariate pairs only, perfect (%): proportion of datasets were the procedure identified exactly the DIF that was simulated (correct form and correct pairs). Setting No. 1: The two covariates are not correlated and they induce DIF on
two distinct items. Setting No. 2: The two covariates are not correlated and they induce DIF on the same item. Setting No. 3: The two covariates are correlated and only one induces DIF on two items. The procedures converged on all datasets. No identifiability issues
were encountered. Results are given according to the simulation characteristics: setting, DIF form (homogeneous H, non-homogeneous NH), DIF size, sample size n, number of items J.
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Based on the Perfect criterion, PCMLasso outperformed ROSALI-
DIF algorithms when the simulated DIF was non-homogeneous.
Note that, as observed for Flexible detection rates, ROSALI-DIF
BACKWARD showed higher Perfect detection rates than ROSALI-
DIF FORWARD in scenarios with medium DIF and n = 800. Both
algorithms showed similar performance otherwise.

3.2.2. Performance within setting No. 3
(correlated covariates with only one inducing DIF)

Among scenarios of setting No. 3, the performance of the three
DIF detection methods were usually poorer as compared to settings
Nos. 1 and 2 for all criteria.

Indeed, regarding the Most flexible and Flexible detection rates,
the performance of all three methods was globally poor when DIF
size was weak or when the sample size equaled 400. For both
ROSALI-DIF algorithms, these rates increased among scenarios
with n = 800 and medium DIF (ranging from 69 to 86% for the
Most Flexible detection rates and from 61 to 80% for the Flexible
detection rate). Performance was poorer for PCMLasso under
the same conditions as Most Flexible and Flexible detection rates
ranged from 19 to 78% and from 3 to 34%, respectively. Of note, we
observed similar effects to those highlighted in settings Nos. 1 and
2 regarding these rates and the associated gaps.

3.3. Bias and empirical standard error –
DIF scenarios

Bias, empirical standard errors, and average model standard
errors associated with the estimation of β1 and β2 (the respective
effect of the covariates C1 and C2 on the latent variable level) are
given in Supplementary Appendix D. Under settings Nos. 1 and
2, bias remained small for all methods; it never exceeded 0.08 in
absolute value. Under setting No. 3 results were more mixed: bias
related to the estimation of β1 (the effect of C1, the only DIF-
inducing covariate in this setting) remained small when J = 7
but it increased when J = 4 for all procedures (reaching −0.19
for ROSALI-DIF algorithms and −0.14 for PCMLasso). Across all
settings, the better the methods detected DIF, the lower the bias.

3.4. DIF parameter estimates

On the one hand, PCMLasso always underestimated the DIF
parameters γ

(C)
jp . On the other hand, DIF parameters estimates

were much closer to the true simulated values for ROSALI-DIF
algorithms but they showed a larger dispersion (see the boxplots
available through the R Shiny app, Supplementary Appendix E).

4. Discussion

4.1. Main results

This study aimed to extend the first part of the ROSALI
algorithm (dedicated to DIF detection at one time point using
RMT) in order to consider two binary covariates instead of one. We

proposed two extensions: ROSALI-DIF FORWARD and ROSALI-
DIF BACKWARD. The novelty characterizing these extensions is
the screening step that aims to identify the item-covariate pairs
candidate for DIF detection and the item-covariate pairs that will
be considered as anchors (i.e., not affected by DIF). This further
step was inspired by the iterative Wald test procedure proposed
by Tay et al. (2015) and Cao et al. (2017). These authors indicated
that testing all items for DIF in a fully unconstrained model had
good power but a high Type I error, so it could be useful for
identifying anchor items in a preliminary stage (Tay et al., 2015;
Cao et al., 2017). Performance of each extension of ROSALI for DIF
detection were assessed by simulations alongside the performance
of the approach based on likelihood penalization proposed by
Schauberger and Mair (2020) (i.e., PCMLasso) under conditions
that aimed to be representative of health research contexts.

In light of the rates of false detection of DIF, both ROSALI-
DIF algorithms satisfactorily prevent from inferring DIF when it
has not been simulated. This good performance may be explained
by: (i) combining the LRT performed at a 5% significance level
with the screening and iterative steps, and (ii) the Bonferroni
correction applied during the iterative step. In light of the Flexible
and Most Flexible detection rates, both ROSALI-DIF algorithms
can detect item-covariate pairs having medium DIF (as simulated
in this manuscript) with good power for studies with two correlated
or uncorrelated binary covariates, a sample size of 800, and a
questionnaire similar to the ones simulated with regards to M and
J. Moreover, ROSALI-DIF algorithms should generally not wrongly
detect items-covariates pairs without DIF. However, one must be
cautious regarding the form of DIF evidenced by these algorithms,
as non-homogenous DIF is rarely identified as such. It means that
the test performed during step 5 generally lacked power as it failed
to reject the null hypothesis of homogeneous DIF when DIF was
actually non-homogenous. Correct identification of the DIF form
may require larger sample sizes.

Regarding PCMLasso, rates of false detection of DIF among
scenarios without DIF were high. Indeed, PCMLasso was prone
to erroneously detect DIF in at least one item-covariate pair in
almost half of the datasets, no matter the scenario. This drawback
is also highlighted by the large gaps between the Flexible and Most
flexible detection rates among scenarios where DIF was simulated.
Indeed, PCMLasso was likely to wrongly flag other item-covariate
pairs in addition to the ones truly affected by DIF. However,
we noticed that the estimated size of the wrongly evidenced DIF
effects remained small on average, which did not result in a
meaningful measurement bias at the scale level (data not shown
in the manuscript but available on OSF, see the data availability
statement). One must be cautious regarding the form of DIF
evidenced by this approach. Indeed, it almost always suspected
the occurrence of non-homogeneous DIF (whatever the form of
DIF simulated). After further investigations, we also noticed that
in some datasets, DIF parameters estimates were very close (e.g.,

γ̂
(C)
j1 = 0.28 and γ̂

(C)
j2 = γ̂

(C)
j3 = 0.29), indicating that the tuning

parameter may have been chosen just after the split in the DIF
parameters path (see the border between the "Homogeneous DIF"
area and the "Non-homogeneous DIF" area pictured in Figure 4A).

All three methods showed small capacity to detect weak DIF.
It may not be a major issue as the weak DIF simulated in
this simulation study might generally not result in a meaningful
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measurement bias at the scale level. Moreover, DIF detection
performance of ROSALI-DIF algorithms and PCMLasso decreased
with decreasing sample size. This effect was expected but
is sharply marked and may be even more problematic with
unbalanced covariates.

The evaluation criteria we used to evaluate the DIF detection
performance of the three procedures are not so common in the
literature on DIF detection. More frequent evaluation criteria are
the average false-positive and true-positive rate (FPR and TPR,
respectively). However, the focus of these criteria is different from
the criteria we used:

- Regarding DIF effects erroneously identified:
On the one hand, the rate of false DIF detection that we
used in our simulation study quantifies the risk of drawing
an erroneous conclusion when performing the procedure on
a given dataset where no DIF was simulated (i.e., inferring
the presence of DIF while DIF was not simulated in the
dataset). It does not quantify whether there are many item-
covariate pairs flagged for DIF among the datasets in which
DIF was wrongly inferred. On the other hand, the average
FPR quantifies whether or not many item-covariate pairs are
incorrectly flagged for DIF among the datasets without DIF.
However, it does not inform about the proportion of datasets
where the adequate conclusion was arrived at (that is: no DIF
is present within the set of items considered).

- Regarding DIF effects correctly identified:
The rate of correct DIF detection (with the Most Flexible,
Flexible or Perfect criteria) quantifies the probability of
reaching the right conclusion when performing the procedure
on a given dataset where DIF was simulated (i.e., inferring
the presence of DIF and correctly identifying the DIF item-
covariate pairs). As for the average TPR, it indicates whether
the DIF item-covariate pairs are often rightly flagged for
DIF, but it does not inform about the proportion of datasets
where the adequate conclusion was arrived at (that is: DIF
is present within the set of items considered and the correct
item-covariate pairs are flagged).

The estimation of the average FPR and TPR was not planned in
the initial aims of our simulation study, but since they may interest
readers, they are provided in Supplementary Appendix F.

The DIF parameters γ
(C)
jp , were satisfactorily recovered for

ROSALI-DIF algorithms among datasets meeting the Most
Flexible criteria. Conversely, the PCMLasso approach always
underestimated them due to the penalization that shrinks them
toward zero. This downward bias has already been previously
highlighted (Tutz and Schauberger, 2015; Schauberger and Mair,
2020). Of note, Tutz and Shauberger indicated that the bias
introduced by the parameter shrinkage could be removed by an
additional refit (i.e., fitting a final unpenalized model that only
includes DIF effects evidenced after the likelihood penalization
approach).

Finally, all procedures provided a globally unbiased estimation
of the effect of the covariates on the latent variable level adjusted
for DIF. Besides, the better the methods detected DIF, the lower
the bias. Among scenarios with DIF simulated under settings Nos.
1 and 2, bias remained small for all methods (even when DIF

was weak, a condition under which the procedures all showed low
performance). This observation of globally unbiased estimations
of β1 and β2 when DIF was weak (despite the procedures’ low
performance) could mean that such a DIF condition does not
trigger meaningful bias if DIF is not accounted for. Among
scenarios with DIF simulated under setting No. 3, results were
more mixed: bias related to the estimation of β1 (the effect of
C1, the only DIF-inducing covariate in this setting) remained
small when J = 7 but it increased when J = 4. This latter
condition corresponds to a test composed of four items and
half of them affected by DIF induced by a single covariate. As
demonstrated by Rouquette et al. (2016) in a simulation study, such
a configuration may lead to a meaningful bias if DIF is ignored,
even if DIF is weak. Hence, the fact that the three procedures
showed generally lower DIF detection performance among these
scenarios may be one of the causes of these biased estimates. Of
note, DeMars and Lau reported that DIF is conceptualized as
differences in the item endorsement probabilities after controlling
the psychological variable or capacity targeted by the questionnaire
(DeMars and Lau, 2011). Yet, if a large proportion of items is
affected by DIF (i.e.,≥ 50%), then the questionnaire might measure
different constructs among the groups being compared, and it
would make no sense to speak about controlling the psychological
variable level or ability (DeMars and Lau, 2011) as the target
construct may not be conceptualized in the same way across
groups.

To summarize, the DIF detection methods presented in the
manuscript allow to simultaneously model the DIF effects from
different covariates. They are useful when one wants to grasp the
potential multiple sources of DIF, especially when these sources
are correlated. Indeed, in this latter case, such DIF detection
methods should be preferred to the strategy that consists in
performing the DIF detection independently for each covariable
(one-covariate-at-a-time analysis). However, we can see that the
three methods considered require a large enough sample size,
as their DIF detection performance was low to moderate when
DIF size was medium and n = 400. Between the three methods,
ROSALI-DIF algorithms (FORWARD and BACKWARD) seemed
to be preferable if one aims to correctly identify the item-covariate
pairs affected by DIF. A Stata module automating both algorithms
is in preparation. Of note, all the methods evaluated within this
manuscript were based on Rasch measurement theory. Hence,
they assume that the assumptions of RMT modeling are met,
that is: unidimensionality, local independence, monotonicity, and
items all equally indicative of the latent variable. In practice,
the adequacy of Rasch modeling should be investigated prior to
conducting DIF detection.

4.2. Limitations and perspectives

Several limitations can be addressed. First, within our
simulation study, the differences observed between DIF scenarios
with J = 4 or 7 items could either be due to: (i) an increase in
the number of items, (ii) a decrease in the proportion of true DIF
items, or (iii) a decrease in the proportion of item-covariate pairs on
which DIF was simulated. Further investigations are hence needed
to disentangle the effects of these different simulation parameters.
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In addition, neither ROSALI extensions nor the PCMLasso
approach allows to consider that the DIF effect of one covariate
may depend on the level of another covariate. To allow for such
a phenomenon, it would be necessary to introduce an interaction
term between the covariates. Yet, more developments are needed
to know how to deal with such an interaction. Of note, the PCM-
IFT approach systematically models such an interaction because of
its philosophy of recursive partitioning. More broadly, it would be
worth comparing our results with the performance of the PCM-IFT
approach under the same conditions when it will be able to account
for the effect of a covariate on the latent variable.

Besides, we have considered simple situations with two well-
balanced covariates that did not impact the latent variable level.
Extending the simulation framework with: (i) less balanced
covariates, (ii) covariates with an impact on the latent variable
level, and (iii) more than two covariates, would be interesting
to have more insight into the performance of the evaluated
procedures. In addition, it would be worth evaluating these
procedures under a wider DIF setting (e.g., considering different
DIF directions within one scenario). Finally, all datasets were
complete: there were no missing data with regards to item
responses nor covariate. A simulation study with incomplete
datasets could be of value to evaluate the performance of the DIF
detection methods, in a situation more representative of real data.
Of note, as parameters are estimated using marginal maximum
likelihood, estimations should be asymptotically unbiased in case of
incomplete data missing (completely) at random. Nonetheless, due
to a loss of precision of the estimations, a loss in the performance
can be expected.

The methods evaluated in this manuscript are based on
statistical results. Hence, it is critical to ensure that the evidenced
DIF effects are relevant and meaningful. Regarding the ROSALI-
DIF algorithms, they are more specifically based on statistical
testing. One drawback of such an approach is that they are likely
to detect minor DIF effects as soon as the sample is large enough.
An alternative could be to use DIF effect size to evaluate whether
a given difference in item parameters is substantial or negligible
(Henninger et al., 2023). Besides, it could be interesting to add
a priori clinical knowledge on the items on which DIF may be likely
(depending on the patients’ population) in order to not only rely on
statistical criteria.

All these concerns about: (i) choosing which covariates to
investigate for DIF, (ii) adding prior knowledge to the analysis,
(iii) using univariate pre-selection (i.e., one-covariate-at-a-time
analysis) before multivariable modeling, and (iv) using forward
and backward strategies are broader concerns that do not pertain
to DIF detection; they are encountered in all regression modeling
strategies. Of note, forward and backward strategies are traditional
and straightforward way to filter out predictors of a given
outcome from a pool of candidates containing both true predictors
and noise variables. Although widespread, these approaches
show disadvantages that have been extensively addressed in the
regression modeling literature (Steyerberg, 2009; Harrell, 2015).
Among others, we can mention statistical inference issues and
the fact that these approaches sometimes fail to filter candidate
variables correctly: they are known to select noise variables
and drop true predictors, especially when the set of candidate
predictors is large and/or in the presence of collinearity (Derksen
and Keselman, 1992; Steyerberg, 2009). Although likelihood

penalization is often presented as a promising alternative, we found
that PCMLasso’s performance was not better than the ROSALI
algorithms’ performance in our simulation framework.

Further developments are needed to better grasp the sources
and determinants of lack of measurement invariance in health
research. To that end, DIF detection methods allowing considering
several covariates simultaneously (with two categories or more)
could be of great practical interest.
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