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Abstract

Estimating the human endpoint-impedance interacting with a physical environment provides

insights into goal-directed human movements during physical interactions. This work exam-

ined the endpoint-impedance of the upper limb during a hybrid ball-bouncing task with simu-

lated haptic feedback while participants manipulated an admittance-controlled robot. Two

experiments implemented a force-perturbation method to estimate the endpoint parameters

of 31 participants. Experimental conditions of the ball-bouncing task were simulated in a dig-

ital environment. One experiment studied the influence of the target height, while the other

explored the impedance at three cyclic phases of the rhythmic movement induced by the

task. The participants’ performances were analyzed and clustered to establish a potential

influence of endpoint impedance on performance in the ball-bouncing task. Results showed

that endpoint-impedance parameters ranged from 45 to 445 N/m, 2.2 to 17.5 Ns/m, and 227

to 893 g for the stiffness, damping, and mass, respectively. Results did not support such a

critical role of endpoint impedance in performance. Nevertheless, the three endpoint-imped-

ance parameters described significant variations throughout the arm cycle. The stiffness is

linked to a quasi-linear increase, with a maximum value reached before the ball impacts.

The observed damping and mass cyclic variations seemed to be caused by geometric and

kinematic variations. Although this study reveals rapid and within-cycles variations of end-

point-impedance parameters, no direct relationship between endpoint-impedance values

and performance levels in ball-bouncing could be found.

Introduction

Humans can adjust their limbs’ dynamic properties to achieve stable behavior in different

environments while maintaining dexterous performances [1–3]. Measuring human interac-

tion properties during various tasks is relevant to understanding the emergence of perturbed

goal-oriented movements. Replicating these behaviors can aid in designing bio-inspired

robotic control and offer insights into human motor control.
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Researchers have extensively studied the mechanical impedance of limbs under the control

prism [4–6], as it relates kinematics to forces, and enables modeling human movements during

physical interactions. However, studying mechanical impedance is strenuous since it cannot

be measured directly. Estimating impedance requires perturbing the limbs and comparing the

observed movement to an unperturbed trajectory. Two types of tasks can be easily distin-

guished: 1) static or isometric [7, 8], where the unperturbed pose is well known, and 2)

dynamic, where the estimation of the unperturbed trajectory is much more complex [9, 10].

The current paper focuses on the latter with hybrid movements that involve intermittent inter-

actions with the environment. The choice of modeling type is crucial for understanding.

To delve into the neural processes governing dynamic limb control, comprehensive models

are indispensable [11–14]. To account for passive muscle viscoelastic properties and active

behaviors induced by reflexes and motion, Latash and Zatsiorsky [14] explained that a single

joint would at least need 13 parameters. They considered two delays for the viscoelastic contri-

bution of both the short-latency monosynaptic reaction and the tonic stretch reflex, with their

respective stiffness and damping. Extending this analysis to multiple joints in movement

becomes exceedingly complex and practically unattainable with such advanced models.

Despite their limitations [15], elementary models, such as mass (M)—spring (K)–damper (B)

models (KBM or KBI) or Hill-type muscle models, have been shown to approach human

behavior [3] and performances [16]. These models do not intend to explain the complete

human motor control but rather reproduce some of its aspects. These simple models have

been widely studied at the endpoint level [1, 3, 7, 17], notably concerning impedance during

multi-joint movements [1, 17]. By decoupling these basic models from biological consider-

ations and adopting a behavioral approach, researchers have successfully analyzed perfor-

mance and expertise [17], learning [1, 16], and exploration [18].

The study of impedance variations during movements and particularly cyclic movements

with contact phases and hybrid transitions is especially relevant for locomotion. Previous

research has thoroughly investigated time-varying stiffness in the ankle joint during walking

[19] or running [20], as well as the contributions of reflexes and intrinsic viscoelastic proper-

ties to this stiffness [11]. Huang and Wang [21] designed a Central Pattern Generator (CPG)-

based human locomotion model, incorporating control over both joint torque and joint stiff-

ness (stiffness constant and equilibrium point). They improved the disturbance rejection on

uneven terrain compared to previous models. The time-varying viscoelastic properties of the

upper limbs have also been investigated in free cyclic movements [22] and rhythmic move-

ments under various loads [23]. Lacquaniti et al. [24] and Tsuji and Tanaka [3] studied the

endpoint impedance of a ball-catching hybrid task (with both free movements and contact

phases) with predictable physical interactions.

The present study characterizes the upper-limb mechanical impedance in a hybrid rhyth-

mic task, such as a ball-bouncing task with haptic feedback. The ball-bouncing task has already

been studied for its apparent simplicity to address several motor control issues [25–29]. Avrin

et al. [30] implemented a CPG-based control structure to reproduce human-like kinematic

performances in the ball bouncing. However, in the experimental data used to validate this

model [27, 28], the dynamics of the physical interactions between the ball, the paddle, and the

human were not simulated. A new experimental setup designed in a previous experiment [31]

overcame this shortcoming using an admittance-controlled robot that participants manipu-

lated to vertically move a virtual paddle and bounce a virtual ball in a digital environment. The

inclusion of haptic feedback during ball-paddle impacts is particularly relevant as it enhances

performance by reducing noise in ball state estimation [25]. Later studies [32, 33] validated the

methodology for endpoint-impedance estimation during cyclic movements. In this study, two
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experiments evaluate endpoint impedance in an ecologically valid multi-joint rhythmic move-

ment with low constraints imposed by the robot.

The primary goals of this research are threefold: 1) to investigate whether endpoint imped-

ance parameters exhibit variations during a cyclic task and, if so, to discern their nature; 2) to

examine whether there is a correlation between endpoint impedance behavior and the task’s

constraints; and 3) to explore potential links between endpoint impedance parameters and the

level of performance achieved, as suggested by previous research on this topic [17]. The results

presented provide valuable insights into these questions, shedding light on the nature of end-

point impedance during complex rhythmic tasks.

Materials and methods

Participants

Thirty-one healthy participants with no known motor disorders took part in the experiment.

Among the participants, 25% were women, 10% were left-handed, 40% had already manipu-

lated a similar robotic system, and 30% had never interacted physically with a robot. On aver-

age (SD standard deviation), participants were 30.0 years old (SD 8.6), declared a height of

176.2 cm (SD 9.3), and weighed 71.3 kg (SD 12.7). Before the experiment, participants were

required to read and sign a written informed consent form approved by the Ethics Committee

for Research (CER) of the Université Paris-Saclay (file number 217, September 2020). The Eth-

ics Committee also approved the experimental procedure.

Apparatus

Fig 1 depicts the experimental setup used for the experiment. Participants stood in front of a

table supporting a KUKA youBot 5 DOF robot. The robot had its first and last joints position-

controlled to a fixed orientation to evolve only in the participants’ sagittal plane. The other

three joints were admittance-controlled at 1 kHz, as detailed in Fortineau et al. [31], so that

participants could move the robot along a vertical line without feeling the robot’s weight,

joints’ friction, and with reduced apparent inertia [34]. Forces of interaction were measured

using a 6-axis force/torque sensor ATI Mini 45, placed between the robot endpoint and a han-

dle that participants maneuvered. The data from the sensor was sampled at 1 kHz. For the con-

trol, the endpoint position of the robot was obtained using joint data. However, to limit bias

from joint flexibility, a motion capture system V120:Trio by Optitrack measured handle posi-

tion with a submillimetric accuracy at 120 Hz. This position measurement was used for data

analysis. ROS was used on a master computer for the control, and the environment was simu-

lated in one dimension with ROS and Rviz.

Ball-bouncing task

Participants had to operate the robot handle in order to move a paddle in a digital environ-

ment where the ball-bouncing task was simulated. The ballistic equation determined the ball

kinematics during free movement, and the ball post-impact velocity used a restitution coeffi-

cient α = 0.6 to account for energy loss, as described in Fortineau et al. [31]. The simulation

was calibrated so that the participants could approach performances close to the ones

described in [27, 28] to guarantee rhythmic movements. The uni-dimensional task was dis-

played on a screen, with the ball represented by a sphere (mass: 0.058 kg, radius: 0.0325 m)

and the paddle by a bar (mass: 1 kg).

The goal of the task was to match the ball’s apex position with a target height h*, kept con-

stant during each trial and materialized by a horizontal line. A score was displayed slightly
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above the target line to help participants reduce the bouncing error εr between the ball center

at the apex and h*. Participants were instructed to maintain a constant ball impact position zk

during trials. During both experiences, the robot introduced perturbations timed from the ball

impacts on the simulated paddle at three possible cyclic phases: (φ1) after the ball impact, (φ2)

during the decreasing phase of the paddle, and (φ3) before the subsequent ball impact near the

lowest position. These phases are shown in Fig 2. Perturbations were randomly spaced

between 2 and 5 s.

Haptic feedback & perturbations. The robot admittance control loop was interrupted for

30 ms, and a force along the vertical axis was introduced using only the torque control loop,

with a constant setpoint to simulate ball impacts. The Eq (1) adapted from Kawazoe [35] deter-

mined the magnitude of the force f ki , with b and p indicating either the ball or the paddle, vk�

the velocity right before the impact k, m the mass, K̂ ¼ 650 an estimated coupled stiffness

between the arm and the ball, and α the same restitution coefficient used for the ballistic kine-

matics.

f ki ¼ � vk�b � vk�p
� �

1þ að Þ

ffiffiffiffiffiffiffiffiffiffi

mbK̂
q

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ

mb
mp

q ð1Þ

Perturbations were introduced through the same pathway in stochastic directions. Fig 3

shows an example of two resulting endpoint force perturbations. The peak value is reached

Fig 1. Experimental setup. Behind the robot, a screen (d) displays the simulated environment on an elevated surface

so that the monitor is roughly at the eye level of the participants. The motion capture system (a) is positioned on a

separate surface facing the robot (b). A force-torque sensor is positioned between the endpoint of the robot and the

handle (c). The screen shows: (d1) a ramp, (d2) a score, that is the distance between the ball center and the target

height (d3), a ball (d4), a paddle (d5), and the limits for the robot control (d6).

https://doi.org/10.1371/journal.pone.0295640.g001
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Fig 2. Phases perturbed along a time-normalized cyclic position trajectory. The colored area around the trajectories

represents the standard deviation. The hatched area represents the amount of data used for impedance identification.

The ball trajectory axis is provided in meters, while in centimeters for the hand trajectory.

https://doi.org/10.1371/journal.pone.0295640.g002

Fig 3. Typical force perturbations. Two examples of force perturbations resulting from the introduction of torque-

controlled perturbations.

https://doi.org/10.1371/journal.pone.0295640.g003
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approximately 30 ms after the onset of the torque control, and the next front lasts less than 30

ms afterward. The total duration of a perturbation is, therefore, below 60 ms.

Mechanical impedance modeling

Eq (2) shows the well-known KBM model used in this study.

df ¼ Kdxþ Bd _x þMd _x_ ð2Þ

This model relates a differential force δf to a differential position δx when a perturbation

force (equal to δf) is introduced along the virtual trajectories f0 and x0. The differentials are the

differences between virtual and perturbed trajectories (measured). The model can be seen as a

perturbation rejection system with the linear parameters K, B, and M: the stiffness, damping,

and mass, respectively. Virtual trajectories [36] refer to completely unperturbed behaviors and

are approximated using the nominal trajectories without the perturbations described in the

previous section. The model uses its decoupled form, which was already applied by Erden and

Billard [17, 37]. This work only studies the impedance along the movement.

The virtual paddle position was approximated using spline interpolation with starting and

landing points, respectively, right before the perturbation and 350 ms after. This window of

350 ms was chosen to minimize the quadratic error with an undisturbed trajectory and maxi-

mize the duration to account for the arm’s time response. The virtual force was estimated

using a sum of three sines optimized on portions of the signal around a masked window of 100

ms after the perturbation [33]. The sine model reached a coefficient of determination of 95.1%

(SD 5.3) for reconstructing the virtual force of nonperturbed trajectories on the duration of

the masked interval [33]. Fig 4 shows an example for both trajectories.

The impedance parameters were first estimated using an ARX (Auto Regressive model with

eXternal inputs) least square identification. The estimation on a discretized impedance model

(3), with q-1 the delay operator and e white noise, does not rely on the derivatives of the differ-

ential position [33]. The relationships between the discrete-time coefficients (ai and bi) and the

continuous-time impedance parameters K, B, and M are given in (4). They can be obtained

with a zero-order hold discretization with a time step of Δt equal to the sampling time of 1 ms.

An identification window of 150 ms was chosen to be minimal while still allowing proper iden-

tification [33]. Automatic responses or voluntary actions can occur with 100 to 180 ms delays

[38, 39] and cannot be modeled with a linear impedance model. They were, however, consid-

ered not dominant even after 200 ms [17, 37].

dx½tk� ¼ ðb1 þ b0q
� 1Þdf ½tk� � ða1q

� 1 þ a0q
� 2Þdx½tk� þ eðtkÞ ð3Þ

K ¼
1þ a1 þ a0

b1 þ b2

B ¼ �
lnða0ÞM
Dt

M ¼ �
KDt2

lnð0:5ð� a1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1
� 4a0

p
ÞÞðlnð0:5ð� a1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1
� 4a0

p
ÞÞ � lnða0ÞÞ

ð4Þ

8
>>>>>>>><

>>>>>>>>:

Experimental protocol

Two experiments (Experiment P, for phase, and Experiment H, for height) occurred during

two sessions on the same day (for all but three participants), separated by at least 45 min. Each
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session lasted 30 min on average. The first session (Session 1) consisted of a familiarization

phase and then two trials of 5 min each with a brief pause in between. Participants started the

first trial when they were confident enough with the ball-bouncing task. The second session

(Session 2) consisted of three other trials of 5 min each, also separated by small pauses to limit

fatigue.

Experiment P consisted of three trials: the two trials of Session 1 and the last trial of Session

2, or the three trials of Session 2. The target height h2* was fixed at 1.75m, and the three cyclic

phases φ were randomly perturbated in all trials.

Experiment H consisted of two trials (the two trials of Session 1 or the two first trials of Ses-

sion 2). The two trials randomly attributed a target height of either 1.5 m (h1*) or 2 m (h3*). In

this experiment, all perturbations occurred at phase φ1.

Participants were randomly selected to start with Experiment H (17 participants) or Experi-

ment P (14 participants), which divided the participants into two experiment-order subgroups.

After each experiment, participants were asked to report their perception of haptic feedback

and perturbations.

Fig 4. Position and force cyclic trajectories of a participant. Position (x) and force trajectories (f) are in solid lines,

with the estimated virtual trajectories in dashed lines, for a single cycle. The grey areas represent the standard deviation

of the trajectories recorded for this participant.

https://doi.org/10.1371/journal.pone.0295640.g004
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Data analysis

With 31 participants, 155 trials led to more than 14 hours of recorded data, not including

the familiarization phase. All acquired data was interpolated on a time vector sampled at 1

kHz. The position and force were filtered using Butterworth second-order digital filters

with cutoff frequencies of 25 Hz and 50 Hz, respectively. Cycles were defined using ball

impacts, and the distance between the target height and the ball’s apex defined the bouncing

error for each cycle. The data from the simulated environment was not used for the imped-

ance estimation.

We chose to distinguish three performance levels in both experiments’ data, defined as nov-

ice e1, intermediate e2, and advanced e3. The individual performance was first evaluated using

the interquartile range of the bouncing errors εr on each participant’s data, and the median of

the quadratic bouncing errors
ffiffiffiffiffi
ε2
r

p
as the first measures of repeatability. These groups were

generated using a k-means clustering algorithm on the interquartile range of εr since repeat-

ability was proven to qualify performances [40].

For the rest of the analyses on performance, two dependent variables were used to charac-

terize the task, using the same method as previous studies on ball bouncing. The first variable

defined the precision with the average bouncing error �εr . The second variable defined the

repeatability using the standard deviation of the bouncing errors (εr).
On average, 32.4 (SD 6.1) impedance parameter identifications for each experiment, config-

uration (h* and φ), and participant were used to estimate the endpoint-impedance parameters.

The estimated parameters for each configuration and participant were obtained using the

median of these identifications, since they proved to be more accurate than average values

after taking out outliers. This was observed with a simulated impedance model on experimen-

tal signals. Each impedance parameter was populated with 93 estimations (31 participants × 3

phases) for Experiment P and with 62 estimations for Experiment H (31 participants × 2 target

heights).

The adequation of the Impedance parameters of each identification was evaluated using the

coefficient of determination R2 of the reconstruction of the perturbed position trajectory with

the identified parameters and the differential force trajectory.

We used JASP (version 0.16) to perform the analyses of variance (ANOVA), considering a

threshold of 5%. We also conducted post-hoc tests using the Bonferroni correction. Only sig-

nificant results are detailed in the result section. We used Matlab (release 2020b) to process

data.

Results

Effect of perturbations on participants’ performance

Perturbations were programmed to be as seamless as possible while providing sufficient devia-

tions for impedance estimations [33]. Even if participants were warned of both haptic feedback

and perturbations, only 55% declared having felt perturbations during at least one of the trials.

All the bouncing errors taking place the cycle before a perturbation c-1 and three cycles

after (c1, c2, c3) were averaged for each participant and compared using a mixed-design

ANOVA (4 cycles × 2 experiments) to assess the effect of perturbations on performance. Only

a significant effect of cycle order on �εr was observed F(3, 180) = 6.8, p< 0.001, η2 = 0.026. A

post-hoc analysis revealed that the bouncing error at c1 was significantly larger than other

cycles’ errors, with a mean difference of 2.0 cm (Fig 5).

A second mixed-design ANOVA conducted on σ(εr) with the same factors had to be corrected

[41] since the sphericity test was not verified [42]. No significant effect was observed for the main
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effect factor, the random effect, or the interaction. Therefore, the repeatability of the bouncing

error was similar for all cycles, with an average standard deviation of 25.1 cm (SD 5.0).

Performance-based clustering of participants

Among all participants, 40% were already familiar with the experimental setup, while 50% had

never manipulated an articulated robot. K-means analysis showed that one participant had to

be discarded from the computation of group performances because their score was too low,

thus putting the participant in their group. The clustering was populated with 5 advanced, 13

intermediate, and 13 novice users. Interestingly, a similar clustering was obtained using the

quadratic errors. Only 3 participants were classified differently.

To validate the essence of the clustering, the differences between performance-level groups

ei were studied using two one-way ANOVAs, on the precision using the mean bouncing error

�εr and on the repeatability using the standard deviation σ(εr). The ANOVA on �εr unveiled no

significant effect of the level-group factor F(2, 28) = 3.0, p = 0.064, η2 = 0.178, while the

ANOVA on σ(εr) revealed a strong and significant effect of the performance-level factor F(2,

28) = 33.0, p< 0.001, η2 = 0.702.

The paddle acceleration at impact [29, 43] offers another way of looking at individual per-

formances. However, the accelerations estimated with two-points numerical derivatives were

not significant between the performance-level groups. Participants hit the ball with an average

post-impact acceleration of 0.29 ms-2 (SD 1.69).

Fig 5. Mean bouncing error �εr
�. The errors are given as a function of cycles around a perturbation (c-1 being right

before the perturbation and c1 right after), with standard errors used as confidence intervals. Groups that are not

significantly different are marked with the same letter for each target height.

https://doi.org/10.1371/journal.pone.0295640.g005
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Experiment H

Performances. For target heights h1* = 1.5 m and h3* = 2 m, the mean ball-bouncing mag-

nitudes (difference between the apex and impact position) were 1.176 m (SD 0.019) and 1.670

m (SD 0.019), respectively. These values show that participants hit the ball at similar vertical

positions in both conditions (0.324 m for h1* and 0.330 m for h3*) and did not tend to hit it at a

higher position when the target was higher.

The effect of target height hi* and performance-level groups ei on �εr was analyzed using a

mixed-design ANOVA (between: 2 × within: 3), revealing a significant main effect of factor

hi*, F(1, 28) = 7.0, p = 0.014, η2 = 0.043. Neither the effect of performance level ei nor the inter-

action was significant. Overall, the mean errors for h1* and h3* were 6.8 cm (SD 6.3) and 3.2

cm (SD 7.1), respectively.

On the whole group, the mean σ(εr) increased from 21.7 cm (SD 4.2) to 27.2 cm (SD 6.1)

for h1* and h3*, respectively. A mixed ANOVA (between: 2 hi* × within: 3 ei) revealed a signifi-

cant main effect of hi*, F(1, 28) = 44.8, p< 0.001, η2 = 0.179, a significant effect of ei, F(1, 28) =
19.6, p< 0.001, η2 = 0.404, but no significant interaction. The post-hoc analysis revealed that

the level of performance was significantly different for each pair. Fig 6 details the variations of

the mean σ(εr) according to both factors.

Endpoint-impedance parameters. The same factors hi* and ei were analyzed for each

endpoint-impedance parameter. ANOVAs did not yield any significant results for the stiffness

nor the damping. The average estimated stiffness was 116 N/m (SD 60), with a minimum

value of 45 N/m and a maximum of 401 N/m. The average estimated damping was 9.9 Ns/m

(SD 3.1), with a minimum value of 2.2 Ns/m and a maximum of 16.8 Ns/m.

The mixed ANOVA about the estimated mass revealed a significant effect of the main factor

hi*, F(1, 28) = 4.6, p = 0.040, η2 = 0.014. Neither the effect of performances ei nor the interac-

tion was significant. The average mass estimated for h1* was 459 g (SD 126) and 434 g (SD 94)

for h2* with a minimum value of 272 g and a maximum of 893 g.

Experiment P

Performances. The one-way ANOVA for each variable used to characterize performances

was conducted on the regrouped data of the three trials, studying the effect of performance

clusters.

The ANOVA about the average bouncing error �εr revealed no significant effect of the per-

formance clusters ei. The mean error for h2* (Experience P) was 5.4 cm (SD 5.1). The ANOVA

about the standard deviation of the error σ(εr) revealed a significant effect on the performance

clusters ei, F(2, 28) = 24.0, p< 0.001, η2 = 0.631. The average standard deviation was 27.8 cm

(SD 3.6), 22.7 cm (SD 2.1), and 18.2 cm (SD 2.0), respectively, for the clusters e1, e2, and e3.
The post-hoc analysis showed that each pair had significant differences. Fig 7 details the mean

variations of σ(εr) and �εr according to the performance clusters.

Endpoint-impedance parameters (cyclic phase factor). The factors φi and ei were ana-

lyzed for each endpoint-impedance parameter estimated using mixed-design ANOVAs

(between: 3 × within: 3).

The mixed ANOVA about the endpoint stiffness revealed a significant effect of φi, F(2, 56)
= 8.3, p< 0.001, η2 = 0.134. Neither the effect of performances ei nor the interaction was signif-

icant. The post-hoc analysis indicated that the variations were significant for the couple (φ1,

φ3). The stiffness progressively increased from φ1 125 N/m (SD 78) to φ3 191 N/m (SD 64), as

shown in Fig 8i. The stiffness values were bounded between 53 N/m and 445 N/m.

The mixed ANOVA about the endpoint damping revealed a significant effect of φi, F(2, 56)
= 8.6, p< 0.001, η2 = 0.138, and of performances ei F(2, 56) = 6.4, p = 0.005, η2 = 0.123. No
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Fig 6. Mean repeatability σ(εr) of experiment H. The repeatability is given according to performance group levels (ei)

and target heights (h*i), with standard errors used as confidence intervals. Groups that are not significantly different

are marked with the same letter for each target height.

https://doi.org/10.1371/journal.pone.0295640.g006
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significant interaction was observed. The post-hoc analysis indicated that the variations were

significant for the couples (φ1, φ2) and (φ2, φ3), with an average difference of 1.9 Ns/m and 2.2

Ns/m, respectively. Moreover, the clusters of performances were significantly different for the

couples (e1, e2) and (e2, e3). All damping values were bounded between 3.5 Ns/m and 17.5 Ns/

m. The cyclic behavior of the damping is shown in Fig 8ii.

The mixed ANOVA about the apparent mass used Huynh-Feldt’s (1976) correction

because the sphericity assumption was violated (p< 0.05). It revealed a significant effect of the

main factorφi, F(1.5, 41.3) = 16.2, p< 0.001, η2 = 0.063. Neither the effect of performances ei
nor the interaction was significant. The post-hoc analysis indicated that the variations were

significant for the couples (φ1, φ2), with an average difference of 71 g, and (φ2, φ3), with an

average difference of 67 g. All mass values were bounded between 227 g and 815 g. The cyclic

behavior of the mass is shown in Fig 8iii.

Fig 7. Mean precision �εr
� and repeatability σ(εr) of experiment P. The data of experiment P (target height h2*) is

provided as a function of performance clusters (ei), with standard errors used as confidence intervals. Groups that are

not significantly different are marked with the same letter for each ANOVA.

https://doi.org/10.1371/journal.pone.0295640.g007
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The mixed ANOVA about the coefficients of determination used Huynh-Feld’s correction

since the sphericity assumption was violated (p< 0.05). It revealed a significant effect of the

main factor φI, F(1.6, 45.9) = 31.1, p< 0.001, η2 = 0.302. Neither the effect of performances ei

Fig 8. Mean estimated impedance parameters (K, B, and M), according to the phase perturbed (and expertise in

the histogram when significant differences were observed), with standard errors used as confidence intervals.

Groups that are not significantly different are marked with the same letter for each ANOVA.

https://doi.org/10.1371/journal.pone.0295640.g008
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nor the interaction was significant. The post-hoc analysis indicated that the variations were

significant for the couples (φ1, φ2), with an average difference of 3.3%, and (φ1, φ3), with an

average difference of 2.6%. Phase φ1 had the lowest average score, with 93.5% (+/-2.7%). The

minimum users’ coefficient of determination (88.9%) was obtained in Phase 1 and the maxi-

mum (98.6%) in Phase 3.

The factors φi and ei were analyzed for each endpoint-impedance parameter notch interval

(median 95% confidence interval) using mixed-design ANOVA (between: 3 × within: 3).

The mixed ANOVA about the endpoint stiffness variability used Huynh-Feld’s correction

since the sphericity assumption was violated (p<0.05), revealing a significant effect of φi, F
(1.4, 39.0) = 4.8, p = 0.024, η2 = 0.094. Neither the effect of performances ei nor the interaction

was significant. The post-hoc analysis indicated that the variations were significant for the cou-

ple (φ1, φ2), with a decrease from 89 N/m (SD 58) to 52 N/m (SD 20). The phase φ3 had an

average notch of 78 N/m (SD 32).

The mixed ANOVA about the endpoint damping variability revealed a significant effect of

φi, F(2, 56) = 3.5, p = 0.037, η2 = 0.041, and the interaction F(4, 56) = 2.7, p = 0.037, η2 = 0.065.

However, the effect of performances ei is not significant. The post-hoc analysis indicated that

the variations were significant for the couple (φ1, φ2), with a decrease of 0.5 Ns/m (SE 0.2). The

damping notches ranged from 1.1 Ns/m to 4.8 Ns/m.

The mixed ANOVA about the endpoint mass variability used Huynh-Feld’s correction

since the sphericity assumption was violated (p< 0.05). It revealed a significant effect of φi, F
(1.4, 39.0) = 8.0, p = 0.004, η2 = 0.114. Neither the effect of performances ei nor the interaction

was significant. The post-hoc analysis indicated that the variations were significant with phase

φ2 and both other phases, with a lower notch value of 32 g (SD 16), compared to 56 g (SD 33)

and 55 g (SD 25) for φ1 and φ3, respectively.

Discussion

This work focuses on the endpoint-impedance of the upper limb during a ball-bouncing task

with haptic feedback. The results of the experiments offer insights into the main topics raised:

1) analyzing the endpoint-impedance variations during a cyclic task, 2) looking for links

between the constraints of the environment and the endpoint-impedance behavior, and 3)

looking for a relation between performance and the endpoint impedance. Results are com-

pared with the literature, and the perturbations’ influence is discussed to comfort the

methodology.

Impedance estimation validation during a ball-bouncing task

As presented in the section “Effect of perturbations on participants’ performance”, only the

cycles after a perturbation unveiled a significant mean error �εr increase of about 2.0 cm on

average. This increase can be considered negligible with respect to the mean bouncing magni-

tude of 1.42 m and the standard deviation of the bouncing error σ(εr), around 25 cm for all

participants. Moreover, the ANOVA on σ(εr) did not underline significant differences between

the cycles, showing that their repeatability did not deteriorate. Therefore, the methodology

used to introduce these perturbations is close to the main objective of total transparency or

seamlessness, which could allow online impedance estimation without disturbing the studied

task.

The endpoint-impedance parameters estimated ranged from 45 to 445 N/m, 2.2 to 17.5 Ns/

m, and 227 to 893 g for the endpoint stiffness, damping, and mass, respectively. No constraints

were imposed on the participants, thus inducing the involvement of at least three joints (wrist,

elbow, shoulder) to whom the hip joint might be added. A projection of 52 (13 × 4) parameters
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(without considering coupling effects between joints) would have been required for joint

impedance analysis. With only three parameters, 94.6% (SD 2.9) of the observed behavior

could be reproduced on average for the case of slight deviations from trajectory imposed by a

rhythmic task, pointing out the adequacy of the linear impedance model used.

Moreover, the endpoint parameters obtained from the linear model are comparable to

those found in the literature. For point-to-point movements, Burdet et al. [1] found higher

stiffness parameters ranging from 150 to 700 N/m. In the preparation of ball impacts, Tsuji

and Tanaka [3] found stiffness from 44 to 189 N/m, and in a collaborative welding task, Erden

and Billard [17] found similar stiffness values from 49 to 339 N/m in the direction of the move-

ment. This study’s apparent endpoint damping and mass are slightly lower than Tsuji and

Tanaka’s [3] and Erden and Billard’s [17] observations. Lower damping values might be

explained by the kinematic requirements of the ball-bouncing task and lower masses by the

geometric configuration imposed by the experimental setup.

How can the environment or task constraints influence the impedance?

Experiment H revealed a significant effect of target height on participant’s performances. As

the bouncing magnitude increased, their repeatability (standard deviation error) deteriorated,

but their precision (mean bouncing error) slightly improved. The statistical effect was stronger

for repeatability than for precision. The change in target height induces variations in kinemat-

ics, notably in frequency and ball post-impact velocity. These factors alter the constraints nec-

essary to accomplish the task, which may explain the observed changes in performance.

Regarding impedance parameters, the only significant effect observed was related to the

participant’s apparent mass. However, the effect was small, with an average reduction of 25g

when the height was increased by 0.5m (in the simulation). This reduction should be com-

pared with the standard deviation of the participant mass for each estimation, which was

approximately four times higher. These results may indicate either insignificant dynamic

changes induced by the environmental modification, or, as detailed later, that impedance is

not crucial for performing this task.

Are there cyclic variations of the endpoint-impedance parameters?

In the preparation of a predictable contact with an environment, joint stiffness in the case of

the ankle for locomotion [19] or elbow and wrist in a ball-catching task [24] increased before

the contact. Tsuji and Tanaka [3] also found an increase in stiffness at the endpoint level right

before motion compared to a stable posture. They deduced that the impedance regulation

occurred before starting motions for a task. However, shreds of evidence could imply neuro-

physiological differences in the emergence of rhythmic movement in opposition to discrete or

point-to-point movements [44, 45], even if unified theories have been proposed [46, 47]. Con-

sequently, impedance variations in discrete tasks might not transfer to rhythmic movements.

The results of the endpoint-impedance estimation described in this study also indicate signifi-

cant variations of the impedance parameters at three key point phases of the ball-bouncing

cycle.

The lowest stiffness values are obtained at phase φ1, which takes place 0.3 s after the impact

and progresses to reach the highest values right before the impact at phase φ3, 0.3 s before the

impact. As detailed in the result section, this increase is almost linear throughout the three

phases, with a significant growth of 53% between φ1 and φ3, implying smaller displacements

when subject to equivalent force.

Counter-intuitively, the endpoint damping reached its lowest values at φ3 (no significant

difference with φ1) and highest value in the middle of the decreasing phase at φ2, with
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significant differences from the other two phases. One might have expected a behavior corre-

lated with the endpoint stiffness to improve perturbation rejection; in fact, the damping factor

of a second-order model is proportional to the damping B of the impedance model, and the

settling time of such a model is inversely proportional to the damping factor. Considering the

average parameters of all participants for each phase, the settling time in response to a force

pulse of both φ1 and φ3 is 0.43 s, while it is about 0.34 s for φ2. Therefore, at phase φ2, the arm

returns faster to its equilibrium position. Endpoint damping variations seem uncorrelated

with the expected requirements imposed by the hybrid task since an increase in the time

response would decrease the perturbation rejection performance.

As previously stated, the identifications are conducted on 150 ms; the assumption of con-

stant parameters was also made during that time frame. Even with this assumption, significant

variations are observed within 0.6 s. Because of the assumption of constant parameters, param-

eters estimated at φ1 would be shifted away from the perturbation (since they are averaged on

150 ms) while moved closer to the perturbation for φ3, making both phases positioned in a

positive acceleration cyclic phase, as opposed to φ2. Therefore, damping variation could be

related to velocity or the sign of acceleration.

The increase in response time to perturbation rejection for the phases close to a predictable

perturbation might notify involuntary impedance variation. Indeed, it has been reported that

joint impedance is related to joint configuration and velocity [48]. To reject this latter hypothe-

sis, an experience involving similar kinematics but varying interaction force could be tested by

changing the ball mass.

Can endpoint-impedance parameters explain performance?

During a point-to-point task, Burdet et al. [1] reported a selective increase of stiffness in the

direction of instability generated by a force field but a low impedance in the direction of the

movement. As explained by the authors, since co-contractions have a high metabolic cost and

full central nervous system (CNS) control is computationally costly, the CNS is facing an opti-

mization problem to enhance robustness in the direction of perturbation while minimizing

metabolic cost. After some trials, the adaptation of the stiffness in the absence of the destabiliz-

ing force underlined the learning of the optimal endpoint impedance. Therefore, the CNS can

adapt not only the endpoint stiffness magnitude but also the endpoint stiffness geometry

(shape and orientation) in a predictive way independent of the force required to compensate

for the newly imposed dynamics.

In two other experiments, Erden and Billard [17, 37] demonstrated differences in endpoint

impedance. The first experiment compared handedness skills, and the second compared per-

formances between expert and novice participants. They found significant expertise effects on

both endpoint stiffness and damping. Novice users tended to have lower average impedance

parameters. Similar results were obtained for handedness.

These experiments emphasize the importance of adapting the endpoint-impedance param-

eters during movements and the relationship between these parameters and expertise or skill.

Therefore, it would be expected to find significant differences in endpoint parameters accord-

ing to performance levels.

However, despite significant performance differences between the three levels chosen, most

endpoint-impedance parameters were not significantly different. There might be two main

explanations. A first explanation could involve the strategies participants use to improve their

performance. Morice et al. [43] and de Rugy et al. [26] reported that the ball-bouncing task

might be achieved outside of a passively stable regime thanks to an active control relying on

visual information about the ball. Compared to kinematics and timing, our findings could
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underline a minor role of viscoelastic endpoint properties in this task. If the impedance is not

critical to the task, its variability might increase. The participant’s endpoint acceleration at the

ball’s impacts was on the verge of active and passive control and did not allow conclusions to

be drawn. It is also important to stress that no significant impact acceleration variation was

found between the different performance levels, suggesting that all participants used passive

and active control. To dismiss the hypothesis that impedance variations are not critical to per-

formances in the ball-bouncing task, an experiment with variations of dynamic considerations

could be proposed, using the change of the gravity constant or the ball mass.

A second explanation for the endpoint-impedance observations could involve the proposed

protocol. Even if some participants had prior experience with the experimental setup, the per-

formance clusters were not defined according to expertise like Erden and Billard [17]; it was

instead done retrospectively. Therefore, the clusters chosen, even if significantly different,

might not provide important enough differences. The variations caused by performance need

to be more critical than individual variations to be statistically significant. To observe slighter

variations and reduce noise in the estimated parameters, the position trajectories’ precision

could be enhanced, or more participants could be included.

Conclusions

In realistic case studies, joint impedance might be complicated to estimate when human move-

ments are free, and the environment is partially unknown. Endpoint impedance provides a

good approximation for slight deviations from a nominal trajectory, allowing the monitoring

of global behavior. Our study, in particular, did not discriminate reflexes from intrinsic

properties.

The experiments described above revealed significant rapid impedance variations (<0.6 s)

during the ball-bouncing task, supporting the idea of cyclic variations of the endpoint-imped-

ance during rhythmic tasks. Estimation techniques not relying on the assumption of constant

parameters like the ones described by Piovesan et al. [49] or Guarin and Kearney [11] could

provide more specific and descriptive cyclic impedance data to both draw more delicate varia-

tions and consolidate the findings of this work.
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