

Synthesis and Properties of Photosensitive Glycomacrocycles

Juan Xie

▶ To cite this version:

Juan Xie. Synthesis and Properties of Photosensitive Glycomacrocycles. Amélia Pilar Rauter; Thisbe K Lindhorst; Yves Queneau. Carbohydrate Chemistry: Chemical and Biological Approaches, 45, Royal Society of Chemistry, pp.460-498, 2021, 978-1-83916-390-6. 10.1039/9781839164538-00460. hal-04346319

HAL Id: hal-04346319 https://hal.science/hal-04346319

Submitted on 15 Dec 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. REVIEW

Synthesis and Properties of Photosensitive Glycomacrocycles

Juan Xie* DOI: 10.1039/b000000x [DO NOT ALTER/DELETE THIS TEXT]

⁵ This review paper summarizes all fluorescent and photochromic glycomacrocycles reported to date. The synthetic strategies, their photophysical, photochemical, chiroptical and circularly polarized luminescence properties, as well as their applications from fluorescent ion sensing, DNA intercalation, to multistimuli-responsive organogels ¹⁰ formation or as photoresponsive chiral dopants for cholesteric liquid crystals will be presented.

1 Introduction

The field of advanced photosensitive molecular systems is extremely active and has attracting ever-growing interest in recent years in many research areas for their ¹⁵ potential applications in chemistry, biology, high-resolution imaging, molecular machines and optoelectronics.¹⁻⁹ Light can be easily and precisely controlled in time, location, wavelength and intensity, thus enabling the precise activation, deactivation, detection or modulation of various chemical and biological events. It is generally non-invasive and orthogonal toward most elements of living systems, offering the

- ²⁰ potential to interrogate biological processes by targeting very diverse analytes (from small ions to large macromolecules) or to change the properties of defined molecules with minimal disturbance to the rest of the biological system. Fluorescent compounds have proven to be particularly useful in biological, analytical as well as material sciences, with distinct advantages in sensitivity and biological imaging.¹⁻³
- ²⁵ Photochromic molecules are bistable molecules featuring different structural and/or electronic properties which may be reversibly isomerized by light. Photoresponsive "intelligent" molecular systems based on photochromic molecules have been shown to be extremely promising for spatial and temporal control over various chemical and biological processes.⁴⁻⁹
- ³⁰ Carbohydrate-based macrocyclic compounds have been developed for chemical, supramolecular, analytical and biological applications, or as biomaterials.¹⁰ Development of photosensitive glycomacrocycles should be of particular interest for spatiotemporally controlling various chemical and biological properties of these compounds by light. The aim of this review is to provide an overview of all reported ³⁵ fluorescent and photochromic glycomacrocycles.

2 Fluorescent glycomacrocycles

Up to date, anthracene, pyrene, BODIPY and heterocyclic fluorophores have been introduced through ester, amide, ether or triazole linkage into the furanoside 1,5-position or the pyranoside 1,6-, 2,3- or 2,6-position to synthesize 10- to 28-40 membered fluorescent glycomacrocycles (Figure 1). Ion sensing, DNA binding, chiroptical and circularly polarized luminescence properties have been investigated.

Figure 1 Structure of reported fluorescent glycomacrocycles.

2.1 Synthesis

To the best of our knowledge, the first fluorescent glycomacrocycle has been ⁵ reported by Nillson and co-workers in 2006.¹¹ The 9,10-bis(azidomethyl) anthracene **24** has been used to realize the macrocyclization through the Cu(I)-catalyzed azido-alkyne cycloaddition reaction (CuAAC) with the bis-alkyne-functionalized glycosylpeptide **23**, leading to the 27-membered glycomacrocycle **1** linked on the 2,6-position of sugar (Scheme 1). Compound **23** was prepared in three steps from the ¹⁰ sugar aminoacid **19** and the alkyne-functionalized aminoacids **20** and **22**.

Scheme 1 Synthesis of glycomacrocycle 1.

Scheme 2 Synthesis of glycomacrocycles 2 and 3.

⁵ The group of Xie has developed the fluorescent sugar-aza-crown (SAC) ethers **2** and **3** by introducing pyrene fluorophore on two nitrogen atoms of aza-crown ethers (Scheme 2).¹² The SAC ethers can be prepared either through reduction of amide-linked glycomacrocycle **28** with BH₃,¹³ or through a one-pot cyclodimerization of *C*-

glycosyl azido aldehydes **30** or **31** via a domino Staudinger aza-Wittig reaction, followed by reduction of cyclic imine with NaBH(OAc)₃ and cleavage of boraneamine adducts with Pd/C.¹⁴ *N*-alkylation with *N*-(1-pyrenyl)chloroacetamide **33** under basic condition led to the 14-membered glycomacrocycles **2** and **3** bearing ⁵ different anomeric configurations.¹² These two macrocycles are constructed through the 1,6-position of *C*-glucoside derivatives.

Very recently, a pryrene-functionalized iminosugar azacrown ether has been reported by Blériot and colleagues¹⁵ The 14-membered iminosugar azacrown ether **35** was prepared from the iminosugar aldehyde **34** by using a domino Staudinger ¹⁰ aza-Wittig reaction followed by reduction of cyclic imine with NaBH(OAc)₃, method developed by Xie's group (Scheme 3).^{14,16} *N*-alkylation with **33** then furnished the fluorescent glycomacrocycle **4**.¹⁵

Scheme 3 Synthesis of glycomacrocycle 4.

Scheme 5 Synthesis of glycomacrocycle 8.

Wu's group then developed anthracene or pyrene-functionalized furanoid SAC ethers 5-7.¹⁷⁻¹⁹ The SAC ether **37** was firstly synthesized through a one-pot ⁵ cyclodimerization of *C*-ribosyl azido aldehyde **36** under hydrogenation conditions (Scheme 4).²⁰ This 14-membered glycomacrocycle **37** was built through the 1,5-position of the ribose derivative. *N*-alkylation with triazoyl anthracene **38** gave the glycomacrocycle **5**,¹⁷ while the reaction with 1-chloromethylpyrene **39** furnished the glycomacrocycle **6**.¹⁸ They have also prepared an anthracene-functionalized cavitand ¹⁰ **7** through CuAAC of alkynylated SAC **40** with azidomethylanthracene **24**.¹⁹

A pyrene-functionalized sugar thiacrown ether appended calix[4]arene was reported by Ling *et al.*²¹ The 15-membered sugar thiacrown ether **42** was prepared through 2,3-bis-*O*-alkylation of glucoside **41**, followed by macrocyclization in the presence of Na₂S (Scheme 5). After introducing the pyrenylmethyl group on the 4-¹⁵ position, the azido compound **43** was then appended to the *O*-propargyl calix[4]arene **44** through CuAAC, leading to the desired compound **8**.

BODIPY-functionalized glycomacrocycles 9 to 14 have been synthesized by Xie's group from alkyne-functionalized BODIPY 49 and C-glucosyl azides by employing CuAAC for the macrocyclization step (Scheme 6).²² After Boc-removal,

- ²⁰ the *C*-glucosyl azides **45-48** were coupled to the alkyne-BODIPY **49** affording compounds **50-53** which underwent intramolecular CuAAC to afford the corresponding glycomacrocycles **9**, **12-14**. The fluorescent B(OMe)₂ and BF(OMe) derivatives of BODIPY glycomacrocycles **10** and **11** can be readily prepared by treatment of **9** with BCl₃ in CH₂Cl₂ at -78 °C during 5 min. These 23 to 28-²⁵ membered macrocycles are constructed through the 1,6-position of *C*-glucoside
- derivatives.

Cyclic glycosyl purines have been developed as DNA cyclointercalators by Jang's group.²³ These 26- to 28-membered glycomacrocycles **15-17** were synthesized from the glucuronosyl purine **54**, by reacting with ethanediamine or 1,3-propanediamine,

³⁰ followed by Zemplén deacetylation and transacylation by using ethanediamine or 1,3-propanediamine (Scheme 7).

Scheme 6 Synthesis of glycomacrocycles 9 to 14.

Scheme 7 Synthesis of glycomacrocycles 15 to 17.

Scheme 8 Synthesis of glycomacrocycle 18.

Very recently, Ikai *et al.* have developed a one-handed sugar-based helical ⁵ polythiophene.²⁴ Esterification of 4,6-*O*-benzylidene glucoside **57** with bithiophene derivative **58** led to 10-membered glycomacrocycle **59** as a mixture of a*R* and a*S* isomers, separable by HPLC (Scheme 8).^{24,25} After benzylidene removal and esterification with **60** on the 4,6-position of glucoside, copolymerization of (a*R*)-**59** with 2-(tributylstannyl)thiophene **61** by Stille cross-coupling furnished the polymeric compound **18** with axial chirality. The molecular mass was estimated to be greater than 5600 g.mol⁻¹.²⁴

2.2 Properties

2.2.1 Fluorescent chemosensors

¹⁵ Fluorescent glycomacrocycles including sugar (azaimino)(thia)crown ether derivatives and BODIPY-embedded macrocycles have demonstrated interesting fluorescent chemosensors properties.

The pyrene-functionalized SACs 2 and 3 displayed fluorescence characteristics of pyrene monomer ($\lambda_{max} = 385$ nm) and intramolecular excimer emission due to strong $_{20} \pi$ - π interaction between two pyrenyl units ($\lambda_{max} \sim 480$ nm) (Figure 2 and Figure 3 for the macrocycles 2 and 3, respectively).¹² The excimer emission of 2 is weaker than 3, probably due to different conformations adopted by these two compounds with different anomeric configurations. Ion recognition investigation by following fluorescence changes upon addition of 100 equivalents of divalent cations to the 25 methanol solution of 2 or 3 showed that the total fluorescence intensity was not significantly affected by a representative selection of alkaline earth metal ions (Mg^{2+}, Ca^{2+}) and transition metal ions $(Co^{2+}, Mn^{2+}, Ni^{2+})$, but strongly quenched by Cu2+ and Cd2+ and to a less extent by Pb2+ and Zn2+. The titration experiment demonstrated the progressive fluorescent quenching upon increasing concentration $_{30}$ of Cu²⁺ (Figures 2 and 3, with the insets showing the decrease of fluorescence intensity as a function of Cu²⁺ concentration). The curves were well-fitted with a 1:1 complexation equation model and provided high stability constants as followed: log $K(Cu^{2+}:2) = 6.7\pm0.2$ and log $K(Cu^{2+}:3) = 7.8\pm0.3$, with the detection limit of

 Cu^{2+} of 40 nM (2.5 $\mu g.L^{-1}$) for both compounds. Moreover, Cu^{2+} concentration could be detected through a ratiometric measurement of the excimer-to-monomer ratio, as demonstrated by the decrease of the $I_{\text{Exc}}/I_{\text{Mon}}$ ratio of **3** while increasing the Cu²⁺ concentration in Figure 3b. The molecular geometry optimization by DFT s showed that the two pyrenyl substituents in 2 and 3 are free to adopt many accessible conformations and to form excimers, while Cu²⁺-complexation rigidified the conformation and placing the pyrene moieties far apart (Figure 4). Consequently, excimer formation is conformationally prohibited in the complexes, which illustrated the complete quenching of the excimer emission. The Cu^{2+} cation is 10 shown to be coordinated with the two carbonyl groups and the two amino groups of SAC 2 with α -anomeric configuration, while two additional oxygen atoms from the SAC are involved into the coordination sphere in SAC 3 with β -anomeric structure which can explain the higher stability constant of the complex. It has to be noticed that the corresponding non fluorescent SACs 29 and 32 displayed also selective 15 recognition towards Cu²⁺ as revealed by mass spectrometry, and a better affinity to the β -anomer 32.²⁶

Figure 2 Fluorescence spectra obtained during the titration of **2** in MeOH (2 μ M) with Cu(ClO₄)₂ ³⁰ (from 0 to 2.5 eq.). $\lambda_{ex} = 340$ nm. Inset: titration curve of the normalized integrated fluorescence as a function of Cu²⁺ concentration. Reproduced from Ref. 12 with permission from American Chemical Society.

Figure 4 B3LYP/6-31G energy-minimized structures of the Cu²⁺-complexed SACs **2** (left) and **3** (right) by DFT calculations (To simplify the calculation, methyl ethers were used as hydroxy protecting groups). The LANL2DZ (ECP) basis set was used for the Cu²⁺ cation. Reproduced from 5 Ref. 12 with permission from American Chemical Society.

Figure 5 Optimized conformation of $Hg^{2+}-6$ complex by B3LYP/LanL2DZ. Reproduced from Ref. 18 with permission from Elsevier.

Figure 6 Fluorescence spectra of **5** upon addition of ClO_4^- salts of Li⁺, Na⁺, K⁺, Ca²⁺, Mg²⁺, Hg²⁺, Co²⁺, Ni²⁺, Zn²⁺, Cu²⁺ and Pb²⁺ (100 eq.) in MeOH. $\lambda_{ex} = 367$ nm. Reproduced from Ref. 17 with permission from Elsevier.

10

15

Figure 7 Fluorescence spectra of **7** upon addition of ClO_4^- salts of Li^+ , Na^+ , K^+ , Ca^{2+} , Mg^{2+} , Hg^{2+} , Co^{2+} , Ni^{2+} , Zn^{2+} and Cu^{2+} (100 eq.) in MeOH. $\lambda_{ex} = 367$ nm. Reproduced from Ref. 19 with permission from Elsevier.

Interestingly, the analogous sugar azaimino crown ether **4** exhibited a significant selective fluorescence quenching of the pyrene eximer in the presence of Hg^{2+} ion, compared to other tested ions like Cu^{2+} , Zn^{2+} and Cd^{2+} .¹⁶

For the furanoid SACs **5-7** (Figure 1), the pyrene-functionalized SAC **6** demonstrated high selective recognition toward Cu^{2+} and Hg^{2+} ions among a series of 15 tested metal ions in methanol solution, with the association constants log $K(Cu^{2+}:6) = 1.9$ and log $K(Hg^{2+}:6) = 3.6$.¹⁸ A 1:1 ligand-to-metal ratio was determined for the Cu^{2+} or Hg^{2+} ion, and a detection limit of 130 μ M for Cu^{2+} and 12.6 μ M for Hg^{2+} . The DFT-optimized conformation of the **6**-Hg^{2+} complex showed that the Hg^{2+} occupied the azacrown center and was closed to the two nitrogen atoms of the linker 20 and two oxygen atoms of the ribosyl unit (Figure 5).

The anthracene-functionalized SAC **5** displayed three emission peaks around 395, 415, and 440 nm upon excitation at 367 nm.¹⁷ As the macrocycle **6**, it also exhibited selective recognition of Cu²⁺ and Hg²⁺ ions among a series of tested metal ions (Figure 6). The calculated association constants were log $K(Cu^{2+};\mathbf{5}) = 5.6$ and $^{25} \log K(Hg^{2+};\mathbf{5}) = 5.0$ in methanol, with the detection limits of 1.39 µM and 13.9 µM for Cu²⁺ and Hg²⁺ ions respectively.

The anthracene-functionalized cavitand **7** displayed similar emission spectrum as the macrocycle **5**, with maxima at approximately 402, 421, and 448 nm in methanol.¹⁹ Interesting, fluorescence enhancement has been observed in the presence ³⁰ of Cu²⁺ (Figure 7). The association constant for the determined 1:1 ligand metal ion complex has been calculated to be log $K(Cu^{2+};7) = 4.4$ in methanol.

As pyrene-functionalized SACs **2-4** and **6**, the pyrene-functionalized sugar thiacrown ether appended calix[4]arene **8** exhibited both monomer (378, 395 nm) and excimer (472 nm) emission bands when irradiated at 344 nm in ³⁵ methanol/chloroform.²¹ Compound **8** exhibited selective fluorescence quenching in the presence of Fe²⁺ and Fe³⁺ ions, with the formation of 1:1 complexes and apparent association constants log $K(Fe^{2+}:8) = 2.95$ and log $K(Fe^{3+}:8) = 2.94$. Molecular mechanics energy optimization has been employed to determine the possible structure of the complexes (Figure 8). As for SACs **2** and **3**, iron complexation made ⁴⁰ the two pyrene moieties far apart, thus prohibiting excimer formation.

BODIPY-functionalized glycomacrocycles **9**, **12-14** displayed typical photophysical properties of BODIPY, with a maximum absorption band at 509 nm, and an emission band centered around 515 nm and a quantum yield up to 0.71 in acetonitrile (Figure 9).²² The BF(OMe) and B(OMe)₂ derivatives **10** and **11**

displayed similar absorption and emission spectra as their BF₂ counterpart **9**, however with a higher quantum yield ($\Phi_F = 0.94$) for the B(OMe)₂ BODIPY derivative **11**. The fluorescence emission of the macrocycles **9** and **12** can be selectively quenched by both cation (Cu²⁺ and Fe³⁺) and anions (F⁻, CN⁻) among s tested cations and anions in acetonitrile. It has been determined that the glycomacrocycle **9** formed a 2:1 type complexes [**9**₂·Cu²⁺] and [**9**₂·Fe³⁺], with stability constants of log $\beta_{21} = 13.6$ and 11.2 for Cu²⁺ and Fe³⁺ respectively. Complexation study with non-cyclic precursors suggested the involvement of the triazole ring for Cu²⁺ recognition, whereas Fe³⁺ detection presumably occurs through the carbonyl groups. Investigation by ¹¹B and ¹⁹F NMR spectroscopy revealed that F⁻ and CN⁻ quenched the BODIPY fluorescence through decomposition of the

BODIPY core. Consequently, BODIPY derivatives behaved as chemodosimeters towards F⁻ and CN⁻.

Figure 8 Energy-minimized geometry of **8** binding Fe^{2+} or Fe^{3+} . Reproduced from Ref. 21 with permission from The Royal Society of Chemistry.

20

15

30

³⁵ **Figure 9** Absorption (dotted lines) and fluorescence (full lines) spectra of compounds **9-11** in MeCN; [**9**] = [**10**] = [**11**] = 1 μ M. λ ex = 508 nm. Adapted from Ref. 22 with permission from Wiley-VCH.

2.2.2 DNA intercalators

DNA intercalators are of particular interest for biological and pharmaceutical

applications. Based on docking simulations, Jiang *et al.* have developed three short linker-bridged cyclointercalators containing purine-glucuronic acid hybrids 15-17.²³ Compounds 15-17 exhibited fluorescent emission bands near 385 and 495 nm in pH 7.4 phosphate buffer, when excited at 226 nm. The fluorescence intensity of 15-17 5 decreased with increasing concentration of calf-thymus DNA, with a more significant change for 27- and 28-membered macrocycles 16 and 17 compared to 26membered macrocycle 15. The intercalation with DNA has been further confirmed by a quenching assay based on the displacement of the known DNA intercalating ethidium bromide (EB), with a decrease of the fluorescence intensity of EB bound to 10 DNA at 586 nm upon increasing concentration of 15-17. The fluorescence quenching assay of EB bound to DNA showed that the cyclic compounds 15-17 exhibited similar affinity to DNA. However, their affinity is 1.4-2.9 times higher than the corresponding noncyclic precursors 55 and 56 (Scheme 7). Docking simulation demonstrated the binding geometries of 15-17 and the important role of 15 the sugar moiety in the process of binding between the intercalators containing glucuronic acid and DNA (Figure 10). For the macrocycle 15 containing the shortest linker, it was unable to insert into the base pair stack, however able to bind to DNA thanks to several H-bonds between the sugar moiety and DNA. H-bonding between the sugar and DNA were also observed in 27- and 28-membered glycomacrocycles ²⁰ 16 and 17 which were able to interact with DNA as mono-intercalators.

Figure 10 Docking models of **15-17** (ball-and-stick representation colored in gray white). The DNA (PDB ID: 2ADW) was shown in green. Adapted from Ref. 23 with permission from Elsevier.

2.2.3 Chiroptical and circularly polarized luminescence properties

Thanks to their excellent semiconducting, optical and magnetic features, 25 polythiophenes are an important class of π -conjugated polymers which have been widely studied for applications in organic devices and functional materials. Ikai et *al.* have developed chiral polythiophenes with macromolecular helicity.²⁴ The onehanded helical polythiophene 18 possessed a fixed syn-conformation of a D-glucose- $_{30}$ linked bithiophene unit with a*R*-chirality. The circular dichroism (CD) spectra showed that $poly-T_R$ 18 showed a clear bisignated Cotton effect in the absorption region of 400-580 nm, with its CD intensity much larger than those observed for (aR)-59 and the corresponding model-T_R (Figure 11), suggesting a specific secondary structure within a single polymer chain. The intense CD signals of 18 as were also observed in various solvent systems, with the CD signals molecular massdependent, characteristic of one-handed macromolecular helicity. All-atom MD simulation in chloroform of a corresponding model polythiophene demonstrated a left-handed helically folded conformation, in which a single turn of the helix was composed of approximately 15 thiophene rings and all sulfur atoms were arranged 40 inside the helical cavity (Figure 11). Poly- T_R 18 exhibited an apparent orange

photoluminescence (PL) in chloroform and in solid state under 365 nm irradiation (Figure 12). Furthermore, poly-T_R **18** emitted right-handed circularly polarized light (CPL), with the maximum luminescence dissymmetry factor $|g_{lum}|$ values estimated to be 1.6x10⁻³ in chloroform and 1.6x10⁻³ in the film state (Figure 13).

5

10

Figure 11 Structure, CD and absorption spectra of polythiophenes in chloroform at 25 °C. [Glucose unit] = 0.1 mM. Adapted from Ref. 24 with permission from The Royal Society of Chemistry.

Figure 12 (A) Structure of the poly- T_R model used for the computational study. (B, D) Top view and (C, E) side view of the molecular model of left-handed helically folded poly- T_R in chloroform at 20 (B, C) 0 ps and (D, E) 2000 ps in an all-atom MD simulation after equilibration at 298 K, represented by space-filling (polythiophene backbone) and stick (side chain) models. All scale bars represent 1 nm. Reproduced from Ref. 24 with permission from The Royal Society of Chemistry.

Figure 13 (A) Photograph of chloroform solutions of (a) model- T_R and (b) poly- T_R , and (c) the drop-cast film and (d) powder of poly- T_R under irradiation at 365 nm. (B) PL (bottom), CPL (middle) and glum (top) spectra of poly- T_R and model- T_R in chloroform ([Glucose unit] = 0.1 mM) and the poly- T_R films at room temperature. $\lambda_{ex} = 365$ nm. Reproduced from Ref. 24 with permission from The Royal Society of Chemistry.

3 Photochromic glycomacrocycles

- Photochromic compounds are attracting more and more research interest for 15 applications in organic chemistry, photochemistry, various photophysics, supramolecular chemistry as well as material sciences. Molecular photoswitches allow reversibly photomodulating the conformation, shape, polarity and solubility of molecules, but also remote-controlling chemical reactivity or catalytic activities, 20 biological and pharmacological properties.⁴⁻⁹ The photochromic glycomacrocycles have been reported since 2017.²⁷⁻³² Up to date, among different molecular photoswitches such as diarylethene, azobenzene, spiropyrane, (hemi)(thio)indigos, acylhydrazone etc, only o- and p-dihydroxyazobenzenes have been introduced into the glycomacrocycles (Figure 14). Azobenzenes are T-type photochrome, meaning $_{25}$ that isomerization between E (trans) and Z (cis) isomers can be stimulated by light and temperature, with the *E*-azobenzene usually more stable than the Z-isomer.³³ The dihydroxyazobenzene has been connected either to the anomeric or to the 6-
- position (with or without linker) of mono- or disaccharides for the glycomacrocycles **62-64** and **69-75** containing two or four sugar units, and to the 2,3 or 4,6-position of ³⁰ glycopyranosides (**65-68**), furnishing 16- to 38-membered macrocycles.

Figure 14 Structure of reported photochromic glycomacrocycles.

3.1 Glycomacrocycles with azobenzene linked to the anomeric position

- ⁵ Despras *et al.* have first reported the azobenzene-functionalized glycomacrocycles 62 and 63.²⁷ The *p*-dihydroxyazobenene 78 was linked to the anomeric position of glucose or maltose derivative through the imidate glycosylation method (Scheme 9). The azide functions were then converted into the corresponding isothiocyanates 79 and 80. However, the macrocyclization with piperazine gave only trace amount of
- ¹⁰ the macrocycles **81** and **82**. Interestingly, photoisomerization of compounds **79** and **80** into their Z-isomers followed by reaction with piperazine led to the desired acetylated macrocycles Z-**81** and Z-**82** which then underwent the thermal return to the more stable E-macrocycles. Zemplén deacetylation furnished the 28- and 38-membered macrocycles **62** and **63** respectively.
- The absorption spectra of both *E*-isomers of **62** and **63** exhibited a large band with a maximum at around 350 nm, corresponding to the $\pi \rightarrow \pi^*$ transition of the azobenzene and a shoulder from 400 to 500 nm (an overlap between the $\pi \rightarrow \pi^*$ and $n \rightarrow \pi^*$ bands) (Figure 15a,b). The *E*-isomers can be easily isomerized to the *Z*isomers upon irradiation at 365 nm with an excellent conversion (*Z*:*E* ratio of 98:2 20 for **62** and 96:4 for **63** in the photostationary state (PSS), as determined by ¹H NMR)

(Figure 15). The Z-isomers showed a $\pi \rightarrow \pi^*$ absorption band at around 310 nm and the $n \rightarrow \pi^*$ band at around 440 nm. Irradiation at 435 nm converted partially the Zisomers back to the E-isomers (E:Z ratio of 53:47 for **62** and 63:37 for **63** at PSS₄₃₅), because of spectral overlap of E- and Z-isomers. The photoisomerization can be s repeated more than 10 times without any degradation, showing the high fatigue resistance. The Z-isomers can also be fully converted back into the E-isomers by heating in the dark for 16 h at 45°C. The half-life has been determined to be 6.2 h and 17.2 h in D₂O at 27°C for Z-**62** and Z-**63** respectively. NMR spectroscopy has demonstrated that photoswitching induced a significant structural change, with a 10 restricted conformational freedom in both E and Z states.

Figure 15 Absorption spectra of **62** (50 μ M in H₂O (0.5% DMSO)) (a) and **63** (50 μ M in H₂O) (b) at 298 K. Black line: *E*-isomers; red lines: PSS after irradiating the *E*-form at 365 nm; blue line: PSS after irradiating the *Z*-form at 435 nm; Partial ¹H NMR spectra of **62** (D₆-DMSO) (c) and **63** (D₂O) s at 300 K. (d) Black line: *E*-isomers; red line: PSS after irradiating the *E*-form at 365 nm; blue line: PSS after irradiating the *Z*-form at 435 nm. Adapted from Ref. 27 with permission from Wiley-VCH.

Figure 16 Low-energy conformers of *trans* and *cis* forms of 62 and 63 calculated with Macromodel 11.1 (OPLS3 force field in implicit water). Adapted from Ref. 27 with permission from Wiley-VCH.

²⁰ **Figure 17** Chiroptical properties of **62** and **63**. Circular dichroism spectra of **62** (50 μ M in H₂O (0.5% DMSO)) (a) and **63** (50 μ M in H₂O) (b), before (black line, trans) and after (red line, PSS) irradiation at 365 nm. Adapted from Ref. 27 with permission from Wiley-VCH.

Stochastic dynamics with MacroModel has been performed to generate plausible conformation, demonstrating the significant shape modification after photoisomerization (Figure 16). Photoisomerization induced also significant change of specific rotation. Furthermore, the CD spectra showed chiroptical properties for ⁵ both macrocycles, with a positive Cotton effect near 440 nm for the *E*-isomers (Figure 17). Interestingly, photoisomerization of *E*-**63** led to CD signals inversion, with a negative Cotton effect at 434 nm for *Z*-**63**.

3.2 Glycomacrocycles with azobenzene linked to a monosaccharide

¹⁰ Xie *et al.* have synthesized four glycomacrolactones with di-*o*-hydroxy azobenzene linked to 4,6 or 2,3-position of mannosides (**65**, **67**) and glucosides (**66**, **68**).^{28,30} The glycomacrocycles have been prepared through the one-pot *O*-alkylation-mediated macrocyclization reaction between di-*O*-bromoacetyl thio- α - or β -D-glycopyranosides **83-86** and 2,2'-dihydroxyazobenzene **87** under basic ¹⁵ conditions in the presence of crown-ether, affording 16- to 17-membered glycomacrocycles **65-68** in 22 to 39 % yield (Scheme 10).

As the macrocycles **62** and **63**, compounds **65-68** showed similar absorption spectra, with a relatively strong $\pi \rightarrow \pi^*$ transition ($\lambda_{max} = 310-314$ nm) and a weaker forbidden $n \rightarrow \pi^*$ transition ($\lambda_{max} = 451-458$ nm) of azobenzene moiety (see example

- for compound **65**: Figure 18). Irradiation at 365 nm resulted in the $E \rightarrow Z$ isomerization of the macrocycles. At PSS₃₆₅, *E:Z* ratio varied from 5:95 (for **65**), 10:90 (for **66**) and 15:85 (for **68**) to 20:80 (for **67**), with higher $E \rightarrow Z$ conversion for the 17-membered 4,6-*O*-linked macrocycles **65** and **66**. Back $Z \rightarrow E$ photoisomerization can be achieved by irradiation at 435 nm, with *E:Z* ratio varied
- ²⁵ from 53:47 to 70:30 at PSS₄₃₅. Interestingly, the macrocycles **65-68** exhibited higher thermal stability than other reported cyclic azobenzenes (with or without sugar moiety), with the *gluco* derivatives **Z-66** and **Z-68** (half-life at 293 K: 72 and 56 days respectively) more stable than the corresponding *manno* derivatives **Z-65** and **Z-67** (51 and 37 days respectively). Compounds **65-68** exhibited excellent fatigue
- ³⁰ resistance since photoswitching cycles have been repeated more than 15 times without any noticeable degradation. Chirality transfer from the sugar unit to azobenzene has also been observed for both *E*- and *Z*-glycomacrocycles **65-68**, with a negative band at around 454 nm and a positive band (310-350 nm) corresponding respectively to $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ transitions of the *E*-azobenzene in acetonitrile
- ³⁵ (Figure 19, black line), and a blue shift of all CD bands, without sign reversal for the Z-isomers (PSS₃₆₅, Figure 18, yellow line). DFT geometry optimization of different isomers of macrocycles followed by theoretical CD spectra calculation by TD-DFT suggest that the *E* and Z-glycomacrocycles adopt preferentially (*P*) helical structure for the azobenzene moiety, after comparison with the experimental CD spectra 40 (Figure 18).
 - Furthermore, among these four macrocycles, *manno*-macrolactone **65** exhibited gelation ability in cyclohexane and EtOH, with multistimuli-responsive behavior upon exposure to thermal-, photo-, and mechanical stimuli (Figure 19).²⁸ Moreover, the organogel in cyclohexane displayed a temperature-dependent helical inversion,
- ⁴⁵ with a positive Cotton effect at 460 nm which is inverted compared to its solution state which can be tuned by a repeated heating-cooling procedure (Figure 20). This could be a consequence of supramolecular chirality in the gel state.

15

5

Scheme 10 Synthesis of glycomacrocycles 65 to 68.

Figure 18 Optimized structures of *E-(P)-65*, *E-(M)-65*, *Z-(P)-65* and *Z-(M)-65* by DFT at the B3LYP/6-311G level (top); and the calculated absorption (middle) and CD spectra (down) by TD-DFT calculations at the PBE0/6–311+G (d,p) level in acetonitrile. The calculated values have been ²⁰ divided by 25 times. The experimental spectra are also superimposed (black and yellow lines). Adapted from Ref. 28 with permission from Wiley-VCH.

10 Figure 19 Pictures demonstrating the multistimuli-responsive behavior of 65 gel in cyclohexane (3 mM). Reproduced from Ref. 28 with permission from Wiley-VCH.

Figure 20 a) Temperature-dependent absorption and b) CD spectra of **65** gel in cyclohexane (3 mM) (0.25 mm path length); c) Concentration-dependent CD spectra of **65** in cyclohexane at room temperature (1 mm path length); d) CD spectra of gel **65** before irradiation (red line), and after ¹⁵ irradiation at 365 nm (48 mWcm⁻², 1 h) (green line) and at 435 nm (23 mWcm⁻², 1 h) (cyan line) (0.25 mm path length). Reproduced from Ref. 28 with permission from Wiley-VCH.

The glycomacrocycles 65 and 68 have also been investigated as photoresponsive chiral dopants for cholesteric liquid crystals (CLCs).³² The resulting photoresponsive CLCs exhibited un unprecedented shortening of helical pitch ²⁰ length. The empowerment of helical twisting power (HTP) up to 500% was observed for 68 upon E to Z photoisomerization at 365 nm (Figure 21), reflecting the significant increase in the chirality transferability in the Z-azobenzene. It has to be noticed that larger HTP in the Z-rich state than that in the E-state is hardly attainable in common azobenzene dopants based CLC system. Rotational motion of a glass 25 flake on the surface of the doped CLC mixture film has been achieved upon continuous UV/vis irradiation with both macrocycles 65 and 68. With low intensity UV irradiation followed by visible irradiation at 510 nm, two-directional motion (clockwise and anticlockwise) occurred for 65 and 68 (Figures 22, 23), while onedirectional rotational motion (crankshaft mode) is realized for 68-doped CLC under ³⁰ full intensity UV light and visible irradiation (Figure 24). This phenomenon is of particular interest because this system meets the requirements to be considered as real molecular machinery which can continuously utilize the external light energy to perform mechanical work using the molecular switching mechanism.

Figure 21 Cano wedge cell images with Cano lines obtained from CLC mixtures containing 4 wt% of **65** in 5CB (a: initial, $P = 7.4 \,\mu\text{m}$, b: PSS_{UV}, $P = 4.7 \,\mu\text{m}$, c: PSS_{vis}, $P = 5.9 \,\mu\text{m}$) and 1 wt% of **68** in ZLI-1132 (d: initial, $P = 8.4 \,\mu\text{m}$, e: PSS_{UV}, $P = 1.4 \,\mu\text{m}$, f: PSS_{vis}, $P = 5.9 \,\mu\text{m}$). White scale bar: 100 μm . Adapted from Ref. 32 with permission from American Chemical Society.

²⁰ **Figure 22** Rotational motion of a glass flake on the surface of CLC mixture film (1.4 wt% of **65** in 5CB) upon continuous UV light irradiation of low intensity (2 mWcm⁻²) from PSS_{vis} (a) to PSS_{UV} (d) in the clockwise direction. Counter-clockwise rotational motion from PSS_{UV} (e) to PSS_{vis} (h) upon visible light irradiation (25 mWcm⁻²). White scale bar: 100 μ m. Reproduced from Americain Chemical Society.

30

25

Figure 23 Rotational motion of a glass rod on the surface of CLC mixture film (1 wt% of **68** in ZLI-1173) upon continuous UV light irradiation of low intensity (2 mWcm⁻²) starting from PSS_{vis} (a) to PSS_{UV} (e) exhibiting 570° in the clockwise direction. Counter-clockwise rotational motion from PSS_{UV} (e) to PSS_{vis} (h) upon visible light irradiation (25 mWcm⁻²) exhibiting 640°. White scale bar: 35 100 μ m. Reproduced from Ref. 32 with permission from American Chemical Society.

10

5

Figure 24 Unidirectional rotational motion of a glass flack on the surface of CLC mixture film (1.7 wt% of **68** in 5CB) upon two rounds of alternating UV (full intensity, 8 mWcm⁻²) and visible light (25 mWcm⁻²) irradiation. It showed non-rotating static state upon the first ($a \rightarrow e$) and the second ¹⁵ ($j \rightarrow l$) UV irradiating step. Counter-clockwise rotational motion was observed upon the first ($f \rightarrow i$) and the second ($m \rightarrow o$) visible light irradiating step exhibiting rotation angles of 310° and 340°, respectively. White scale bar: 100 µm. Reproduced from Ref. 32 with permission from American Chemical Society.

3.3 Glycomacrocycles with azobenzene linked to the 6-position of carbohydrate

²⁰ Despras *et al.* have prepared the 28-membered glycomacrocycle **64** through Mitsunobu reaction between the *O*-propargyl mannoside **88** and *p*dihydroxyazobenzene, followed by acetylation, Glaser coupling and Zemplén deacetylation (Scheme 11).²⁹ Once again, the macrocyclization was achieved with the *Z*-azobenzene **89**, the reaction concentration was shown to be important for the ²⁵ cyclization yield.

Compound 64 displayed excellent photoswitching ability and high fatigue resistance as other azobenzene-functionalized glycomacrocycles. Irradiation at 365 nm converted efficiently the *E*-macrocycle into the corresponding *Z*-isomer with a *Z*:*E* ratio of 98:2, and a significant shape change, as demonstrated by NMR study

³⁰ (Figure 25). Interestingly, the $Z \rightarrow E$ isomerization can be realized by irradiation with a green light, with a good *E*:*Z* ratio of 88:12 at PSS₅₂₅. The half-life of the *Z*-**64** was measured to be 114 h at 27°C in DMSO. Chiroptical properties have also been observed for both isomers in DMSO, with a negative CD signal at 360 nm and a weaker one at 440 nm for the *E*-isomer, and a positive band at 320 nm and a strong negative band at 440 nm for the Z-isomer (PSS₃₆₅). Moreover, a solubility switch has been realized in water which was visible with the naked eye at higher concentrations, where the *E*-isomer is less soluble that the more polar Z-isomer (Figure 26). This solubility tuning is reversible under UV and green light irradiation.

Figure 25 (a) Expansion of the NOESY spectrum for *E*-**64** and (b) PSS at 365 nm in DMSO at 300 K; (c) force field-minimized structures of *E*-**64** and (d) *Z*-**64**. Reproduced from Ref. 29 with ²⁵ permission from The Royal Society of Chemistry.

30

Figure 26 Reversible switching of the solubility: *E***-64** in water (1.0 mg mL⁻¹) and after irradiation ³⁵ with 365 nm for 3 min and 525 nm for 10 min. Reproduced from Ref. 29 with permission from The Royal Society of Chemistry.

Xie's group has investigated an intramolecular glycosylation approach with a photochromic template and the influence of azobenzene configurations on the glycosylation outcome for the synthesis of photoswitchable glycomacrocycles (Figure 27).³¹ Since the substrate conformation could influence the efficiency of the ⁵ macrocyclization reaction, it was expected that the $E\rightarrow Z$ photoisomerization of azobenzene could induce a large change in conformation and the disposition between the glycosyl donor and glycosyl acceptor, and consequently influence the efficiency and the stereoselectivity of the macrocyclization by stereoelectronic and conformational effects. It has to be noticed that, for the synthesis of glycomacrocycles through thiourea formation (**62** and **63**, Scheme 9)²⁷ or Glaser coupling (**64**, Scheme 11),²⁹ only Z-azobenzene-linked substrates allowed the macrocyclization.

Glycosyl donor-acceptor compounds functionalized with *p-/o*-hydroxyazobenzene through a phthaloyl and/or succinoyl linkers (102-108, Scheme 12) can be readily 15 prepared from the glucosides or mannoside, respectively, by successive coupling with phthaloyl or succinoyl anhydride and dihydroxyazobenzene. Intramolecular glycosylation of *E*-isomer of 102-108 activated by NIS/TfOH occurred with high α selectivity except the macrocycle 71 (Schemes 12, 13). The 30-membered glycomacrocycles 69-75 were obtained in 12-60 % yield, with higher yields (45-60 ²⁰ %) for more rigid phthaloyl-linked compounds **69**, **73** and **75**. UV irradiation converted the *E*-substrates to the corresponding Z-102-108 with a Z/E ratio from 78/22 to 89/11 at PSS₃₇₀. Intramolecular glycosylation of Z-isomers under same condition was also α -selective, however with lower yield (30% max.). In most of cases, E-macrocycles have also been isolated because of thermal return of the Z-25 macrocycles and/or the cyclization product from the *E*-substrate presented at PSS. This study showed that excellent α -stereoselectivity can be achieved by using p- and o-dihydroxyazobenzenes templates, demonstrating the proof-of-concept of using photoswitchable template to achieve the challenging 1,2-cis glycosylation.

- The glycomacrocycles **69-75** can be reversibly photoisomerized between *E* and *Z* ³⁰ isomers under illumination at 370 nm and 433 nm, with high fatigue resistance. DFT calculations demonstrated that all the *E*- α -macrocycles are more stable than the *Z*- α isomers, with the macrocycles bearing two phthaloyl linkers being more stable. The half-live for *Z*-**73** and *Z*-**74** has been estimated to be 299.3 h and 270.5 h respectively at 25°C in CH₂Cl₂. Also, among the linear and cyclic azobenzene ³⁵ derivatives, only the *o*-substituted cycloazobenzenes **74** and **75** exhibited chiroptical properties, with inversion of helical chirality upon *E*- λ Z photoisomerization for **74**
- (Figure 28).

40

Figure 27 Photoswitchable glycomacrocycles through intramolecular glycosylation approach. Adapted from Ref. 31 with permission from The Royal Society of Chemistry.

[journal], [year], [vol], 00-00 | 25

Figure 28 Normalized absorption and circular dichroism spectra of **74** (11.4 μ M) and **75** (65 μ M) in *E*-isomer (black line) or at PSS₃₇₀ (orange line) in MeCN. Adapted from Ref. 31 with permission from The Royal Society of Chemistry.

5 4 Conclusion and Outlook

Up to 38-membered photosensitive carbohydrate-based macrocycles have been developed since 2006. Although only a limited number has been reported (18 fluorescent and 14 photochromic), these photoresponsive glycomacrocycles have shown diverse interesting properties. Main applications for the fluorescent ¹⁰ glycomacrocycles concerned the fluorescent sensing for heavy metal ions like Cu²⁺ and Hg²⁺, and DNA intercalation, where the recognition roles played by the carbohydrate moiety have been clearly demonstrated. Photoswitchable glycomacrocyclic compounds have showed excellent photowitching properties, with high photo- and thermo-stability, opening the window for various applications in 15 chemistry, supramolecular chemistry and material sciences. Reversible switching of conformation, shape, and solubility can be achieved by repetitive UV/vis illumination. Chiroptical properties have been observed for D-glucose-linked cyclic dithiophene polymer and azobenzene-functionalized glycomacrocycles, and circularly polarized luminescence properties for chiral polycyclothiophenes. the *o*-azobenzene-embedded glycomacrolactones ²⁰ Furthermore, have been successfully employed as photoresponsive chiral dopants for cholesteric liquid crystals able to perform mechanical work. One of them is able to generate photo-, thermo- and mechano-responsive organogel. Considering the diversity and numerous applications of glycomacrocycles described to date¹⁰ and the potential of the 25 photosensitive systems,¹⁻⁹ there is plenty of room for the further development of photoresponsive glycomacrocyclic compounds by incorporating different fluorophores and molecular photoswitches or both of them for analytical and biomedical applications, for photopharmacology, for organic synthesis by designing photoswitchable catalysis, or as smart functional materials, and so on.

List of abbreviation :

	BODIPY	Boron difluoride dipyrromethene
	CD	Circular dichroism
	CLC	Cholesteric liquid crystals
5	CPL	Circularly polarized luminescence
	CuAAC	Cu(I)-catalyzed azido-alkyne cycloaddition
	DFT	Density-functional theory
	DNA	Deoxyribonucleic acid
	EB	Ethidium bromide
0	HPLC	High performance liquid chromatography
	НТР	Helical twisting power
	NIS	<i>N</i> -iodosuccinimide
	PL	Photoluminescence
	PSS	Photostationary state
15	SAC TD-DFT TfOH	Sugar-aza-crown Time-dependent density functional theory Triflic acid

References

45

^aUniversité Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie

20 Supramoléculaires et Macromoléculaires, Institut d'Alembert, 4 avenue des sciences, 91190 Gif-sur-Yvette, France. Tel: 33 0181875603; E-mail: joanne.xie@ens-paris-saclay.fr

Footenotes: This review paper is dedicated to the memory of Prof. Gérard Descotes.

- 1 W. Xu, Z. Zeng, J.-H. Jiang, Y.-T. Chang and Lin Yuan, *Angew. Chem. Int. Ed.*, 2016, 55, 13658.
 - 2 J. Zhang, X. Chai, X.-P. He, H.-J. Kim, J. Yoon and H. Tian, Chem. Soc. Rev., 2019, 48, 683.
 - 3 Kyle P. Carter, Alexandra M. Young, and Amy E. Palmer, Chem. Rev., 2014, 114, 4564.
 - 4 Z. L. Pianowski, Chem. Eur. J., 2019, 25, 5128.
 - 5 W.-C. Xu, S. Sun, and S. Wu, Angew. Chem. Int. Ed., 2019, 58, 9712.
- 30 6 D.-H. Qu, Q.-C. Wang, Q.-W. Zhang, X. Ma and He Tian, Chem. Rev., 2015, 115, 7543.
 - 7 R. Göstl, A. Senf and S. Hecht, Chem. Soc. Rev., 2014, 43, 1982.
 - 8 R. Dorel and B. L. Feringa, Chem. Commun., 2019, 55, 6477.
 - 9 K. Hull, J. Morstein and D. Trauner, Chem. Rev., 2018, 118, 10710.
 - 10 J. Xie and N. Bogliotti, Chem. Rev., 2014, 114, 7678.
- 35 11 J. K. M. Ågren, J. F. Billing, H. E. Grundberg and U. J. Nilsson, Synthesis, 2006, 18, 3141.
 - 12 J. Xie, M. Ménand, S. Maisonneuve and R. Métivier, J. Org. Chem., 2007, 72, 5980.
 - 13 M. Ménand, J.-C. Blais, L. Hamon, J.-M. Valéry and J. Xie, J. Org. Chem., 2005, 70, 4423.
 - 14 M. Ménand, J.-C. Blais, J.-M. Valéry and J. Xie, J. Org. Chem., 2006, 71, 3295.
 - 15 A. Bordes, A. Poveda, T. Troadec, A. Franconetti, A. Ardá, F. Perrin, M. Ménand, M.
- 40 Sollogoub, J. Guillard, J. Désiré, R. Tripier, J. Jiménez-Barbero and Y. Blériot, Org. Lett., 2020, 22, 2344.
 - 16 A. Bordes, A. Poveda, N. Fontelle, A. Ardá, J. Guillard, Y. B. Ruan, J. Marrot, S. Imaeda, A. Kato, J. Désiré, J. Xie, J. Jiménez-Barbero and Y. Blériot, *Carbohydr. Res.*, 2021, 501, 108258.
 - 17 Y.-C. Hsieh, J.-L. Chir, H.-H. Wu, P.-S. Chang and A.-T. Wu, *Carbohydr. Res.*, 2009, **344**, 2236.
 - 18 Y.-C. Hsieh, J.-L. Chir, S.-T. Yang, S.-J. Chen, C.-H. Hu and A.-T. Wu, *Carbohydr. Res.*, 2011, 346, 978.
 - 19 Y.-C. Hsieh, J.-L. Chir, H.-H. Wu, C.-Q. Guo and A.-T. Wu, Tetrahedron Lett., 2010, 51, 109.
 - 20 Y.-C. Hsieh, J.-L. Chir, W. Zou, H.-H. Wu and A.-T. Wu, Carbohydr. Res., 2009, 344, 1020.
- 50 21 I. Ling, R. Hashim and K. J. Sabah, RSC Adv., 2015, 5, 88038.
 - 22 Y. Yu, N. Bogliotti, J. Tang, J. Xie, Eur. J. Org. Chem., 2013, 7749.
 - 23 S. Chen, R. Zhang, X. Wang, R. Yu, M. Li, S. Ren and T. Jiang, *Carbohydr. Res.*, 2016, 429, 48.

- 24 T. Ikai, K. Takayama, Y. Wada, S. Minami, C. Apiboon and K.-i. Shinohara, *Chem. Sci.*, 2019, 10, 4890.
- 25 T. Ikai, S. Minami, S. Awata, S. Shimizu, T. Yoshida, M. Okubo and K.-i. Shinohara, *Polym. Chem.*, 2018, 9, 5504.
- 5 26 F. Fournier, C. Afonso, M. Ménand, L. Hamon, J. Xie and J.-C. Tabet, *Eur. J. Mass Spectr.*, 2008, **14**, 61.
 - 27 G. Despras, J. Hain and S. O. Jaeschke, Chem. Eur. J., 2017, 23, 10838.
 - 28 C. Lin, S. Maisonneuve, R. Métivier and J. Xie, Chem. Eur. J., 2017, 23, 14996.
 - 29 J. Hain and G. Despras, Chem. Commun., 2018, 54, 8563.
- 10 30 C. Lin, S. Maisonneuve, C. Theulier and J. Xie, Eur. J. Org. Chem., 2019, 1770.
 - 31 C. Lin, J. Jiao, S. Maisonneuve, J. Mallétroit and J. Xie, Chem. Commun. 2020, 56, 3261.
 - 32 Y. Kim, N. Mafy, S. Maisonneuve, C. Lin, N. Tamaoki and J. Xie, ACS Appl. Mater. Interfaces, 2020, 12, 52146.
 - 33 H. M. D. Bandarab and S. C. Burdette, Chem. Soc. Rev., 2012, 41, 1809.
- 15