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The celebrated Kardar-Parisi-Zhang (KPZ) equation describes the kinetic roughening of stochas-
tically growing interfaces. In one dimension, the KPZ equation is exactly solvable and its statistical
properties are known to an exquisite degree. Yet recent numerical simulations in the tensionless (or
inviscid) limit of the KPZ equation [Phil. Trans. Roy. Soc. A 380 20210090 (2022), Phys. Rev. E
106 024802 (2022)] unveiled a new scaling, with a critical dynamical exponent z = 1 different from
the KPZ one z = 3/2. In this Letter, we show that this scaling is controlled by a fixed point which
had been missed so far and which corresponds to an infinite non-linear coupling. Using the func-
tional renormalization group (FRG), we demonstrate the existence of this fixed point and show that
it yields z = 1. We calculate the correlation function and associated scaling function at this fixed
point, providing both a numerical solution of the FRG equations within a reliable approximation,
and an exact asymptotic form obtained in the limit of large wavenumbers. Both scaling functions
accurately match the one from the numerical simulations.

The Kardar-Parisi-Zhang (KPZ) equation is remark-
able for the large variety of systems in which it arises.
Originally derived to model the kinetic roughening of
stochastically growing interfaces [1], the KPZ equation
has turned out to describe the universal properties of sys-
tems as different as various growing interfaces [2–5], equi-
librium disordered systems [6], or turbulence in infinitely
compressible fluids [7]. Perhaps even more striking is its
recent observation in purely quantum systems, such as
exciton-polariton condensates [8] or Heisenberg quantum
spin chains [9, 10]. The ubiquity of the KPZ equation
promotes it to a fundamental model for non-equilibrium
critical phenomena and phase transitions [11–14].

After more than two decades of intense efforts both
in the mathematics and statistical physics communities,
the one-dimensional (1D) KPZ equation has been solved
exactly, and its statistical properties are now extensively
charted [15]. In 1D, the critical exponents of the KPZ
equation, roughness exponent χ and dynamical exponent
z, are fixed by the symmetries to the exact values χ = 1/2
and z = 3/2. The two-point correlation function has
been calculated exactly [16]. The probability distribution
of the KPZ height fluctuations is known, and reveals a
sensitivity to the global geometry of the interface, while
unveiling a deep connection with random matrix theory
[15]. Many other properties are also known, such as the
short-time behavior or the large deviation theory, to cite
a few. However, the 1D KPZ equation still reserves its
surprises.

In a recent paper [17], the authors performed numer-
ical simulations of the 1D Burgers equation [18], which
exactly maps to the KPZ equation, and studied the limit
of vanishing viscosity (inviscid limit). They unveiled a
crossover to a new scaling regime, characterized by a dy-
namical exponent z = 1, different from the KPZ value
z = 3/2. The same result was reported in [19] in the
equivalent tensionless limit of the KPZ equation, and

also in [20] in a strongly interacting 1D quantum bosonic
system. This scaling is absent in the current under-
standing of the 1D KPZ equation. In this Letter, we
fill this gap, and provide the theoretical explanation of
this missing scaling, using the functional renormalization
group (FRG). In the renormalization group framework,
the KPZ scaling is controlled by a fixed point, termed
the KPZ fixed point. Another fixed point exists, the
Edwards-Wilkinson (EW) fixed point, which corresponds
to the KPZ equation with vanishing non-linearity [21].
We show that the tensionless or inviscid limit of the KPZ
equation is controlled by a third unexplored fixed point,
which features the z = 1 critical dynamical exponent.
We calculate the scaling function at this fixed point, and
show that it very accurately coincides with the scaling
function computed in the numerics.
Let us first justify on simple grounds the existence of

this third fixed point. The KPZ equation gives the dy-
namics of a real-valued height field h(t,x) with x ∈ Rd:

∂th = ν∇2h+
λ

2

(
∇h
)2

+
√
Dη (1)

where ν, λ and D are three real parameters and η
is a Gaussian noise of zero mean and correlations
⟨η(t,x)η(t′,x′)⟩ = 2δ(t− t′)δd(x−x′). In fact, by rescal-
ing the time and the field, one can show that this equa-
tion only depends on one parameter g ≡ λ2D/ν3 (or
equivalently on the Reynolds number in the context of
the Burgers equation). Note that we assume, as in [17],
the existence of an UV cutoff scale, such that the solu-
tions of (1) remain well-defined in the inviscid limit and
thermalize to the equilibrium distribution [17, 22].
Within the RG framework, following Wilson’s original

idea, one progressively averages out fluctuations, shell
by shell in wavenumbers, starting from the high (ultra-
violet UV) wavenumber modes [23]. One thus obtains
the effective theory for the low (infrared IR) wavenum-
ber modes, i.e. at large distances. When the system is
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scale invariant, this corresponds to a fixed point of the
RG flow. Thus, the KPZ rough interface is described by
an IR fixed point, the KPZ one, which is fully attractive
in 1D and is characterized by z = 3/2 and χ = 1/2.
At zero non-linearity λ = g = 0, the equation (1) be-

comes the EW equation, and there exists the correspond-
ing fixed point describing the linear system, characterized
in 1D by z = 2 and χ = 1/2. This fixed point is repul-
sive, i.e. IR unstable. This is schematically depicted in
Fig. 1. From a topological view-point, it is clear that

FIG. 1. The three fixed points of the KPZ equation, the KPZ
one, which is IR stable, and the EW and IB ones, which are
both IR unstable, UV stable. Red arrows indicate the RG
flow.

there should also exist another fixed point, in the limit
g → ∞, which is IR unstable (and UV stable). Moreover,
let us emphasize that the inviscid limit is equivalent to
the limit g → ∞. It is therefore plausible that this third
fixed point governs the KPZ equation in this limit, and
we call it the inviscid Burgers (IB) fixed point. We show
in this paper that it is indeed the case, and that this fixed
point yields z = 1. Since it is genuinely non-perturbative,
a method such as the FRG is required to study it.

Functional Renormalization Group for KPZ –
The FRG is a modern and powerful implementation

of the RG, which allows for both functional and non-
perturbative calculations [24], and is widely used in many
domains [25, 26]. For the KPZ equation, the FRG yields
the strong-coupling fixed point describing the KPZ rough
phase in any dimension [27], whereas perturbation the-
ory, even resummed to all orders, fails to access it in
d ≥ 2 [28]. In 1D, the scaling function associated with
the two-point correlation function calculated from FRG
compares at a high precision level with the exact result
[29]. Moreover, it can be extended to arbitrary dimen-
sions where it allowed for the calculation of the scaling
function and other properties in d > 1 [30–32]. We thus
employ this method to investigate the IB fixed point.

The starting point of the FRG is the KPZ field the-
ory, which can be obtained from a standard procedure
introducing a response field h̃ [33–36], and reads

Z[J ] =

∫
DhDh̃ e−SKPZ[φ]+

∫
t,x

J ·φ (2)

SKPZ[φ] =

∫
t,x

{
h̃
[
∂th− ν∇2h− λ

2

(
∇h
)2]−Dh̃2

}
,

where φ = (h, h̃), J = (J, J̃) are the sources, and
∫
t,x

≡∫
dtddx [37]. The FRG formalism consists in progres-

sively integrating the fluctuations in Z, by suppressing

the contribution of low wavenumber modes q = |q | ≲ κ,
where κ is the RG scale, in the functional integral. This is
achieved by adding to SKPZ a quadratic term of the form
∆Sκ[φ] =

1
2

∫
φiRκ,ijφj , where Rκ is a 2 × 2 matrix,

whose elementsRκ,ij are called cutoff functions or regula-
tors. They are required to be large Rκ,ij(q ) ∼ κ2 at low
wavenumbers q ≲ κ such that these modes are damped
in the functional integral, and to vanish Rκ,ij(q ) = 0
at high wavenumbers q ≳ κ such that these modes are
unaffected. Its precise form is unimportant (we refer
to App. A for technical details). In the presence of
∆Sκ, Z becomes κ-dependent, and one defines the ef-
fective average action Γκ, as the Legendre transform of
Wκ = lnZκ, i.e. Γκ = −Wκ +

∫
t,x

J ·ψ−∆S[ψ], where
Ψ = (ψ, ψ̃) =

〈
φ
〉
. The ∆S[ψ] term, with the require-

ment that the cutoff functions diverge at the microscopic
scale κ = Λ and vanish at κ = 0, ensures that Γκ identi-
fies with the microscopic KPZ action (2) at κ = Λ, and
becomes the full Γ, which encompasses all the statistical
properties of the system, in the limit κ → 0. The evolu-
tion of Γκ with the RG scale in between these two scales
is given by the Wetterich exact RG equation [24]

∂κΓκ =
1

2
Tr

∫
∂κRκ ·Gκ , Gκ ≡

[
Γ(2)
κ +Rκ

]−1

, (3)

where Γ
(2)
κ is the Hessian of Γκ. The power of the FRG

formalism is that this equation can be solved using non-
perturbative and functional approximation schemes [26].

Flow diagram of the 1D KPZ equation –
Let us confirm the existence of the IB fixed point. For

this, the simplest approximation, which consists in con-
sidering the flow of the original parameters ν, λ and D
only, suffices. The corresponding ansatz for Γκ reads

Γκ =

∫
t,x

{
ψ̃
[
∂tψ− νκ∇2ψ− λκ

2

(
∇ψ
)2]−Dκψ̃

2
}
. (4)

From this ansatz, one deduces, measuring in units of κ,
that the frequency scales as ω ∼ κ2νκ, and that the

fields have scaling dimensions [ψ̃] =
(
κd+2D−1

κ νκ
)1/2

and

[ψ] =
(
κd−2Dκν

−1
κ

)1/2
. One can show that the coupling

λ is not renormalized, i.e. λκ = λ at all scales, due
to the statistical tilt symmetry of the KPZ equation,
or equivalently the Galilean invariance of the Burgers
equation [29, 38]. Defining the anomalous dimensions
ηνκ = −∂s ln νκ and ηDκ = −∂s lnDκ, with s = ln(κ/Λ)
the RG ‘time’, one deduces that the critical exponents
are obtained as z = 2− ην∗ and χ = (2− d− ην∗ + ηD∗ )/2,
where ∗ denotes fixed-point values [27]. One then defines
the dimensionless effective coupling ĝκ = κd−2λ2Dκ/ν

3
κ.

Its flow equation is given by ∂sĝκ = ĝκ
(
d−2−ηDκ +3ηνκ

)
.

The expressions of ηνκ and ηDκ are obtained from pro-
jecting the exact flow equation (3) onto the ansatz (4).
The calculation is detailed in App. B. At a finite fixed
point 0 < ĝ∗ < ∞, one thus finds the exact identity
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z + χ = 2, whereas the exponent values are not con-
strained if ĝ∗ vanishes or diverges. Moreover, in 1D, the
accidental time-reversal symmetry further imposes that
Dκ = νκ [29, 38], and thus ηDκ = ηνκ ≡ ηκ, which leads to
χ = η∗ = 1/2. We require this symmetry to be preserved
for all values of ν, such that the inviscid limit corresponds
to a joined limit ν → 0, D → 0 with ν/D fixed, as in
[17]. This yields that the stationary solution is a Brow-
nian in space and χ = 1/2 for all ν. The flow equation
for ĝκ also possesses the two fixed-point solutions ĝ∗ = 0
and ĝ∗ = ∞. In order to render this more explicit, let us
change variable to ŵκ = ĝκ/(1 + ĝκ). The flow equation
for ŵκ reads ∂sŵκ = ŵκ (1− ŵκ)

(
2ηκ − 1

)
. The explicit

equation for ηκ can be found in App. A, which shows that
it is vanishes for ŵκ = 0. It is manifest that this equa-
tion possesses the three following fixed-point solutions:
i) EW with ŵ∗ = 0, η∗ = 0 and thus zEW = 2, ii) KPZ
with 0 < ŵ∗ < 1, η∗ = 1/2 and thus zKPZ = 3/2, iii) IB
with ŵ∗ = 1. However, η∗ is not fixed in this case by the
fixed point condition ∂sŵκ = 0 and has to be calculated
from the flow. While it provides the confirmation of the
scenario schematically depicted on Fig. 1, this simple ap-
proximation is not sufficient to reliably conclude on the
value of zIB (see App. A). We now show how to determine
this value.

FRG flow equations within the NLO approximation. –

In order to have a quantitative description of the three
fixed points, we resort to a refined approximation, intro-
duced in [30] and called next-to-leading-order (NLO) ap-
proximation. The NLO ansatz consists in replacing in (4)
the effective parameters νκ and Dκ by full effective func-
tions fνκ (ω, p) and f

D
κ (ω, p) respectively. In 1D, the time-

reversal symmetry imposes fνκ = fDκ ≡ fκ(ω, p), and
there is only one anomalous dimension ηκ = −∂s lnDκ.
The corresponding NLO equations are derived in App. B.
We numerically solve the flow equation for the dimension-
less function f̂κ(ω̂, p̂) = fκ(ω/(κ

2Dκ), p/κ)/Dκ, together
with the equation for ĝκ and ηκ, on a discretized grid
(ω̂, p̂) starting from the initial condition f̂Λ(ω̂, p̂) = 1
and ĝΛ at the microscopic scale κ = Λ. The numer-
ical integration is detailed in App. A. For any initial
value ĝΛ, the flow reaches in the IR the KPZ fixed
point. One can compute from it the correlation function

C̄(ϖ, p) = F
[〈(

h(t′,x′)−h(t,x)
)2〉]

(with F the Fourier

transform) as C̄(ϖ̂, p̂) = 2f̂∗(ϖ̂, p̂)/
(
ϖ̂2 + p̂4f̂2∗ (ϖ̂, p̂)

)
.

The dynamical exponent can be probed through the half-
frequency, defined as Ĉ(ϖ̂1/2(p), p̂) = Ĉ(0, p̂)/2, which

shows the expected KPZ scaling ϖ1/2 ∼ p̂3/2. Fourier
transforming back in time the correlation function, one
obtains that the data for C(t̂, p̂)/C(0, p̂) all collapse onto
a single curve when plotted as a function of pt2/3, which
defines the universal KPZ scaling function. We show in
Fig. 2 that the NLO scaling function compares accu-
rately with the exact result from [16]. It reproduces in
particular the negative dip followed by a stretched expo-
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FIG. 2. Results from the numerical integration of the FRG
flow equations within the NLO approximation, obtained from
the UV flow at either small (EW) or large (IB) initial coupling
ĝΛ, and from the IR fixed point (KPZ). Half-frequency ω1/2

(shifted vertically for visibility) as a function of p, showing
the 3 dynamical scaling exponents z = 3/2 for KPZ, z = 2
for EW and z = 1 for IB. Associated scaling functions fKPZ ,
fEW and fIB , compared respectively with the exact results
from [16], with the analytical solution recalled in App. B, and
with numerical simulations from [17], respectively.

nential tail with superimposed oscillations.

Although the flow always reaches in the IR the KPZ
fixed point, irrespectively of the initial value of ĝΛ, the
beginning of the flow, referred to as the UV flow, is sen-
sitive to it. For small initial values ĝΛ ≪ ĝ∗, the UV
flow is dominated by the EW fixed point, while for large
ĝΛ ≫ ĝ∗, it is controlled by the IB one. We compute
the corresponding correlation functions, half-frequency,
and scaling functions by focusing on the UV flow start-
ing from either ĝΛ = 10−4 or ĝΛ = 104. The results
are displayed in Fig. 2. The half-frequency clearly shows
two other scaling regimes besides the KPZ one, which are
z = 2 for EW, and z = 1 for IB. The EW scaling function
exactly matches the expected result (recalled in App. B)
up to numerical precision. The IB scaling function is
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in close agreement with the data from the simulations
of [17], at least for pt ≲ 4, featuring in particular the
observed negative dip. This confirms that the IB fixed
point indeed yields a critical exponent z = 1. We have
thus unveiled the theoretical origin of the missing scaling.

Exact asymptotic form of the IB scaling function. –
The previous results were derived within the NLO ap-

proximation of the FRG. We now show that we can in
fact prove the z = 1 scaling in the UV, and obtain an
exact asymptotic form of the scaling function, by con-
sidering the limit of large wavenumber p. The proof is
in close analogy with the derivation presented in [39–41]
for the Navier-Stokes (NS) equation. In this case, it was
shown that the flow equation for any n-point correlation
function C(n) can be closed exactly in the limit of large
wavenumbers pi = |pi|. The closure relies on two fun-
damental ingredients. The first one is the presence of
∂κRκ in the exact FRG flow equations, which ensures
that they can be safely expanded in the limit of large pi
(see App. C for details). The second one is the existence
of extended symmetries, which exactly fix the expression
of the expanded vertices entering the flow equation at
large pi. Moreover, it turns out that the resulting closed
flow equation for any C(n) can be solved at the fixed
point. This solution gives the exact time dependence of
C(n)({ti,pi}i=1,n) in the limit of large pi [40]. These
results were precisely confirmed for the two- and three-
point functions by direct numerical simulations [42, 43].
Moreover, these simulations showed that the regime of
validity of the large p expansion starts at wavenumbers
larger, but not too far from the inverse integral scale,
which means that it encompasses wavenumbers within
the universal inertial range down to the dissipative range.

To simply exploit the analogy with the NS case, let us
consider the action for the Burgers equation in 1D

SBurgers=

∫
t,x

{
v̄
[
∂tv + v∂xv − ν ∂2xv

]
−D

(
∂xv̄
)2 }

,

where the form of the noise follows from the mapping
with the KPZ equation [44][45]. This action shares
with the NS one an extended symmetry which is the
time-dependent Galilean symmetry: (t,x,v) → (t,x +
e(t),v − ė (t)), where e(t) is an arbitrary infinitesimal
time-dependent vector. Indeed, this transformation does
not leave the Burgers or NS actions strictly invariant,
but their variations are linear in the fields. In such a
case, one can derive exact relations, called Ward identi-
ties, amongst the vertices Γ(n). The Ward identities for
the Galilean extended symmetry entail that each n-point
vertex with a zero-wavevector associated with a velocity
field is exactly given in terms of (n − 1)-point vertices
[40, 46] and App. C. It turns out that in 1D, the Burg-
ers action also admits a time-dependent shift symmetry,
which is simply v̄ → v̄ + ē(t). This only holds in 1D be-
cause the advection term can be written in this dimen-
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FIG. 3. Asymptotic form of the IB scaling function obtained
from the solution of the exact FRG flow equation at large
wavenumber and small time, compared with the numerics
from [17].

sion only as a total derivative. This extended symmetry
also yields a set of exact Ward identities, which entail
that each n-point vertex with a zero-wavevector associ-
ated with a response velocity field exactly vanishes. All
these identities are explicitly derived in App. C.

After a calculation, reported in App. C, which is
lengthy but very similar to [39], one obtains that the
flow equation for the two-point function Cκ(t, p) is ex-
actly closed in the limit of large p. Moreover, it can be
solved at the fixed point, leading to the explicit form

C(t, p) = C(0, p)×

 exp
(
− µ0

(
pt
)2)

t≪ τ

exp
(
− µ∞ p2|t|

)
t≫ τ

, (5)

where µ0, µ∞ are non-universal constants, and τ is a
typical timescale (see App. C). Let us first focus on
the small time expression. It shows that the data for
C(t, p)/C(0, p) should collapse when plotted as a func-
tion of pt. Thus, it demonstrates the z = 1 dynamical
scaling exponent. This behavior is reminiscent of the
effect of random sweeping in 3D turbulence, although
int the case of the 1D Burgers equation, the large scales
do not dominate. Furthermore, it gives the asymptotic
form of the associated scaling function, which is simply
a Gaussian. This result is compared in Fig. 3 with the
data from the numerical simulations of [17], using µ0 as
a fitting parameter. The numerical data are accurately
described by the Gaussian, as was already argued in [17],
at small pt ≲ 4, before the negative dip which is not fea-
tured by the Gaussian, but is reproduced by the NLO
solution. Let us now turn to the large time behavior.
In the numerical data, the initial Gaussian decay is such
that the scaling function rapidly reaches numerical noise
level, preventing one from resolving the large time regime
and accessing the crossover at large time. However, one
can notice that the quality of the collapse deteriorates at
large pt ≳ 4, which signals a change of behavior, as ex-
pected from the theoretical prediction (5) of a p2t scaling
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at large time. This would require a better resolution to
be further investigated.

Conclusion. –
We have shown that the 1D KPZ equation, although

exactly solvable, still reveals unforseen features, as we
demonstrated the emergence of a new scaling z = 1. This
scaling arises from the inviscid Burgers fixed point which,
although unstable in the IR, controls the UV behavior of
the correlation function when the initial non-linearity is
large enough. We established this scaling by numerically
solving the FRG flow equations within the NLO approx-
imation, and by obtaining the exact asymptotic form of
the correlation function in the limit of large wavenumber.

The probability distributions of the height fluctuations
are not easily accessible within the FRG formalism. The
distributions in the inviscid limit have been studied nu-

merically in [17, 19] which showed that they are non-
Gaussian, but differ from the Tracy-Widom distributions
expected at the KPZ fixed point. We hope our findings
will trigger new works to obtain exact results on the dis-
tributions at the new fixed point. They also opens up
an uncharted territory which is the UV, or large non-
linearity, scaling behavior of the KPZ equation in higher
dimensions.

The authors thank B. Delamotte and N. Wschebor
for enlightening discussions. CF anf FV contributed
equally to this work. LC acknowledges support from
the French ANR through the project NeqFluids (grant
ANR-18-CE92-0019) and support from Institut Univer-
sitaire de France (IUF). FV acknowledges support from
QuantForm-UGA (grant ANR-21-CMAQ-003).

Appendix A: General FRG framework for the KPZ and Burgers equation

We study the KPZ field theory, which can be obtained from the Martin-Siggia-Rose Janssen de Dominicis formalism
[33–36]

Z[J ] =

∫
DhDh̃ e−SKPZ[φ]+

∫
t,x

J ·φ (A1)

SKPZ[φ] =

∫
t,x

{
h̃
[
∂th− ν∇2h− λ

2

(
∇h
)2]−Dh̃2

}
,

where φ = (h, h̃), J = (J, J̃) are the sources, and
∫
t,x

≡
∫
dtddx. Note that the derivation of the path integral

formulation involves a functional determinant. We choose Itō’s convention for the time discretization such that this
determinant is independent of the fields and can be absorbed in the functional measure Dφ [47].

The exact flow equation for the effective average action Γκ is given by

∂κΓκ =
1

2
Tr

∫
∂κRκ ·Gκ , Gκ ≡

[
Γ(2)
κ +Rκ

]−1

, (A2)

where Gκ, Rκ and Γ
(2)
κ are 2× 2 matrices in the field space Ψ = (ψ, ψ̃). The scalar fields ψ and ψ̃ can represent the

average values of the height field ψ = ⟨h⟩ and associated response field ψ̃ = ⟨h̃⟩ for the KPZ equation in any dimension,
or the velocity field ψ = ⟨v⟩ and associated response field ψ̃ = ⟨ṽ⟩ for the Burgers equation in one dimension. An
appropriate choice for the cutoff matrix to study these equations is, in Fourier space,

Rκ(ω,q) =

(
0 Mκ(q)

Mκ(q) Nκ(q)

)
. (A3)

One can show that this form is compatible with causality constraints [48], and it satisfies the Galilean symmetry.
For the KPZ equation, one can parametrize the cutoff functions as Mκ(q) = q2Mκ(q) and Nκ(q) = −2Nκ(q), where
q = |q |. Then, in one dimension, the additional time reversal symmetry simply imposes Nκ = D

ν Mκ [27, 29]. Note
that the regulator matrix can also be chosen ω-dependent, provided it satisfies the causality and symmetry constraints.
One defines the vertex functions

Γ(m,n)
κ (t1,x1, · · · , tm+n,xn+m) =

δm+nΓκ

δψ(t1,x1) · · · δψ(tm,xm)δψ̃(tm+1,xm+1) · · · δψ̃(tm+n,xm+n)
. (A4)

Because of translational invariance in space and time, their Fourier transforms take the form

Γ(m,n)
κ (ω1,q1, · · · , ωm+n,qn+m) = (2π)d+1δ

(
m+n∑
ℓ=1

ωℓ

)
δd

(
m+n∑
ℓ=1

qℓ

)
Γ̄(m,n)
κ (ω1,q1, · · · , ωm+n−1,qn+m−1) , (A5)
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where the last frequency and momentum of Γ̄
(m,n)
κ are implicit as they are fixed by the conservation of the total

frequency and momentum. The Hessian of Γκ corresponds in Fourier space to the matrix

Γ̄(2)
κ (ω,q) =

(
0 Γ̄

(1,1)
κ (ω,q)

Γ̄
(1,1)
κ (−ω,q) Γ̄

(0,2)
κ (ω,q)

)
. (A6)

Note that because of causality, Γ̄
(2,0)
κ is always zero, and more generally Γ̄

(m,0)
κ = 0 [48]. The propagator Ḡκ in Fourier

space is simply the matrix inverse of [Γ̄
(2)
κ +Rκ] given by

Ḡκ(ω,q) =

(
C̄κ(ω,q) R̄κ(ω,q)
R̄κ(−ω,q) 0

)
, R̄κ(ω,q) =

1

Γ̄
(1,1)
κ (−ω,q) +Mκ(q)

, C̄κ(ω,q) = − Γ̄
(0,2)
κ (ω,q) +Nκ(q)∣∣Γ̄(1,1)

κ (ω,q) +Mκ(q)
∣∣2 .

(A7)
The function C̄κ = ⟨hh⟩c (or ⟨vv⟩c) is the connected correlation function and R̄κ = ⟨h̃h⟩c (or ⟨ṽv⟩c) is the connected
response function.

The exact flow equations for the two-point vertex functions Γ̄
(2)
κ are obtained by taking two functional derivatives

of (A2) with respect to the fields Ψα and Ψβ . This yields in Fourier space

∂sΓ̄
(2)
κ,αβ(ϖ,p) =

1

2
Tr

[
∂̃s

∫
ω,q

Ḡκ(ω,q) ·
{
Γ̄
(4)
κ,αβ(ϖ,p,−ϖ,−p, ω,q)

− Γ̄(3)
κ,α(ϖ,p, ω,q) · Ḡκ(ϖ + ω,p+ q) · Γ̄(3)

κ,β(−ϖ,−p, ϖ + ω,p+ q)
}]

, (A8)

where the operator ∂̃s only acts on the regulators, i.e. ∂̃s ≡ ∂sRκ,ij
∂

∂Rκ,ij
, and s = ln(κ/Λ) is the RG “time”. The

3- and 4-point vertices Γ̄
(3)
κ,α and Γ̄

(4)
κ,αβ are written as 2× 2 matrices, the remaining fields being fixed to the external

ones (labeled by the indices α and β).

The different terms involved in the flow equation (A8) can be represented as diagrams. For this, let us represent the
field ψ by a line carrying an ingoing arrow and the response field ψ̃ by a line carrying an outgoing arrow. With this

convention, the propagator components Rκ and Cκ in (A7), and the vertex functions Γ
(3)
κ and Γ

(4)
κ can be represented

as shown in Fig. 4.

•Cκ Rκ

Γ
(2,1)
κ Γ

(1,2)
κ Γ

(0,3)
κ

Γ
(2,2)
κ Γ

(3,1)
κ Γ

(1,3)
κ Γ

(0,4)
κ

FIG. 4. Diagrammatic representation of propagators and vertices, lines with ingoing arrows indicate the field ψ, and lines with
outgoing arrows indicate the response field ψ̃. The propagator Cκ is emphasized with a dot.

Performing the matrix products and the trace in (A8) for α = β = 2 leads to the exact flow equation for Γ̄
(0,2)
κ ,

which is represented diagrammatically in Fig. 5 (without the combinatorial factors).

Similarly, performing the matrix products and the trace in (A8) for α = 1 and β = 2 leads to the exact flow

equation for Γ̄
(1,1)
κ , which is represented diagrammatically in Fig. 6.

Appendix B: Flow equations for the KPZ equation within different approximations

In this section, we consider several approximations for the KPZ flow equations, which are appropriate to describe
the different regimes considered in the main paper.
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(a)

•

∂sΓ
(0,2)
κ = ∂̃s

{
+

(b)

−

(c)

•

•

−

(d)

−

(e)

−

(f)

• }

FIG. 5. Diagammatic representation of the flow equation of Γ̄
(0,2)
κ which is given by the component α = β = 2 of the exact

flow equation (A8).

(a)

•

∂sΓ
(1,1)
κ = ∂̃s

{
+

(b)

−

(c)

•

−

(d)

−

(e)

}

FIG. 6. Diagammatic representation of the flow equation of Γ̄
(1,1)
κ which is given by the component α = 1, β = 2 of the exact

flow equation (A8).

1. Flow equations in the simplest approximation

The simplest possible approximation consists in only considering renormalized couplings, which means that the
original parameters λ, D and ν of the KPZ equation are promoted to κ-dependent effective parameters λκ, Dκ and
νκ. The corresponding ansatz for Γκ reads

Γκ =

∫
t,x

{
ψ̃
[
∂tψ − νκ∇2ψ − λκ

2

(
∇ψ
)2]−Dκψ̃

2
}
. (B1)

With this ansatz, one obtains

Γ̄(1,1)
κ (ω,q) = iω + νκq

2 , Γ̄(0,2)
κ (ω,q) = −2Dκ , (B2)

and the only non-vanishing vertex function is the one present in the original action

Γ̄(2,1)
κ (ω1,q1, ω2,q2) = λκq1 · q2 . (B3)

One can show that the Galilean invariance imposes that λ is not renormalized, i.e. that λκ ≡ λ at all scales [29, 38].
The flows of νκ and Dκ can be defined as

∂sDκ = −1

2
∂sΓ̄

(0,2)
κ (ϖ,p)

∣∣∣
ϖ=0,p=0

, ∂sνκ =
1

p 2
∂sΓ̄

(1,1)
κ (ϖ,p)

∣∣∣
ϖ=0,p=0

. (B4)

Let us now focus on one dimension (1D). In 1D, the time reversal symmetry imposes that Dκ ≡ D
ν νκ, and their

flows are equal [29]. Inserting (A7) with (B2) and (B3) in (A8), one obtains from (B4)

∂sνκ = 2 g

∫
ω,q

∂sMκ(q) q
4h(q)

ω2 −
(
q2hκ(q)

)2(
ω2 +

(
q2hκ(q)

)2)3 , hκ(q) = νκ +Mκ(q) , (B5)

with g = λ2D/ν3. Carrying out the frequency integral yields

∂sνκ = −g
∫ ∞

−∞

dq

2π

∂sMκ(q)

4 q2hκ(q)
. (B6)

In order to study the fixed point, one introduces dimensionless quantities, denoted with a hat symbol. Momenta are
measured in units of κ, e.g. q̂ = q/κ and frequencies in units of κ2νκ, e.g. ω̂ = ω/(κ2νκ). The cutoff function can be
written as Mκ(q) = νκm̂(y) with y = q2/κ2, and thus

∂sMκ(q) = −νκ
(
ηκm̂(y) + 2y m̂′(y)

)
. (B7)
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0

0,2

0,4

0,6

0,8

1

w
κ

^
 

EW

IB

KPZ

FIG. 7. Flow of the coupling ŵκ as a function of the RG time s within the simple approximation of Sec. B 1. The arrows
towards decreasing s indicate IR flows, which always lead to the KPZ fixed-point for s→ −∞. The arrows towards increasing
s indicate UV flows, which lead to either the EW or IB fixed points depending on the initial value ŵΛ of the coupling.

One obtains for the running anomalous dimension ηκ

ηκ ≡ −∂s ln νκ = − ĝκ
8π

∫ ∞

0

dy
ηκm̂(y) + 2y m̂′(y)

y3/2
(
1 + m̂(y)

)2 , (B8)

with the dimensionless coupling ĝκ = κ−1g/ν2κ. One deduces the explicit expression for ηκ as

ηκ =
ĝκI0

1 + ĝκI1
, I0 = − 1

4π

∫ ∞

0

dy
m̂′(y)

y1/2
(
1 + m̂(y)

)2 , I1 =
1

8π

∫ ∞

0

dy
m̂(y)

y3/2
(
1 + m̂(y)

)2 . (B9)

It is clear that the two integrals I0 and I1 depend on the choice of the cutoff function m̂(y). For a typical choice
m̂(y) = 1/(ey − 1), one obtains for example I0 = 1/(4

√
π) and I1 = (

√
2− 1)/(4

√
π), but they can take roughly any

value for other choices, such that the value of η∗ cannot be properly determined within this approximation. The flow
equation for ĝκ reads

∂sĝκ = ĝκ
(
− 1 + 2ηκ

)
, (B10)

or equivalently the one for ŵκ = ĝκ/(1 + ĝκ) is given by

∂sŵκ = ŵκ

(
1− ŵκ

)(
− 1 + 2ηκ

)
. (B11)

One can readily check that it yields the three fixed point solutions EW (ŵ∗ = 0), KPZ (η∗ = 1/2, 0 < ŵ∗ < 1) and IB
(ŵ∗ = 1) presented in the main paper. The flow equations (B11), (B9) can also be integrated numerically, the result
is shown in Fig. 7. Starting from any initial condition ŵΛ, the flow reaches in the IR when κ→ 0, i.e. s→ −∞, the
KPZ fixed point ŵ∗ ≡ ŵKPZ, which is thus fully attractive and stable. To evidence the other fixed points, which are
IR unstable, one can run the flow backwards, towards the UV. Depending on the initial condition ŵs0 at some large
s0 ≲ −20, the flow either reaches the EW fixed point with ŵ∗ = 0 for any ŵs0 < ŵKPZ, or it leads to the IB fixed
point with ŵ∗ = 1 for any ŵs0 > ŵKPZ. This thus confirms the existence of the IB fixed point.

2. Flow equations in the next-to-leading order approximation

Whereas the simple approximation presented in the previous section suffices to demonstrate the existence of the
IB fixed point, it does not allow to obtain quantitative results for the statistical properties of the system at this fixed
point, in particular the critical exponent zIB and the two-point correlation function. Let us present a more refined
approximation, referred to as next-to-leading order (NLO), which was introduced in [30], and which will be used in
the numerical procedure detailed in Sec. B 3. The NLO approximation was shown to yield accurate results for the
scaling function at the KPZ fixed point in one dimension, where it can be compared with exact results [30]. Moreover,
this approximation can be implemented in any dimension and was used to obtain the scaling functions at the KPZ
fixed point in dimensions two and three. These results were subsequently confirmed with great precision in numerical
simulations [49–51]. We refer the reader to [30] for a detailed presentation and justification of this approximation.
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Let us mention that in 1D, a yet finer approximation, called SO (second order) was devised in [29] and was shown to
reproduce with even greater accuracy, down to very fine details of the tails, the exact result from [16] for the KPZ
scaling function.

The NLO approximation corresponds to the following ansatz

Γκ =

∫
t,x

{
ψ̃
[
∂tψ − fνκ (∂t,∇)∇2ψ − λκ

2

(
∇ψ
)2]− fDκ (∂t,∇)ψ̃2

}
. (B12)

The Galilean symmetry yields again that λκ ≡ λ is not renormalized. From the NLO ansatz, one obtains in Fourier
space

Γ̄(1,1)
κ (ω,q) = iω + fνκ (ω,q )q 2 , Γ̄(0,2)

κ (ω,q ) = −2fDκ (ω,q) , (B13)

and the only non-vanishing vertex function is still Γ
(2,1)
κ given by (B3).

At NLO, the only diagram contributing to the flow equation of Γ̄
(0,2)
κ is thus (c)

∂sΓ̄
(0,2)
κ = − ∂̃s

•

•

In 1D, the time reversal symmetry further imposes fDκ = D
ν f

ν
κ ≡ D

ν fκ [29, 30]. Inserting (A7) with (B13) and (B3)
in (A8), one obtains

∂sfκ(ϖ, p) ≡ Iκ(ϖ, p) = 2 g

∫
ω,q

∂sMκ(q) q
2

(p+ q)2hκ(ϖ + ω, p+ q)
[
ω2 −

(
q2hκ(ω, q)

)2](
ω2 +

(
q2hκ(ω, q)

)2)2(
(ϖ + ω)2 +

(
(p+ q)2hκ(ϖ + ω, p+ q)

)2)2
hκ(ω, q) = fκ(ω, q) +Mκ(q) . (B14)

One introduces the dimensionless function f̂κ(ϖ̂, p̂) = fκ(ϖ = νκκ
2ϖ̂, p = κp̂)/νκ. Its flow equation reads

∂sf̂κ(ϖ̂, p̂) =
(
ηκ + p̂∂p̂ + (2− ηκ)ϖ̂∂ϖ̂

)
f̂κ(ϖ̂, p̂) + Îκ(ϖ̂, p̂) , (B15)

with Îκ(ϖ̂, p̂) = Iκ(ϖ, p)/νκ. The running anomalous dimension ηκ can be defined through the normalization con-

dition fκ(ϖ = 0, p = 0) = νκ, or equivalently f̂κ(ϖ̂ = 0, p̂ = 0) = 1. Its flow equation is thus obtained by setting

∂sf̂κ(ϖ̂ = 0, p̂ = 0) = 0 in (B15). In fact, the NLO approximation includes a further simplification, which stems from

neglecting the frequency dependence of the function ĥκ within the integral. This is justified because the variation
of ĥ with the frequency is small in general, and is discussed in more details in [30]. This simplification amounts to

replacing within the integrals ĥκ(Ω, Q) with k̂κ(Q) ≡ ĥκ(0, Q) for any configuration (Ω, Q). This replacement allows
one to carry out analytically the frequency integral. This leads to the explicit expression for ηκ

ηκ =
ĝκI0

1 + ĝκI1
, I0 = − 1

4π

∫ ∞

0

dy
m̂′(y)

y1/2
(
k̂κ(y)

)2 , I1 =
1

8π

∫ ∞

0

dy
m̂(y)

y3/2
(
k̂κ(y)

)2 , k̂κ(y) = f̂κ(0, y) + m̂κ(y) .

(B16)
These flow equations can be solved numerically, as we now describe.

3. Numerical integration of the NLO flow equations

In order to solve the NLO flow equations (B15), (B10) and (B16), we use the numerical scheme introduced in Ref.
[30]. The integration in the RG time s = ln(κ/Λ) is performed with an explicit Euler time stepping with ds = 10−4,

starting at s = 0 (κ = Λ) from the initial condition f̂Λ(ϖ̂, p̂) ≡ 1 with a fixed value of ĝΛ, until a fixed point is reached
(typically for s ≲ −20). The dimensionless frequency ϖ̂ and momentum p̂ are discretized on a logarithmic grid of

Nϖ ×Np points in [0, ϖ̂max]× [0, p̂max], and the function f̂κ(ϖ̂, p̂) is represented as a Nϖ ×Np matrix. A third order

polynomial spline is used to compute f̂κ(ϖ̂+ ω̂, p̂+ q̂) for momenta and frequencies which do not fall on the tabulated
grid points. This spline is also used to compute the derivatives in the linear part of (B15).

To compute the integrals Îκ(ϖ̂, p̂) in (B15), the NLO simplification for the frequency dependence is used, which

consists in the replacement f̂κ(Ω̂, Q̂) → f̂κ(0, Q̂) for all configurations Ω̂ and Q̂ inside the integrands. This is exploited
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to perform the integration over the internal frequency ω̂ analytically. The integral over the internal momentum q̂ is
computed using a Gauss-Legendre quadrature. Because of the insertion of the scale derivative of the regulator, the
remaining integrand, after frequency integration, is a smooth function which is exponentially suppressed for q̂ ≫ 1.
Followingly, the integral can be cut at q̂ ≃ 6 without loss of precision. We now present the results.

a. The KPZ fixed point

For any initial value of ĝΛ, the flow reaches a fixed point, where ĝκ → ĝ∗ and the function f̂κ(ϖ̂, p̂) converges to a

fixed form f̂∗(ϖ̂, p̂). A typical evolution with the RG time of f̂κ(ϖ̂, p̂) at a fixed ϖ̂ is shown in Fig. 8. One deduces
the correlation function as

C̄(ϖ̂, p̂) =
2f̂∗(ϖ̂, p̂)

ϖ̂2 + p̂4f̂2∗ (ϖ̂, p̂)
, (B17)

which is also represented in Fig. 8. To evidence the dynamical scaling exponent, one can compute the half-frequency,
defined as

C(ϖ̂1/2(p), p̂) =
1

2
C(0, p̂) , (B18)

which is displayed in Fig. 8. It follows the scaling ϖ̂1/2 ∼ p̂3/2 as expected for the KPZ fixed point. We then compute
the inverse Fourier transform in time of C̄(ϖ̂, p̂) defined, exploiting parity in ϖ̂, as

C(t̂, p̂) =

∫ ∞

0

dϖ̂

π
C̄(ϖ̂, p̂) cos(ϖ̂t̂ ) . (B19)

The data for C(t̂, p̂)/C(0, p̂) all collapse into a single one-dimensional curve, the universal KPZ scaling function, when
plotted as a function of the scaling variable p̂t̂2/3. This scaling function is compared in Fig. 8 with the exact curve
from [16]. The result for the more precise SO approximation from [29] is also shown for reference. Both the NLO and
SO curves are in precise agreement with the exact result. The inset magnifies the behavior of the tail of the function,
which shows that the SO approximation even reproduces down to very small amplitudes the details of this tail, which
follows a stretched exponential with superimposed oscillations on the scale p3/2.
The initial value of ĝΛ has no influence on the fixed point reached at the end of the flow, in the IR, which is always

the KPZ one. However, the beginning of the flow, in the UV, is sensitive to this value. For small values ĝΛ ≪ ĝ∗, one
expects the UV flow to be controlled by the EW fixed point, whereas for large values ĝΛ ≫ ĝ∗, one expects it to be
controlled by the IB fixed point. Let us determine the corresponding statistical properties.

b. The EW fixed point

Let us first emphasize that, since the EW equation is linear, the correlation function can be calculated exactly,
without resorting to RG. One obtains in Fourier space (in dimensionful variables)

C̄(ϖ, p) =
2D

ϖ2 + ν2p4
≡ D

ν2p4
F̊

(
ϖ

νp2

)
, F̊ (x) =

2

x2 + 1
. (B20)

The scaling form for C(t, p) reads

C(t, p) =

∫ ∞

0

dϖ

π
C̄(ϖ, p) cos(ϖt) ≡ D

νp2
f(νpt1/2) , f(x) =

∫ ∞

0

dτ

π
F̊ (τ) cos(τx2) = e−x2

, (B21)

which is used for comparison with the numerical solutions.
We now integrate the NLO flow equations starting from a very small value of ĝΛ, typically 10−6. During the flow, ĝκ

grows monotonically to reach the KPZ fixed point. We focus on the beginning of the flow, before ĝκ exceeds typically
10−2, which is expected to be dominated by the EW fixed point. As shown in Fig. 9, the evolution of the function
f̂κ(ϖ̂, p̂) during this part of the flow is almost negligible, and one obtains a correlation function which essentially
keeps its bare form. The dynamical exponent is the bare one z = 2, as evidenced by the scaling of the half-frequency.
The corresponding dynamics is purely diffusive, not affected yet by the non-linearity. We show in Fig. 9 the scaling
function obtained from the collapse of the data for C(t̂, p̂)/C(0, p̂), which exactly matches the expected EW scaling
function given by (B21) up to numerical precision.
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FIG. 8. (Top left panel) Evolution of f̂κ(ϖ̂ = 0, p̂) with the RG flow within the NLO approximation, from the constant initial

condition f̂Λ(ϖ̂ = 0, p̂) = 1 to the IR fixed point which behaves at large p̂ as f̂∗(ϖ̂ = 0, p̂) ∼ p̂−1/2. (Top right panel) Correlation
function C(ϖ̂, p̂), and (bottom left panel) half-frequency ϖ̂1/2 as a function of p̂, which both show the KPZ dynamical exponent
ϖ ∼ pz with z = 3/2. (Bottom right panel) Collapse of the correlation function onto the KPZ scaling function, from FRG
within the NLO approximation (this work) and from the more refined SO approximation (from [29]), compared with the exact
result from [16].

c. The IB fixed point

We now integrate the NLO flow equations starting from a very large value of ĝΛ, typically 103. During the flow, ĝκ
decreases monotonically. We focus on the beginning of the flow, before ĝκ becomes smaller than typically 102, where
we expect it to be dominated by the IB fixed point. As shown in Fig. 10, the evolution of the function f̂κ(ϖ̂, p̂) during
this part of the flow is significant, and the function develops a negative dip after a finite RG time. The corresponding
correlation function shows a z = 1 dynamical exponent, confirmed by the scaling of the half-frequency. We show in
Fig. 10 the scaling function obtained from the collapse of the data for C(t̂, p̂)/C(0, p̂), which is in close agreement
with the data from the numerical simulations of [17], at least from pt = 0 to pt ≃ 4. It reproduces in particular the
negative dip observed in the data from the simulations. Both the data from the numerical simulations and from the
FRG at NLO saturate at a numerical error level ∼ 10−4−10−5 beyond this value. Hence, they are not precise enough
to resolve the behavior of the function at large time, and in particular to uncover the crossover to an exponential
decay predicted by the exact asymptotic FRG solution (C33).

Appendix C: Exact flow equations in the large wavenumber limit

In this section, we derive the exact FRG flow equation for the 2-point correlation function in the limit of large
wavenumber, and solve it at the fixed point. The calculations are similar to [39–41], to which we refer the reader for
further details. This calculation rigorously proves that z = 1 at the IB fixed point, and provides the exact asymptotic
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compared with the exact result (B21).

form of the IB scaling function. We first derive the Ward identities associated with extended symmetries, and then
show how they allow one to exactly close the FRG flow equations in the limit of large wavenumbers. In order to simply
exploit the analogy with the calculations available for the Navier-Stokes (NS) equation, we consider the Burgers action
rather than the KPZ one, which reads in one dimension:

SBurgers[v] =

∫
t,x

{
ṽ
[
∂tv + v∂xv − ν∂2xv

]
−D

(
∂xṽ
)2}

, (C1)

where D = Dλ2, and the conservative noise is inherited from the mapping with the KPZ equation. The two actions
are strictly equivalent, and the results we obtain in the following apply for both the KPZ and Burgers equations.

1. Ward identities associated with the extended symmetries

Extended symmetries correspond to general field and coordinate transformations under which the action is not
strictly invariant, but whose variation is linear in the fields. Such symmetries allow one to derive functional Ward
identities, from which can be deduced an infinite set of exact identities relating the different vertex functions (or
correlation functions) of the theory [46]. These relations can then be used to constrain any approximations, or even
lead to exact results, as here.

The Burgers action shares with the NS one a first extended symmetry which is the time-dependent Galilean
symmetry [27, 39, 52–54], corresponding to the following infinitesimal field transformation

δv(t, x) = −ϵ̇(t) + ϵ(t)∂xv(t, x) , δṽ(t, x) = ϵ(t)∂xṽ(t, x) , (C2)
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FIG. 10. (Top left panel) Evolution of f̂κ(ϖ̂ = 0, p̂) during the initial UV flow from a large value of ĝΛ = 103. (Top right panel)
Correlation function C(ϖ̂, p̂), and (bottom left panel) half-frequency ϖ̂1/2 as a function of p̂, which both show the IB dynamical
exponent ϖ ∼ pz with z = 1. (Bottom right panel) Collapse of the correlation function onto the IB scaling function, compared
with the result from the numerical simulations of Ref. [17].

where ϵ̇ = ∂tϵ. When ϵ(t) ≡ ϵ is an arbitrary constant, the transformation corresponds to a translation in space,
and when ϵ(t) ≡ ϵ× t it corresponds to the usual Galilean transformation. The transformation (C2) for an arbitrary
infinitesimal time-dependent function ϵ(t) realizes an extended symmetry, which leads to the functional Ward identity∫

x

{(
∂t + ∂xu(t, x)

) δΓκ

δu(t, x)
+ ∂xũ(t, x)

δΓκ

δũ(t, x)

}
= −

∫
x

∂2t ũ(t, x) ,

where u = ⟨v⟩, and ũ = ⟨ṽ⟩. By taking functional derivatives of this identity with respect to fields u or ũ, one deduces
the following general identities

Γ(m+1,n)
κ

(
· · · , ωℓ, pℓ = 0︸ ︷︷ ︸

ℓ=velocity index

, · · ·
)
= −

m+n∑
i=1

pi
ωℓ

Γ(m,n)
κ

(
· · · , ωi + ωℓ, pi︸ ︷︷ ︸

ithfield

, · · ·
)
. (C3)

These identities imply that any (m + 1)-point vertex with one zero wavevector carried by a velocity field can be
expressed exactly in terms of lower-order m-point vertices. In particular, we will employ the following identities

giving Γ̄
(3)
κ (using implicit momentum and frequency conservation) with a zero wavevector carried by a velocity field

Γ̄(2,1)
κ (ω,q = 0, ϖ, p) = − p

ω

(
Γ̄(1,1)
κ (ϖ + ω, p)− Γ̄(1,1)

κ (ϖ, p)
)

(C4)

Γ̄(1,2)
κ (ω,q = 0, ϖ, p) = − p

ω

(
Γ̄(0,2)
κ (ϖ + ω, p)− Γ̄(0,2)

κ (ϖ, p)
)
, (C5)
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and the ones giving Γ̄
(4)
κ with two vanishing wavevectors carried by velocity fields (obtained by applying twice (C3))

Γ̄(2,2)
κ (ω, q = 0,−ω,−q = 0, ϖ, p) =

p2

ω2

[
Γ̄(0,2)
κ (ϖ + ω, p)− 2Γ̄(0,2)

κ (ϖ, p) + Γ̄(0,2)
κ (ϖ − ω, p)

]
(C6)

Γ̄(3,1)
κ (ω, q = 0,−ω,−q = 0, ϖ, p) =

p2

ω2

[
Γ̄(1,1)
κ (ϖ + ω, p)− 2Γ̄(1,1)

κ (ϖ, p) + Γ̄(1,1)
κ (ϖ − ω, p)

]
. (C7)

The Burgers action admits another extended symmetry, which corresponds to the following infinitesimal time-
dependent shift of the response velocity field

δṽ(t, x) = ϵ̃(t) . (C8)

Let us emphasize that the NS action also admits a time-dependent shift symmetry in the response field sector (in the
form of a joint shift of the response velocity and response pressure fields), unveiled in [46], which is crucially rooted
in incompressibility. Indeed, this extended symmetry relies on a compensation between the variation of the advection
term and the variation of the term encoding incompressibility [46]. Since the Burgers equation is devoid of pressure,
a shift of the response velocity field cannot be absorbed by a simultaneous shift of the response pressure, and thus
the Burgers action is not invariant in general dimension under such a shift. However, in 1D, the advection term can
be written as ṽv∂xv = ṽ(∂xv

2)/2, such that this term turns out to be invariant under the shift (C8), and the overall
variation of the Burgers action is linear in the field. The corresponding functional Ward identity simply writes∫

x

δΓκ

δũ(t, x)
=

∫
x

∂tu(t, x) . (C9)

By taking one functional derivative of this identity with respect to u, and Fourier transforming, one obtains

Γ̄(1,1)
κ (ω, p = 0) = iω . (C10)

By further functional differentiations with respect to velocity and response fields, one deduces the infinite set of exact
identities

Γ̄(m,n)
κ

(
· · · , ωℓ, pℓ = 0︸ ︷︷ ︸

ℓ=response velocity index

, · · ·
)
= 0 , (C11)

which implies that any vertex of orderm+n > 2 with one zero wavevector carried by a response velocity field vanishes.
In one dimension, the Burgers action also admits the discrete time reversal symmetry, which corresponds to the

following transformation [27]

v(t, x) = −v(−t, x) , ṽ(t, x) = ṽ(−t, x)− ν

D
v(−t, x) . (C12)

It yields the functional identity

Γκ[v(t, x), ṽ(t, x)] = Γκ[−v(−t, x), ṽ(−t, x)−
ν

D
v(−t, x)] . (C13)

Taking functional derivative of this identity, Fourier transforming and using parity, one obtains for the 2-point functions

2ℜe
[
Γ̄(1,1)
κ (ω, q)

]
= − ν

D
Γ̄(0,2)
κ (ω, q) . (C14)

2. Exact closure in the limit of large wavenumbers

It turns out that the FRG flow equations can be controlled exactly in the limit of large wavenumbers thanks to
the presence of the regulator, which was first shown within the BMW framework [55–57], and thoroughly used in the
context of turbulence to obtain exact results for generic n-point correlation functions in the limit of large wavenumbers
[40, 41, 58, 59]. As explained in the main paper, the presence of the derivative of the regulator in the flow equation
cuts the internal momentum to values |q| ≲ κ. Thus, in the limit of large external momentum p≫ κ, one has |q| ≪ p,
and the vertices in the flow equation (eg. Eq. (A8) for the 2-point functions) can be expanded in powers of q. Indeed,
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the analyticity of all the vertices at any finite κ is ensured both in the IR and in the UV by the presence of the
regulator, such that they can be safely expanded [26]. One can show that this expansion is asymptotically exact in
the limit p → ∞ [57]. The condition of large wavenumber corresponds to p ≫ κ, and the RG scale κ ultimately
tends to zero, or to the inverse of a large scale beyond which fluctuations are negligible (eg. the integral scale L for
turbulence). Thus the large p region is expected to start at moderate values of p, within the universal regime, well
before the UV cutoff. In fact, it was shown in numerical simulations of Navier-Stokes turbulence that the large p
regime starts when the direct energy transfer from a forcing mode to an inertial range mode becomes negligible, which
is achieved for a wavenumber smaller but not too far from the inverse integral scale [42]. Thus, the large p regime
encompasses wavenumbers within the inertial range down to the dissipative range. For the Burgers equation, in order
to describe the UV sector, the relevant scale is the one separating the IR and the UV momenta, that we denote kc.

We consider the flow equations for the 2-point functions Γ̄
(1,1)
κ and Γ̄

(0,2)
κ , given by the exact equation (A8) and

represented in Fig. 5 and Fig. 6. Our aim is to show that each of the diagrams involved in these equations is either
negligible, or closed (expressed in terms of 2-point functions only) in the large p limit. Indeed, in this limit, one can
set q = 0 in all the vertices, where q is the internal wavevector, circulating in the loop. If this wavevector enters a
vertex on a ũ leg (represented by an outgoing arrow), then the corresponding vertex vanishes because of the Ward
identity (C11), and the whole diagram does not contribute to the flow equation. This is the case for the diagrams (b),
(d) and (e) both in Fig. 5 and in Fig. 6, which can be neglected in the large p limit. For the remaining diagrams, the
q = 0 wavevector enters each vertex on a u leg (represented by an ingoing arrow). Such vertex can be expressed in
terms of 2-point functions using the Ward identities related to the extended Galilean symmetry, as we now establish.

More precisely, to calculate a given diagram, one first write down all momentum configurations generated by the
matrix product in (A8), and then distribute in each the ∂̃s operator. This yields either a ∂̃sC̄κ(Q) or a ∂̃sR̄κ(Q), where
Q = ±q or Q = ±(p+q). When Q = ±(p+q), one can change variables in the integrals (q′ = ∓(p+q), ω′ = ∓(ϖ+ω))
such that it is always the momentum q which is cutoff in the loop. Even in the remaining diagrams, some terms turn
out to vanish because of (C11), that is the q momentum appears to enter a vertex on a ũ leg. We only detail below
the non-zero terms in all the remaining diagrams.

Flow of Γ̄
(1,1)
κ

The diagram (a) of Fig. 6 can be expressed, in the large p limit and using (C7), as

[
∂sΓ̄

(1,1)
κ (ϖ, p)

]
(a)

=
1

2

∫
ω,q

Γ̄(3,1)
κ (ω, q,−ω,−q,ϖ, p)∂̃sC̄κ(ω, q)

p→∞
=

1

2
p2
∫
ω

1

ω2

[
Γ̄(1,1)
κ (ω +ϖ, p)− 2Γ̄(1,1)

κ (ϖ, p) + Γ̄(1,1)
κ (−ω +ϖ, p)

]
∂̃s

∫
q

C̄κ(ω, q) . (C15)

The non-zero contribution of diagram (c) can be written as

[
∂sΓ̄

(1,1)
κ (ϖ, p)

]
(c)

=−
∫
ω,q

Γ̄(2,1)
κ (ω, q,ϖ, p)R̄κ(−ω −ϖ,−p− q)Γ̄(2,1)

κ (ω +ϖ, p+ q,−ω,−q) ∂̃sC̄κ(ω, q)

p→∞
= −p2

∫
ω

[
Γ̄
(1,1)
κ (ω +ϖ, p)− Γ̄

(1,1)
κ (ϖ, p)

ω

]2
R̄κ(−ω −ϖ, p) ∂̃s

∫
q

C̄κ(ω, q) , (C16)

where we replaced the vertices in the first line by their large p limit given by (C7). Summing up the two contributions
(C15) and (C16), we obtain

∂sΓ̄
(1,1)
κ (ϖ, p) = p2

∫
ω

{
−

[
Γ̄
(1,1)
κ (ω +ϖ, p)− Γ̄

(1,1)
κ (ϖ, p)

ω

]2
R̄κ(−ω −ϖ, p)

+
1

2ω2

[
Γ̄(1,1)
κ (ϖ + ω, p)− 2Γ̄(1,1)

κ (ϖ, p) + Γ̄(1,1)
κ (ϖ − ω, p)

]}
× ∂̃s

∫
q

C̄κ(ω, q) . (C17)
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Flow of Γ̄
(0,2)
κ

Similarly, the diagram (a) of Fig. 5 can be expressed, in the large p limit and using (C6), as[
∂sΓ̄

(0,2)
κ (ϖ, p)

]
(a)

=
1

2

∫
ω

Γ̄(2,2)
κ (ω, q,−ω,−q,ϖ, p)

∫
ω,q

∂̃sC̄κ(ω, q)

p→∞
=

1

2
p2
∫
ω

1

ω2

[
Γ̄(0,2)
κ (ω +ϖ, p)− 2Γ̄(0,2)

κ (ϖ, p) + Γ̄(0,2)
κ (−ω +ϖ, p)

]
∂̃s

∫
q

C̄κ(ω, q) . (C18)

The expression for the diagram (c) is obtained using (C4) for the two vertices, and reads[
∂sΓ̄

(0,2)
κ (ϖ, p)

]
(c)

= −
∫
ω,q

Γ̄(2,1)
κ (ω, q,−ω −ϖ,−p− q)C̄κ(ω +ϖ, p+ q)Γ̄(2,1)

κ (ω +ϖ, p+ q,−ω,−q) ∂̃sC̄κ(ω, q)

p→∞
= −p2

∫
ω

1

ω2

(
Γ̄(1,1)
κ (−ϖ, p)− Γ̄(1,1)

κ (−ϖ − ω, p)
)

×
(
Γ̄(1,1)
κ (ϖ, p)− Γ̄(1,1)

κ (ϖ + ω, p)
)
C̄κ(ω +ϖ, p) ∂̃s

∫
q

C̄κ(ω, q) . (C19)

Finally, the expression for the diagram (f) is obtained using (C4) and (C5) for the vertices, and reads[
∂sΓ̄

(0,2)
κ (ϖ, p)

]
(f)

= −
∫
ω,q

Γ̄(1,2)
κ (ω, q,ϖ, p)R̄κ(−ω −ϖ,−p− q)Γ̄(2,1)

κ (ω +ϖ, p+ q,−ω,−q) ∂̃sC̄κ(ω, q) + c.c.

p→∞
= −p2

∫
ω

[
Γ̄
(0,2)
κ (ω +ϖ, p)− Γ̄

(0,2)
κ (ϖ, p)

ω

]
×

[
Γ̄
(1,1)
κ (ω +ϖ, p)− Γ̄

(1,1)
κ (ϖ, p)

ω

]

× R̄κ(−ω −ϖ, p) ∂̃s

∫
q

C̄κ(ω, q) + c.c. , (C20)

where c.c. denotes the complex conjugate. Adding the three contributions (C18), (C19) and (C20) finally leads to

∂sΓ̄
(0,2)
κ (ϖ, p) = p2

∫
ω

{
−

∣∣∣∣∣ Γ̄(1,1)
κ (ϖ, p)− Γ̄

(1,1)
κ (ϖ + ω, p)

ω

∣∣∣∣∣
2

C̄κ(ω +ϖ, p)

− 2

[
Γ̄
(0,2)
κ (ω +ϖ, p)− Γ̄

(0,2)
κ (ϖ, p)

ω

]
×ℜ

{[
Γ̄
(1,1)
κ (ω +ϖ, p)− Γ̄

(1,1)
κ (ϖ, p)

ω

]
R̄κ(−ω −ϖ, p)

}

+
1

2ω2

[
Γ̄(0,2)
κ (ω +ϖ, p)− 2Γ̄(0,2)

κ (ϖ, p) + Γ̄(0,2)
κ (−ω +ϖ, p)

]}
× ∂̃s

∫
q

C̄κ(ω, q). (C21)

The two flow equations (C17) and (C21) for the 2-point functions are thus closed in the limit of large p, but they
are nonlinear. It turns out that they endow a much simpler form when expressed for the correlation functions rather

than for the Γ̄
(2)
κ . Indeed, using the definition (A7), one can calculate the flow equations for C̄κ and R̄κ, and one

finds, using parity and after some algebra

∂sC̄κ(ϖ, p) = p2
∫
ω

1

2ω2

[
C̄κ(ω +ϖ, p)− 2C̄κ(ϖ, p) + C̄κ(−ω +ϖ, p)

]
∂̃s

∫
q

C̄κ(ω, q)

∂sR̄κ(ϖ, p) = p2
∫
ω

1

2ω2

[
R̄κ(ω +ϖ, p)− 2R̄κ(ϖ, p) + R̄κ(−ω +ϖ, p)

]
∂̃s

∫
q

C̄κ(ω, q) . (C22)

Note that under this form, it is straightforward to check that these two equations preserve along the flow the time-
reversal symmetry which reads for the correlation and response functions

2ℜe
[
R̄κ(ϖ, q)

]
=
ν

D
C̄κ(ϖ, q) . (C23)

We now focus only on the equation for C̄κ. Fourier transforming back to real time, one obtains

∂sC̄κ(t, p) = −p2C̄κ(t, p)

∫
ω

cos(ωt)− 1

ω2
Jκ(ω) , Jκ(ω) = −∂̃s

∫
q

C̄κ(ω, q) . (C24)
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3. Fixed-point solution and IB scaling function

We can now derive the solution of (C24) at the IB fixed point. We introduce as before dimensionless variables
p̂ = p/κ, t̂ = tκ2−ηκ , and define the dimensionless correlation function via C̄κ(t, p) = κ−4+ηκĈκ(t̂ = tκ2−ηκ , p̂ = p/κ).
Its flow equation is given by[

∂s − (4− ηκ)− p̂∂p̂ + (2− ηκ)t̂∂t̂

]
Ĉκ(t̂, p̂) = −p̂2Ĉκ(t̂, p̂)

∫
ω

cos(ω̂t̂)− 1

ω̂2
Ĵκ(ω̂) . (C25)

The fixed-point equation corresponds to[
− (4− η∗)− p̂∂p̂ + (2− η∗)t̂∂t̂

]
Ĉ∗(t̂, p̂) = −p̂2Ĉ∗(t̂, p̂)

∫
ω

cos(ω̂t̂)− 1

ω̂2
Ĵ∗(ω̂) . (C26)

This equation can be simplified upon defining Ĉ∗(t̂, p̂) = p̂4−η∗Ĥ(p̂, ŷ) with ŷ = t̂p̂z∗ . The fixed-point equation for Ĥ
writes

∂p̂Ĥ(p̂, ŷ) = p̂Ĥ(p̂, ŷ)

∫
ω

cos(ŷω̂/pz∗)− 1

ω̂2
Ĵ∗(ω̂) . (C27)

The explicit solution can be obtained in the two limits of small and large time delays, which allow one to simplify the
integrals [40]. Indeed, at small time delays, one can expand the cosine in the integral, yielding

∂p̂Ĥ(p̂, ŷ) = −p̂1−2z∗ ŷ2α̂0Ĥ∗(p̂, ŷ) , α̂0 =
1

2

∫
ω

Ĵ∗(ω̂) . (C28)

The solution is given by

Ĥ(p̂, ŷ) = F0(ŷ) exp
(
− µ̂0p̂

2t̂2
)
, (C29)

with µ̂0 = α̂0/(2−2z∗). At large time delays, one can rewrite Ĵ∗(ω̂) in the integral as Ĵ∗(ω̂) = (Ĵ∗(ω̂)− Ĵ∗(0))+ Ĵ∗(0).
Since Ĵ∗ is a regular even function of ω̂, the term F (ω̂) = (Ĵ∗(ω̂)−Ĵ∗(0))/ω̂2 is an analytic function of ω̂. It follows that
its Fourier transform

∫
ω̂
cos(ω̂x̂)F (ω̂) decays exponentially in x̂, and its integral

∫
ω̂
F (ω̂) is a constant independent of

x̂. At large t, the integral in (C27) is thus dominated by the remaining term which writes

Ĵ∗(0)

∫ ∞

−∞

dω̂

2π

cos(ŷω̂/pz∗)− 1

ω̂2
= − Ĵ∗(0)

2

∣∣∣∣ ŷp̂z∗
∣∣∣∣ . (C30)

The fixed point equation is then

∂p̂Ĥ(p̂, ŷ) = −p̂1−z∗ |ŷ|α̂∞Ĥ∗(p̂, ŷ) , α̂∞ =
Ĵ∗(0)

2
. (C31)

The solution is given by

H(p̂, ŷ) = F∞(ŷ) exp
(
− µ̂∞p̂

2|t|
)
, (C32)

with µ̂∞ = α̂∞/(2− z∗). Neglecting the dependence in ŷ which is expected to be sub-dominant compared to p̂2 leads
to the solution for the dimensionfull correlation function

C(t, p) = C(0, p)×

 exp
(
− µ0

(
pt
)2)

t≪ τc

exp
(
− µ∞ p2|t|

)
t≫ τc

, (C33)

with µ0 = µ̂0/(kcτc)
2 and µ∞ = µ̂∞/(k

2
cτc) where kc is the typical momentum scale where the UV flow crosses over

to the IR one, and τc = (νk2−η∗
c )−1 the associated crossover time scale. Both expressions are exact in the large p

limit. The small time expression thus proves the z = 1 scaling in the UV and provides the asymptotic form of the
associated scaling function, which is a Gaussian in the variable pt. The large time expression predicts a crossover to
a new regime, which could be probed in numerical simulations with a higher resolution.
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