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A remark on positive sojourn times

of symmetric processes

Christophe Profeta
1

Abstract : We show that under some slight assumptions the positive sojourn time of a product of
symmetric processes converges towards one half as the number of processes increases. Monotony proper-
ties are then exhibited in the case of symmetric stable processes, and used, via a recurrence relation, to
get upper and lower bounds on the moments of the occupation time (in the first and third quadrants) for
2-dimensional Brownian motion. Explicit values are also given for the second and third moments in the
n-dimensional Brownian case.

Keywords : Occupation times, Stable processes, Brownian motion.

2010 Mathematics Subject Classification: 60J55; 60G52, 60J65.

1 Introduction

In this note, we are interested in the study of the random variables

An =

∫ 1

0

1
{
∏

n
i=1 X

(i)
u ≥0}

du

where X(1), . . . , X(n) are independent and identically distributed symmetric processes. The random vari-
able An may be interpreted as the time spent by an n-dimensional process (with independent components)
in some symmetric orthants.

When n = 1, the random variable A1 has been widely studied for several families of processes. The most

celebrated example is the case of symmetric Lévy processes X(1) = L(1) such that P(L
(1)
1 = 0) = 0, for

which it is known that A1 follows the classic arcsine law (see Getoor and Sharpe [8]) :

P(A1 ∈ dz) =
1

π
√
z(1− z)

dz, z ∈ (0, 1).

When n = 2, the random variable A2 corresponds to the time spent by a planar symmetric process
X(1) + iX(2) in the first and third quadrant of the complex plane. In the special case of the planar
Brownian motion B(1) + iB(2), a first attempt to find the law of A2 has been undertaken by Ernst and
Shepp [6] in which the authors try to compute the double Laplace transform of A2. More generally, the
study of the sojourn times of planar Brownian motion in a cone has already attracted much attention. In
particular it was proven by Mountford [12] that if C is a closed convex cone of magnitude θ with vertex
at 0, then there exist two constants κ1 and κ2 such that

κ1 t
1/ξ ≤ P

(∫ 1

0

1
{(B

(1)
u ,B

(2)
u )∈C}

du ≤ t

)
≤ κ2 t

1/ξ, t ∈ [0, 1], (1)

with ξ = 2
π (2π − θ). The first moments of this random variable were computed by Desbois [4], see also

Bingham and Doney [2] in the special case θ = π
2 . Analogues of (1) for n-dimensional Brownian motion

were obtained by Meyre and Werner [13] and Nakayama [14], in which the exponent ξ is related to the
first eigenvalue of the Laplacian operator −∆/2. In addition to these bounds, the strong arcsine law (see
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[1]) gives the asymptotics of the sojourn time of a n-dimensional Brownian motion (B(i), 1 ≤ i ≤ n) in
the positive orthant :

1

ln(t)

∫ t

1

n∏

i=1

1
{B

(i)
u ≥0}

du

u

a.s.−−−−→
t→+∞

1

2n
.

Observe that the summation here is logarithmic : we refer to [3] for a general discussion between summa-
bility methods and limits of occupation times.
In this note, we shall first study the limit of the variables An as the dimension n goes to ∞.

Theorem 1. Let (X(i), i ≥ 1) be independent and identically distributed symmetric processes.

1. The strong law of large numbers holds for the sequence (An, n ≥ 1) :

1

k

k∑

n=1

An
a.s.−−−−−→

k→+∞

1

2
.

2. Assume that for a.e. u ∈ (0, 1), the random variables X
(1)
u have no atoms at 0 and that

for a.e. 0 < u < s < 1, 0 < P

(
X(1)

u ≥ 0, X(1)
s ≥ 0

)
<

1

2
. (2)

Then, for any p > 0,

An
Lp

−−−−−→
n→+∞

1

2
.

3. Assume furthermore that

∫ 1

0

∫ 1

0

1

P

(
X

(1)
u ≤ 0, X

(1)
s ≥ 0

) du ds < +∞. (3)

Then,

An
a.s.−−−−−→

n→+∞

1

2
.

When thinking of symmetric Lévy processes, an interpretation of this result is as follows : the usual
arcsine law essentially explains that, although L(1) is centered, there is a high probability that it spends
more time on one side of the axis than on the other one. As the number of Lévy processes increases, so
do the changes of sign of the product, hence the resulting process spends a more balanced time on each
side of the abscissa axis.

Remark 2. Note that an assumption such as (2) is necessary to obtain the Lp-convergence. Indeed, let
for instance (Xi, i ≥ 1) be a family of i.i.d. symmetric random variables admitting a density. Define the
processes :

X
(i)
t = tXi (t ≥ 0)

which do not satisfy the assumption P(X
(1)
u ≥ 0, X

(1)
s ≥ 0) < 1

2 . In this case, the random variables An

all have the same law :

An
(law)
=

1

2
(δ0 + δ1)

and the Lp-convergence of Theorem 1 cannot hold.

Example 3. Assumption (3) is for instance satisfied by symmetric α-stable Lévy processes L with α > 1.
Indeed, for 0 < u < s, using the symmetry, independent increments and scaling properties, we first deduce
that :

P(Ls ≤ 0, Lu ≥ 0) = P

(( s
u
− 1
)1/α

L1 ≥ Z1, Z1 ≥ 0

)
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where Z1 is a symmetric α-stable r.v. independent from L1. Next, for ν > 0 small enough, applying
Fubini’s theorem :

∫ +∞

0

t−ν−1P(t1/αL1 ≥ Z1, Z1 ≥ 0)dt =
1

ν
E
[
Lνα
1 1{L1≥0}

]
E
[
Z−να
1 1{Z1≥0}

]

=
1

4ν
E [|L1|να]E

[
|Z1|−να

]

=
1

4α2ν

Γ(ν)

Γ(να) cos(ναπ/2)

Γ(−ν)

Γ(−να) cos(ναπ/2)

=
1

2αν

sin(ναπ/2)

sin(νπ) cos(ναπ/2)
.

Therefore, using the inverse mapping for the Mellin transform (see for instance Janson [9]), we obtain the
asymptotics

F (t) := P

(
t1/αL1 ≥ Z1, Z1 ≥ 0

)
∼

t→0+

1

πα sin(π/α)
t1/α

hence, by a change of variable

∫ 1

0

(∫ 1

0

1

P(Lu ≤ 0, Ls ≥ 0)
du

)
ds = 2

∫ 1

0

(∫ s

0

1

F (s/u− 1)
du

)
ds =

∫ +∞

0

1

F (t)(t+ 1)2
dt < +∞

which is Assumption (3).

The remainder of the paper is organized as follows : we prove Theorem 1 in Section 2, then study some
monotony properties of An when dealing with stable processes in Section 3, and finally compute the first
moments of An and give some bounds on A2 for Brownian motion in Section 4.

2 Proof of Theorem 1

Proof. We start with the law of large numbers of Point 1. Let us first define the centered random variables

A∗
n = An − 1

2

and observe that these random variables are uncorrelated. Indeed, decomposing Ak+n and using the tower
property of conditional expectations for k ≥ 1

E[A∗
nA∗

n+k] = E[AnAn+k]−
1

4

= E

[
An

∫ 1

0

(
1
{
∏

n
i=1 X

(i)
u ≥0}

1
{
∏n+k

i=n+1 X
(i)
u ≥0}

+ 1
{
∏

n
i=1 X

(i)
u ≤0}

1
{
∏n+k

i=n+1 X
(i)
u ≤0}

)
du

]
− 1

4

= E

[
An

∫ 1

0

(
1
{
∏

n
i=1 X

(i)
u ≥0}

1

2
+ 1

{
∏

n
i=1 X

(i)
u ≤0}

1

2

)
du

]
− 1

4

=
1

2
E[An]−

1

4
= 0.

Now, since the random variables (A∗
n, n ≥ 1) are uniformly bounded by 1, the result will follow from

Theorem 1 in [10] after having checked that

∑

k≥1

1

k
E



(
1

k

k∑

n=1

A∗
n

)2

 < ∞.

But this is immediate since developing the square and applying Fubini’s theorem :

∑

k≥1

1

k
E



(
1

k

k∑

n=1

A∗
n

)2

 =

∑

k≥1

1

k3

k∑

n=1

E

[
(A∗

n)
2
]
≤
∑

k≥1

1

k2
< +∞,
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hence we conclude that

1

k

k∑

n=1

A∗
n

a.s.−−−−−→
k→+∞

0,

which is Point 1 of Theorem 1.

To prove the Lp-convergence, let us consider, for n ≥ 1, the function Fn : [0, 1]2 → [0, 1] defined by

Fn(u, s) = P

(
n∏

i=1

X(i)
u ≥ 0,

n∏

i=1

X(i)
s ≥ 0

)
.

By symmetry and since there are no atoms at 0, we may decompose Fn+1 as

Fn+1(u, s) = 2P

(
n∏

i=1

X(i)
u ≥ 0,

n∏

i=1

X(i)
s ≥ 0

)
P

(
X(n+1)

u ≥ 0, X(n+1)
s ≥ 0

)

+ 2P

(
n∏

i=1

X(i)
u ≤ 0,

n∏

i=1

X(i)
s ≥ 0

)
P

(
X(n+1)

u ≤ 0, X(n+1)
s ≥ 0

)
(4)

and rewrite this under the form

Fn+1(u, s) = 2Fn(u, s)F1(u, s) + 2

(
1

2
− Fn(u, s)

)(
1

2
− F1(u, s)

)

= 4

(
Fn(u, s)−

1

4

)(
F1(u, s)−

1

4

)
+

1

4
.

In particular, we deduce by iteration that

Fn+1(u, s)−
1

4
=

(
Fn(u, s)−

1

4

)
(4F1(u, s)− 1) =

1

4
(4F1(u, s)− 1)

n+1
. (5)

Now, for a.e. u 6= s, we have by assumption −1 < 4F1(u, s)− 1 < 1, so we may let n → +∞ to obtain

Fn(u, s) −−−−−→
n→+∞

1

4
.

Finally, applying the dominated convergence theorem

E

[(
An − 1

2

)2
]
= E

[
A2

n

]
− 1

4
=

∫ 1

0

∫ 1

0

Fn(u, s) duds−
1

4
−−−−−→
n→+∞

0

which proves the L2-convergence of Theorem 1, hence the Lp-convergence for any 0 < p ≤ 2 by Hölder’s
inequality. But, since for any n ∈ N, |An − 1

2 | ≤ 1, we further obtain that for p ≥ 2

E

[∣∣∣∣An − 1

2

∣∣∣∣
p]

≤ E

[(
An − 1

2

)2
]
−−−−−→
n→+∞

0

which ends the proof of Point 2.

Finally, to get the a.s. convergence of Point 3, we apply Fubini’s theorem to obtain the bound, thanks to
(5) :

+∞∑

n=1

E

[(
An − 1

2

)2
]
=

+∞∑

n=1

∫ 1

0

∫ 1

0

(
Fn(u, s)−

1

4

)
duds

=
1

4

∫ 1

0

∫ 1

0

4F1(u, s)− 1

2− 4F1(u, s)
du ds ≤ 1

16

∫ 1

0

∫ 1

0

1

P(X
(1)
u ≤ 0, X

(1)
s ≥ 0)

du ds < +∞.

The a.s. convergence then follows from the usual application of the Bienaymé-Tchebychev inequality and
the Borel-Cantelli lemma.

4



3 Monotonicity for stable processes

We now assume that (X(i) = L(i))i≥1 are independent symmetric α-stable Lévy processes with α ∈ (0, 2]
defined on a probability space (Ω,F∞,P). From Point 2 of Theorem 1, we deduce that for any p > 0 :

E[Ap
n] −−−−−→n→+∞

(
1

2

)p

.

When dealing with stable processes, it turns out that the sequence (E[Ap
n], n ≥ 1) is monotone, according

to the value of p (i.e. to the convexity of the function x 7→ xp).

Proposition 4. Let p > 0 be fixed. The sequence

(E[Ap
n], n ≥ 1) is

{
decreasing if p ∈ N∗

increasing if 0 < p < 1.

As a consequence, for any λ ∈ R and n ≥ 1 :

E
[
eλAn+1

]
≤ E

[
eλAn

]
.

For symmetric stable Lévy processes, the r.v.’s (An, n ≥ 1) are thus ordered via moment-generating
functions or Laplace transforms.

Proof. We start the proof with a simple lemma.

Lemma 5. Let n ≥ 1 and (Xi)i≤n be i.i.d. symmetric random variables with common density f and let
(Ai)i≤n be random variables, independent from the (Xi)i≤n and such that P (

∏n
i=1 Ai > 0) = 1. Then, the

function

t 7→ P

(
n∏

i=1

(Xi + tAi) ≥ 0

)
is increasing from 1/2 to 1.

Proof. Observe first that by conditioning on the distribution of the sequence (Ai)i≤n

P

(
n∏

i=1

(Xi + tAi) ≥ 0

)
=

∫

R

. . .

∫

R

P

(
n∏

i=1

(Xi + tai) ≥ 0

)
P(A1 ∈ da1, . . . , An ∈ dan)

we only need to prove that the function

Ψn(t) = P

(
n∏

i=1

(Xi + tai) ≥ 0

)

is increasing, under the assumption
∏n

i=1 ai > 0. Next, for any n ≥ 1, we have Ψn(0) = 1/2 and
lim

t→+∞
Ψn(t) = 1. We shall prove that Ψn is increasing by induction on n. For n = 1, the result is clear

since in this case a1 > 0. Assume now that n ≥ 2 and that Ψn−1 is increasing from 1/2 to 1. Since the
(Xi) are independent, we may decompose

Ψn(t) = P(Xn + tan ≥ 0)P

(
n−1∏

i=1

(Xi + tai) ≥ 0

)
+ P(Xn + tan ≤ 0)P

(
n−1∏

i=1

(Xi + tai) ≤ 0

)
.

We now separate two cases.

1. Assume first that an > 0. Then
∏n−1

i=1 ai > 0 and differentiating

Ψ′
n(t) = anf(−tan)Ψn−1(t) + P(Xn + tan ≥ 0)Ψ′

n−1(t)

− anf(−tan)(1−Ψn−1(t))− P(Xn + tan ≤ 0)Ψ′
n−1(t)

= anf(−tan) (2Ψn−1(t)− 1) + Ψ′
n−1(t) (P(Xn + tan ≥ 0)− P(Xn + tan ≤ 0)) .

Since Ψn−1(t) ≥ 1/2 and P(Xn + tan ≥ 0) > P(Xn + tan ≤ 0), we deduce from the recursion
hypothesis that Ψ′

n(t) > 0.
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2. Assume now that an < 0. Then
∏n−1

i=1 ai < 0 and we deduce from the symmetry of X1 and Xn that2

Ψn(t) = P(Xn + t(−an) ≤ 0)P

(
(X1 + t(−a1))

n−1∏

i=2

(Xi + tai) ≤ 0

)

+ P(Xn + t(−an) ≥ 0)P

(
(X1 + t(−a1))

n−1∏

i=2

(Xi + tai) ≥ 0

)
.

The result then follows from the first case, since −an > 0 and −
∏n−1

i=1 ai > 0.

We now come back to the proof of Proposition 4. To simplify the notation, we set :

P (n)
u =

n∏

i=1

L(i)
u .

Let us consider the function F : R+ → [0, 1] defined by :

F (x) = E

[(∫ 1

0

1
{(x+Zu)P

(n)
u ≥0}

du

)p
]

where Z is another α-stable Lévy process independent from the (L(i)). We shall prove that F is increasing
on [0,+∞). By the change of variable u = xαs and scaling, we have

F (x) = xαp E

[(∫ 1/xα

0

1
{(1+Zs)P

(n)
s ≥0}

ds

)p]
.

Differentiating with respect to x and going back to the original variable, we obtain

F ′(x) =
αp

x
E

[(∫ 1

0

1
{(x+Zu)P

(n)
u ≥0}

du

)p

−
(∫ 1

0

1
{(x+Zu)P

(n)
u ≥0}

du

)p−1

1
{(x+Z1)P

(n)
1 ≥0}

]
.

Applying Fubini’s theorem, we need to prove that

∫ 1

0

. . .

∫ 1

0

P

(
p⋂

i=1

{
(x + Zui

)P (n)
ui

≥ 0
})

du1 . . . dup

≥
∫ 1

0

. . .

∫ 1

0

P

(
p−1⋂

i=1

{
(x+ Zui

)P (n)
ui

≥ 0
}
∩
{
(x+ Z1)P

(n)
1 ≥ 0

})
du1 . . . dup.

We shall in fact simply prove that the inequality holds on the integrands :

P

(
p−1⋂

i=1

{
(x+ Zui

)P (n)
ui

≥ 0
}
∩
{
(x+ Zup

)P (n)
up

≥ 0
})

≥ P

(
p−1⋂

i=1

{
(x+ Zui

)P (n)
ui

≥ 0
}
∩
{
(x+ Z1)P

(n)
1 ≥ 0

})
. (6)

where we may assume, up to renaming the variables, that 0 ≤ u1 ≤ u2 ≤ . . . ≤ up ≤ 1. To simplify the
notation, let us introduce the measure Q defined, for Λ ∈ F∞, by :

Q(Λ) = P

(
Λ
∣∣∣
p−1⋂

i=1

{
(x+ Zui

)P (n)
ui

≥ 0
})

.

2with the usual convention that empty products are 1
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Dividing both sides of (6) by P

(⋂p−1
i=1

{
(x+ Zui

)P
(n)
ui ≥ 0

})
, we are thus led to prove that the function

t → Q

(
(x+ Zt+up−1)P

(n)
t+up−1

≥ 0
)

is decreasing on [0, 1− up−1].

Applying the Markov property, we may decompose

Q

(
(x + Zt+up−1)P

(n)
t+up−1

≥ 0
)
= Q

((
x+ Zup−1 + t1/αẐ1

) n∏

i=1

(
L(i)
up−1

+ t1/αL̂
(i)
1

)
≥ 0

)

where Ẑ1 and (L̂
(i)
1 ) are independent symmetric α-stable random variables, independent from Z and the

(L(i)). Observe furthermore that by definition of Q :

Q

(
(x+ Zup−1)

n∏

i=1

L(i)
up−1

> 0

)
= Q

(
(x+ Zup−1)P

(n)
up−1

> 0
)
= 1.

Therefore, applying Lemma 5 with the sequences

(Xi, 1 ≤ i ≤ n) = (L̂
(i)
1 , 1 ≤ i ≤ n), Xn+1 = Ẑ1

and
(Ai, 1 ≤ i ≤ n) = (L(i)

up−1
, 1 ≤ i ≤ n), An+1 = x+ Zup−1 ,

we deduce by composition that the function t → Q

(
(x+ Zt+up−1)P

(n)
t+up−1

≥ 0
)
is decreasing on [0, 1 −

up−1] (in fact on [0,+∞)), hence the function F is increasing on [0,+∞). It remains then to apply the
dominated convergence theorem, upon noticing that

E[Ap
n+1] = F (0) ≤ lim

x→+∞
F (x) = E[Ap

n]

which yields the proof for integer values.

Summing the different moments, we deduce that for λ ≥ 0 :

E
[
eλAn+1

]
≤ E

[
eλAn

]

Next, by symmetry

E

[
eλ(1−An+1)

]
≤ E

[
eλ(1−An)

]
⇐⇒ E

[
e−λAn+1

]
≤ E

[
e−λAn

]

hence, for 0 < p < 1 :
∫ +∞

0

λ−p−1
(
1− E

[
e−λAn

])
dλ ≤

∫ +∞

0

λ−p−1
(
1− E

[
e−λAn+1

])
dλ

which is exactly
E[Ap

n] ≤ E[Ap
n+1] (0 < p < 1).

Remark 6. We give below an example of a process satisfying Assumption (2), but for which the sequence
(E[A2

n], n ≥ 1) is not decreasing. Take for instance

X
(1)
t = Bt1{t≤1/2} −Bt−1/21{t>1/2} and X

(2)
t = Wt1{t≤1/2} −Wt−1/21{t>1/2}

where B and W are two independent Brownian motions started from 0. Then :

A1 =
1

2
and A2 = 2

∫ 1/2

0

1{BtWt≥0}dt
(law)
=

∫ 1

0

1{BuWu≥0}du

hence (see next Section for the value of E[A2
2])

E
[
A2

1

]
=

1

4
< E

[
A2

2

]
=

3

8
− 1

2π2
.
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4 A study of moments in the Brownian case

4.1 Second and third moments

The first three moments are easy to compute in the Brownian case. Indeed, from Formula (5), the second
moment of An equals:

E[A2
n] =

1

4
+

1

2

∫ 1

0

(∫ s

0

(4F1(u, s)− 1)
n
du

)
ds

where, from Bingham and Doney [2], the quadrant probability is given for 0 ≤ u ≤ s by :

F1(u, s) =
1

4
+

1

2π
arcsin

(√
u

s

)
.

After some changes of variables and successive integrations by parts, we deduce that

E[A2
n] =

1

4
+

1

8πn

∫ π

0

tn sin(t)dt =
1

4
+ (−1)⌊n/2⌋+1n!(n− 2⌊n/2⌋ − 1)

8πn
+

1

8

⌊n/2⌋∑

k=0

(−1)k
n!

(n− 2k)!
π−2k.

By symmetry, since E[(1−An)
3] = E[A3

n], we further obtain :

E
[
A3

n

]
=

3

2
E
[
A2

n

]
− 1

4
.

We give below the first values of the second and third moments, in which the decreasing property may be
observed.

n E[A2

n
] E[A3

n
]

1
3

8
≃ 0, 375

5

16
≃ 0, 3125

2
3

8
−

1

2π2
≃ 0, 3243

5

16
−

3

4π2
≃ 0, 2365

3
3

8
−

3

4π2
≃ 0, 299

5

16
−

9

8π2
≃ 0, 1985

4
3

8
−

3

2π2
+

6

π4
≃ 0, 2846

5

16
−

9

4π2
+

9

π4
≃ 0, 1769

5
3

8
−

5

2π2
+

15

π4
≃ 0, 2757

5

16
−

15

4π2
+

45

2π4
≃ 0, 1635

∞ 0, 25 0, 125

4.2 Higher moments for two Brownian motions

Getting the explicit values of higher moments seems a hard task as outlined in several papers [2, 4, 6].
We propose here a method to get lower and upper bounds on these moments. Recall the moments of the
arcsine distribution :

E[Ap
1 ] =

1

22p

(
p

2p

)
=

(2p)!

22p(p!)2
=

Γ(p+ 1/2)√
πΓ(p+ 1)

∼
p→+∞

1√
πp

Proposition 7. For any p ≥ 1, we have

E[Ap
2] ≤

1

2p+ 1

8

π2 3F2

[
1/2 1/2 1

p+ 3/2 3/2
; 1

]
+

1

π2

p−1∑

k=0

2

(p− k)2
E[Ak

1 ]

8
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Figure 1: Monte Carlo simulation of E[Ap
2] for 1 ≤ p ≤ 500.

and

E[Ap
2] ≥

1

2p+ 1

8

π2 3F2

[
1/2 1/2 1

p+ 3/2 3/2
; 1

]
+

1

π2

p−1∑

k=0

2

(p− k)2
E[Ak

2 ]

where 3F2 denotes the usual generalized hypergeometric function, see [7, Section 9.1]. Note that both
bounds are the same when p equals 1 and 2. Asymptotically, we further obtain that

6

π2p
≤ E[Ap

2] ≤
1

3
√
πp

(p → +∞).

In particular, this implies that the r.v. A2 cannot follow a Beta distribution (hence neither a generalized

arcsine distribution). Indeed, otherwise the Beta distribution would be β

(
1

2
+

4

π2 − 4
,
1

2
+

4

π2 − 4

)
,

since then

E[β] =
1

2
, E[β2] =

3

8
− 1

2π2
and E[β3] =

5

16
− 3

4π2
.

But, as p → +∞, we would have

E[βp] = O
(

1

p
1
2+

4
π2

−4

)

which would contradict the lower bound since 1
2 +

4
π2−4 > 1. Numerical computations are shown in Figure

1, in which it is seen that the lower bound is clearly the better one.

Proof. Let B and W be two independent Brownian motions and define

Mp(x) =

∫ +∞

0

e−t/2E

[(∫ t

0

1{(x+Bu)Wu>0}du

)p
]
dt

so that

E[Ap
2] =

Mp(0)

2p+1p!
.

9



Applying first the Markov property at the stopping time Tx = inf{u ≥ 0, x + Bu = 0} and Fubini’s
theorem, we deduce that

E

[(∫ t

0

1{(x+Bu)Wu>0}du

)p
]

= E

[(∫ t

0

1{Wu>0}du

)p

1{Tx>t}

]
+ E

[(∫ Tx

0

1{Wu>0}du+

∫ t

Tx

1{(x+Bu)Wu>0}du

)p

1{Tx≤t}

]

= tpE [Ap
1]P(Tx > t) +

p∑

k=0

(
p

k

)
E



(∫ Tx

0

1{Wu>0}du

)p−k (∫ t−Tx

0

1
{B̂s(WTx+Ŵs)>0}

du

)k

1{Tx≤t}




where B̂ and Ŵ are two independent Brownian motions, independent from B and W . We now take the
Laplace transform of both sides. Applying the Fubini-Tonelli theorem and a change of variable, we obtain

Mp(x) = E [Ap
1]

∫ +∞

0

e−t/2tpP(Tx > t)dt+

p∑

k=0

(
p

k

)
E


e−Tx/2

(∫ Tx

0

1{Wu>0}du

)p−k

Mk(WTx
)




= Rp−1(x) + E

[
e−Tx/2Mp(WTx

)
]

where, by scaling, Rp−1 is defined by

Rp−1(x) = E[Ap
1]

∫ +∞

0

e−t/2tpP(Tx > t)dt+

p−1∑

k=0

(
p

k

)
E

[
e−Tx/2 T p−k

x

(∫ 1

0

1{Wu>0}du

)p−k

Mk(
√
TxW1)

]
.

We thus obtain the relation, since E
[
e−Tx/2

]
= e−|x|,

Mp(x) −Mp(0) = Rp−1(x)− (1 − e−|x|)Mp(0) + E

[
e−Tx/2(Mp(WTx

)−Mp(0))
]
. (7)

The expectation on the right-hand side may be computed to give

E

[
e−Tx/2(Mp(WTx

)−Mn(0))
]
= 2

∫ +∞

0

x√
2πt3

e−
x2

2t −t/2dt

∫ +∞

0

1√
2πt

e−
z2

2t (Mp(z)−Mp(0))dz

= 2

∫ +∞

0

x

π

K1(
√
x2 + z2)√

x2 + z2
(Mp(z)−Mp(0))dz

where Kν denotes the modified Bessel function of the second kind of order ν. Integrating (7) with respect
to K0(x)

dx
x , we deduce from the formulae [5, p.377 n0(33)] and [7, p.695 n0(9)]

∫ +∞

0

K1(
√
x2 + z2)√

x2 + z2
K0(x)dx =

π

2z
K0(z) and

∫ +∞

0

(1 − e−x)K0(x)
dx

x
=

π2

8

that
∫ +∞

0

(Mp(x)−Mp(0))K0(x)
dx

x
=

∫ +∞

0

(Rp−1(x)−(1−e−|x|)Mp(0))K0(x)
dx

x
+

∫ +∞

0

K0(z)(Mp(z)−Mp(0))
dz

z

hence

Mp(0) =
8

π2

∫ +∞

0

Rp−1(x)K0(x)
dx

x
. (8)

Remark 8. Note that we might have used the Kontorovitch-Lebedev transform (see for instance [11]) to
get a recurrence relation between Mp(x) and Rp−1(x) :

Mp(x) =
2

π2

∫ +∞

0

cosh(πγ/2)

cosh(πγ/2)− 1
Kiγ(x)

(∫ +∞

0

Kiγ(z)Rp−1(z)
dz

z

)
γ sinh(πγ)dγ

but this leads to quite complicated calculations, even for p = 3.

10



We shall rather find bounds on Rp−1. Plugging the expression of Rp−1 in (8), we first need to compute :

∫ +∞

0

(∫ +∞

0

e−t/2tpP(Tx > t)dt

)
K0(x)

dx

x

=

∫ +∞

0

e−t/2tpdt

∫ +∞

t

1

4s
es/4K0(s/4)ds

=

∫ +∞

1

du

4u

∫ +∞

0

tpe−t(2−u)/4K0(ut/4)dt

= 2p−1√π
(Γ(p+ 1))2

Γ(p+ 3/2)

∫ +∞

1
2F1

[
p+ 1, 1/2

p+ 3/2
; 1− u

]
du

u
(see [7, p.700])

= 2p−1
√
π
(Γ(p+ 1))

2

Γ(p+ 3/2)

∫ 1

0
2F1

[
p+ 1, 1/2

p+ 3/2
; 1− 1

x

]
dx

x

= 2p−1
√
π
(Γ(p+ 1))

2

Γ(p+ 3/2)

∫ 1

0
2F1

[
1/2, 1/2

p+ 3/2
; 1− x

]
dx√
x

(using Pfaff’s formula)

= 2p
√
π
(Γ(p+ 1))

2

Γ(p+ 3/2)
3F2

[
1/2, 1/2, 1

p+ 3/2, 3/2
; 1

]
(see [7, p.813]).

Next from Section 3 and the proof of monotony of the moments, we deduce that

Mk(0) ≤ Mk(
√
TxW1) ≤ Mk(+∞)

hence, going back to the expression of Rp−1, it remains to compute

∫ +∞

0

E

[
e−Tx/2 T p−k

x

]
K0(x)

dx

x
=

∫ +∞

0

K0(x)
dx

x

∫ +∞

0

x√
2πt3

tp−ke−t/2e−
x2

2t dt

= 4p−k−1

∫ +∞

0

tp−k−1e−tK0(t)dt

=

√
π

4
2p−k (Γ(p− k))

2

Γ(p− k + 1/2)
.

Therefore, we get the lower bound

E[Ap
2] =

1

2p+1p!

8

π2

∫ +∞

0

Rp−1(x)K0(x)
dx

x

≥ E[Ap
1]

2 p!

8

π2

√
π
(Γ(p+ 1))

2

Γ(p+ 3/2)
3F2

[
1/2, 1/2, 1

p+ 3/2, 3/2
; 1

]
+

p−1∑

k=0

√
π2−k (Γ(p− k))

2

Γ(p− k + 1/2)

(
p

k

)
E[Ap−k

1 ]2k+1k!E[Ak
2 ]

Then, using the explicit value of the moments of the arcsine distribution, we finally obtain after some
simplifications

E[Ap
2] ≥

1

2p+ 1

8

π2 3F2

[
1/2 1/2 1

p+ 3/2 3/2
; 1

]
+

1

π2

p−1∑

k=0

2

(p− k)2
E[Ak

2 ]

which is the announced result. The computations for the upper bound are similar.
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